1
|
Kang X, Zhao K, Huang Z, Fukada SI, Qi XW, Miao H. Pdgfrα + stromal cells, a key regulator for tissue homeostasis and dysfunction in distinct organs. Genes Dis 2025; 12:101264. [PMID: 39759120 PMCID: PMC11696774 DOI: 10.1016/j.gendis.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 01/07/2025] Open
Abstract
Pdgfrα+ stromal cells are a group of cells specifically expressing Pdgfrα, which may be mentioned with distinct names in different tissues. Importantly, the findings from numerous studies suggest that these cells share exactly similar biomarkers and properties, show complex functions in regulating the microenvironment, and are critical to tissue regeneration, repair, and degeneration. Comparing the similarities and differences between distinct tissue-resident Pdgfrα+ stromal cells is helpful for us to more comprehensively and deeply understand the behaviors of these cells and to explore some common regulating mechanisms and therapeutical targets. In this review, we summarize previous and current findings on Pdgfrα+ stromal cells in various tissues and discuss the crosstalk between Pdgfrα+ stromal cells and microenvironment.
Collapse
Affiliation(s)
- Xia Kang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610000, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhu Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610000, China
| | - So-ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 564-0871, Japan
| | - Xiao-wei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Zhou X, Tian X, Chen J, Li Y, Lv N, Liu H, Liu T, Yang H, Chen X, Xu Y, He F. Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409644. [PMID: 39823536 DOI: 10.1002/advs.202409644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/15/2024] [Indexed: 01/19/2025]
Abstract
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM). Further studies demonstrate that Y-ECM significantly rejuvenates mitochondrial energy metabolism in adult BMMSCs (A-BMMSCs) through the promotion of mitochondrial respiratory functions and amelioration of oxidative stress. A-BMMSCs cultured on Y-ECM exhibited enhanced multi-lineage differentiation potentials in vitro and ectopic bone formation in vivo. Mechanistically, silencing of silent information regulator type 3 (SIRT3) gene abolished the protective impact of Y-ECM on A-BMMSCs. Notably, a novel composite biomaterial combining hyaluronic acid methacrylate hydrogel microspheres with Y-ECM is developed, which yielded substantial improvements in the healing of bone defects in an aged rat model. Collectively, these findings underscore the pivotal role of Y-ECM in maintaining mitochondrial redox homeostasis and present a promising therapeutic strategy for the repair of aged bone defects.
Collapse
Affiliation(s)
- Xinfeng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jianan Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yantong Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
3
|
Parry TL, Gilmore LA, Khamoui AV. Pan-cancer secreted proteome and skeletal muscle regulation: insight from a proteogenomic data-driven knowledge base. Funct Integr Genomics 2025; 25:14. [PMID: 39812750 DOI: 10.1007/s10142-024-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers. Tumor proteins having significant pan-cancer associations with muscle were referenced against secretome proteins secreted to blood from the Human Protein Atlas, then verified as increased in paired tumor vs. normal tissues in pan-cancer manner. This workflow revealed seven secreted proteins from cancers afflicting kidneys, head and neck, lungs and pancreas that classified as protein-binding activity modulator, extracellular matrix protein or intercellular signaling molecule. Concordance of these biomarkers with validated molecular signatures of cachexia and senescence supported relevance to muscle and cachexia disease biology, and high tumor expression of the biomarker set associated with lower overall survival. In this article, we discuss avenues by which skeletal muscle and cachexia may be regulated by these candidate pan-cancer proteins secreted to blood, and conceptualize a strategy that considers them collectively as a biomarker signature with potential for refinement by data analytics and radiogenomics for predictive testing of future risk in a non-invasive, blood-based panel amenable to broad uptake and early management.
Collapse
Affiliation(s)
- Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
4
|
Dalle S, Schouten M, Vanderbeke K, Van Parys E, Ramaekers M, Thomis M, Costamagna D, Koppo K. The CB1 antagonist Rimonabant improves muscle regeneration and remodels the inflammatory and endocannabinoid profile upon injury in male mice. Life Sci 2025; 361:123296. [PMID: 39645163 DOI: 10.1016/j.lfs.2024.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Skeletal muscle regeneration upon injury requires timely activation of inflammatory, myogenic, fibrotic, apoptotic and anabolic systems. Optimization of these features might improve the recovery process. Whereas recent data indicate that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1) antagonism, is involved in the regulation of inflammatory, myogenic, fibrotic, apoptotic and anabolic pathways, it was never studied whether CB1 antagonism can improve muscle regeneration. The present study investigated the effect of the CB1 antagonist Rimonabant (10 mg/kg/d) on functional (5 days post-cardiotoxin injury; 5DPI) and molecular muscle responses (3DPI and 7DPI) in mice. Rimonabant prevented cardiotoxin-induced muscle strength loss 5DPI, increased myofiber growth (7DPI) and improved the muscle molecular profile 3DPI and 7DPI. In general, inflammation (e.g. p-p65NF-κB, CD80) and apoptosis (e.g. cleaved caspase-3, cleaved PARP) were downregulated by Rimonabant, whereas it upregulated the expression of Pax7 but other myogenic factors remained unaffected by rimonabant. In addition, Rimonabant restored the injury-induced (inflammatory) lipid profile to a large extent, including oxygenated fatty acids, unsaturated fatty acids and endocannabinoids such as 2-arachidonoyl glycerol and palmitoylethanolamide. Altogether, these data show that the endocannabinoid system might be a novel therapeutic target to improve muscle regeneration, which is relevant for age- and disease-related muscle degeneration.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; MOVANT Research Group, Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium.
| | - Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Kaat Vanderbeke
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Evy Van Parys
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Martine Thomis
- Physical Activity, Sports & Health Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Domiziana Costamagna
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
6
|
Alibhai FJ, Tobin SW. Characterization of Age-Dependent Changes in Skeletal Muscle Repair and Regeneration Using a Mouse Model of Acute Muscle Injury. Methods Mol Biol 2025; 2857:169-180. [PMID: 39348065 DOI: 10.1007/978-1-0716-4128-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Acute skeletal muscle injury initiates a process of necrosis, debris clearance, and ultimately tissue regeneration via myogenesis. While skeletal muscle stem cells (MuSCs) are responsible for populating the proliferative myogenic progenitor pool to fuel muscle repair, recruited and resident immune cells have a central role in the regulation of muscle regeneration via the execution of phagocytosis and release of soluble factors that act directly on MuSCs to regulate myogenic differentiation. Therefore, the timing of MuSC proliferation and differentiation is closely linked to the populations and behaviors of immune cells present within skeletal muscle. This has important implications for aging and muscle repair, as systemic changes in immune system function contribute to a decline in muscle regenerative capacity. Here, we present adapted protocols for the isolation of mononuclear cells from skeletal muscles for the quantification of immune cell populations using flow cytometry. We also describe a cardiotoxin skeletal muscle injury protocol and detail the expected outcomes including immune cell infiltration to the injured sites and formation of new myocytes. As immune cell function is substantially influenced by aging, we extend these approaches and outcomes to aged mice.
Collapse
Affiliation(s)
| | - Stephanie W Tobin
- Department of Biology, Trent University, Peterborough, ON, Canada.
