1
|
Li Y, Zhu J, Zhang Z, Wei J, Wang F, Meisl G, Knowles TPJ, Egelman EH, Tezcan FA. Transforming an ATP-dependent enzyme into a dissipative, self-assembling system. Nat Chem Biol 2025:10.1038/s41589-024-01811-1. [PMID: 39806067 DOI: 10.1038/s41589-024-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes. FtsH nanotubes require constant energy input to maintain their integrity and degrade over time with the concomitant hydrolysis of ATP, analogous to natural NTP-dependent cytoskeletal assemblies. Yet, in contrast to natural dissipative systems, ATP hydrolysis is catalyzed by free FtsH protomers and FtsH nanotubes serve to conserve ATP, leading to transient assemblies whose lifetimes can be tuned from days to minutes through the inclusion of external ATPases in solution.
Collapse
Affiliation(s)
- Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jie Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jiapeng Wei
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL, USA
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Stevenson SR, Tzokov SB, Lahiri I, Ayscough KR, Bullough PA. Cryo-EM reconstruction of yeast ADP-actin filament at 2.5 Å resolution. A comparison with vertebrate F-actin. Structure 2025:S0969-2126(24)00543-4. [PMID: 39798573 DOI: 10.1016/j.str.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones. Intriguingly, however, substitution of yeast ACT1 with vertebrate β-cytoplasmic actin severely disrupts cell function and the substitution with a skeletal muscle isoform is lethal. Here we report a 2.5 Å structure of budding yeast F-actin. Previously unresolved side-chain information allows us to highlight four main differences in the comparison of yeast and vertebrate ADP F-actins: a more open nucleotide binding pocket; a more solvent exposed C-terminus; a rearrangement of inter-subunit binding interactions in the vicinity of the D loop and changes in the hydrogen bonding network in the vicinity of histidine 73 (yeast actin) and methyl-histidine 73 (vertebrate actin).
Collapse
Affiliation(s)
- Sarah R Stevenson
- Molecular and Cell Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Svetomir B Tzokov
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Indrajit Lahiri
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Nucleic Acids Institute, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Kathryn R Ayscough
- Molecular and Cell Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Per A Bullough
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
3
|
Gadsby JR, Ioannou PS, Butler R, Mason J, Smith AJ, Dobramysl U, Chin SE, Dobson C, Gallop JL. The open to closed D-loop conformational switch determines length in filopodia-like actin bundles. Biochem J 2024; 481:1977-1995. [PMID: 39621444 DOI: 10.1042/bcj20240367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Filopodia, microspikes and cytonemes are implicated in sensing the environment and in dissemination of morphogens, organelles and pathogens across tissues. Their major structural component is parallel bundles of actin filaments that assemble from the cell membrane. Whilst the length of filopodia is central to their function, it is not known how their lengths are determined by actin bundle dynamics. Here, we identified a set of monoclonal antibodies that lengthen filopodia-like structures formed in a cell-free reconstitution system, and used them to uncover a key molecular switch governing length regulation. Using immunolabelling, enzyme-linked immunosorbent assays, immunoprecipitation and immunoblock experiments, we identified four antibodies that lengthen actin bundles by selectively binding the open DNase 1-binding loop (D-loop) of actin filaments. The antibodies inhibit actin disassembly and their effects can be alleviated by providing additional actin or cofilin. This work indicates that maintaining an open state of the actin filament D-loop is a mechanism of generating long filopodia-like actin bundles.
Collapse
Affiliation(s)
- Jonathan R Gadsby
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Pantelis Savvas Ioannou
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Richard Butler
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Julia Mason
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alison J Smith
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, U.K
| | - Ulrich Dobramysl
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - Stacey E Chin
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, U.K
| | - Claire Dobson
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, U.K
| | - Jennifer L Gallop
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| |
Collapse
|
4
|
Kreutzberger MAB, Sonani RR, Egelman EH. Cryo-EM reconstruction of helical polymers: Beyond the simple cases. Q Rev Biophys 2024; 57:e16. [PMID: 39658802 PMCID: PMC11730170 DOI: 10.1017/s0033583524000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Helices are one of the most frequently encountered symmetries in biological assemblies. Helical symmetry has been exploited in electron microscopic studies as a limited number of filament images, in principle, can provide all the information needed to do a three-dimensional reconstruction of a polymer. Over the past 25 years, three-dimensional reconstructions of helical polymers from cryo-EM images have shifted completely from Fourier-Bessel methods to single-particle approaches. The single-particle approaches have allowed people to surmount the problem that very few biological polymers are crystalline in order, and despite the flexibility and heterogeneity present in most of these polymers, reaching a resolution where accurate atomic models can be built has now become the standard. While determining the correct helical symmetry may be very simple for something like F-actin, for many other polymers, particularly those formed from small peptides, it can be much more challenging. This review discusses why symmetry determination can be problematic, and why trial-and-error methods are still the best approach. Studies of many macromolecular assemblies, such as icosahedral capsids, have usually found that not imposing symmetry leads to a great reduction in resolution while at the same time revealing possibly interesting asymmetric features. We show that for certain helical assemblies asymmetric reconstructions can sometimes lead to greatly improved resolution. Further, in the case of supercoiled flagellar filaments from bacteria and archaea, we show that the imposition of helical symmetry can not only be wrong, but is not necessary, and obscures the mechanisms whereby these filaments supercoil.
Collapse
Affiliation(s)
- Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA, USA
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA, USA
| |
Collapse
|
5
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gong R, Reynolds MJ, Sun X, Alushin GM. Afadin mediates cadherin-catenin complex clustering on F-actin linked to cooperative binding and filament curvature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617332. [PMID: 39415991 PMCID: PMC11482809 DOI: 10.1101/2024.10.08.617332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The E-cadherin-β-catenin-αE-catenin (cadherin-catenin) complex couples the cytoskeletons of neighboring cells at adherens junctions (AJs) to mediate force transmission across epithelia. Mechanical force and auxiliary binding partners converge to stabilize the cadherin-catenin complex's inherently weak binding to actin filaments (F-actin) through unclear mechanisms. Here we show that afadin's coiled-coil (CC) domain and vinculin synergistically enhance the cadherin-catenin complex's F-actin engagement. The cryo-EM structure of an E-cadherin-β-catenin-αE-catenin-vinculin-afadin-CC supra-complex bound to F-actin reveals that afadin-CC bridges adjacent αE-catenin actin-binding domains along the filament, stabilizing flexible αE-catenin segments implicated in mechanical regulation. These cooperative binding contacts promote the formation of supra-complex clusters along F-actin. Additionally, cryo-EM variability analysis links supra-complex binding along individual F-actin strands to nanoscale filament curvature, a deformation mode associated with cytoskeletal forces. Collectively, this work elucidates a mechanistic framework by which vinculin and afadin tune cadherin-catenin complex-cytoskeleton coupling to support AJ function across varying mechanical regimes.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Zsolnay V, Gardel ML, Kovar DR, Voth GA. Cracked actin filaments as mechanosensitive receptors. Biophys J 2024; 123:3283-3294. [PMID: 38894540 PMCID: PMC11480757 DOI: 10.1016/j.bpj.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Actin filament networks are exposed to mechanical stimuli, but the effect of strain on actin filament structure has not been well established in molecular detail. This is a critical gap in understanding because the activity of a variety of actin-binding proteins has recently been determined to be altered by actin filament strain. We therefore used all-atom molecular dynamics simulations to apply tensile strains to actin filaments and find that changes in actin subunit organization are minimal in mechanically strained, but intact, actin filaments. However, a conformational change disrupts the critical D-loop to W-loop connection between longitudinal neighboring subunits, which leads to a metastable cracked conformation of the actin filament whereby one protofilament is broken prior to filament severing. We propose that the metastable crack presents a force-activated binding site for actin regulatory factors that specifically associate with strained actin filaments. Through protein-protein docking simulations, we find that 43 evolutionarily diverse members of the dual zinc-finger-containing LIM-domain family, which localize to mechanically strained actin filaments, recognize two binding sites exposed at the cracked interface. Furthermore, through its interactions with the crack, LIM domains increase the length of time damaged filaments remain stable. Our findings propose a new molecular model for mechanosensitive binding to actin filaments.
