1
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2024:e0008123. [PMID: 39714182 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L E Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Hunt BC, Brix V, Vath J, Guterman LB, Taddei SM, Deka N, Learman BS, Brauer AL, Shen S, Qu J, Armbruster CE. Metabolic interplay between Proteus mirabilis and Enterococcus faecalis facilitates polymicrobial biofilm formation and invasive disease. mBio 2024; 15:e0216424. [PMID: 39475232 PMCID: PMC11640290 DOI: 10.1128/mbio.02164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Biofilms play an important role in the development and pathogenesis of catheter-associated urinary tract infection (CAUTI). Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and examine the contribution to CAUTI severity. Through compositional and proteomic biofilm analyses, we determined that the increase in biofilm biomass stems from an increase in the protein fraction of the polymicrobial biofilm. We further observed an enrichment in proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared with single-species biofilms. We show that arginine/ornithine antiport by E. faecalis promotes arginine biosynthesis and metabolism in P. mirabilis, ultimately driving the increase in polymicrobial biofilm protein content without affecting viability of either species. We further show that disrupting E. faecalis ornithine antiport alters the metabolic profile of polymicrobial biofilms and prevents enhancement, and this defect was complemented by supplementation with exogenous ornithine. In a murine model of CAUTI, ornithine antiport did not contribute to E. faecalis colonization but was required for the increased incidence of urinary stone formation and bacteremia that occurs during polymicrobial CAUTI with P. mirabilis. Thus, disrupting metabolic interplay between common co-colonizing species may represent a viable strategy for reducing risk of bacteremia.IMPORTANCEChronic infections often involve the formation of antibiotic-resistant biofilm communities that include multiple different microbes, which pose a challenge for effective treatment. In the catheterized urinary tract, potential pathogens persistently co-colonize for long periods of time and the interactions between them can lead to more severe disease outcomes. In this study, we identified the metabolite L-ornithine as a key mediator of disease-enhancing interactions between two common and challenging pathogens, Enterococcus faecalis and Proteus mirabilis. Disrupting ornithine-mediated interactions may therefore represent a strategy to prevent polymicrobial biofilm formation and decrease risk of severe disease.
Collapse
Affiliation(s)
- Benjamin C. Hunt
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Vitus Brix
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Joseph Vath
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Lauren Beryl Guterman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Steven M. Taddei
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Namrata Deka
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Brian S. Learman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Aimee L. Brauer
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Shichen Shen
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Jun Qu
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
- NYS Center of
Excellence in Bioinformatics and Life
Sciences, Buffalo, New
York, USA
| | - Chelsie E. Armbruster
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| |
Collapse
|
3
|
Egan MS, de Macedo R, Zackular JP. Metals in the gut: microbial strategies to overcome nutritional immunity in the intestinal tract. Metallomics 2024; 16:mfae052. [PMID: 39577845 DOI: 10.1093/mtomcs/mfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Trace metals are indispensable nutritional factors for all living organisms. During host-pathogen interactions, they serve as crucial resources that dictate infection outcomes. Accordingly, the host uses a defense strategy known as nutritional immunity, which relies on coordinated metal chelation to mitigate bacterial advances. In response, pathogens employ complex strategies to secure these resources at sites of infection. In the gastrointestinal (GI) tract, the microbiota must also acquire metals for survival, making metals a central line of competition in this complex ecosystem. In this minireview, we outline how bacteria secure iron, zinc, and manganese from the host with a focus on the GI tract. We also reflect on how host dietary changes impact disease outcomes and discuss therapeutic opportunities to target bacterial metal uptake systems. Ultimately, we find that recent discoveries on the dynamics of transition metals at the host-pathogen-microbiota interface have reshaped our understanding of enteric infections and provided insights into virulence strategies, microbial cooperation, and antibacterial strategies.
Collapse
Affiliation(s)
- Marisa S Egan
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Raquel de Macedo
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP 01224-001, Brazil
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Meireles J, Moraes RFF, Lins D, Oliveira TDS, de Carvalho EB, Rainha K, Ferreira EDO. Dogs in Rio de Janeiro as reservoirs of Clostridioides difficile ribotypes causing CDI in humans. Anaerobe 2024; 90:102917. [PMID: 39393610 DOI: 10.1016/j.anaerobe.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION In the past decade, the incidence of community-acquired Clostridioides difficile infection (CA-CDI) has increased, suggesting a role for community reservoirs such as animals in its spread. OBJECTIVE This study aimed to isolate and characterize C. difficile strains from domestic dogs at veterinary clinics to enhance our understanding of C. difficile epidemiology in Rio de Janeiro. MATERIAL AND METHODS For this study 90 stool samples from dogs were collected and cultured in a selective medium (Clostridioides difficile Brucella agar - CDBA) for isolation. Species were identified by MALDI-TOF MS, with confirmation provided by PCR targeting the tpi gene. The antibiotic susceptibility test of the strains was performed using five antibiotics: vancomycin, metronidazole, moxifloxacin, rifampicin, and erythromycin. Strains resistant to metronidazole were further analyzed for the presence of the plasmid pCD-METRO using PCR. The presence of toxin genes (tcdA, tcdB, and cdtB) was investigated, alongside ribotyping and tcdC sequencing analyses. The strains were also tested for biofilm formation and motility. RESULTS C. difficile was isolated in 15.5 % (14/90) of the samples. Among the strains analyzed, 87.71 % (12/14) tested positive for both toxin genes tcdA and tcdB and belonged to ribotypes 106 (10/14) and 014/020 (2/14). The remaining 14.3 % (2/14) were non-toxigenic and were identified as ribotype 010. Regarding the antibiotic profile, 42.85 % (6/14) of the strains exhibited resistance to at least one antibiotic, including vancomycin (1/14) and metronidazole (1/14). The metronidazole-resistant strain was also positive for the plasmid pCD-METRO. All strains exhibited both biofilm formation and motility. Among the 12 toxigenic strains sequenced for the tcdC gene, two exhibited a deletion in the same region as the epidemic strain, NAP1 (RT027). CONCLUSION Our study found some overlap between C. difficile ribotypes isolated from dogs and from cases of CDI in humans, and the C. difficile prevalence was higher in dogs with diarrhea (p = 0.034).
Collapse
Affiliation(s)
- Júlia Meireles
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Lins
- Clínica Veterinária Vet Staff, Leblon, Rio de Janeiro, Brazil
| | | | | | - Kelly Rainha
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane de O Ferreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Yuan L, Pan L, Wang Y, Zhao J, Fang L, Zhou Y, Xia R, Ma Y, Jiang Z, Xu Z, Hu C, Wang Y, Zhang S, Zhang B, Ding H, Chen M, Cheng H, Goel A, Zhang Z, Cheng X. Characterization of the landscape of the intratumoral microbiota reveals that Streptococcus anginosus increases the risk of gastric cancer initiation and progression. Cell Discov 2024; 10:117. [PMID: 39587089 PMCID: PMC11589709 DOI: 10.1038/s41421-024-00746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
As a critical component of the tumour immune microenvironment (TIME), the resident microbiota promotes tumorigenesis across a variety of cancer types. Here, we integrated multiple types of omics data, including microbiome, transcriptome, and metabolome data, to investigate the functional role of intratumoral bacteria in gastric cancer (GC). The microbiome was used to categorize GC samples into six subtypes, and patients with a high abundance of Streptococcus or Pseudomonas had a markedly worse prognosis. Further assays revealed that Streptococcus anginosus (SA) promoted tumour cell proliferation and metastasis while suppressing the differentiation and infiltration of CD8+ T cells. However, antibiotic treatment significantly suppressed tumorigenesis in SA+ mice in vivo. We further demonstrated that the SA arginine pathway increased the abundance of ornithine, which may be a major contributor to reshaping of the TIME. Our findings demonstrated that SA, a novel risk factor, plays significant roles in the initiation and progression of GC, suggesting that SA might be a promising target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Li Yuan
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Libin Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Yunzhe Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Zhao
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ruihong Xia
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yubo Ma
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Zhengchen Jiang
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanan Wang
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Shengjie Zhang
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Bo Zhang
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Haiying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengxuan Chen
- Shanghai Analytical Applications Center, Shimadzu (China) Co., LTD, Shanghai, China
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xiangdong Cheng
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Deng ZC, Cao KX, Huang YX, Peng Z, Zhao L, Yi D, Liu M, Sun LH. Comprehensive cultivation of the broiler gut microbiota guides bacterial isolation from chickens. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2735-8. [PMID: 39607604 DOI: 10.1007/s11427-024-2735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 11/29/2024]
Abstract
Chicken gut microbiota plays an important role in maintaining their physiological health. However, the cultivability of chicken gut microbiota is not well understood, limiting the exploration of certain key gut bacteria in regulating intestinal health and nutritional metabolism. This study aimed to examine the cultivability of chicken cecal microbiota and to provide guidance for future chicken gut microbiota cultivation. A total of 58 different culture conditions were applied to culture broiler cecal microbiota, and the culture-dependent (CD; pooled colonies form each plate) and culture-independent (CI; broiler cecal contents) samples were collected for 16S rRNA gene sequencing and microbial analysis. The CD methods detected higher microbial richness (3,636 vs 2,331 OTUs) than CI methods, and the recovery rates of bacterial OTUs and genera reached 43.6% and 68.9%, respectively. The genera of Bacteroides (19.9%), Alistipes (11.0%) and Barnesiella (10.7%) were highly abundant detected by CI methods, however, there occupied a small proportion (<1.0%) of total cultured microbiota in CD methods. We then developed reference figures and tables showing optimal cultivation conditions for different gut bacteria taxa. Moreover, 81 different lactic acid bacteria strains covering 5 genera were isolated, and 15 strains had less than 97.0% similarity to known bacteria in the national center for biotechnology information (NCBI) online database. Overall, this study provides preliminary guidance in culturing specific gut microbiota from chickens, which will contribute to future studies to characterize the biological functions of key microbes in chicken nutritional metabolism and health.