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
7
|
Chi A, Yang C, Liu J, Zhai Z, Shi X. Reconstructing the Stem Leydig Cell Niche via the Testicular Extracellular Matrix for the Treatment of Testicular Leydig Cell Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410808. [PMID: 39555675 PMCID: PMC11727238 DOI: 10.1002/advs.202410808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Therapies involving the use of stem Leydig cells (SLCs), as testicular mesenchymal stromal cells, have shown great promise in the treatment of Leydig cell (LC) dysfunction in aging males. However, the outcomes of these therapies are not satisfactory. In this study, it is demonstrated that the aging microenvironment of the testicular interstitium impairs the function of SLCs, leading to poor regeneration of LCs and, consequently, inefficient functional restoration. The study develops a decellularized testicular extracellular matrix (dTECM) hydrogel from young pigs and evaluates its safety and feasibility as a supportive niche for the expansion and differentiation of SLCs. dTECM hydrogel facilitates the steroidogenic differentiation of SLCs into LCs, the primary producers of testosterone. The combination of SLCs with a dTECM hydrogel leads to a significant and sustained increase in testosterone levels, which promotes the restoration of spermatogenesis and fertility in an LC-deficient and aged mouse model. Mechanistically, collagen 1 within the dTECM is identified as a key factor contributing to these effects. Notably, symptoms associated with testosterone deficiency syndrome are significantly alleviated in aged mice. These findings may aid the design of therapeutic interventions for patients with testosterone deficiency in the clinic.
Collapse
Affiliation(s)
- Ani Chi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Chao Yang
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Jie Liu
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zhichen Zhai
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
8
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
9
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2024; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Légaré C, Berglund JA, Duchesne E, Dumont NA. New Horizons in Myotonic Dystrophy Type 1: Cellular Senescence as a Therapeutic Target. Bioessays 2024:e202400216. [PMID: 39723693 DOI: 10.1002/bies.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging). This hypervariable disease affects multiple systems, such as the musculoskeletal, central nervous, gastrointestinal, and others. Despite advances in understanding the underlying pathogenic mechanism of DM1, numerous gaps persist in our understanding, hindering elucidation of the heterogeneity and severity of its symptoms. Accumulating evidence indicates that the toxic intracellular RNA accumulation associated with DM1 triggers cellular senescence. These cells are in a state of irreversible cell cycle arrest and secrete a cocktail of cytokines, referred to as a senescence-associated secretory phenotype (SASP), that can have harmful effects on neighboring cells and more broadly. We hypothesize that cellular senescence contributes to the pathophysiology of DM1, and clearance of senescent cells is a promising therapeutic approach for DM1. We will discuss the therapeutic potential of different senotherapeutic drugs, especially senolytics that eliminate senescent cells, and senomorphics that reduce SASP expression.
Collapse
Affiliation(s)
- Cécilia Légaré
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
- CHU de Québec - Université Laval Research Center, Québec, Québec, Canada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
| | - J Andrew Berglund
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Elise Duchesne
- School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
- CHU de Québec - Université Laval Research Center, Québec, Québec, Canada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Centre Intégré Universitaire de Santé et de Services Sociaux Capitale-Nationale, Québec, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Wei W, Qi X, Cheng B, Zhang N, Zhao Y, Qin X, He D, Chu X, Shi S, Cai Q, Yang X, Cheng S, Meng P, Hui J, Pan C, Liu L, Wen Y, Liu H, Jia Y, Zhang F. A prospective study of associations between accelerated biological aging and twenty musculoskeletal disorders. COMMUNICATIONS MEDICINE 2024; 4:266. [PMID: 39695190 DOI: 10.1038/s43856-024-00706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Musculoskeletal disorders pose major public health challenges, and accelerated biological aging may increase their risk. This study investigates the association between biological aging and musculoskeletal disorders, with a focus on sex-related differences. METHODS We analyzed data from 172,332 UK Biobank participants (mean age of 56.03 ± 8.10 years). Biological age was calculated using the KDM-BA and PhenoAge algorithms based on blood biomarkers. Musculoskeletal disorders were diagnosed using the ICD-10 criteria, with sample sizes ranging from 1,182 to 23,668. Logistic regression assessed cross-sectional associations between age acceleration (AA) metrics and musculoskeletal disorders. Accelerated Failure Time (AFT) model was used for survival analysis to evaluate the relationships between AAs and musculoskeletal disorders onset. Models were adjusted for demographic, lifestyle, and socio-economic covariates. The threshold of P-values were set by the Holm-Bonferroni correction. RESULTS Cross-sectional analyses reveal significant associations between AAs and fourteen musculoskeletal disorders. Survival analyses indicate that AAs significantly accelerate the onset of nine musculoskeletal disorders, including inflammatory polyarthropathies (RTKDM-BA = 0.993; RTPhenoAge = 0.983), systemic connective tissue disorders (RTKDM-BA = 0.987; RTPhenoAge = 0.980), spondylopathies (RTPhenoAge= 0.994), disorders of bone density and structure (RTPhenoAge= 0.991), gout (RTPhenoAge= 0.968), arthritis (RTPhenoAge= 0.991), pain in joint (RTPhenoAge= 0.989), low back pain (RTPhenoAge= 0.986), and osteoporosis (RTPhenoAge= 0.994). Sensitivity analyses are consistent with the primary findings. Sex-specific variations are observed, with AAs accelerating spondylopathies, arthritis, and low back pain in females, while osteoporosis is accelerated in males. CONCLUSION Accelerated biological aging is significantly associated with the incidence of several musculoskeletal disorders. These insights highlight the importance of biological age assessments in gauging musculoskeletal disorder risk, aiding early detection, prevention, and management.
Collapse
Affiliation(s)
- Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
- Precision medicine center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
12
|
Tokizane K, Imai SI. Inter-organ communication is a critical machinery to regulate metabolism and aging. Trends Endocrinol Metab 2024:S1043-2760(24)00320-5. [PMID: 39694728 DOI: 10.1016/j.tem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Inter-organ communication (IOC) is a complex mechanism involved in maintaining metabolic homeostasis and healthy aging. Dysregulation of distinct forms of IOC is linked to metabolic derangements and age-related pathologies, implicating these processes as a potential target for therapeutic intervention to promote healthy aging. In this review, we delve into IOC mediated by hormonal signaling, circulating factors, organelle signaling, and neuronal networks and examine their roles in regulating metabolism and aging. Given the role of the hypothalamus as a high-order control center for aging and longevity, we particularly emphasize the importance of its communication with peripheral organs and pave the way for a better understanding of this critical machinery in metabolism and aging.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, 63110, MO, USA.
| |
Collapse
|
13
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Tighanimine K. Lipid remodeling in context of cellular senescence. Biochimie 2024; 227:47-52. [PMID: 39299535 DOI: 10.1016/j.biochi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| |
Collapse
|
15
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Walter LD, Orton JL, Ntekas I, Fong EHH, Maymi VI, Rudd BD, De Vlaminck I, Elisseeff JH, Cosgrove BD. Transcriptomic analysis of skeletal muscle regeneration across mouse lifespan identifies altered stem cell states. NATURE AGING 2024; 4:1862-1881. [PMID: 39578558 PMCID: PMC11645289 DOI: 10.1038/s43587-024-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
In aging, skeletal muscle regeneration declines due to alterations in both myogenic and non-myogenic cells and their interactions. This regenerative dysfunction is not understood comprehensively or with high spatiotemporal resolution. We collected an integrated atlas of 273,923 single-cell transcriptomes and high-resolution spatial transcriptomic maps from muscles of young, old and geriatric mice (~5, 20 and 26 months old) at multiple time points following myotoxin injury. We identified eight immune cell types that displayed accelerated or delayed dynamics by age. We observed muscle stem cell states and trajectories specific to old and geriatric muscles and evaluated their association with senescence by scoring experimentally derived and curated gene signatures in both single-cell and spatial transcriptomic data. This revealed an elevation of senescent-like muscle stem cell subsets within injury zones uniquely in aged muscles. This Resource provides a holistic portrait of the altered cellular states underlying muscle regenerative decline across mouse lifespan.