Collapse
Affiliation(s)
- Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Department of Physics & Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics and James Franck Institute, University of Chicago, Chicago, Illinois
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois.
| | - Gregory A Voth
- Institute for Biophysical Dynamics and James Franck Institute, University of Chicago, Chicago, Illinois; Department of Chemistry and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois.
| |
Collapse
|
8
|
Schwarz US. Cracking under stress: How actin might turn failure into action. Biophys J 2024; 123:3281-3282. [PMID: 39244639 PMCID: PMC11480752 DOI: 10.1016/j.bpj.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Affiliation(s)
- Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Courtemanche N, Henty-Ridilla JL. Actin filament dynamics at barbed ends: New structures, new insights. Curr Opin Cell Biol 2024; 90:102419. [PMID: 39178734 PMCID: PMC11492572 DOI: 10.1016/j.ceb.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The dynamic actin cytoskeleton contributes to many critical biological processes by providing the structural support underlying the morphology of most cells, facilitating intracellular transport, and generating forces required for cell motility and division. To execute many of these functions, actin monomers polymerize into polarized filaments that display different structural and biochemical properties at each end. Filament dynamics are regulated by diverse regulatory proteins which collaborate to dictate rates of elongation and disassembly, particularly at the fast-growing barbed (plus) end. This review highlights the biochemical mechanisms of six barbed end regulatory proteins: formin, profilin, capping protein, IQGAP1, cyclase-associated protein, and twinfilin. We discuss how individual proteins influence actin dynamics and how several intriguing complex assemblies influence the polymerization fate of actin filaments. Understanding these mechanisms offers insights into how actin is regulated in essential cell processes and dysregulated in disease.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jessica L Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
Sala S, Caillier A, Oakes PW. Principles and regulation of mechanosensing. J Cell Sci 2024; 137:jcs261338. [PMID: 39297391 PMCID: PMC11423818 DOI: 10.1242/jcs.261338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Research over the past two decades has highlighted that mechanical signaling is a crucial component in regulating biological processes. Although many processes and proteins are termed 'mechanosensitive', the underlying mechanisms involved in mechanosensing can vary greatly. Recent studies have also identified mechanosensing behaviors that can be regulated independently of applied force. This important finding has major implications for our understanding of downstream mechanotransduction, the process by which mechanical signals are converted into biochemical signals, as it offers another layer of biochemical regulatory control for these crucial signaling pathways. In this Review, we discuss the different molecular and cellular mechanisms of mechanosensing, how these processes are regulated and their effects on downstream mechanotransduction. Together, these discussions provide an important perspective on how cells and tissues control the ways in which they sense and interpret mechanical signals.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
11
|
Carl AG, Reynolds MJ, Gurel PS, Phua DY, Sun X, Mei L, Hamilton K, Takagi Y, Noble AJ, Sellers JR, Alushin GM. Myosin forces elicit an F-actin structural landscape that mediates mechanosensitive protein recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608188. [PMID: 39185238 PMCID: PMC11343212 DOI: 10.1101/2024.08.15.608188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cells mechanically interface with their surroundings through cytoskeleton-linked adhesions, allowing them to sense physical cues that instruct development and drive diseases such as cancer. Contractile forces generated by myosin motor proteins mediate these mechanical signal transduction processes through unclear protein structural mechanisms. Here, we show that myosin forces elicit structural changes in actin filaments (F-actin) that modulate binding by the mechanosensitive adhesion protein α-catenin. Using correlative cryo-fluorescence microscopy and cryo-electron tomography, we identify F-actin featuring domains of nanoscale oscillating curvature at cytoskeleton-adhesion interfaces enriched in zyxin, a marker of actin-myosin generated traction forces. We next introduce a reconstitution system for visualizing F-actin in the presence of myosin forces with cryo-electron microscopy, which reveals morphologically similar superhelical F-actin spirals. In simulations, transient forces mimicking tugging and release of filaments by motors produce spirals, supporting a mechanistic link to myosin's ATPase mechanochemical cycle. Three-dimensional reconstruction of spirals uncovers extensive asymmetric remodeling of F-actin's helical lattice. This is recognized by α-catenin, which cooperatively binds along individual strands, preferentially engaging interfaces featuring extended inter-subunit distances while simultaneously suppressing rotational deviations to regularize the lattice. Collectively, we find that myosin forces can deform F-actin, generating a conformational landscape that is detected and reciprocally modulated by a mechanosensitive protein, providing a direct structural glimpse at active force transduction through the cytoskeleton.
Collapse
Affiliation(s)
- Ayala G. Carl
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Pinar S. Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Donovan Y.Z. Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Alex J. Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - James R. Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
12
|
Ngo KX, Vu HT, Umeda K, Trinh MN, Kodera N, Uyeda T. Deciphering the actin structure-dependent preferential cooperative binding of cofilin. eLife 2024; 13:RP95257. [PMID: 39093938 PMCID: PMC11296705 DOI: 10.7554/elife.95257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0-6.3 nm) than the MAD within typical helices (4.3-5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.
Collapse
Affiliation(s)
- Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Huong T Vu
- Centre for Mechanochemical Cell Biology, Warwick Medical SchoolCoventryUnited Kingdom
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Minh-Nhat Trinh
- School of Electrical and Electronic Engineering, Hanoi University of Science and TechnologyHanoiViet Nam
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Taro Uyeda
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, ShinjukuTokyoJapan
| |
Collapse
|
13
|
Mukadum F, Ccoa WJP, Hocky GM. Molecular simulation approaches to probing the effects of mechanical forces in the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:318-327. [PMID: 38334204 PMCID: PMC11310368 DOI: 10.1002/cm.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
In this article we give our perspective on the successes and promise of various molecular and coarse-grained simulation approaches to probing the effect of mechanical forces in the actin cytoskeleton.