Collapse
Affiliation(s)
- Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Tsakiroglou M, Evans A, Doce-Carracedo A, Little M, Hornby R, Roberts P, Zhang E, Miyajima F, Pirmohamed M. Gene Expression Dysregulation in Whole Blood of Patients with Clostridioides difficile Infection. Int J Mol Sci 2024; 25:12653. [PMID: 39684365 DOI: 10.3390/ijms252312653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood from patients with C. difficile infection. We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhea from other causes (DC), and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhea common and CDI unique gene sets. Diarrhea groups upregulated innate immune responses with neutrophils at the epicenter. The common signature associated with diarrhea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45 gene set reflecting the downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alejandra Doce-Carracedo
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Clinical Directorate, GCP Laboratories, University of Liverpool, Liverpool L7 8TX, UK
| | - Margaret Little
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Rachel Hornby
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Paul Roberts
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Faculty of Science and Engineering, School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LZ, UK
| | - Eunice Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Fabio Miyajima
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio 61773-270, Brazil
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
8
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney MW, Sidebottom AM, Fortier LC, Shen A, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent strain. Cell Host Microbe 2024:S1931-3128(24)00409-8. [PMID: 39610252 DOI: 10.1016/j.chom.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare infections. Gut dysbiosis promotes C. difficile infection (CDI) and CDIs promote gut dysbiosis, leading to frequent CDI recurrence. Although therapies preventing recurrent CDI have been developed, including live biotherapeutic products, existing therapies are costly and do not prevent primary infections. Here, we show that an avirulent C. difficile isolate, ST1-75, protects mice from developing colitis induced by a virulent R20291 strain when coinfected at a 1:1 ratio. In metabolic analyses, avirulent ST1-75 depletes amino acids more rapidly than virulent R20291 and supplementation with amino acids ablates this competitive advantage, indicating that ST1-75 limits the growth of virulent R20291 through amino acid depletion. Overall, our study identifies inter-strain nutrient depletion as a potentially exploitable mechanism to reduce the incidence of CDI and reveals that the ST1-75 strain may be a biotherapeutic agent that can prevent CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sophie S Son
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2024; 91:102920. [PMID: 39521117 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
10
|
McMillan AS, Zhang G, Dougherty MK, McGill SK, Gulati AS, Baker ES, Theriot CM. Metagenomic, metabolomic, and lipidomic shifts associated with fecal microbiota transplantation for recurrent Clostridioides difficile infection. mSphere 2024; 9:e0070624. [PMID: 39377587 PMCID: PMC11520286 DOI: 10.1128/msphere.00706-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024] Open
Abstract
Recurrent C. difficile infection (rCDI) is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we use longitudinal stool samples collected from patients undergoing FMT to evaluate intra-individual changes in the microbiome, metabolome, and lipidome after successful FMTs relative to their baselines pre-FMT. We show changes in the abundance of many lipids, specifically a decrease in acylcarnitines post-FMT, and a shift from conjugated bile acids pre-FMT to deconjugated secondary bile acids post-FMT. These changes correlate with a decrease in Enterobacteriaceae, which encode carnitine metabolism genes, and an increase in Lachnospiraceae, which encode bile acid altering genes such as bile salt hydrolases (BSHs) and the bile acid-inducible (bai) operon, post-FMT. We also show changes in gut microbe-encoded amino acid biosynthesis genes, of which Enterobacteriaceae was the primary contributor to amino acids C. difficile is auxotrophic for. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT and generate hypotheses that require further experimental validation. This information is meant to help guide the development of new microbiota-focused therapeutics to treat rCDI.IMPORTANCERecurrent C. difficile infection is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant. However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae pre-FMT, which encodes carnitine metabolism genes, and Lachnospiraceae post-FMT, which encodes bile salt hydrolases and baiA genes. There was also a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT, which we hope will help aid in the development of new microbiota-focused therapeutics to treat rCDI.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Guozhi Zhang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael K. Dougherty
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Rex Digestive Healthcare, Raleigh, North Carolina, USA
| | - Sarah K. McGill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ajay S. Gulati
- Department of Pediatrics, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Ren X, Clark RM, Bansah DA, Varner EN, Tiffany CR, Jaswal K, Geary JH, Todd OA, Winkelman JD, Friedman ES, Zemel BS, Wu GD, Zackular JP, DePas WH, Behnsen J, Palmer LD. Amino acid competition shapes Acinetobacter baumannii gut carriage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619093. [PMID: 39502362 PMCID: PMC11537318 DOI: 10.1101/2024.10.19.619093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Antimicrobial resistance is an urgent threat to human health. Asymptomatic colonization is often critical for persistence of antimicrobial-resistant pathogens. Gut colonization by the antimicrobial-resistant priority pathogen Acinetobacter baumannii is associated with increased risk of clinical infection. Ecological factors shaping A. baumannii gut colonization remain unclear. Here we show that A. baumannii and other pathogenic Acinetobacter evolved to utilize the amino acid ornithine, a non-preferred carbon source. A. baumannii utilizes ornithine to compete with the resident microbiota and persist in the gut in mice. Supplemental dietary ornithine promotes long-term fecal shedding of A. baumannii. By contrast, supplementation of a preferred carbon source-monosodium glutamate (MSG)-abolishes the requirement for A. baumannii ornithine catabolism. Additionally, we report evidence for diet promoting A. baumannii gut carriage in humans. Together, these results highlight that evolution of ornithine catabolism allows A. baumannii to compete with the microbiota in the gut, a reservoir for pathogen spread.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - R. Mason Clark
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Dziedzom A. Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth N. Varner
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Connor R. Tiffany
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H. Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A. Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Arcay R, Barceló-Nicolau M, Suárez L, Martín L, Reigada R, Höring M, Liebisch G, Garrido C, Cabot G, Vílchez H, Cortés-Lara S, González de Herrero E, López-Causapé C, Oliver A, Barceló-Coblijn G, Mena A. Gut microbiome and plasma lipidome analysis reveals a specific impact of Clostridioides difficile infection on intestinal bacterial communities and sterol metabolism. mBio 2024; 15:e0134724. [PMID: 39189787 PMCID: PMC11481895 DOI: 10.1128/mbio.01347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Clostridioides difficile infection (CDI) causes alterations in the intestinal microbiota, frequently associated with changes in the gut metabolism of bile acids and cholesterol. In addition to the impact on microbiome composition and given the metabolic changes occurring during CDI, our work focuses on the importance to know the effects at the local and systemic levels, both during the infection and its treatment, by paying particular attention to plasma lipid metabolism due to its relationship with CDI pathogenesis. Specific changes, characterized by a loss of microbial richness and diversity and related to a reduction in short-chain acid-producing bacteria and an increase in bile salt hydrolase-producing bacteria, were observed in the gut microbiota of CDI patients, especially in those suffering from recurrent CDI (RCDI). However, gut microbiota showed its ability to restore itself after treatment, resembling healthy individuals, in those patients treated by fecal microbiome transfer (FMT), in contrast with those treated with antibiotics, and displaying increased levels of Eubacterium coprostanoligenes, a cholesterol-reducing anaerobe. Interestingly, changes in plasma lipidome revealed a global depletion in circulating lipids in CDI, with the largest impact on cholesteryl esters. CDI patients also showed a specific and consistent decrease in the levels of lipid species containing linoleic acid-an essential fatty acid-which were only partially recovered after antibiotic treatment. Analysis of the plasma lipidome reflects CDI impact on the gut microbiota and its metabolism, evidencing changes in sterol and fatty acid metabolism that are possibly related to specific alterations observed in gut microbial communities of CDI patients. IMPORTANCE There is increasing evidence about the influence the changes in microbiota and its metabolism has on numerous diseases and infections such as Clostridioides difficile infection (CDI). The knowledge of these changes at local and systemic levels can help us manage this infection to avoid recurrences and apply the best therapies, such as fecal microbiota transfer (FMT). This study shows a better restoration of the gut in FMT-treated patients than in antibiotic-treated patients, resembling healthy controls and showing increased levels of cholesterol-reducing bacteria. Furthermore, it evidences the CDI impact on plasma lipidome. We observed in CDI patients a global depletion in circulating lipids, particularly cholesteryl esters, and a specific decrease in linoleic acid-containing lipids, an essential fatty acid. Our observations could impact CDI management because the lipid content was only partially recovered after treatment, suggesting that continued nutritional support, aiming to restore healthy lipid levels, could be essential for a full recovery.