Collapse
Affiliation(s)
- Lauren D Walter
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
| | - Jessica L Orton
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Viviana I Maymi
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin D Cosgrove
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Herman AB, Gorospe M. Molecular tools for analysing in vivo senescence. Nat Rev Mol Cell Biol 2024; 25:954. [PMID: 39402191 DOI: 10.1038/s41580-024-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Allison B Herman
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
18
|
Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C, Li J, Zuo Y, Sun Y, Xu G, Liu B, Ai J, Liu F, Zhao L, Zhang J, Zhang H, Sun S, Huang H, Zhang Y, Ye Y, Fan Y, Zheng F, Hu J, Zhang B, Li J, Feng X, Zhang F, Zhuang Y, Li T, Yu Y, Bao Z, Pan S, Rodriguez Esteban C, Liu Z, Deng H, Wen F, Song M, Wang S, Zhu G, Yang J, Jiang T, Song W, Izpisua Belmonte JC, Qu J, Zhang W, Gu Y, Liu GH. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 2024; 187:7025-7044.e34. [PMID: 39500323 DOI: 10.1016/j.cell.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
To systematically characterize the loss of tissue integrity and organ dysfunction resulting from aging, we produced an in-depth spatial transcriptomic profile of nine tissues in male mice during aging. We showed that senescence-sensitive spots (SSSs) colocalized with elevated entropy in organizational structure and that the aggregation of immunoglobulin-expressing cells is a characteristic feature of the microenvironment surrounding SSSs. Immunoglobulin G (IgG) accumulated across the aged tissues in both male and female mice, and a similar phenomenon was observed in human tissues, suggesting the potential of the abnormal elevation of immunoglobulins as an evolutionarily conserved feature in aging. Furthermore, we observed that IgG could induce a pro-senescent state in macrophages and microglia, thereby exacerbating tissue aging, and that targeted reduction of IgG mitigated aging across various tissues in male mice. This study provides a high-resolution spatial depiction of aging and indicates the pivotal role of immunoglobulin-associated senescence during the aging process.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Zhejun Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Geng
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Jiaming Li
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Beibei Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Ai
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Feifei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Liyun Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jiachen Zhang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Haoyan Huang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanxia Ye
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Jinghao Hu
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Baohu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Zhang
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sipei Pan
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Zhili Liu
- BGI Research, Shenzhen 518083, China
| | | | - Feng Wen
- BGI Research, Beijing 102601, China
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Ying Gu
- BGI Research, Shenzhen 518083, China; BGI Research, Beijing 102601, China; BGI Research, Hangzhou 310030, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
19
|
Yao Y, Ritzmann F, Miethe S, Kattler-Lackes K, Colakoglu B, Herr C, Kamyschnikow A, Brand M, Garn H, Yildiz D, Langer F, Bals R, Beisswenger C. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. Mol Med 2024; 30:227. [PMID: 39578767 PMCID: PMC11585087 DOI: 10.1186/s10020-024-00990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Impaired interaction of fibroblasts with pneumocytes contributes to the progression of chronic lung disease such as idiopathic pulmonary fibrosis (IPF). Mucin 5B (MUC5B) is associated with IPF. Here we analyzed the interaction of primary fibroblasts and alveolar type 2 (AT2) pneumocytes in the organoid model. Single-cell analysis, histology, and qRT-PCR revealed that fibroblasts expressing high levels of fibrosis markers regulate STAT3 signaling in AT2 cells, which is accompanied by cystic organoid growth and MUC5B expression. Cystic growth and MUC5B expression were also caused by the cytokine IL-6. The PI3K-Akt signaling pathway was activated in fibroblasts. The drug dasatinib prevented the formation of MUC5B-expressing cystic organoids. MUC5B associated with AT2 cells in samples obtained from IPF patients. Our model shows that fibrotic primary fibroblasts induce impaired differentiation of AT2 cells via STAT3 signaling pathways, as observed in IPF patients. It can be used for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | | | - Betül Colakoglu
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421, Homburg, Germany
| | - Frank Langer
- Department of Thoracic- and Cardiovascular Surgery, Saarland University Hospital, Homburg/Saar, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
20
|
Ancel S, Michaud J, Migliavacca E, Jomard C, Fessard A, Garcia P, Karaz S, Raja S, Jacot GE, Desgeorges T, Sánchez-García JL, Tauzin L, Ratinaud Y, Brinon B, Métairon S, Pinero L, Barron D, Blum S, Karagounis LG, Heshmat R, Ostovar A, Farzadfar F, Scionti I, Mounier R, Gondin J, Stuelsatz P, Feige JN. Nicotinamide and pyridoxine stimulate muscle stem cell expansion and enhance regenerative capacity during aging. J Clin Invest 2024; 134:e163648. [PMID: 39531334 PMCID: PMC11645154 DOI: 10.1172/jci163648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Skeletal muscle relies on resident muscle stem cells (MuSCs) for growth and repair. Aging and muscle diseases impair MuSC function, leading to stem cell exhaustion and regenerative decline that contribute to the progressive loss of skeletal muscle mass and strength. In the absence of clinically available nutritional solutions specifically targeting MuSCs, we used a human myogenic progenitor high-content imaging screen of natural molecules from food to identify nicotinamide (NAM) and pyridoxine (PN) as bioactive nutrients that stimulate MuSCs and have a history of safe human use. NAM and PN synergize via CK1-mediated cytoplasmic β-catenin activation and AKT signaling to promote amplification and differentiation of MuSCs. Oral treatment with a combination of NAM and PN accelerated muscle regeneration in vivo by stimulating MuSCs, increased muscle strength during recovery, and overcame MuSC dysfunction and regenerative failure during aging. Levels of NAM and bioactive PN spontaneously declined during aging in model organisms and interindependently associated with muscle mass and walking speed in a cohort of 186 aged people. Collectively, our results establish the NAM/PN combination as a nutritional intervention that stimulates MuSCs, enhances muscle regeneration, and alleviates age-related muscle decline with a direct opportunity for clinical translation.
Collapse
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Charline Jomard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Aurélie Fessard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pauline Garcia
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sruthi Raja
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume E. Jacot
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Thibaut Desgeorges
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Loic Tauzin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Yann Ratinaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucas Pinero
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Stephanie Blum
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
| | - Leonidas G. Karagounis
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Isabella Scionti
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jerome N. Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Yu W, Yu Y, Sun S, Lu C, Zhai J, Lei Y, Bai F, Wang R, Chen J. Immune Alterations with Aging: Mechanisms and Intervention Strategies. Nutrients 2024; 16:3830. [PMID: 39599617 PMCID: PMC11597283 DOI: 10.3390/nu16223830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Aging is the result of a complex interplay of physical, environmental, and social factors, leading to an increased prevalence of chronic age-related diseases that burden health and social care systems. As the global population ages, it is crucial to understand the aged immune system, which undergoes declines in both innate and adaptive immunity. This immune decline exacerbates the aging process, creating a feedback loop that accelerates the onset of diseases, including infectious diseases, autoimmune disorders, and cancer. Intervention strategies, including dietary adjustments, pharmacological treatments, and immunomodulatory therapies, represent promising approaches to counteract immunosenescence. These interventions aim to enhance immune function by improving the activity and interactions of aging-affected immune cells, or by modulating inflammatory responses through the suppression of excessive cytokine secretion and inflammatory pathway activation. Such strategies have the potential to restore immune homeostasis and mitigate age-related inflammation, thus reducing the risk of chronic diseases linked to aging. In summary, this review provides insights into the effects and underlying mechanisms of immunosenescence, as well as its potential interventions, with particular emphasis on the relationship between aging, immunity, and nutritional factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (W.Y.)
| |
Collapse
|
22
|
Tabata S, Matsuda K, Soeda S, Nagai K, Izumi Y, Takahashi M, Motomura Y, Ichikawa Nagasato A, Moro K, Bamba T, Okada M. NFκB dynamics-dependent epigenetic changes modulate inflammatory gene expression and induce cellular senescence. FEBS J 2024; 291:4951-4968. [PMID: 39011799 DOI: 10.1111/febs.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Upregulation of nuclear factor κB (NFκB) signaling is a hallmark of aging and a major cause of age-related chronic inflammation. However, its effect on cellular senescence remains unclear. Here, we show that alteration of NFκB nuclear dynamics from oscillatory to sustained by depleting a negative feedback regulator of NFκB pathway, NFκB inhibitor alpha (IκBα), in the presence of tumor necrosis factor α (TNFα) promotes cellular senescence. Sustained NFκB activity enhanced inflammatory gene expression through increased NFκB-DNA binding and slowed the cell cycle. IκBα protein was decreased under replicative or oxidative stress in vitro. Furthermore, a decrease in IκBα protein and an increase in DNA-NFκB binding at the transcription start sites of age-associated genes in aged mouse hearts suggested that nuclear NFκB dynamics may play a critical role in the progression of aging. Our study suggests that nuclear NFκB dynamics-dependent epigenetic changes regulated over time in a living system, possibly through a decrease in IκBα, enhance the expression of inflammatory genes to advance the cells to a senescent state.