Collapse
Affiliation(s)
- Fatemah Mukadum
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | - Glen M. Hocky
- Department of Chemistry, New York University, New York, NY 10003, USA
- Simons Center for Computational Physical Chemistry, New York, NY 10003, USA
| |
Collapse
|
14
|
Xu XP, Cao W, Swift MF, Pandit NG, Huehn AE, Sindelar CV, De La Cruz EM, Hanein D, Volkmann N. High-resolution yeast actin structures indicate the molecular mechanism of actin filament stiffening by cations. Commun Chem 2024; 7:164. [PMID: 39079963 PMCID: PMC11289367 DOI: 10.1038/s42004-024-01243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Actin filament assembly and the regulation of its mechanical properties are fundamental processes essential for eukaryotic cell function. Residue E167 in vertebrate actins forms an inter-subunit salt bridge with residue K61 of the adjacent subunit. Saccharomyces cerevisiae actin filaments are more flexible than vertebrate filaments and have an alanine at this position (A167). Substitution of this alanine for a glutamic acid (A167E) confers Saccharomyces cerevisiae actin filaments with salt-dependent stiffness similar to vertebrate actins. We developed an optimized cryogenic electron microscopy workflow refining sample preparation and vitrification to obtain near-atomic resolution structures of wild-type and A167E mutant Saccharomyces cerevisiae actin filaments. The difference between these structures allowed us to pinpoint the potential binding site of a filament-associated cation that controls the stiffness of the filaments in vertebrate and A167E Saccharomyces cerevisiae actins. Through an analysis of previously published high-resolution reconstructions of vertebrate actin filaments, along with a newly determined high-resolution vertebrate actin structure in the absence of potassium, we identified a unique peak near residue 167 consistent with the binding of a magnesium ion. Our findings show how magnesium can contribute to filament stiffening by directly bridging actin subunits and allosterically affecting the orientation of the DNase-I binding loop of actin, which plays a regulatory role in modulating actin filament stiffness and interactions with regulatory proteins.
Collapse
Affiliation(s)
- Xiao-Ping Xu
- Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Mark F Swift
- Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Nandan G Pandit
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Andrew E Huehn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Dorit Hanein
- Department of Chemistry and Biochemistry and Department of Biological Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Niels Volkmann
- Department of Biological Engineering, Department of Electrical and Computer Engineering, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
15
|
Wang Y, Wu J, Zsolnay V, Pollard TD, Voth GA. Mechanism of phosphate release from actin filaments. Proc Natl Acad Sci U S A 2024; 121:e2408156121. [PMID: 38980907 PMCID: PMC11260136 DOI: 10.1073/pnas.2408156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
After ATP-actin monomers assemble filaments, the ATP's [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| | - Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL60637
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
- Department of Cell Biology, Yale University, New Haven, CT06510
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| |
Collapse
|
16
|
Tsuji C, Bradshaw M, Allen MF, Jackson ML, Mantell J, Borucu U, Poole AW, Verkade P, Hers I, Paul DM, Dodding MP. CryoET reveals actin filaments within platelet microtubules. Nat Commun 2024; 15:5967. [PMID: 39013865 PMCID: PMC11252303 DOI: 10.1038/s41467-024-50424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Crosstalk between the actin and microtubule cytoskeletons is important for many cellular processes. Recent studies have shown that microtubules and F-actin can assemble to form a composite structure where F-actin occupies the microtubule lumen. Whether these cytoskeletal hybrids exist in physiological settings and how they are formed is unclear. Here, we show that the short-crossover Class I actin filament previously identified inside microtubules in human HAP1 cells is cofilin-bound F-actin. Lumenal F-actin can be reconstituted in vitro, but cofilin is not essential. Moreover, actin filaments with both cofilin-bound and canonical morphologies reside within human platelet microtubules under physiological conditions. We propose that stress placed upon the microtubule network during motor-driven microtubule looping and sliding may facilitate the incorporation of actin into microtubules.
Collapse
Affiliation(s)
- Chisato Tsuji
- School of Biochemistry, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Marston Bradshaw
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Megan F Allen
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Molly L Jackson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Judith Mantell
- School of Biochemistry, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Paul Verkade
- School of Biochemistry, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK.
| | - Danielle M Paul
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK.
| | - Mark P Dodding
- School of Biochemistry, Faculty of Health and Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK.
| |
Collapse
|
17
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. Structure 2024; 32:725-738.e8. [PMID: 38518780 PMCID: PMC11162321 DOI: 10.1016/j.str.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024]
Abstract
Entry of Salmonella into host enterocytes relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a 1:2 stoichiometry with sub-nanomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the groove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved by a combination of fast association via the core and very slow dissociation dictated by the arm. Similar to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by actin depolymerizing factor (ADF)/cofilin, which correlated with increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Chikireddy J, Lengagne L, Le Borgne R, Durieu C, Wioland H, Romet-Lemonne G, Jégou A. Fascin-induced bundling protects actin filaments from disassembly by cofilin. J Cell Biol 2024; 223:e202312106. [PMID: 38497788 PMCID: PMC10949937 DOI: 10.1083/jcb.202312106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Actin filament turnover plays a central role in shaping actin networks, yet the feedback mechanism between network architecture and filament assembly dynamics remains unclear. The activity of ADF/cofilin, the main protein family responsible for filament disassembly, has been mainly studied at the single filament level. This study unveils that fascin, by crosslinking filaments into bundles, strongly slows down filament disassembly by cofilin. We show that this is due to a markedly slower initiation of the first cofilin clusters, which occurs up to 100-fold slower on large bundles compared with single filaments. In contrast, severing at cofilin cluster boundaries is unaffected by fascin bundling. After the formation of an initial cofilin cluster on a filament within a bundle, we observed the local removal of fascin. Notably, the formation of cofilin clusters on adjacent filaments is highly enhanced, locally. We propose that this interfilament cooperativity arises from the local propagation of the cofilin-induced change in helicity from one filament to the other filaments of the bundle. Overall, taking into account all the above reactions, we reveal that fascin crosslinking slows down the disassembly of actin filaments by cofilin. These findings highlight the important role played by crosslinkers in tuning actin network turnover by modulating the activity of other regulatory proteins.