Collapse
Affiliation(s)
- Ricardo Arcay
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Maria Barceló-Nicolau
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Loreto Suárez
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Luisa Martín
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Rebeca Reigada
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Carmen Garrido
- Gastroenterology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Gabriel Cabot
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Helem Vílchez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Sara Cortés-Lara
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Elisa González de Herrero
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Carla López-Causapé
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Antonio Oliver
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Ana Mena
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| |
Collapse
|
13
|
Ticer TD, Tingler AM, Glover JS, Dooley SA, Kendrick J, Zackular JP, Devkota S, Wu GD, Mahalak K, Engevik A, Engevik MA. Bacterial metabolites influence the autofluorescence of Clostridioides difficile. Front Microbiol 2024; 15:1459795. [PMID: 39439940 PMCID: PMC11493716 DOI: 10.3389/fmicb.2024.1459795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Clostridioides difficile is a bacterial pathogen that has been implicated in severe gastrointestinal infections. C. difficile has intrinsic green autofluorescence and the level of this autofluorescence is known to be increased by growth time and oxygen. Currently, it is unclear if dietary compounds or metabolites from the gut microbiota are able to enhance C. difficile autofluorescence. Here, we aimed to determine potential factors that affect C. difficile autofluorescence. After screening a large repertoire of compounds, we identified several substances, like L-lysine and pantothenate, that led to an increased C. difficile autofluorescence. We also found that several members of the gut microbiota, such as Enterococcus faecalis, Klebsiella aerogenes and K. pneumoniae, can increase C. difficile autofluorescence through their secreted compounds. We further focused on the effect of K. pneumoniae on C. difficile autofluorescence and found that multiple enteric strains of K. pneumoniae could enhance C. difficile's autofluorescence. We used this enhanced autofluorescence to identify C. difficile in K. pneumoniae co-cultures by flow cytometry. Our findings shed light on the relationship between C. difficile and other members of the gut microbiota, as well as different factors that can affect C. difficile autofluorescence.
Collapse
Affiliation(s)
- Taylor D. Ticer
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Anna M. Tingler
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Janiece S. Glover
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah A. Dooley
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Jacob Kendrick
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Joseph P. Zackular
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Suzanne Devkota
- Department Division of Gastroenterology, Cedars Sinai, Los Angeles, CA, United States
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karley Mahalak
- Dairy and Functional Foods Research Unit, United States Department of Agriculture, Washington, DC, United States
| | - Amy Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Melinda A. Engevik
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
14
|
Alameh MG, Semon A, Bayard NU, Pan YG, Dwivedi G, Knox J, Glover RC, Rangel PC, Tanes C, Bittinger K, She Q, Hu H, Bonam SR, Maslanka JR, Planet PJ, Moustafa AM, Davis B, Chevrier A, Beattie M, Ni H, Blizard G, Furth EE, Mach RH, Lavertu M, Sellmyer MA, Tam Y, Abt MC, Weissman D, Zackular JP. A multivalent mRNA-LNP vaccine protects against Clostridioides difficile infection. Science 2024; 386:69-75. [PMID: 39361752 DOI: 10.1126/science.adn4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/11/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Clostridioides difficile infection (CDI) is an urgent public health threat with limited preventative options. In this work, we developed a messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccine targeting C. difficile toxins and virulence factors. This multivalent vaccine elicited robust and long-lived systemic and mucosal antigen-specific humoral and cellular immune responses across animal models, independent of changes to the intestinal microbiota. Vaccination protected mice from lethal CDI in both primary and recurrent infection models, and inclusion of non-toxin cellular and spore antigens improved decolonization of toxigenic C. difficile from the gastrointestinal tract. Our studies demonstrate mRNA-LNP vaccine technology as a promising platform for the development of novel C. difficile therapeutics with potential for limiting acute disease and promoting bacterial decolonization.
Collapse
Affiliation(s)
- Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexa Semon
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nile U Bayard
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yi-Gen Pan
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garima Dwivedi
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rochelle C Glover
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paula C Rangel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qianxuan She
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeffrey R Maslanka
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul J Planet
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Ahmed M Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Davis
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anik Chevrier
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC, Canada
| | | | - Houping Ni
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Gabrielle Blizard
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Lavertu
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC, Canada
| | - Mark A Sellmyer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Michael C Abt
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Weissman
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph P Zackular
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
15
|
Kazemian N, Pakpour S. Understanding the impact of the gut microbiome on opioid use disorder: Pathways, mechanisms, and treatment insights. Microb Biotechnol 2024; 17:e70030. [PMID: 39388360 PMCID: PMC11466222 DOI: 10.1111/1751-7915.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The widespread use of opioids for chronic pain management not only poses a significant public health issue but also contributes to the risk of tolerance, dependence, and addiction, leading to opioid use disorder (OUD), which affects millions globally each year. Recent research has highlighted a potential bidirectional relationship between the gut microbiome and OUD. This emerging perspective is critical, especially as the opioid epidemic intensifies, emphasizing the need to investigate how OUD may alter gut microbiome dynamics and vice versa. Understanding these interactions could reveal new insights into the mechanisms of addiction and tolerance, as well as provide novel approaches for managing and potentially mitigating OUD impacts. This comprehensive review explores the intricate bidirectional link through the gut-brain axis, focusing on how opiates influence microbial composition, functional changes, and gut mucosal integrity. By synthesizing current findings, the review aims to inspire new strategies to combat the opioid crisis and leverage microbiome-centred interventions for preventing and treating OUD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Sepideh Pakpour
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
16
|
Lu Q, Hitch TCA, Zhou JY, Dwidar M, Sangwan N, Lawrence D, Nolan LS, Espenschied ST, Newhall KP, Han Y, Karell PE, Salazar V, Baldridge MT, Clavel T, Stappenbeck TS. A host-adapted auxotrophic gut symbiont induces mucosal immunodeficiency. Science 2024; 385:eadk2536. [PMID: 39325906 DOI: 10.1126/science.adk2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/12/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Harnessing the microbiome to benefit human health requires an initial step in determining the identity and function of causative microorganisms that affect specific host physiological functions. We show a functional screen of the bacterial microbiota from mice with low intestinal immunoglobulin A (IgA) levels; we identified a Gram-negative bacterium, proposed as Tomasiella immunophila, that induces and degrades IgA in the mouse intestine. Mice harboring T. immunophila are susceptible to infections and show poor mucosal repair. T. immunophila is auxotrophic for the bacterial cell wall amino sugar N-acetylmuramic acid. It delivers immunoglobulin-degrading proteases into outer membrane vesicles that preferentially degrade rodent antibodies with kappa but not lambda light chains. This work indicates a role for symbionts in immunodeficiency, which might be applicable to human disease.