Collapse
Affiliation(s)
- Sho Tabata
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Keita Matsuda
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Shou Soeda
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Kenshiro Nagai
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | | | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Laboratory for Innate Immune Systems, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mariko Okada
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| |
Collapse
|
23
|
Matteini F, Montserrat‐Vazquez S, Florian MC. Rejuvenating aged stem cells: therapeutic strategies to extend health and lifespan. FEBS Lett 2024; 598:2776-2787. [PMID: 38604982 PMCID: PMC11586596 DOI: 10.1002/1873-3468.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Aging is associated with a global decline in stem cell function. To date, several strategies have been proposed to rejuvenate aged stem cells: most of these result in functional improvement of the tissue where the stem cells reside, but the impact on the lifespan of the whole organism has been less clearly established. Here, we review some of the most recent work dealing with interventions that improve the regenerative capacity of aged somatic stem cells in mammals and that might have important translational possibilities. Overall, we underscore that somatic stem cell rejuvenation represents a strategy to improve tissue homeostasis upon aging and present some recent approaches with the potential to affect health span and lifespan of the whole organism.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - Sara Montserrat‐Vazquez
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- The Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
24
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
25
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
26
|
Lyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, Olsen A, Groth A, Simon AK, Brunet A, Jamil A, Kulaga A, Bhatti A, Yaden B, Pedersen BK, Schumacher B, Djordjevic B, Kennedy B, Chen C, Huang CY, Correll CU, Murphy CT, Ewald CY, Chen D, Valenzano DR, Sołdacki D, Erritzoe D, Meyer D, Sinclair DA, Chini EN, Teeling EC, Morgen E, Verdin E, Vernet E, Pinilla E, Fang EF, Bischof E, Mercken EM, Finger F, Kuipers F, Pun FW, Gyülveszi G, Civiletto G, Zmudze G, Blander G, Pincus HA, McClure J, Kirkland JL, Peyer J, Justice JN, Vijg J, Gruhn JR, McLaughlin J, Mannick J, Passos J, Baur JA, Betts-LaCroix J, Sedivy JM, Speakman JR, Shlain J, von Maltzahn J, Andreasson KI, Moody K, Palikaras K, Fortney K, Niedernhofer LJ, Rasmussen LJ, Veenhoff LM, Melton L, Ferrucci L, Quarta M, Koval M, Marinova M, Hamalainen M, Unfried M, Ringel MS, Filipovic M, Topors M, Mitin N, Roy N, Pintar N, Barzilai N, Binetti P, Singh P, Kohlhaas P, Robbins PD, Rubin P, Fedichev PO, Kamya P, Muñoz-Canoves P, de Cabo R, Faragher RGA, Konrad R, Ripa R, Mansukhani R, Büttner S, Wickström SA, Brunemeier S, Jakimov S, Luo S, Rosenzweig-Lipson S, Tsai SY, Dimmeler S, Rando TA, Peterson TR, Woods T, Wyss-Coray T, Finkel T, Strauss T, Gladyshev VN, Longo VD, Dwaraka VB, Gorbunova V, Acosta-Rodríguez VA, Sorrentino V, Sebastiano V, Li W, Suh Y, Zhavoronkov A, Scheibye-Knudsen M, Bakula D. Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. Aging (Albany NY) 2024; 16:12955-12976. [PMID: 39418098 PMCID: PMC11552646 DOI: 10.18632/aging.206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
The recent unprecedented progress in ageing research and drug discovery brings together fundamental research and clinical applications to advance the goal of promoting healthy longevity in the human population. We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest developments in healthspan biotechnology, with a particular emphasis on artificial intelligence (AI), biomarkers and clocks, geroscience, and clinical trials and interventions for healthy longevity. Moreover, we provide an overview of academic research and the biotech industry focused on targeting ageing as the root of age-related diseases to combat multimorbidity and extend healthspan. We propose that the integration of generative AI, cutting-edge biological technology, and longevity medicine is essential for extending the productive and healthy human lifespan.
Collapse
Affiliation(s)
- Yu-Xuan Lyu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Qiang Fu
- Institute of Aging Medicine, College of Pharmacy, Binzhou Medical University, Yantai, China
- Anti-aging Innovation Center, Subei Research Institute at Shanghai Jiaotong University, China
- Shandong Cellogene Pharmaceutics Co. LTD, Yantai, China
| | - Dominika Wilczok
- Duke Kunshan University, Kunshan, Jiangsu, China
- Duke University, Durham, NC, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Aaron King
- Foresight Institute, San Francisco, CA 91125, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Alexandra Stolzing
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | | | - Andrea B. Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Olsen
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katharina Simon
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- The Kennedy Institute of Rheumatology, Oxford, UK
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aisyah Jamil
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Anton Kulaga
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | - Benjamin Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University - Purdue University Indianapolis, Indianapolis Indiana 46077, USA
| | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - Boris Djordjevic
- 199 Biotechnologies Ltd., London, UK
- University College London, London, UK
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chieh Chen
- Molecular, Cellular, And Integrative Physiology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Christoph U. Correll
- Zucker School of Medicine at Hofstra/Northwell, NY 10001, USA
- Charité - University Medicine, Berlin, Germany
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Friedrich Schiller University, Jena, Germany
| | | | - David Erritzoe
- Centre for Psychedelic Research, Dpt Brain Sciences, Imperial College London, UK
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 02108, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, Belfield, Univeristy College Dublin, Dublin 4, Ireland
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Erik Vernet
- Research and Early Development, Maaleov 2760, Denmark
| | | | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evelyne Bischof
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Evi M. Mercken
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Fabian Finger
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Folkert Kuipers
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | | | | | | | - Harold A. Pincus
- Department of Psychiatry, Columbia University, New York, NY 10012, USA
| | | | - James L. Kirkland
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jan Vijg
- Department of Genetics Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jennifer R. Gruhn
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Joan Mannick
- Tornado Therapeutics, Cambrian Bio Inc. PipeCo, New York, NY 10012, USA
| | - João Passos
- Department of Physiology and Biomedical Engineering and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19019, USA
| | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02860, USA
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg and Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelsey Moody
- Ichor Life Sciences, Inc., LaFayette, NY 13084, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55414, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisa Melton
- Nature Biotechnology, Springer Nature, London, UK
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21201, USA
| | - Marco Quarta
- Rubedo Life Sciences, Sunnyvale, CA 94043, USA
- Turn Biotechnologies, Mountain View 94039, CA, USA
- Phaedon Institute, Oakland, CA 94501, USA
| | - Maria Koval
- Institute of Biochemistry of the Romanian Academy, Romania
| | - Maria Marinova
- Fertility and Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Hamalainen
- Longevity Biotech Fellowship, Longevity Acceleration Fund, Vitalism, SF Bay, CA 94101, USA
| | - Maximilian Unfried
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117608, Singapore
| | | | - Milos Filipovic
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V., Dortmund, Germany
| | - Mourad Topors
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | | | | | | | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10452, USA
| | | | | | | | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN 55111, USA
| | | | | | - Petrina Kamya
- Insilico Medicine Canada Inc., Montreal, Quebec H3B 4W8 Canada
| | - Pura Muñoz-Canoves
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland 21201, USA
| | | | | | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | - Shih-Yin Tsai
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany
| | - Thomas A. Rando
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tina Woods
- Collider Heath, London, UK
- Healthy Longevity Champion, National Innovation Centre for Ageing, UK
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15106, USA
| | - Tzipora Strauss
- Sheba Longevity Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Valter D. Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90001, USA
| | | | - Vera Gorbunova
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Victoria A. Acosta-Rodríguez
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincenzo Sorrentino
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Wenbin Li
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York City, NY 10032, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
28
|
Han L, Ji Y, Yu Y, Ni Y, Zeng H, Zhang X, Liu H, Zhang Y. Trajectory-centric framework TrajAtlas reveals multi-scale differentiation heterogeneity among cells, genes, and gene modules in osteogenesis. PLoS Genet 2024; 20:e1011319. [PMID: 39436962 PMCID: PMC11530032 DOI: 10.1371/journal.pgen.1011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Osteoblasts, the key cells responsible for bone formation and the maintenance of skeletal integrity, originate from a diverse array of progenitor cells. However, the mechanisms underlying osteoblast differentiation from these multiple osteoprogenitors remain poorly understood. To address this knowledge gap, we developed a comprehensive framework to investigate osteoblast differentiation at multiple scales, encompassing cells, genes, and gene modules. We constructed a reference atlas focused on differentiation, which incorporates various osteoprogenitors and provides a seven-level cellular taxonomy. To reconstruct the differentiation process, we developed a model that identifies the transcription factors and pathways involved in differentiation from different osteoprogenitors. Acknowledging that covariates such as age and tissue type can influence differentiation, we created an algorithm to detect differentially expressed genes throughout the differentiation process. Additionally, we implemented methods to identify conserved pseudotemporal gene modules across multiple samples. Overall, our framework systematically addresses the heterogeneity observed during osteoblast differentiation from diverse sources, offering novel insights into the complexities of bone formation and serving as a valuable resource for understanding osteogenesis.