Collapse
Affiliation(s)
| | - Léana Lengagne
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Catherine Durieu
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
19
|
Schneider J, Jasnin M. Molecular architecture of the actin cytoskeleton: From single cells to whole organisms using cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102356. [PMID: 38608425 DOI: 10.1016/j.ceb.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Cryo-electron tomography (cryo-ET) has begun to provide intricate views of cellular architecture at unprecedented resolutions. Considerable efforts are being made to further optimize and automate the cryo-ET workflow, from sample preparation to data acquisition and analysis, to enable visual proteomics inside of cells. Here, we will discuss the latest advances in cryo-ET that go hand in hand with their application to the actin cytoskeleton. The development of deep learning tools for automated annotation of tomographic reconstructions and the serial lift-out sample preparation procedure will soon make it possible to perform high-resolution structural biology in a whole new range of samples, from multicellular organisms to organoids and tissues.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
20
|
Ma Q, Surya W, He D, Yang H, Han X, Nai MH, Lim CT, Torres J, Miao Y. Spa2 remodels ADP-actin via molecular condensation under glucose starvation. Nat Commun 2024; 15:4491. [PMID: 38802374 PMCID: PMC11130202 DOI: 10.1038/s41467-024-48863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Actin nucleotide-dependent actin remodeling is essential to orchestrate signal transduction and cell adaptation. Rapid energy starvation requires accurate and timely reorganization of the actin network. Despite distinct treadmilling mechanisms of ADP- and ATP-actin filaments, their filament structures are nearly identical. How other actin-binding proteins regulate ADP-actin filament assembly is unclear. Here, we show that Spa2 which is the polarisome scaffold protein specifically remodels ADP-actin upon energy starvation in budding yeast. Spa2 triggers ADP-actin monomer nucleation rapidly through a dimeric core of Spa2 (aa 281-535). Concurrently, the intrinsically disordered region (IDR, aa 1-281) guides Spa2 undergoing phase separation and wetting on the surface of ADP-G-actin-derived F-actin and bundles the filaments. Both ADP-actin-specific nucleation and bundling activities of Spa2 are actin D-loop dependent. The IDR and nucleation core of Spa2 are evolutionarily conserved by coexistence in the fungus kingdom, suggesting a universal adaptation mechanism in the fungal kingdom in response to glucose starvation, regulating ADP-G-actin and ADP-F-actin with high nucleotide homogeneity.
Collapse
Affiliation(s)
- Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Danxia He
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Hanmeng Yang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, 119276, Singapore, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore, Singapore.
| |
Collapse
|
21
|
Wang Y, Wu J, Zsolnay V, Pollard TD, Voth GA. Mechanism of Phosphate Release from Actin Filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551904. [PMID: 37577500 PMCID: PMC10418243 DOI: 10.1101/2023.08.03.551904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
After ATP-actin monomers assemble filaments, the ATP's γ-phosphate is hydrolyzed within seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses in an internal cavity toward a gate formed by R177 suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time interactions of R177 with other residues occludes the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL
| | - Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Liu T, Cao L, Mladenov M, Jegou A, Way M, Moores CA. Cortactin stabilizes actin branches by bridging activated Arp2/3 to its nucleated actin filament. Nat Struct Mol Biol 2024; 31:801-809. [PMID: 38267598 PMCID: PMC11102864 DOI: 10.1038/s41594-023-01205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Regulation of the assembly and turnover of branched actin filament networks nucleated by the Arp2/3 complex is essential during many cellular processes, including cell migration and membrane trafficking. Cortactin is important for actin branch stabilization, but the mechanism by which this occurs is unclear. Given this, we determined the structure of vertebrate cortactin-stabilized Arp2/3 actin branches using cryogenic electron microscopy. We find that cortactin interacts with the new daughter filament nucleated by the Arp2/3 complex at the branch site, rather than the initial mother actin filament. Cortactin preferentially binds activated Arp3. It also stabilizes the F-actin-like interface of activated Arp3 with the first actin subunit of the new filament, and its central repeats extend along successive daughter-filament subunits. The preference of cortactin for activated Arp3 explains its retention at the actin branch and accounts for its synergy with other nucleation-promoting factors in regulating branched actin network dynamics.
Collapse
Affiliation(s)
- Tianyang Liu
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Luyan Cao
- The Francis Crick Institute, London, UK
| | | | - Antoine Jegou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Michael Way
- The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Imperial College, London, UK.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
23
|
Morales EA, Fitz GN, Tyska MJ. Mitotic spindle positioning protein (MISP) preferentially binds to aged F-actin. J Biol Chem 2024; 300:107279. [PMID: 38588808 PMCID: PMC11101845 DOI: 10.1016/j.jbc.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
24
|
Heyn JCJ, Rädler JO, Falcke M. Mesenchymal cell migration on one-dimensional micropatterns. Front Cell Dev Biol 2024; 12:1352279. [PMID: 38694822 PMCID: PMC11062138 DOI: 10.3389/fcell.2024.1352279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Quantitative studies of mesenchymal cell motion are important to elucidate cytoskeleton function and mechanisms of cell migration. To this end, confinement of cell motion to one dimension (1D) significantly simplifies the problem of cell shape in experimental and theoretical investigations. Here we review 1D migration assays employing micro-fabricated lanes and reflect on the advantages of such platforms. Data are analyzed using biophysical models of cell migration that reproduce the rich scenario of morphodynamic behavior found in 1D. We describe basic model assumptions and model behavior. It appears that mechanical models explain the occurrence of universal relations conserved across different cell lines such as the adhesion-velocity relation and the universal correlation between speed and persistence (UCSP). We highlight the unique opportunity of reproducible and standardized 1D assays to validate theory based on statistical measures from large data of trajectories and discuss the potential of experimental settings embedding controlled perturbations to probe response in migratory behavior.
Collapse
Affiliation(s)
- Johannes C. J. Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O. Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
25
|
Egelman EH. Helical reconstruction, again. Curr Opin Struct Biol 2024; 85:102788. [PMID: 38401399 PMCID: PMC10923117 DOI: 10.1016/j.sbi.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Many protein and nucleoprotein complexes exist as helical polymers. As a result, much effort has been invested in developing methods for using electron microscopy to determine the structure of these assemblies. With the revolution in cryo-electron microscopy (cryo-EM), it has now become routine to reach a near-atomic level of resolution for these structures, and it is the exception when this is not possible. However, the greatest challenge is frequently determining the correct symmetry. This review focuses on why this can be so difficult and the current absence of a better approach than trial-and-error.