Collapse
Affiliation(s)
- Qiuhe Lu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dylan Lawrence
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Lila S Nolan
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Scott T Espenschied
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin P Newhall
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yi Han
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul E Karell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vanessa Salazar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Megan T Baldridge
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Snell AP, Manias DA, Elbehery RR, Dunny GM, Willett JLE. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. FEMS MICROBES 2024; 5:xtae030. [PMID: 39524554 PMCID: PMC11549559 DOI: 10.1093/femsmc/xtae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Enterococcus faecalis is a commensal bacterium in the gastrointestinal (GI) tract of humans and other organisms. E. faecalis also causes infections in root canals, wounds, the urinary tract, and on heart valves. E. faecalis metabolizes arginine through the arginine deiminase pathway, which converts arginine to ornithine and releases ATP, ammonia, and CO2. E. faecalis arginine metabolism also affects virulence of other pathogens during co-culture. E. faecalis may encounter elevated levels of arginine in the GI tract or the oral cavity, where arginine is used as a dental therapeutic. Little is known about how E. faecalis responds to growth in arginine in the absence of other bacteria. To address this, we used RNAseq and additional assays to measure growth, gene expression, and biofilm formation in E. faecalis OG1RF grown in arginine. We demonstrate that arginine decreases E. faecalis biofilm production and causes widespread differential expression of genes related to metabolism, quorum sensing, and polysaccharide synthesis. Growth in arginine also increases aggregation of E. faecalis and promotes decreased susceptibility to the antibiotics ampicillin and ceftriaxone. This work provides a platform for understanding how the presence of arginine in biological niches affects E. faecalis physiology and virulence of surrounding microbes.
Collapse
Affiliation(s)
- Alex P Snell
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Dawn A Manias
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Reham R Elbehery
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Gary M Dunny
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Julia L E Willett
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| |
Collapse
|
18
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
19
|
Sulaiman JE, Thompson J, Qian Y, Vivas EI, Diener C, Gibbons SM, Safdar N, Venturelli OS. Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes. Nat Commun 2024; 15:7416. [PMID: 39198411 PMCID: PMC11358386 DOI: 10.1038/s41467-024-51062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The human gut pathogen Clostridioides difficile displays substantial inter-strain genetic variability and confronts a changeable nutrient landscape in the gut. We examined how human gut microbiota inter-species interactions influence the growth and toxin production of various C. difficile strains across different nutrient environments. Negative interactions influencing C. difficile growth are prevalent in an environment containing a single highly accessible resource and sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile toxin production displays significant community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile strains exhibit differences in interactions with Clostridium scindens and the ability to compete for proline. Further, C. difficile shows substantial differences in transcriptional profiles in co-culture with C. scindens or Clostridium hiranonis. C. difficile exhibits massive alterations in metabolism and other cellular processes in co-culture with C. hiranonis, reflecting their similar metabolic niches. C. hiranonis uniquely inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and robustly ameliorates disease severity in mice. In sum, understanding the impact of C. difficile strain variability and nutrient environments on inter-species interactions could help improve the effectiveness of anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I Vivas
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, William S. Middleton Veterans Hospital Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Bilska A, Wochna K, Habiera M, Serwańska-Leja K. Health Hazard Associated with the Presence of Clostridium Bacteria in Food Products. Foods 2024; 13:2578. [PMID: 39200505 PMCID: PMC11353352 DOI: 10.3390/foods13162578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Clostridium bacteria were already known to Hippocrates many years before Christ. The name of the Clostridium species is owed to the Polish microbiologist, Adam Prażmowski. It is now known that these Clostridium bacteria are widespread in the natural environment, and their presence in food products is a threat to human health and life. According to European Food Safety Authority (EFSA) reports, every year, there are poisonings or deaths due to ingestion of bacterial toxins, including those of the Clostridium spp. The strengthening of consumer health awareness has increased interest in consuming products with minimal processing in recent years, which has led to a need to develop new techniques to ensure the safety of microbiological food, including elimination of bacteria from the Clostridium genera. On the other hand, the high biochemical activity of Clostridium bacteria allows them to be used in the chemical, pharmaceutical, and medical industries. Awareness of microbiological food safety is very important for our health. Unfortunately, in 2022, an increase in infections with Clostridium bacteria found in food was recorded. Knowledge about food contamination should thus be widely disseminated.
Collapse
Affiliation(s)
- Agnieszka Bilska
- Department of Food and Nutrition, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland;
| | - Krystian Wochna
- Department of Swimming and Water Lifesaving, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland; (K.W.)
| | - Małgorzata Habiera
- Department of Swimming and Water Lifesaving, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland; (K.W.)
| | - Katarzyna Serwańska-Leja
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland
| |
Collapse
|
21
|
Jaswal K, Todd OA, Flores Audelo RC, Santus W, Paul S, Singh M, Miao J, Underhill DM, Peters BM, Behnsen J. Commensal Yeast Promotes Salmonella Typhimurium Virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606421. [PMID: 39211098 PMCID: PMC11360897 DOI: 10.1101/2024.08.08.606421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enteric pathogens engage in complex interactions with the host and the resident microbiota to establish gut colonization. Although mechanistic interactions between enteric pathogens and bacterial commensals have been extensively studied, whether and how commensal fungi affect pathogenesis of enteric infections remains largely unknown. Here we show that colonization with the common human gut commensal fungus Candida albicans worsened infections with the enteric pathogen Salmonella enterica serovar Typhimurium. Presence of C. albicans in the mouse gut increased Salmonella cecum colonization and systemic dissemination. We investigated the underlying mechanism and found that Salmonella binds to C. albicans via Type 1 fimbriae and uses its Type 3 Secretion System (T3SS) to deliver effector proteins into C. albicans . A specific effector, SopB, was sufficient to manipulate C. albicans metabolism, triggering increased arginine biosynthesis in C. albicans and the release of millimolar amounts of arginine into the extracellular environment. The released arginine, in turn, induced T3SS expression in Salmonella , increasing its invasion of epithelial cells. C. albicans deficient in arginine production was unable to increase Salmonella virulence in vitro or in vivo . In addition to modulating pathogen invasion, arginine also directly influenced the host response to infection. Arginine-producing C. albicans dampened the inflammatory response during Salmonella infection, whereas C. albicans deficient in arginine production did not. Arginine supplementation in the absence of C. albicans increased the systemic spread of Salmonella and decreased the inflammatory response, phenocopying the presence of C. albicans . In summary, we identified C. albicans colonization as a susceptibility factor for disseminated Salmonella infection, and arginine as a central metabolite in the cross-kingdom interaction between fungi, bacteria, and host.
Collapse
|
22
|
Mills EG, Smith AB, Griffith MP, Hewlett K, Pless L, Sundermann AJ, Harrison LH, Zackular JP, Van Tyne D. Bacteriocin production facilitates nosocomial emergence of vancomycin-resistant Enterococcus faecium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.01.24311290. [PMID: 39132485 PMCID: PMC11312660 DOI: 10.1101/2024.08.01.24311290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) is a prevalent healthcare-acquired pathogen. Gastrointestinal colonization can lead to difficult-to-treat bloodstream infections with high mortality rates. Prior studies have investigated VREfm population structure within healthcare centers. However, little is known about how and why hospital-adapted VREfm populations change over time. We sequenced 710 healthcare-associated VREfm clinical isolates from 2017-2022 from a large tertiary care center as part of the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) program. Although the VREfm population in our center was polyclonal, 46% of isolates formed genetically related clusters, suggesting a high transmission rate. We compared our collection to 15,631 publicly available VREfm genomes spanning 20 years. Our findings describe a drastic shift in lineage replacement within nosocomial VREfm populations at both the local and global level. Functional and genomic analysis revealed, antimicrobial peptide, bacteriocin T8 may be a driving feature of strain emergence and persistence in the hospital setting.