Collapse
Affiliation(s)
- Litian Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
29
|
Huang N, Zou K, Zhong Y, Luo Y, Wang M, Xiao L. Hotspots and trends in satellite cell research in muscle regeneration: A bibliometric visualization and analysis from 2010 to 2023. Heliyon 2024; 10:e37529. [PMID: 39309858 PMCID: PMC11415684 DOI: 10.1016/j.heliyon.2024.e37529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background The incidence of muscle atrophy or sports injuries is increasing with time and population aging, thereby attracting considerable attention to muscle generation research. Muscle satellite cells, which play an important role in this process, lack comprehensive literature regarding their use for muscle regeneration. Hence, this study aimed to analyze the hotspots and trends in satellite cell research from 2010 to 2023, providing a reference for muscle regeneration research. Methods Studies on satellite cells' role in muscle regeneration from 2010 to 2023 were retrieved from the Web of Science Core Collection. Using CiteSpace and VOSviewer, we analyzed annual publications, authors and co-citing authors, countries and institutions, journals and co-citing journals, co-citing references, and keywords. Results From 2010 to 2023, 1468 papers were retrieved, indicating an overall increasing trend in the number of annual publications related to satellite cells in muscle regeneration. The United States had the highest number of publications, while the Institut National de la Santé et de la Recherche Médicale was the institution with the most publications. Among journals, " PloS One" had the highest number of published papers, and "Cell" emerged as the most co-cited journal. A total of 7425 authors were involved, with Michael A. Rudnicki being the author with the highest number of publications and the most co-cited author. The most cited reference was "Satellite cells and the muscle stem cell niche." Among keywords, "satellite cells" was the most common, with "heterogeneity" having the highest centrality. Frontier themes included "Duchenne muscular dystrophy," "skeletal muscle," "in-vivo," "muscle regeneration," "mice," "muscle atrophy," "muscle fibers," "inflammation," " mesenchymal stem cells," and "satellite cell." Conclusion This study presents the current status and trends in satellite cell research on muscle regeneration from 2010 to 2023 using bibliometric analyses, providing valuable insights into numerous future research directions.
Collapse
Affiliation(s)
- Nan Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Kang Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Yanbiao Zhong
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Yun Luo
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Maoyuan Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Li Xiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| |
Collapse
|
30
|
Wang J, Wang R, Li Y, Huang J, Liu Y, Wang J, Xian P, Zhang Y, Yang Y, Zhang H, Li J. Lipolysis engages CD36 to promote ZBP1-mediated necroptosis-impairing lung regeneration in COPD. Cell Rep Med 2024; 5:101732. [PMID: 39255796 PMCID: PMC11525022 DOI: 10.1016/j.xcrm.2024.101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Lung parenchyma destruction represents a severe condition commonly found in chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. Promoting lung regeneration is crucial for achieving clinical improvement. However, no therapeutic drugs are approved to improve the regeneration capacity due to incomplete understanding of the underlying pathogenic mechanisms. Here, we identify a positive feedback loop formed between adipose triglyceride lipase (ATGL)-mediated lipolysis and overexpression of CD36 specific to lung epithelial cells, contributing to disease progression. Genetic deletion of CD36 in lung epithelial cells and pharmacological inhibition of either ATGL or CD36 effectively reduce COPD pathogenesis and promote lung regeneration in mice. Mechanistically, disruption of the ATGL-CD36 loop rescues Z-DNA binding protein 1 (ZBP1)-induced cell necroptosis and restores WNT/β-catenin signaling. Thus, we uncover a crosstalk between lipolysis and lung epithelial cells, suggesting the regenerative potential for therapeutic intervention by targeting the ATGL-CD36-ZBP1 axis in COPD.
Collapse
Affiliation(s)
- Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ru Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yicun Li
- Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiayi Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Xian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuanhang Zhang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanmei Yang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
31
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Selvais CM, Davis-López de Carrizosa MA, Versele R, Dubuisson N, Noel L, Brichard SM, Abou-Samra M. Challenging Sarcopenia: Exploring AdipoRon in Aging Skeletal Muscle as a Healthspan-Extending Shield. Antioxidants (Basel) 2024; 13:1073. [PMID: 39334732 PMCID: PMC11428238 DOI: 10.3390/antiox13091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Sarcopenia, characterized by loss of muscle mass, quality, and function, poses significant risks in aging. We previously demonstrated that long-term treatment with AdipoRon (AR), an adiponectin receptor agonist, alleviated myosteatosis and muscle degeneration in middle-aged obese mice. This study aimed to determine if a shorter AR treatment could effectively offset sarcopenia in older mice. Two groups of old mice (20-23 months) were studied, one untreated (O) and one orally-treated with AR (O-AR) at 50 mg/kg/day for three months, compared with control 3-month-old young mice (Y) or 10-month-old young-adult mice (C-10). Results showed that AR remarkably inversed the loss of muscle mass by restoring the sarcopenia index and fiber count, which were greatly diminished with age. Additionally, AR successfully saved muscle quality of O mice by halving the accumulation of tubular aggregates and aberrant mitochondria, through AMPK pathway activation and enhanced autophagy. AR also bolstered muscle function by rescuing mitochondrial activity and improving exercise endurance. Finally, AR markedly curbed muscle fibrosis and mitigated local/systemic inflammation. Thus, a late three-month AR treatment successfully opposed sarcopenia and counteracted various hallmarks of aging, suggesting AR as a promising anti-aging therapy for skeletal muscles, potentially extending healthspan.