Collapse
Affiliation(s)
- Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, USA.
| |
Collapse
|
26
|
Nogales E, Mahamid J. Bridging structural and cell biology with cryo-electron microscopy. Nature 2024; 628:47-56. [PMID: 38570716 PMCID: PMC11211576 DOI: 10.1038/s41586-024-07198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department, Institute for Quantitative Biomedicine, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, Berkeley, CA, USA.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
27
|
Nashchekin D, Squires I, Prokop A, St Johnston D. The Shot CH1 domain recognises a distinct form of F-actin during Drosophila oocyte determination. Development 2024; 151:dev202370. [PMID: 38564309 PMCID: PMC11058685 DOI: 10.1242/dev.202370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
In Drosophila, only one cell in a multicellular female germline cyst is specified as an oocyte and a similar process occurs in mammals. The symmetry-breaking cue for oocyte selection is provided by the fusome, a tubular structure connecting all cells in the cyst. The Drosophila spectraplakin Shot localises to the fusome and translates its asymmetry into a polarised microtubule network that is essential for oocyte specification, but how Shot recognises the fusome is unclear. Here, we demonstrate that the actin-binding domain (ABD) of Shot is necessary and sufficient to localise Shot to the fusome and mediates Shot function in oocyte specification together with the microtubule-binding domains. The calponin homology domain 1 of the Shot ABD recognises fusomal F-actin and requires calponin homology domain 2 to distinguish it from other forms of F-actin in the cyst. By contrast, the ABDs of utrophin, Fimbrin, Filamin, Lifeact and F-tractin do not recognise fusomal F-actin. We therefore propose that Shot propagates fusome asymmetry by recognising a specific conformational state of F-actin on the fusome.
Collapse
Affiliation(s)
- Dmitry Nashchekin
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Iolo Squires
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester M13 9PT, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
28
|
Fineberg A, Takagi Y, Thirumurugan K, Andrecka J, Billington N, Young G, Cole D, Burgess SA, Curd AP, Hammer JA, Sellers JR, Kukura P, Knight PJ. Myosin-5 varies its step length to carry cargo straight along the irregular F-actin track. Proc Natl Acad Sci U S A 2024; 121:e2401625121. [PMID: 38507449 PMCID: PMC10990141 DOI: 10.1073/pnas.2401625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Molecular motors employ chemical energy to generate unidirectional mechanical output against a track while navigating a chaotic cellular environment, potential disorder on the track, and against Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.
Collapse
Affiliation(s)
- Adam Fineberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- Laboratory of Single Molecule Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Kavitha Thirumurugan
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Joanna Andrecka
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
| | - Neil Billington
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
| | - Stan A. Burgess
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Alistair P. Curd
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - James R. Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Peter J. Knight
- Astbury Centre for Structural Molecular Biology, and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
29
|
Szántó JK, Dietschreit JCB, Shein M, Schütz AK, Ochsenfeld C. Systematic QM/MM Study for Predicting 31P NMR Chemical Shifts of Adenosine Nucleotides in Solution and Stages of ATP Hydrolysis in a Protein Environment. J Chem Theory Comput 2024; 20:2433-2444. [PMID: 38497488 DOI: 10.1021/acs.jctc.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NMR (nuclear magnetic resonance) spectroscopy allows for important atomistic insights into the structure and dynamics of biological macromolecules; however, reliable assignments of experimental spectra are often difficult. Herein, quantum mechanical/molecular mechanical (QM/MM) calculations can provide crucial support. A major problem for the simulations is that experimental NMR signals are time-averaged over much longer time scales, and since computed chemical shifts are highly sensitive to local changes in the electronic and structural environment, sufficiently large averages over representative structural ensembles are essential. This entails high computational demands for reliable simulations. For NMR measurements in biological systems, a nucleus of major interest is 31P since it is both highly present (e.g., in nucleic acids) and easily observable. The focus of our present study is to develop a robust and computationally cost-efficient framework for simulating 31P NMR chemical shifts of nucleotides. We apply this scheme to study the different stages of the ATP hydrolysis reaction catalyzed by p97. Our methodology is based on MM molecular dynamics (MM-MD) sampling, followed by QM/MM structure optimizations and NMR calculations. Overall, our study is one of the most comprehensive QM-based 31P studies in a protein environment and the first to provide computed NMR chemical shifts for multiple nucleotide states in a protein environment. This study sheds light on a process that is challenging to probe experimentally and aims to bridge the gap between measured and calculated NMR spectroscopic properties.
Collapse
Affiliation(s)
- Judit Katalin Szántó
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mikhail Shein
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 München, Germany
| | - Anne K Schütz
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
30
|
Chavali SS, Chou SZ, Cao W, Pollard TD, De La Cruz EM, Sindelar CV. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nat Commun 2024; 15:2059. [PMID: 38448439 PMCID: PMC10918085 DOI: 10.1038/s41467-024-46179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Arp2/3 complex nucleates branched actin filaments for cell and organelle movements. Here we report a 2.7 Å resolution cryo-EM structure of the mature branch junction formed by S. pombe Arp2/3 complex that provides details about interactions with both mother and daughter filaments. We determine a second structure at 3.2 Å resolution with the phosphate analog BeFx bound with ADP to Arp3 and ATP bound to Arp2. In this ADP-BeFx transition state the outer domain of Arp3 is rotated 2° toward the mother filament compared with the ADP state and makes slightly broader contacts with actin in both the mother and daughter filaments. Thus, dissociation of Pi from the ADP-Pi transition state reduces the interactions of Arp2/3 complex with the actin filaments and may contribute to the lower mechanical stability of mature branch junctions with ADP bound to the Arps. Our structures also reveal that the mother filament in contact with Arp2/3 complex is slightly bent and twisted, consistent with the preference of Arp2/3 complex binding curved actin filaments. The small degree of twisting constrains models of actin filament mechanics.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA
| | - Steven Z Chou
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA
| | - Thomas D Pollard
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
- Department of Cell Biology, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
- Department of Molecular and Cell Biology, University of California, 638 Barker Hall, Berkeley, CA, 94720-3200, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
| |
Collapse
|
31
|
Shein M, Hitzenberger M, Cheng TC, Rout SR, Leitl KD, Sato Y, Zacharias M, Sakata E, Schütz AK. Characterizing ATP processing by the AAA+ protein p97 at the atomic level. Nat Chem 2024; 16:363-372. [PMID: 38326645 PMCID: PMC10914628 DOI: 10.1038/s41557-024-01440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.
Collapse
Affiliation(s)
- Mikhail Shein
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manuel Hitzenberger
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Tat Cheung Cheng
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Smruti R Rout
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Kira D Leitl
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Eri Sakata
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.
| | - Anne K Schütz
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany.