Collapse
Affiliation(s)
- Emma G. Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander B. Smith
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marissa P. Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katharine Hewlett
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lora Pless
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander J. Sundermann
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee H. Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
24
|
Fishbein SRS, DeVeaux AL, Khanna S, Ferreiro AL, Liao J, Agee W, Ning J, Mahmud B, Wallace MJ, Hink T, Reske KA, Guruge J, Leekha S, Dubberke ER, Dantas G. Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603094. [PMID: 39026847 PMCID: PMC11257545 DOI: 10.1101/2024.07.11.603094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in clinical presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of outcomes. Microbiota-humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clade 1 lineages and identified commensal Blautia associated with markers of non-pathogenic colonization. Using gnotobiotic mice engrafted with defined human microbiota, we observed strain-specific CDI severity across clade 1 strains. Yet, mice engrafted with a higher diversity community were protected from severe disease across all strains without suppression of C. difficile colonization. These results indicate that when colonization resistance has been breached without overt infection, commensals can attenuate a diversity of virulent strains without inhibiting pathogen colonization, providing insight into determinants of stable C. difficile carriage.
Collapse
|
25
|
Brunson DN, Lemos JA. Heme utilization by the enterococci. FEMS MICROBES 2024; 5:xtae019. [PMID: 39070772 PMCID: PMC11282960 DOI: 10.1093/femsmc/xtae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.
Collapse
Affiliation(s)
- Debra N Brunson
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| |
Collapse
|
26
|
Heston SM, Hurst JH, Kelly MS. Understanding the influence of the microbiome on childhood infections. Expert Rev Anti Infect Ther 2024; 22:529-545. [PMID: 38605646 PMCID: PMC11464204 DOI: 10.1080/14787210.2024.2340664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION The microbiome is known to have a substantial impact on human health and disease. However, the impacts of the microbiome on immune system development, susceptibility to infectious diseases, and vaccine-elicited immune responses are emerging areas of interest. AREAS COVERED In this review, we provide an overview of development of the microbiome during childhood. We highlight available data suggesting that the microbiome is critical to maturation of the immune system and modifies susceptibility to a variety of infections during childhood and adolescence, including respiratory tract infections, Clostridioides difficile infection, and sexually transmitted infections. We discuss currently available and investigational therapeutics that have the potential to modify the microbiome to prevent or treat infections among children. Finally, we review the accumulating evidence that the gut microbiome influences vaccine-elicited immune responses among children. EXPERT OPINION Recent advances in sequencing technologies have led to an explosion of studies associating the human microbiome with the risk and severity of infectious diseases. As our knowledge of the extent to which the microbiome influences childhood infections continues to grow, microbiome-based diagnostics and therapeutics will increasingly be incorporated into clinical practice to improve the prevention, diagnosis, and treatment of infectious diseases among children.
Collapse
Affiliation(s)
- Sarah M Heston
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Jillian H Hurst
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Matthew S Kelly
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| |
Collapse
|
27
|
Hu Y, Zhang L, Wen QH, Cheng XP, Zhou LQ, Chen MS, Ke DW, Tu ZC. Prebiotic saccharides polymerization improves the encapsulation efficiency, stability, bioaccessibility and gut microbiota modulation of urolithin A liposomes. Int J Biol Macromol 2024; 273:133045. [PMID: 38942666 DOI: 10.1016/j.ijbiomac.2024.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.
Collapse
Affiliation(s)
- Yue Hu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xin-Peng Cheng
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Li-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dai-Wei Ke
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
28
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
29
|
Hunt BC, Brix V, Vath J, Guterman BL, Taddei SM, Learman BS, Brauer AL, Shen S, Qu J, Armbruster CE. Metabolic interplay between Proteus mirabilis and Enterococcus faecalis facilitates polymicrobial biofilm formation and invasive disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533237. [PMID: 36993593 PMCID: PMC10055233 DOI: 10.1101/2023.03.17.533237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Polymicrobial biofilms play an important role in the development and pathogenesis of CAUTI. Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and examine the contribution to CAUTI severity. Through compositional and proteomic biofilm analyses, we determined that the increase in biofilm biomass stems from an increase in the protein fraction of the polymicrobial biofilm matrix. We further observed an enrichment in proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared to single-species biofilms. We show that L-ornithine secretion by E. faecalis promotes arginine biosynthesis in P. mirabilis, and that disruption of this metabolic interplay abrogates the biofilm enhancement we see in vitro and leads to significant decreases in infection severity and dissemination in a murine CAUTI model.
Collapse
Affiliation(s)
- Benjamin C. Hunt
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Vitus Brix
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Joseph Vath
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Beryl L. Guterman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Steven M. Taddei
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
- NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, United States of America
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| |
Collapse
|
30
|
Jin P, Lin X, Xu W, Li K, Zhao X, Guo S, Zhao Z, Jiang L, Liao F, Chang L, Wang M, Liu Y, Huang S, Chen Z, Ji F. The feasibility of using pathobiome strains as live biotherapeutic products for human use. IMETA 2024; 3:e202. [PMID: 38898988 PMCID: PMC11183195 DOI: 10.1002/imt2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
The evaluation of pathobiome strains should be conducted at the strain level, involving the identification of the functional genes, while considering the impact of ecological niche and drug interactions. The safety, efficacy, and quality management of live biotherapeutic products (LBPs), especially pathobiome strains, have certain peculiarities. Promising development methods include the recombinant LBP and active metabolites.
Collapse
Affiliation(s)
- Pengfei Jin
- Department of PharmacyBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Xiong Lin
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Wenfeng Xu
- Department of PharmacyBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Kangning Li
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Xiaoxiao Zhao
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Sirui Guo
- Department of PharmacyBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Zinan Zhao
- Department of PharmacyBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Lujie Jiang
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Feng Liao
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Longgang Chang
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Min Wang
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Yanmin Liu
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Shaolei Huang
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Zhangran Chen
- Shenzhen Wedge Microbiology Research Co., Ltd.ShenzhenChina
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
31
|
Snell A, Manias DA, Elbehery RR, Dunny GM, Willett JLE. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596650. [PMID: 38853917 PMCID: PMC11160706 DOI: 10.1101/2024.05.30.596650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Enterococcus faecalis is a commensal bacterium in the gastrointestinal tract (GIT) of humans and other organisms. E. faecalis also causes infections in root canals, wounds, the urinary tract, and on heart valves. E. faecalis metabolizes arginine through the arginine deiminase (ADI) pathway, which converts arginine to ornithine and releases ATP, ammonia, and CO2. E. faecalis arginine metabolism also affects virulence of other pathogens during co-culture. E. faecalis may encounter elevated levels of arginine in the GIT or the oral cavity, where arginine is used as a dental therapeutic. Little is known about how E. faecalis responds to growth in arginine in the absence of other bacteria. To address this, we used RNAseq and additional assays to measure growth, gene expression, and biofilm formation in E. faecalis OG1RF grown in arginine. We demonstrate that arginine decreases E. faecalis biofilm production and causes widespread differential expression of genes related to metabolism, quorum sensing, and polysaccharide synthesis. Growth in arginine also increases aggregation of E. faecalis and promotes decreased susceptibility to the antibiotics ampicillin and ceftriaxone. This work provides a platform for understanding of how the presence of arginine in biological niches affects E. faecalis physiology and virulence of surrounding microbes.