Collapse
Affiliation(s)
- Camille M Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Maria A Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41004 Seville, Spain
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Sonia M Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
33
|
Xiao W, Huang TE, Zhou J, Wang B, Wang X, Zeng W, Wang Q, Lan X, Xiang Y. Inhibition of MAT2A Impairs Skeletal Muscle Repair Function. Biomolecules 2024; 14:1098. [PMID: 39334864 PMCID: PMC11430595 DOI: 10.3390/biom14091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
The regenerative capacity of muscle, which primarily relies on anabolic processes, diminishes with age, thereby reducing the effectiveness of therapeutic interventions aimed at treating age-related muscle atrophy. In this study, we observed a decline in the expression of methionine adenosine transferase 2A (MAT2A), which synthesizes S-adenosylmethionine (SAM), in the muscle tissues of both aged humans and mice. Considering MAT2A's critical role in anabolism, we hypothesized that its reduced expression contributes to the impaired regenerative capacity of aging skeletal muscle. Mimicking this age-related reduction in the MAT2A level, either by reducing gene expression or inhibiting enzymatic activity, led to inhibiting their differentiation into myotubes. In vivo, inhibiting MAT2A activity aggravated BaCl2-induced skeletal muscle damage and decreased the number of satellite cells, whereas supplementation with SAM improved these effects. RNA-sequencing analysis further revealed that the Fas cell surface death receptor (Fas) gene was upregulated in Mat2a-knockdown C2C12 cells. Suppressing MAT2A expression or activity elevated Fas protein levels and increased the proportion of apoptotic cells. Additionally, inhibition of MAT2A expression or activity increased p53 expression. In conclusion, our findings demonstrated that impaired MAT2A expression or activity compromised the regeneration and repair capabilities of skeletal muscle, partially through p53-Fas-mediated apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Xiang
- Metabolic Control and Aging—Jiangxi Key Laboratory of Aging and Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China; (W.X.); (T.-E.H.); (J.Z.); (B.W.); (X.W.); (W.Z.); (Q.W.); (X.L.)
| |
Collapse
|
34
|
Niu K, Chang L, Zhang R, Jiang Y, Shen X, Lu X, Zhang S, Ma K, Zhao Z, Li M, Hou Y, Wu Y. Bazi Bushen mitigates age-related muscular atrophy by alleviating cellular senescence of skeletal muscle. J Tradit Complement Med 2024; 14:510-521. [PMID: 39262657 PMCID: PMC11385411 DOI: 10.1016/j.jtcme.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim Muscular atrophy is one of the most common age-related conditions characterized by the deterioration of skeletal muscle structures and impaired functions. It is associated with cellular senescence and chronic inflammation, which impair the function of muscle stem cells. Bazi Bushen (BZBS) is a patent compound Chinese medicine that has been shown to have anti-aging effects in various animal models. In this study, we investigated the effects and mechanisms of BZBS on muscular atrophy in naturally aged mice. Experimental procedure A muscular atrophy model of naturally aged mice (18 months) was employed with administration of BZBS (2 g/kg/d, 1 g/kg/d) and nicotinamide mononucleotide (NMN, 200 mg/kg/d). After six months of drug administration, muscle weight loss, muscle function and muscle histopathology were measured to evaluate the therapeutic effect of BZBS. The expression of cellular senescence, inflammatory and satellite cell-related factors were used to assess the effects of BZBS in inhibiting cellular senescence, reducing inflammation and improving muscle atrophy. Results and conclusion Compared with age matched natural aging mice, we found that BZBS improved muscle strength, mass, and morphology by reducing senescent cells, inflammatory cytokines, and intermyofiber fibrosis in aged muscle tissues. We also found that BZBS prevented the reduction of Pax7 positive stem cells and stimulated the activation and differentiation into myocytes. Our results suggest that BZBS might be a promising intervention in senile muscular atrophy.
Collapse
Affiliation(s)
- Kunxu Niu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Runtao Zhang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaogang Shen
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Lu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Shixiong Zhang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kun Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Zhiqin Zhao
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Yunlong Hou
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yiling Wu
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| |
Collapse
|
35
|
Bozzetti F. Age-related and cancer-related sarcopenia: is there a difference? Curr Opin Clin Nutr Metab Care 2024; 27:410-418. [PMID: 38488242 DOI: 10.1097/mco.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is the attempt to differentiating the pathophysiologic and clinical features of the aging-related sarcopenia from cancer-related sarcopenia. In fact, there is some controversy among the experts mainly regarding two points: is always sarcopenia, even that aging-related one, the expression of a generalized disease or may exist independently and without major alteration of the muscle function? Are always aging-related and cancer-related sarcopenia completely separated entities? RECENT FINDINGS Literature shows that sarcopenia, defined as simple skeletal muscle mass loss, may range from a mainly focal problem which is common in many healthy elderly people, to a component of a complex multiorgan syndrome as cancer cachexia. Disuse, malnutrition and (neuro)degenerative processes can account for most of the aging-related sarcopenias while systemic inflammation and secretion of cancer-and immune-related molecules play an additional major role in cachexia. SUMMARY A multimodal approach including physical exercise and optimized nutritional support are the key measures to offset sarcopenia with some contribution by the anti-inflammatory drugs in cancer patients. Results are more promising in elderly patients and are still pending for cancer patients where a more specific approach will only rely on the identification and contrast of the key mediators of the cachectic process.
Collapse
|
36
|
Kousa AI, Jahn L, Zhao K, Flores AE, Acenas D, Lederer E, Argyropoulos KV, Lemarquis AL, Granadier D, Cooper K, D'Andrea M, Sheridan JM, Tsai J, Sikkema L, Lazrak A, Nichols K, Lee N, Ghale R, Malard F, Andrlova H, Velardi E, Youssef S, Burgos da Silva M, Docampo M, Sharma R, Mazutis L, Wimmer VC, Rogers KL, DeWolf S, Gipson B, Gomes ALC, Setty M, Pe'er D, Hale L, Manley NR, Gray DHD, van den Brink MRM, Dudakov JA. Age-related epithelial defects limit thymic function and regeneration. Nat Immunol 2024; 25:1593-1606. [PMID: 39112630 PMCID: PMC11362016 DOI: 10.1038/s41590-024-01915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2024] [Indexed: 09/01/2024]
Abstract
The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states. These age-associated TECs (aaTECs) formed high-density peri-medullary epithelial clusters that were devoid of thymocytes; an accretion of nonproductive thymic tissue that worsened with age, exhibited features of epithelial-to-mesenchymal transition and was associated with downregulation of FOXN1. Interaction analysis revealed that the emergence of aaTECs drew tonic signals from other functional TEC populations at baseline acting as a sink for TEC growth factors. Following acute injury, aaTECs expanded substantially, further perturbing trophic regeneration pathways and correlating with defective repair of the involuted thymus. These findings therefore define a unique feature of thymic involution linked to immune aging and could have implications for developing immune-boosting therapies in older individuals.