- Bavarian NMR Center, Technical University of Munich, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
32
|
Hvorecny KL, Sladewski TE, De La Cruz EM, Kollman JM, Heaslip AT. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. Nat Commun 2024; 15:1840. [PMID: 38418447 PMCID: PMC10902351 DOI: 10.1038/s41467-024-46111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The cytoskeletal protein actin plays a critical role in the pathogenicity of the intracellular parasite, Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there are conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length. Unlike skeletal muscle actin, Toxoplasma filaments intrinsically undergo rapid treadmilling due to a high critical concentration, fast monomer dissociation, and rapid nucleotide exchange. Cryo-EM structures of jasplakinolide-stabilized and native (i.e. unstabilized) filaments show an architecture like skeletal actin, with differences in assembly contacts in the D-loop that explain the dynamic nature of the filament, likely a conserved feature of Apicomplexan actin. This work demonstrates that evolutionary changes at assembly interfaces can tune the dynamic properties of actin filaments without disrupting their conserved structure.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas E Sladewski
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Aoife T Heaslip
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
33
|
Gong R, Reynolds MJ, Carney KR, Hamilton K, Bidone TC, Alushin GM. Fascin structural plasticity mediates flexible actin bundle construction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574123. [PMID: 38260322 PMCID: PMC10802278 DOI: 10.1101/2024.01.03.574123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fascin crosslinks actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-electron microscopy, cryo-electron tomography coupled with custom denoising, and computational modeling to probe fascin's F-actin crosslinking mechanisms across spatial scales. Our fascin crossbridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis, and simulations show how structural plasticity enables fascin to bridge varied inter-filament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncovers geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable crosslinks that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Keith R. Carney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
34
|
Truglia B, Carbone N, Ghadre I, Vallero S, Zito M, Zizzi EA, Deriu MA, Tuszynski JA. An In Silico Investigation of the Molecular Interactions between Volatile Anesthetics and Actin. Pharmaceuticals (Basel) 2023; 17:37. [PMID: 38256871 PMCID: PMC10819646 DOI: 10.3390/ph17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Sara Vallero
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | | | | | | | - J. A. Tuszynski
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
35
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573373. [PMID: 38234808 PMCID: PMC10793455 DOI: 10.1101/2023.12.26.573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Entry of Salmonella into host enterocytes strictly relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a unique mode in a 1:2 stoichiometry with picomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the grove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved via a combination of fast association via the core and very slow dissociation dictated by the arm. Similarly to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by ADF/cofilin, which correlated with the increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Yuan B, Scholz J, Wald J, Thuenauer R, Hennell James R, Ellenberg I, Windhorst S, Faix J, Marlovits TC. Structural basis for subversion of host cell actin cytoskeleton during Salmonella infection. SCIENCE ADVANCES 2023; 9:eadj5777. [PMID: 38064550 PMCID: PMC10708208 DOI: 10.1126/sciadv.adj5777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Secreted bacterial type III secretion system (T3SS) proteins are essential for successful infection by many human pathogens. Both T3SS translocator SipC and effector SipA are critical for Salmonella infection by subversion of the host cell cytoskeleton, but the precise molecular interplay between them remains unknown. Here, using cryo-electron microscopy, we show that SipA binds along the F-actin grooves with a unique binding pattern. SipA stabilizes F-actin through charged interface residues and appears to prevent inorganic phosphate release through closure of the "back door" of adenosine 5'-triphosphate pocket. We also show that SipC enhances the binding of SipA to F-actin, thus demonstrating that a sequential presence of T3SS proteins in host cells is associated with a sequence of infection events-starting with actin nucleation, filament growth, and stabilization. Together, our data explain the coordinated interplay of a precisely tuned and highly effective mechanism during Salmonella infection and provide a blueprint for interfering with Salmonella effectors acting on actin.
Collapse
Affiliation(s)
- Biao Yuan
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jiri Wald
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), University of Hamburg, Hamburg, Germany
- Technology Platform Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Rory Hennell James
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Irina Ellenberg
- University Medical Center Hamburg-Eppendorf (UKE), Institute for Biochemistry and Signal Transduction, Hamburg, Germany
| | - Sabine Windhorst
- University Medical Center Hamburg-Eppendorf (UKE), Institute for Biochemistry and Signal Transduction, Hamburg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas C. Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| |
Collapse
|
37
|
Okura K, Matsumoto T, Narita A, Tatsumi H. Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments. J Mol Biol 2023; 435:168295. [PMID: 37783285 DOI: 10.1016/j.jmb.2023.168295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
A variety of biological roles of mechanical forces have been proposed in cell biology, such as cell signaling pathways for survival, development, growth, and differentiation. Mechanical forces alter the mechanical conditions within cells and their environment, which strongly influences the reorganization of the actin cytoskeleton. Single-molecule imaging studies of actin filaments have led to the hypothesis that the actin filament acts as a mechanosensor; e.g., increases in actin filament tension alter their conformation and affinity for regulatory proteins. However, our understanding of the molecular mechanisms underlying how tension modulates the mechanical behavior of a single actin filament is still incomplete. In this study, a direct measurement of the twisting and bending of a fluorescently labeled single actin filament under different tension levels by force application (0.8-3.4 pN) was performed using single-molecule fluorescence polarization (SMFP) microscopy. The results showed that the amplitude of twisting and bending fluctuations of a single actin filament decreased with increasing tension. Electron micrograph analysis of tensed filaments also revealed that the fluctuations in the crossover length of actin filaments decreased with increasing filament tension. Possible molecular mechanisms underlying these results involving the binding of actin-binding proteins, such as cofilin, to the filament are discussed.
Collapse
Affiliation(s)
- Kaoru Okura
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Tomoharu Matsumoto
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Akihiro Narita
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan.