Collapse
Affiliation(s)
- Alex Snell
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Dawn A. Manias
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | | | - Gary M. Dunny
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | | |
Collapse
|
32
|
Wang S, Chen D, Ji X, Shen Q, Yu Y, Wu P, Tang G. Multi-omics unveils tryptophan metabolic pathway as a key pathway influencing residual feed intake in Duroc swine. Front Vet Sci 2024; 11:1403493. [PMID: 38868499 PMCID: PMC11168206 DOI: 10.3389/fvets.2024.1403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
The genetic trait of residual feed intake (RFI) holds considerable importance in the swine industry. Recent research indicates that the gut microbiota of pigs plays a pivotal role in the manifestation of the RFI trait. Nevertheless, the metabolic pathways involved in the functioning of these microorganisms remain elusive. Thus, based on the ranking of the RFI trait in Duroc pigs, the present study selected the top 10 and bottom 10 pigs as the experimental subjects. The distribution and metabolite differences of cecal microbiota were analyzed using 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. The low RFI cecal group was named LRC, and the high RFI cecal group was named HRC. The results indicate that the LRC group had lower RFI, feed conversion ratio (FCR), average daily feed intake (ADFI) (p < 0.001), and thinner backfat (p < 0.05) compared with the HRC group. We simultaneously recorded the foraging behavior as well, the LRC group had a significant increase in total time spent at the feeder per day (TPD) (p < 0.05) and a significant increase in average feed intake per mins (AFI) and the number of visits to the feeder per day (NVD) compared to the HRC group (p < 0.001). Clostridium_XVIII, Bulleidia, and Intestinimonas were significantly enriched in the LRC group (p < 0.01), while Sutterella, Fusobacterium, and Bacteroides were significantly increased in the HRC group (p < 0.01). In the metabolome, we detected 390 (248 metabolites up and 142 down in the LRC compared with HRC), and 200 (97 metabolites up and 103 down in the LRC compared with HRC) differential metabolites in positive and negative ionization modes. The comprehensive analysis found that in the LRC group, Escherichia and Eubacterium in the gut may increase serotonin content, respectively. Bacteroides may deplete serotonin. We suggest that the RFI may be partly achieved through tryptophan metabolism in gut microbes. In individuals with low RFI, gut microbes may enhance feed efficiency by enhancing host synthesis and metabolism of tryptophan-related metabolites.
Collapse
Affiliation(s)
- Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Qi Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yang Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Pingxian Wu
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing, China
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Ma Y, Wei X, Peng J, Wei F, Wen Y, Liu M, Song B, Wang Y, Zhang Y, Peng T. Ephedra sinica polysaccharide regulate the anti-inflammatory immunity of intestinal microecology and bacterial metabolites in rheumatoid arthritis. Front Pharmacol 2024; 15:1414675. [PMID: 38846095 PMCID: PMC11153800 DOI: 10.3389/fphar.2024.1414675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Ephedra sinica polysaccharide (ESP) exerts substantial therapeutic effects on rheumatoid arthritis (RA). However, the mechanism through which ESP intervenes in RA remains unclear. A close correlation has been observed between enzymes and derivatives in the gut microbiota and the inflammatory immune response in RA. Methods A type II collagen-induced arthritis (CIA) mice model was treated with Ephedra sinica polysaccharide. The therapeutic effect of ESP on collagen-induced arthritis mice was evaluated. The anti-inflammatory and cartilage-protective effects of ESP were also evaluated. Additionally, metagenomic sequencing was performed to identify changes in carbohydrate-active enzymes and resistance genes in the gut microbiota of the ESP-treated CIA mice. Liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry were performed to observe the levels of serum metabolites and short-chain fatty acids in the gut. Spearman's correlational analysis revealed a correlation among the gut microbiota, antibiotic-resistance genes, and microbiota-derived metabolites. Results ESP treatment significantly reduced inflammation levels and cartilage damage in the CIA mice. It also decreased the levels of pro-inflammatory cytokines interleukin (IL)-6, and IL-1-β and protected the intestinal mucosal epithelial barrier, inhibiting inflammatory cell infiltration and mucosal damage. Here, ESP reduced the TLR4, MyD88, and TRAF6 levels in the synovium, inhibited the p65 expression and pp65 phosphorylation in the NF-κB signaling pathway, and blocked histone deacetylase (HDAC1 and HDAC2) signals. ESP influenced the gut microbiota structure, microbial carbohydrate-active enzymes, and microbial resistance related to resistance genes. ESP increased the serum levels of L-tyrosine, sn-glycero-3-phosphocholine, octadecanoic acid, N-oleoyl taurine, and decreased N-palmitoyl taurine in the CIA mice. Conclusion ESP exhibited an inhibitory effect on RA. Its action mechanism may be related to the ability of ESP to effectively reduce pro-inflammatory cytokines levels, protect the intestinal barrier, and regulate the interaction between mucosal immune systems and abnormal local microbiota. Accordingly, immune homeostasis was maintained and the inhibition of fibroblast-like synoviocyte (FLS) proliferation through the HDAC/TLR4/NF-κB pathway was mediated, thereby contributing to its anti-inflammatory and immune-modulating effects.
Collapse
Affiliation(s)
- Yanmiao Ma
- Department of Basic Medical Sciences, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiuhong Wei
- Department of Basic Medical Sciences, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiehao Peng
- Department of Third Clinical Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Fuxia Wei
- Department of Third Clinical Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ya Wen
- Department of First Clinical Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Mingran Liu
- Department of Basic Medical Sciences, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Bo Song
- Department of Third Clinical Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yonghui Wang
- Department of Basic Medical Sciences, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yumin Zhang
- Department of Basic Medical Sciences, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Tao Peng
- Famous Chinese Medicine Studio, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine, Taiyuan, China
- Shanxi Provincial Key Laboratory of Classical Prescription Strengthening Yang, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine Taiyuan, Taiyuan, China
| |
Collapse
|
34
|
Zhou J, Yuan Z, Yang R, Liu T, Lu X, Huang W, Guo L. Coaggregated E. faecalis with F. nucleatum regulated environmental stress responses and inflammatory effects. Appl Microbiol Biotechnol 2024; 108:336. [PMID: 38761182 PMCID: PMC11102388 DOI: 10.1007/s00253-024-13172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.
Collapse
Affiliation(s)
- Jiani Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zijian Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenling Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
35
|
Xu W, Yuan G, Fang Y, Liu X, Ma X, Zhu K. Coumarin Glycosides Reverse Enterococci-Facilitated Enteric Infections. RESEARCH (WASHINGTON, D.C.) 2024; 7:0374. [PMID: 38756989 PMCID: PMC11096794 DOI: 10.34133/research.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Commensal enterococci with pathogenic potential often facilitate the growth of diverse pathogens, thereby exacerbating infections. However, there are few effective therapeutic strategies to prevent and intervene in enterococci-mediated polymicrobial infections. Here, we find that enterococci at high density drive the expansion and pathogenicity of enteric Salmonella enterica serotype Typhimurium (S. Tm). Subsequently, we show that the driving role of enterococci in such infections is counteracted by dietary coumarin glycosides in vivo. Enterococci, which are tolerant of iron-deficient environments, produce β-glucosidases to hydrolyze coumarin glycosides into bioactive aglycones, inhibiting S. Tm growth and ameliorating the severity of S. Tm-induced symptoms by inducing iron limitation. Overall, we demonstrate that coumarin glycosides as a common diet effectively reverse enterococci-facilitated enteric infections, providing an alternative intervention to combat polymicrobial infections.
Collapse
Affiliation(s)
- Wenjiao Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control,
China Agricultural University, Beijing 100193, China
| | - Yuwen Fang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Xiaojia Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
- Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Zhao M, Ren Z, Zhao A, Tang Y, Kuang J, Li M, Chen T, Wang S, Wang J, Zhang H, Wang J, Zhang T, Zeng J, Liu X, Xie G, Liu P, Sun N, Bao T, Nie T, Lin J, Liu P, Zheng Y, Zheng X, Liu T, Jia W. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab 2024; 36:1000-1012.e6. [PMID: 38582087 DOI: 10.1016/j.cmet.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.