Collapse
Grants
- T32-GM007270 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 1187367 Department of Health | National Health and Medical Research Council (NHMRC)
- R01 CA228308 NCI NIH HHS
- 1158024 Department of Health | National Health and Medical Research Council (NHMRC)
- R01-HL145276 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL147584 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL165673 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL123340 NHLBI NIH HHS
- R01 HL145276 NHLBI NIH HHS
- R01-CA228308 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- T32 GM007103 NIGMS NIH HHS
- P30 CA015704 NCI NIH HHS
- P01 CA023766 NCI NIH HHS
- R01 HL165673 NHLBI NIH HHS
- R01 HL147584 NHLBI NIH HHS
- P01-AG052359 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30-CA015704 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- 1090236 Department of Health | National Health and Medical Research Council (NHMRC)
- P30 CA008748 NCI NIH HHS
- P01 AG052359 NIA NIH HHS
- T32 GM007270 NIGMS NIH HHS
- 1102104 Cancer Council Victoria
- 1078763 Department of Health | National Health and Medical Research Council (NHMRC)
- 1146518 Cancer Council Victoria
- U01-AI70035 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R35 HL171556 NHLBI NIH HHS
- ALTF-431-2017 European Molecular Biology Organization (EMBO)
- R01 CA228358 NCI NIH HHS
- F30-HL165761 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL123340 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35-HL-171556 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1121325 Department of Health | National Health and Medical Research Council (NHMRC)
- F30 HL165761 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Anastasia I Kousa
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - Lorenz Jahn
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelin Zhao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Angel E Flores
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Dante Acenas
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Emma Lederer
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kimon V Argyropoulos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andri L Lemarquis
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - David Granadier
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kirsten Cooper
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael D'Andrea
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie M Sheridan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jennifer Tsai
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Sikkema
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Amina Lazrak
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Nichols
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nichole Lee
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romina Ghale
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florent Malard
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Hana Andrlova
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Division of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Salma Youssef
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Melissa Docampo
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Verena C Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan DeWolf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio L C Gomes
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manu Setty
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Basic Sciences Division & Translational Data Science Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Hale
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, GA, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ, USA
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Marcel R M van den Brink
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jarrod A Dudakov
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
37
|
Pundlik SS, Barik A, Venkateshvaran A, Sahoo SS, Jaysingh MA, Math RGH, Lal H, Hashmi MA, Ramanathan A. Senescent cells inhibit mouse myoblast differentiation via the SASP-lipid 15d-PGJ 2 mediated modification and control of HRas. eLife 2024; 13:RP95229. [PMID: 39196610 PMCID: PMC11357351 DOI: 10.7554/elife.95229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase-Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.
Collapse
Affiliation(s)
- Swarang Sachin Pundlik
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Alok Barik
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| | - Ashwin Venkateshvaran
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| | - Snehasudha Subhadarshini Sahoo
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- University of North Carolina at Chapel HillChapel HillUnited States
| | - Mahapatra Anshuman Jaysingh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K)MohanpurIndia
- Division of Biology and Biomedical Sciences, Washington University in St LouisSt LouisUnited States
| | | | - Heera Lal
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Maroof Athar Hashmi
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
- Manipal Academy of Higher Education (MAHE)ManipalIndia
| | - Arvind Ramanathan
- Metabolic Regulation of Cell Fate (RCF), Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore Life Science ClusterBengaluruIndia
| |
Collapse
|
38
|
Ataman M, Mittal N, Tintignac L, Schmidt A, Ham DJ, González A, Ruegg MA, Zavolan M. Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles. Commun Biol 2024; 7:974. [PMID: 39127848 PMCID: PMC11316767 DOI: 10.1038/s42003-024-06679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Calorie restriction (CR) and treatment with rapamycin (RM), an inhibitor of the mTORC1 growth-promoting signaling pathway, are known to slow aging and promote health from worms to humans. At the transcriptome and proteome levels, long-term CR and RM treatments have partially overlapping effects, while their impact on protein phosphorylation within cellular signaling pathways have not been compared. Here we measured the phosphoproteomes of soleus, tibialis anterior, triceps brachii and gastrocnemius muscles from adult (10 months) and 30-month-old (aged) mice receiving either a control, a calorie restricted or an RM containing diet from 15 months of age. We reproducibly detected and extensively analyzed a total of 6960 phosphosites, 1415 of which are not represented in standard repositories. We reveal the effect of these interventions on known mTORC1 pathway substrates, with CR displaying greater between-muscle variation than RM. Overall, CR and RM have largely consistent, but quantitatively distinct long-term effects on the phosphoproteome, mitigating age-related changes to different degrees. Our data expands the catalog of protein phosphorylation sites in the mouse, providing important information regarding their tissue-specificity, and revealing the impact of long-term nutrient-sensing pathway inhibition on mouse skeletal muscle.
Collapse
Affiliation(s)
- Meric Ataman
- Biozentrum, University of Basel, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Basel, Switzerland.
| | | | - Lionel Tintignac
- Department of Neurology and Biomedicine, University of Basel; University Hospital Basel, Basel, Switzerland
| | | | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland
| | - Asier González
- Biozentrum, University of Basel, Basel, Switzerland
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
39
|
Ahmad A, Braden A, Khan S, Xiao J, Khan MM. Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases. Semin Immunopathol 2024; 46:10. [PMID: 39095660 DOI: 10.1007/s00281-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Anneliesse Braden
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sazzad Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
40
|
Widjaja AA, Lim WW, Viswanathan S, Chothani S, Corden B, Dasan CM, Goh JWT, Lim R, Singh BK, Tan J, Pua CJ, Lim SY, Adami E, Schafer S, George BL, Sweeney M, Xie C, Tripathi M, Sims NA, Hübner N, Petretto E, Withers DJ, Ho L, Gil J, Carling D, Cook SA. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 2024; 632:157-165. [PMID: 39020175 PMCID: PMC11291288 DOI: 10.1038/s41586-024-07701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
For healthspan and lifespan, ERK, AMPK and mTORC1 represent critical pathways and inflammation is a centrally important hallmark1-7. Here we examined whether IL-11, a pro-inflammatory cytokine of the IL-6 family, has a negative effect on age-associated disease and lifespan. As mice age, IL-11 is upregulated across cell types and tissues to regulate an ERK-AMPK-mTORC1 axis to modulate cellular, tissue- and organismal-level ageing pathologies. Deletion of Il11 or Il11ra1 protects against metabolic decline, multi-morbidity and frailty in old age. Administration of anti-IL-11 to 75-week-old mice for 25 weeks improves metabolism and muscle function, and reduces ageing biomarkers and frailty across sexes. In lifespan studies, genetic deletion of Il11 extended the lives of mice of both sexes, by 24.9% on average. Treatment with anti-IL-11 from 75 weeks of age until death extends the median lifespan of male mice by 22.5% and of female mice by 25%. Together, these results demonstrate a role for the pro-inflammatory factor IL-11 in mammalian healthspan and lifespan. We suggest that anti-IL-11 therapy, which is currently in early-stage clinical trials for fibrotic lung disease, may provide a translational opportunity to determine the effects of IL-11 inhibition on ageing pathologies in older people.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sonia Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Ben Corden
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Cibi Mary Dasan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Joyce Wei Ting Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Radiance Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sze Yun Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Benjamin L George
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | | | - Chen Xie
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Natalie A Sims
- Bone Biology and Disease Unit, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jesus Gil
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - David Carling
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- MRC Laboratory of Medical Sciences, London, UK.