| |
Collapse
|
38
|
Oosterheert W, Blanc FEC, Roy A, Belyy A, Sanders MB, Hofnagel O, Hummer G, Bieling P, Raunser S. Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments. Nat Struct Mol Biol 2023; 30:1774-1785. [PMID: 37749275 PMCID: PMC10643162 DOI: 10.1038/s41594-023-01101-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
The release of inorganic phosphate (Pi) from actin filaments constitutes a key step in their regulated turnover, which is fundamental to many cellular functions. The mechanisms underlying Pi release from the core and barbed end of actin filaments remain unclear. Here, using human and bovine actin isoforms, we combine cryo-EM with molecular-dynamics simulations and in vitro reconstitution to demonstrate how actin releases Pi through a 'molecular backdoor'. While constantly open at the barbed end, the backdoor is predominantly closed in filament-core subunits and opens only transiently through concerted amino acid rearrangements. This explains why Pi escapes rapidly from the filament end but slowly from internal subunits. In a nemaline-myopathy-associated actin variant, the backdoor is predominantly open in filament-core subunits, resulting in accelerated Pi release and filaments with drastically shortened ADP-Pi caps. Our results provide the molecular basis for Pi release from actin and exemplify how a disease-linked mutation distorts the nucleotide-state distribution and atomic structure of the filament.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Florian E C Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ankit Roy
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Institute for Biophysics, Goethe University, Frankfurt am Main, Germany.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
39
|
Chen X, Li Y, Guo M, Xu B, Ma Y, Zhu H, Feng XQ. Polymerization force-regulated actin filament-Arp2/3 complex interaction dominates self-adaptive cell migrations. Proc Natl Acad Sci U S A 2023; 120:e2306512120. [PMID: 37639611 PMCID: PMC10483647 DOI: 10.1073/pnas.2306512120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023] Open
Abstract
Cells migrate by adapting their leading-edge behaviors to heterogeneous extracellular microenvironments (ECMs) during cancer invasions and immune responses. Yet it remains poorly understood how such complicated dynamic behaviors emerge from millisecond-scale assembling activities of protein molecules, which are hard to probe experimentally. To address this gap, we establish a spatiotemporal "resistance-adaptive propulsion" theory based on the interactions between Arp2/3 complexes and polymerizing actin filaments and a multiscale dynamic modeling system spanning from molecular proteins to the cell. We quantitatively find that cells can accurately self-adapt propulsive forces to overcome heterogeneous ECMs via a resistance-triggered positive feedback mechanism, dominated by polymerization-induced actin filament bending and the bending-regulated actin-Arp2/3 binding. However, for high resistance regions, resistance triggers a negative feedback, hindering branched filament assembly, which adapts cellular morphologies to circumnavigate the obstacles. Strikingly, the synergy of the two opposite feedbacks not only empowers the cell with both powerful and flexible migratory capabilities to deal with complex ECMs but also enables efficient utilization of intracellular proteins by the cell. In addition, we identify that the nature of cell migration velocity depending on ECM history stems from the inherent temporal hysteresis of cytoskeleton remodeling. We also show that directional cell migration is dictated by the competition between the local stiffness of ECMs and the local polymerizing rate of actin network caused by chemotactic cues. Our results reveal that it is the polymerization force-regulated actin filament-Arp2/3 complex binding interaction that dominates self-adaptive cell migrations in complex ECMs, and we provide a predictive theory and a spatiotemporal multiscale modeling system at the protein level.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
- School of Engineering, Cardiff University, CardiffCF24 3AA, United Kingdom
| | - Yuhui Li
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CNRS/Université Grenoble Alpes, Grenoble38054, France
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Bowen Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| | - Yanhui Ma
- School of Engineering, Cardiff University, CardiffCF24 3AA, United Kingdom
| | - Hanxing Zhu
- School of Engineering, Cardiff University, CardiffCF24 3AA, United Kingdom
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing100084, China
| |
Collapse
|
40
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
41
|
Steffensen KE, Dawson JF. Actin's C-terminus coordinates actin structural changes and functions. Cytoskeleton (Hoboken) 2023; 80:313-329. [PMID: 37036084 DOI: 10.1002/cm.21757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Actin is essential to eukaryotic cellular processes. Actin's C-terminus appears to play a direct role in modulating actin's structure and properties, facilitating the binding and function of actin-binding proteins (ABPs). The structural and functional characterization of filamentous actin's C-terminus has been impeded by its inherent flexibility, as well as actin's resistance to crystallization for x-ray diffraction and the historical resolution constraints associated with electron microscopy. Many biochemical studies have established that actin's C-terminus must retain its flexibility and structural integrity to modulate actin's structure and functions. For example, C-terminal structural changes are known to affect nucleotide binding and exchange, as well as propagate actin structural changes throughout extensive allosteric networks, facilitating the binding and function of ABPs. Advances in electron microscopy have resulted in high-resolution structures of filamentous actin, providing insights into subtle structural changes that are mediated by actin's C-terminus. Here, we review existing knowledge establishing the importance of actin's C-terminus within actin structural changes and functions and discuss how modern structural characterization techniques provide the tools to understand the role of actin's C-terminus in cellular processes.
Collapse
Affiliation(s)
- Karl E Steffensen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - John F Dawson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Hvorecny KL, Sladewski TE, De La Cruz EM, Kollman JM, Heaslip AT. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555340. [PMID: 37693530 PMCID: PMC10491163 DOI: 10.1101/2023.08.29.555340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The cytoskeletal protein actin plays a critical role in the pathogenicity of Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there is conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length. Unlike skeletal muscle actin, Toxoplasma filaments intrinsically undergo rapid treadmilling due to a high critical concentration, fast monomer dissociation, and rapid nucleotide exchange. Cryo-EM structures of stabilized and unstabilized filaments show an architecture like skeletal actin, with differences in assembly contacts in the D-loop that explain the dynamic nature of the filament, likely a conserved feature of Apicomplexan actin. This work demonstrates that evolutionary changes at assembly interfaces can tune dynamic properties of actin filaments without disrupting their conserved structure.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas E Sladewski
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Aoife T Heaslip
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
43
|
Fineberg A, Takagi Y, Thirumurugan K, Andrecka J, Billington N, Young G, Cole D, Burgess SA, Curd AP, Hammer JA, Sellers JR, Kukura P, Knight PJ. Myosin-5 varies its steps along the irregular F-actin track. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549178. [PMID: 37503193 PMCID: PMC10370000 DOI: 10.1101/2023.07.16.549178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Molecular motors employ chemical energy to generate unidirectional mechanical output against a track. By contrast to the majority of macroscopic machines, they need to navigate a chaotic cellular environment, potential disorder in the track and Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering (iSCAT) microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably-spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.
Collapse
Affiliation(s)
- Adam Fineberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Kavitha Thirumurugan
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
- Present address: Structural Biology Lab, Pearl Research Park, SBST, Vellore Institute of Technology, Vellore-632 014, India
| | - Joanna Andrecka
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Present address: Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Neil Billington
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
- Present address: Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, U.S.A
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Present address: Refeyn Ltd., Unit 9, Trade City, Sandy Ln W, Littlemore, Oxford OX4 6FF, U.K
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- Present address: Refeyn Ltd., Unit 9, Trade City, Sandy Ln W, Littlemore, Oxford OX4 6FF, U.K
| | - Stan A. Burgess
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Alistair P. Curd
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - John A. Hammer
- Cell and Developmental Biology Center, NHLBI, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - James R. Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford OX1 3QU, U.K
| | - Peter J. Knight
- Astbury Centre for Structural Molecular Biology, and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
44
|
Kreutzberger MAB, Cvirkaite-Krupovic V, Liu Y, Baquero DP, Liu J, Sonani RR, Calladine CR, Wang F, Krupovic M, Egelman EH. The evolution of archaeal flagellar filaments. Proc Natl Acad Sci U S A 2023; 120:e2304256120. [PMID: 37399404 PMCID: PMC10334743 DOI: 10.1073/pnas.2304256120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
Flagellar motility has independently arisen three times during evolution: in bacteria, archaea, and eukaryotes. In prokaryotes, the supercoiled flagellar filaments are composed largely of a single protein, bacterial or archaeal flagellin, although these two proteins are not homologous, while in eukaryotes, the flagellum contains hundreds of proteins. Archaeal flagellin and archaeal type IV pilin are homologous, but how archaeal flagellar filaments (AFFs) and archaeal type IV pili (AT4Ps) diverged is not understood, in part, due to the paucity of structures for AFFs and AT4Ps. Despite having similar structures, AFFs supercoil, while AT4Ps do not, and supercoiling is essential for the function of AFFs. We used cryo-electron microscopy to determine the atomic structure of two additional AT4Ps and reanalyzed previous structures. We find that all AFFs have a prominent 10-strand packing, while AT4Ps show a striking structural diversity in their subunit packing. A clear distinction between all AFF and all AT4P structures involves the extension of the N-terminal α-helix with polar residues in the AFFs. Additionally, we characterize a flagellar-like AT4P from Pyrobaculum calidifontis with filament and subunit structure similar to that of AFFs which can be viewed as an evolutionary link, showing how the structural diversity of AT4Ps likely allowed for an AT4P to evolve into a supercoiling AFF.