Collapse
Affiliation(s)
- Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhenxing Ren
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yajun Tang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiheng Zhang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Jiahui Zeng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Tianhao Bao
- The Affiliated Mental Health Center of Kunming Medical University, Kunming 650224, China
| | - Tongtong Nie
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingchao Lin
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Ping Liu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuanyi Zheng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Ke S, Villafuerte Gálvez JA, Sun Z, Cao Y, Pollock NR, Chen X, Kelly CP, Liu YY. Rational Design of Live Biotherapeutic Products for the Prevention of Clostridioides difficile Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591969. [PMID: 38746249 PMCID: PMC11092666 DOI: 10.1101/2024.04.30.591969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile infection (CDI) is one of the leading causes of healthcare- and antibiotic-associated diarrhea. While fecal microbiota transplantation (FMT) has emerged as a promising therapy for recurrent CDI, its exact mechanisms of action and long-term safety are not fully understood. Defined consortia of clonal bacterial isolates, known as live biotherapeutic products (LBPs), have been proposed as an alternative therapeutic option. However, the rational design of LBPs remains challenging. Here, we employ a computational pipeline and three independent metagenomic datasets to systematically identify microbial strains that have the potential to inhibit CDI. We first constructed the CDI-related microbial genome catalog, comprising 3,741 non-redundant metagenome-assembled genomes (nrMAGs) at the strain level. We then identified multiple potential protective nrMAGs that can be candidates for the design of microbial consortia targeting CDI, including strains from Dorea formicigenerans, Oscillibacter welbionis, and Faecalibacterium prausnitzii. Importantly, some of these potential protective nrMAGs were found to play an important role in the success of FMT, and the majority of the top protective nrMAGs can be validated by various previously reported findings. Our results demonstrate a computational framework for the rational selection of microbial strains targeting CDI, paving the way for the computational design of microbial consortia against other enteric infections.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Javier A Villafuerte Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Zheng Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yangchun Cao
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Nira R Pollock
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Ciarán P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
38
|
Sulaiman JE, Thompson J, Qian Y, Vivas EI, Diener C, Gibbons SM, Safdar N, Venturelli OS. Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589383. [PMID: 38659900 PMCID: PMC11042340 DOI: 10.1101/2024.04.13.589383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I. Vivas
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, William S. Middleton Veterans Hospital Madison, Madison, WI, USA
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Liu Y, Cheng YY, Thompson J, Zhou Z, Vivas EI, Warren MF, Rey FE, Anantharaman K, Venturelli OS. Shaping human gut community assembly and butyrate production by controlling the arginine dihydrolase pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.10.523442. [PMID: 37986770 PMCID: PMC10659395 DOI: 10.1101/2023.01.10.523442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The arginine dihydrolase pathway (arc operon) present in a subset of diverse human gut species enables arginine catabolism. This specialized metabolic pathway can alter environmental pH and nitrogen availability, which in turn could shape gut microbiota inter-species interactions. By exploiting synthetic control of gene expression, we investigated the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles in vitro and in the murine gut. By stabilizing environmental pH, the arc operon reduced variability in community composition across different initial pH perturbations. The abundance of butyrate producing bacteria were altered in response to arc operon activity and butyrate production was enhanced in a physiologically relevant pH range. While the presence of the arc operon altered community dynamics, it did not impact production of short chain fatty acids. Dynamic computational modeling of pH-mediated interactions reveals the quantitative contribution of this mechanism to community assembly. In sum, our framework to quantify the contribution of molecular pathways and mechanism modalities on microbial community dynamics and functions could be applied more broadly.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | - Eugenio I. Vivas
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew F. Warren
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | | | - Ophelia S. Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| |
Collapse
|
40
|
Yang H, Wu X, Li X, Zang W, Zhou Z, Zhou Y, Cui W, Kou Y, Wang L, Hu A, Wu L, Yin Z, Chen Q, Chen Y, Huang Z, Wang Y, Gu B. A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response. Nat Commun 2024; 15:2842. [PMID: 38565558 PMCID: PMC10987486 DOI: 10.1038/s41467-024-47075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic-induced dysbiosis is a major risk factor for Clostridioides difficile infection (CDI), and fecal microbiota transplantation (FMT) is recommended for treating CDI. However, the underlying mechanisms remain unclear. Here, we show that Tritrichomonas musculis (T.mu), an integral member of the mouse gut commensal microbiota, reduces CDI-induced intestinal damage by inhibiting neutrophil recruitment and IL-1β secretion, while promoting Th1 cell differentiation and IFN-γ secretion, which in turn enhances goblet cell production and mucin secretion to protect the intestinal mucosa. T.mu can actively metabolize arginine, not only influencing the host's arginine-ornithine metabolic pathway, but also shaping the metabolic environment for the microbial community in the host's intestinal lumen. This leads to a relatively low ornithine state in the intestinal lumen in C. difficile-infected mice. These changes modulate C. difficile's virulence and the host intestinal immune response, and thus collectively alleviating CDI. These findings strongly suggest interactions between an intestinal commensal eukaryote, a pathogenic bacterium, and the host immune system via inter-related arginine-ornithine metabolism in the regulation of pathogenesis and provide further insights for treating CDI.
Collapse
Affiliation(s)
- Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanqing Zang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenwen Cui
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lianlian Wu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhutao Huang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Hu C, Garey KW. Microscopy methods for Clostridioides difficile. Anaerobe 2024; 86:102822. [PMID: 38341023 DOI: 10.1016/j.anaerobe.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Microscopic technologies including light and fluorescent, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cryo-electron microscopy have been widely utilized to visualize Clostridioides difficile at the molecular, cellular, community, and structural biology level. This comprehensive review summarizes the microscopy tools (fluorescent and reporter system) in their use to study different aspects of C. difficile life cycle and virulence (sporulation, germination) or applications (detection of C. difficile or use of antimicrobials). With these developing techniques, microscopy tools will be able to find broader applications and address more challenging questions to study C. difficile and C. difficile infection.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
42
|
Lillie IM, Booth CE, Horvath AE, Mondragon M, Engevik MA, Horvath TD. Characterizing arginine, ornithine, and putrescine pathways in enteric pathobionts. Microbiologyopen 2024; 13:e1408. [PMID: 38560776 PMCID: PMC10982811 DOI: 10.1002/mbo3.1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.
Collapse
Affiliation(s)
- Ian M. Lillie
- Department of Materials Science & EngineeringCornell UniversityIthacaNew YorkUSA
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| | - Charles E. Booth
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Adelaide E. Horvath
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Biology & BiochemistryUniversity of HoustonHoustonTexasUSA
- Department of MathematicsUniversity of HoustonHoustonTexasUSA
| | - Matthew Mondragon
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Melinda A. Engevik
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Thomas D. Horvath
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
43
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
44
|
Sardzikova S, Andrijkova K, Svec P, Beke G, Klucar L, Minarik G, Bielik V, Kolenova A, Soltys K. Gut diversity and the resistome as biomarkers of febrile neutropenia outcome in paediatric oncology patients undergoing hematopoietic stem cell transplantation. Sci Rep 2024; 14:5504. [PMID: 38448687 PMCID: PMC10918076 DOI: 10.1038/s41598-024-56242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
The gut microbiota of paediatric oncology patients undergoing a conditioning regimen before hematopoietic stem cell transplantation is recently considered to play role in febrile neutropenia. Disruption of commensal microbiota and evolution of opportune pathogens community carrying a plethora of antibiotic-resistance genes play crucial role. However, the impact, predictive role and association of patient´s gut resistome in the course of the therapy is still to be elucidated. We analysed gut microbiota composition and resistome of 18 paediatric oncology patients undergoing hematopoietic stem cell transplantation, including 12 patients developing febrile neutropenia, hospitalized at The Bone Marrow Transplantation Unit of the National Institute of Children´s disease in Slovak Republic and healthy individuals (n = 14). Gut microbiome of stool samples obtained in 3 time points, before hematopoietic stem cell transplantation (n = 16), one week after hematopoietic stem cell transplantation (n = 16) and four weeks after hematopoietic stem cell transplantation (n = 14) was investigated using shotgun metagenome sequencing and bioinformatical analysis. We identified significant decrease in alpha-diversity and nine antibiotic-resistance genes msr(C), dfrG, erm(T), VanHAX, erm(B), aac(6)-aph(2), aph(3)-III, ant(6)-Ia and aac(6)-Ii, one week after hematopoietic stem cell transplantation associated with febrile neutropenia. Multidrug-resistant opportune pathogens of ESKAPE, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli found in the gut carried the significant subset of patient's resistome. Over 50% of patients treated with trimethoprim/sulfamethoxazole, piperacillin/tazobactam and amikacin carried antibiotic-resistance genes to applied treatment. The alpha diversity and the resistome of gut microbiota one week after hematopoietic stem cell transplantation is relevant predictor of febrile neutropenia outcome after hematopoietic stem cell transplantation. Furthermore, the interindividual diversity of multi-drug resistant opportunistic pathogens with variable portfolios of antibiotic-resistance genes indicates necessity of preventive, personalized approach.
Collapse
Affiliation(s)
- Sara Sardzikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Kristina Andrijkova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Svec
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
45
|
Andary CM, Al KF, Chmiel JA, Gibbons S, Daisley BA, Parvathy SN, Maleki Vareki S, Bowdish DME, Silverman MS, Burton JP. Dissecting mechanisms of fecal microbiota transplantation efficacy in disease. Trends Mol Med 2024; 30:209-222. [PMID: 38195358 DOI: 10.1016/j.molmed.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as an alternative or adjunct experimental therapy for microbiome-associated diseases following its success in the treatment of recurrent Clostridioides difficile infections (rCDIs). However, the mechanisms of action involved remain relatively unknown. The term 'dysbiosis' has been used to describe microbial imbalances in relation to disease, but this traditional definition fails to consider the complex cross-feeding networks that define the stability of the microbiome. Emerging research transitions toward the targeted restoration of microbial functional networks in treating different diseases. In this review, we explore potential mechanisms responsible for the efficacy of FMT and future therapeutic applications, while revisiting definitions of 'dysbiosis' in favor of functional network restoration in rCDI, inflammatory bowel diseases (IBDs), metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Catherine M Andary
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kait F Al
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Shaeley Gibbons
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Seema Nair Parvathy
- Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Saman Maleki Vareki
- Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Dawn M E Bowdish
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Michael S Silverman
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Division of Infectious Disease, St. Joseph's Health Care, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
46
|
McHugh MP, Pettigrew KA, Taori S, Evans TJ, Leanord A, Gillespie SH, Templeton KE, Holden MTG. Consideration of within-patient diversity highlights transmission pathways and antimicrobial resistance gene variability in vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother 2024; 79:656-668. [PMID: 38323373 PMCID: PMC11090465 DOI: 10.1093/jac/dkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND WGS is increasingly being applied to healthcare-associated vancomycin-resistant Enterococcus faecium (VREfm) outbreaks. Within-patient diversity could complicate transmission resolution if single colonies are sequenced from identified cases. OBJECTIVES Determine the impact of within-patient diversity on transmission resolution of VREfm. MATERIALS AND METHODS Fourteen colonies were collected from VREfm positive rectal screens, single colonies were collected from clinical samples and Illumina WGS was performed. Two isolates were selected for Oxford Nanopore sequencing and hybrid genome assembly to generate lineage-specific reference genomes. Mapping to closely related references was used to identify genetic variations and closely related genomes. A transmission network was inferred for the entire genome set using Phyloscanner. RESULTS AND DISCUSSION In total, 229 isolates from 11 patients were sequenced. Carriage of two or three sequence types was detected in 27% of patients. Presence of antimicrobial resistance genes and plasmids was variable within genomes from the same patient and sequence type. We identified two dominant sequence types (ST80 and ST1424), with two putative transmission clusters of two patients within ST80, and a single cluster of six patients within ST1424. We found transmission resolution was impaired using fewer than 14 colonies. CONCLUSIONS Patients can carry multiple sequence types of VREfm, and even within related lineages the presence of mobile genetic elements and antimicrobial resistance genes can vary. VREfm within-patient diversity could be considered in future to aid accurate resolution of transmission networks.
Collapse
Affiliation(s)
- Martin P McHugh
- School of Medicine, University of St Andrews, St Andrews, UK
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Surabhi Taori
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Thomas J Evans
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Alistair Leanord
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Scottish Microbiology Reference Laboratories, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Kate E Templeton
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
47
|
Granata G, Barbut F, Petrosillo N. Editorial: Clostridioides difficile infection. Front Med (Lausanne) 2024; 11:1372813. [PMID: 38468753 PMCID: PMC10925766 DOI: 10.3389/fmed.2024.1372813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Guido Granata
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, Rome, Italy
| | - Frédéric Barbut
- National Reference Laboratory for Clostridioides Difficile, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicola Petrosillo
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
48
|
McMillan AS, Zhang G, Dougherty MK, McGill SK, Gulati AS, Baker ES, Theriot CM. Metagenomic, metabolomic, and lipidomic shifts associated with fecal microbiota transplantation for recurrent Clostridioides difficile infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579219. [PMID: 38370838 PMCID: PMC10871284 DOI: 10.1101/2024.02.07.579219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recurrent C. difficile infection (rCDI) is an urgent public health threat for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms which mediate a successful FMT are not well understood. Here we use longitudinal stool samples collected from patients undergoing FMT to evaluate changes in the microbiome, metabolome, and lipidome after successful FMTs. We show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae, which encode carnitine metabolism genes, and Lachnospiraceae, which encode bile salt hydrolases and baiA genes. LC-IMS-MS revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here we define the structural and functional changes in successful FMTs. This information will help guide targeted Live Biotherapeutic Product development for the treatment of rCDI and other intestinal diseases.
Collapse
|
49
|
Xu W, Fang Y, Zhu K. Enterococci facilitate polymicrobial infections. Trends Microbiol 2024; 32:162-177. [PMID: 37550091 DOI: 10.1016/j.tim.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Enterococci are ubiquitous members of the gut microbiota in human beings and animals and are among the most important nosocomial organisms. Due to their opportunistic pathogenicity, enterococci are referred to as pathobionts and play decisive roles in a diverse array of polymicrobial infections. Enterococci can promote the colonization, pathogenesis, and persistence of various pathogens, compromise the efficacy of drugs, and pose a severe threat to public health. Most current treatments tend to focus on the sole pathogenic bacteria, with insufficient attention to the driving role of enterococci. In this review, we summarize the characteristics of enterococci in infections, the factors facilitating their outgrowth, as well as the sites and types of enterococci-associated polymicrobial infections. We present an overview of the underlying mechanisms of enterococci-mediated pathogenesis in polymicrobial infections. Furthermore, we discuss alternative strategies and potential intervention approaches to restrict such infections, shedding light on the discovery and development of new therapies against polymicrobial infections.
Collapse
Affiliation(s)
- Wenjiao Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuwen Fang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
50
|
Gurung B, Stricklin M, Wang S. Gut Microbiota-Gut Metabolites and Clostridioides difficile Infection: Approaching Sustainable Solutions for Therapy. Metabolites 2024; 14:74. [PMID: 38276309 PMCID: PMC10819375 DOI: 10.3390/metabo14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is the most common hospital-acquired infection. With the combination of a high rate of antibiotic resistance and recurrence, it has proven to be a debilitating public health threat. Current treatments for CDI include antibiotics and fecal microbiota transplantation, which contribute to recurrent CDIs and potential risks. Therefore, there is an ongoing need to develop new preventative treatment strategies for CDI. Notably, gut microbiota dysbiosis is the primary risk factor for CDI and provides a promising target for developing novel CDI therapy approaches. Along with gut microbiota dysbiosis, a reduction in important gut metabolites like secondary bile acids and short-chain fatty acids (SCFAs) were also seen in patients suffering from CDI. In this review study, we investigated the roles and mechanisms of gut microbiota and gut microbiota-derived gut metabolites, especially secondary bile acids and SCFAs in CDI pathogenesis. Moreover, specific signatures of gut microbiota and gut metabolites, as well as different factors that can modulate the gut microbiota, were also discussed, indicating that gut microbiota modulators like probiotics and prebiotics can be a potential therapeutic strategy for CDI as they can help restore gut microbiota and produce gut metabolites necessary for a healthy gut. The understanding of the associations between gut microbiota-gut metabolites and CDI will allow for developing precise and sustainable approaches, distinct from antibiotics and fecal transplant, for mitigating CDI and other gut microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Maranda Stricklin
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|