Collapse
Affiliation(s)
- Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | | | - Ying Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Diana P. Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Junfeng Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Chris R. Calladine
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
45
|
Zsolnay V, Gardel ML, Kovar DR, Voth GA. Cracked actin filaments as mechanosensitive receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546553. [PMID: 37425801 PMCID: PMC10327158 DOI: 10.1101/2023.06.26.546553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Actin filament networks are exposed to mechanical stimuli, but the effect of strain on actin filament structure has not been well-established in molecular detail. This is a critical gap in understanding because the activity of a variety of actin-binding proteins have recently been determined to be altered by actin filament strain. We therefore used all-atom molecular dynamics simulations to apply tensile strains to actin filaments and find that changes in actin subunit organization are minimal in mechanically strained, but intact, actin filaments. However, a conformational change disrupts the critical D-loop to W-loop connection between longitudinal neighboring subunits, which leads to a metastable cracked conformation of the actin filament, whereby one protofilament is broken prior to filament severing. We propose that the metastable crack presents a force-activated binding site for actin regulatory factors that specifically associate with strained actin filaments. Through protein-protein docking simulations, we find that 43 evolutionarily-diverse members of the dual zinc finger containing LIM domain family, which localize to mechanically strained actin filaments, recognize two binding sites exposed at the cracked interface. Furthermore, through its interactions with the crack, LIM domains increase the length of time damaged filaments remain stable. Our findings propose a new molecular model for mechanosensitive binding to actin filaments.
Collapse
Affiliation(s)
- Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL
| | - Margaret L. Gardel
- Department of Physics & Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics and James Franck Institute, University of Chicago, Chicago, IL
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Gregory A. Voth
- Institute for Biophysical Dynamics and James Franck Institute, University of Chicago, Chicago, IL
- Department of Chemistry and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, IL
| |
Collapse
|
46
|
Chou SZ, Pollard TD. Cryo-EM structures of both ends of the actin filament explain why the barbed end elongates faster than the pointed end. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540494. [PMID: 37214997 PMCID: PMC10197683 DOI: 10.1101/2023.05.12.540494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Actin filament ends are the sites of subunit addition during elongation and subunit loss during depolymerization. Prior work established the kinetics and thermodynamics of the assembly reactions at both ends but not the structural basis of their differences. Cryo-EM reconstructions of the barbed end at 3.1 Å resolution and the pointed end at 3.5 Å reveal distinct conformations at the two ends. These conformations explain why barbed ends elongate faster than pointed ends and why pointed ends rapidly dissociate the γ-phosphate released from ATP hydrolysis during assembly. The D-loop of the penultimate subunit at the pointed end is folded onto the terminal subunit, precluding its binding incoming actin monomers, and gates on the phosphate release channels of both subunits are wide open. The samples were prepared with FH2 dimers from fission yeast formin Cdc12. The barbed end reconstruction has extra density that may be partial occupancy by the FH2 domains. Significance Statement Cells depend cytoplasmic filaments assembled from the protein actin for their physical integrity, as tracks for myosin motor proteins and movements of the whole cell and internal organelles. Actin filaments elongate and shrink at their ends by adding or dissociating single actin molecules. We used cryo-electron microscopy to determine the structures of the two ends of actin filaments at 3.5 Å resolution for the slowly growing pointed end and 3.1 Å for the rapidly growing barbed end. These structures reveal why barbed ends grow faster than the pointed ends, why the rate at the pointed end is not diffusion-limited and why the pointed end has a low affinity for the γ-phosphate released from bound ATP inside the filament.
Collapse
|
47
|
Morales EA, Tyska MJ. Mitotic spindle positioning protein (MISP) is an actin bundler that senses ADP-actin and binds near the pointed ends of filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539649. [PMID: 37205433 PMCID: PMC10187293 DOI: 10.1101/2023.05.05.539649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. Using in vitro TIRF microscopy assays, we found that MISP exhibits a clear binding preference for filaments enriched in ADP-actin monomers. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
|
48
|
Cao L, Ghasemi F, Way M, Jégou A, Romet‐Lemonne G. Regulation of branched versus linear Arp2/3-generated actin filaments. EMBO J 2023; 42:e113008. [PMID: 36939020 PMCID: PMC10152144 DOI: 10.15252/embj.2022113008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/21/2023] Open
Abstract
Activation of the Arp2/3 complex by VCA-motif-bearing actin nucleation-promoting factors results in the formation of "daughter" actin filaments branching off the sides of pre-existing "mother" filaments. Alternatively, when stimulated by SPIN90, Arp2/3 directly nucleates "linear" actin filaments. Uncovering the similarities and differences between these two mechanisms is fundamental to understanding how actin cytoskeleton dynamics are regulated. Here, analysis of individual filaments reveals that, unexpectedly, the VCA motifs of WASP, N-WASP, and WASH destabilize existing branches, as well as SPIN90-Arp2/3 at linear filament ends. Furthermore, branch stabilizer cortactin and destabilizer GMF each have a similar impact on SPIN90-activated Arp2/3. However, unlike branch junctions, SPIN90-Arp2/3 at the ends of linear filaments is not destabilized by piconewton forces and does not become less stable with time. It thus appears that linear and branched Arp2/3-generated filaments respond similarly to the regulatory proteins we have tested, albeit with some differences, but significantly differ in their responses to aging and mechanical stress. These kinetic differences likely reflect the small conformational differences recently reported between Arp2/3 in branch junctions and linear filaments and suggest that their turnover in cells may be differently regulated.
Collapse
Affiliation(s)
- Luyan Cao
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- The Francis Crick InstituteLondonUK
| | - Foad Ghasemi
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | - Michael Way
- The Francis Crick InstituteLondonUK
- Department of Infectious DiseaseImperial CollegeLondonUK
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | | |
Collapse
|
49
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
50
|
Rangarajan ES, Smith EW, Izard T. Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments. Commun Biol 2023; 6:276. [PMID: 36928388 PMCID: PMC10020564 DOI: 10.1038/s42003-023-04610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds β-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single β-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.
Collapse
Affiliation(s)
| | - Emmanuel W Smith
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA
| | - Tina Izard
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|