| |
Collapse
|
41
|
Yashaswini CN, Qin T, Bhattacharya D, Amor C, Lowe S, Lujambio A, Wang S, Friedman SL. Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol 2024; 81:207-217. [PMID: 38508241 PMCID: PMC11269047 DOI: 10.1016/j.jhep.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) are the key drivers of fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), the fastest growing cause of hepatocellular carcinoma (HCC) worldwide. HSCs are heterogenous, and a senescent subset of HSCs is implicated in hepatic fibrosis and HCC. Administration of anti-uPAR (urokinase-type plasminogen activator receptor) CAR T cells has been shown to deplete senescent HSCs and attenuate fibrosis in murine models. However, the comprehensive features of senescent HSCs in MASH, as well as their cellular ontogeny have not been characterized; hence, we aimed to comprehensively characterize and define the origin of HSCs in human and murine MASH. METHODS To comprehensively characterize the phenotype and ontogeny of senescent HSCs in human and murine MASH, we integrated senescence-associated beta galactosidase activity with immunostaining, flow cytometry and single-nucleus RNA sequencing (snRNAseq). We integrated the immunohistochemical profile with a senescence score applied to snRNAseq data to characterize senescent HSCs and mapped the evolution of uPAR expression in MASH. RESULTS Using pseudotime trajectory analysis, we establish that senescent HSCs arise from activated HSCs. While uPAR is expressed in MASH, the magnitude and cell-specificity of its expression evolve with disease stage. In early disease, uPAR is more specific to activated and senescent HSCs, while it is also expressed by myeloid-lineage cells, including Trem2+ macrophages and myeloid-derived suppressor cells, in late disease. Furthermore, we identify novel surface proteins expressed on senescent HSCs in human and murine MASH that could be exploited as therapeutic targets. CONCLUSIONS These data define features of HSC senescence in human and murine MASH, establishing an important blueprint to target these cells as part of future antifibrotic therapies. IMPACT AND IMPLICATIONS Hepatic stellate cells (HSCs) are the primary drivers of scarring in chronic liver diseases. As injury develops, a subset of HSCs become senescent; these cells are non-proliferative and pro-inflammatory, thereby contributing to worsening liver injury. Here we show that senescent HSCs are expanded in MASH (metabolic dysfunction-associated steatohepatitis) in humans and mice, and we trace their cellular origin from the activated HSC subset. We further characterize expression of uPAR (urokinase plasminogen activated receptor), a protein that marks senescent HSCs, and report that uPAR is also expressed by activated HSCs in early injury, and in immune cells as liver injury advances. We have integrated high-resolution single-nucleus RNA sequencing with immunostaining and flow cytometry to identify five other novel proteins expressed by senescent HSCs, including mannose receptor CD206, which will facilitate future therapeutic development.
Collapse
Affiliation(s)
- Chittampalli N Yashaswini
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tianyue Qin
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Corina Amor
- Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, United States
| | - Scott Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Amaia Lujambio
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
42
|
Maynard A, Soretić M, Treutlein B. Single-cell genomic profiling to study regeneration. Curr Opin Genet Dev 2024; 87:102231. [PMID: 39053027 DOI: 10.1016/j.gde.2024.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Regenerative capacities and strategies vary dramatically across animals, as well as between cell types, organs, and with age. In recent years, high-throughput single-cell transcriptomics and other single-cell profiling technologies have been applied to many animal models to gain an understanding of the cellular and molecular mechanisms underlying regeneration. Here, we review recent single-cell studies of regeneration in diverse contexts and summarize key concepts that have emerged. The immense regenerative capacity of some invertebrates, exemplified by planarians, is driven mainly by the differentiation of abundant adult pluripotent stem cells, whereas in many other cases, regeneration involves the reactivation of embryonic or developmental gene-regulatory networks in differentiated cell types. However, regeneration also differs from development in many ways, including the use of regeneration-specific cell types and gene regulatory networks.
Collapse
Affiliation(s)
- Ashley Maynard
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Mateja Soretić
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Barbara Treutlein
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland.
| |
Collapse
|
43
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
44
|
He Y, Lin T, Liang R, Xiang Q, Tang T, Ge N, Yue J. Interleukin 25 promotes muscle regeneration in sarcopenia by regulating macrophage-mediated Sonic Hedgehog signaling. Int Immunopharmacol 2024; 139:112662. [PMID: 39038385 DOI: 10.1016/j.intimp.2024.112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Sarcopenia manifests as a chronic, low-level inflammation along with multiple inflammatory cells infiltration. Interleukin (IL)-25 can regulate the function of macrophages. However, the specific role and mechanisms through which IL-25 functions in sarcopenia are still not fully understood and require further investigation. METHODS Aged mice were utilized as sarcopenia models and examined the expression of inflammatory factors. To investigate the effects of IL-25 on sarcopenia, the model mice received IL-25 treatment and underwent in vivo adoptive transfer of IL-25-induced macrophages. Meanwhile, RAW264.7 cells, bone marrow-derived macrophages, satellite cells and C2C12 cells were used in vitro. Shh insufficiency was induced through intramuscular administration of SHH-shRNA adenoviruses. Then, various assays including scratch wound, cell counting kit-8 and Transwell assays, as well as histological staining and molecular biological methods, were conducted. RESULTS Aged mice exhibited an accelerated decline in muscle strength and mass, along with an increased muscle lipid droplets and macrophage infiltration, and decreased IL-25 levels compared to the young group. IL-25 therapy and the transfer of IL-25-preconditioned macrophages could improve these conditions by promoting M2 macrophage polarization in vivo as well as in vitro. M2 macrophage conditioned medium enhanced satellite cell proliferation and migration, as well as the vitality, migration, and differentiation of C2C12 cells in vitro. Furthermore, IL-25 enhanced Shh expression in macrophages in vitro, and activated the Shh signaling pathway in muscle tissue of aged mice, which could be suppressed by either the inhibitor cyclopamine or Shh knockdown. Mechanistic studies showed that Shh insufficiency suppressed the activation of Akt/mTOR signaling pathway in muscle tissue of aged mice. CONCLUSION IL-25 promotes the secretion of Shh by M2 macrophages and activates the Shh/Akt/mTOR signaling pathway, which improves symptoms and function in sarcopenia mice. This suggests that IL-25 has potential as a therapeutic agent for treating sarcopenia.
Collapse
Affiliation(s)
- Yan He
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Geriatrics, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Taiping Lin
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Liang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Xiang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianjiao Tang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Ge
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jirong Yue
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
45
|
Høj K, Baldan J, Seymour PA, Rift CV, Hasselby JP, Sandelin A, Arnes L. Age-Related Decline in Pancreas Regeneration Is Associated With an Increased Proinflammatory Response to Injury. GASTRO HEP ADVANCES 2024; 3:973-985. [PMID: 39286614 PMCID: PMC11403435 DOI: 10.1016/j.gastha.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/03/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims The regenerative capacity of the pancreas diminishes with age. Understanding acinar cell responses to injury and the resolution of regenerative processes is crucial for tissue homeostasis. However, knowledge about the impact of aging on these processes remains limited. Methods To investigate the influence of aging on pancreas regeneration, we established a cohort of young (7-14 weeks) and old (18 months) C57bl/6 mice. Experimental pancreatitis was induced using caerulein, and pancreas samples were collected at various time points after induction, covering acute damage response, inflammation, peak proliferation, and inflammation resolution. Our analysis involved immunohistochemistry, quantitative imaging, and gene expression analyses. Results Our study revealed a significant decline in the regenerative capacity of the pancreas in old mice. Despite similar morphology and transcriptional profiles between the pancreas of young and old mice under homeostasis, the aged pancreas is primed to generate an exacerbated proinflammatory reaction in response to injury. Specifically, we observed notable upregulation of Junb expression in acinar cells and aberrant myofibroblast activation in the aged pancreas. Conclusion The response of acinar cells to injury in the pancreas of aged mice is characterized by an increased susceptibility to inflammation and stromal reactions. Our findings uncover a pre-existing proinflammatory state in aged acinar cells, offering insights into potential strategies to prevent the onset of pancreatic insufficiency and the development of inflammatory conditions. These insights hold implications for preventing conditions such as chronic pancreatitis and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kristina Høj
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Baldan
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Philip Allan Seymour
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Vestrup Rift
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Qiu M, Chang L, Tang G, Ye W, Xu Y, Tulufu N, Dan Z, Qi J, Deng L, Li C. Activation of the osteoblastic HIF-1α pathway partially alleviates the symptoms of STZ-induced type 1 diabetes mellitus via RegIIIγ. Exp Mol Med 2024; 56:1574-1590. [PMID: 38945950 PMCID: PMC11297314 DOI: 10.1038/s12276-024-01257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α) pathway coordinates skeletal bone homeostasis and endocrine functions. Activation of the HIF-1α pathway increases glucose uptake by osteoblasts, which reduces blood glucose levels. However, it is unclear whether activating the HIF-1α pathway in osteoblasts can help normalize glucose metabolism under diabetic conditions through its endocrine function. In addition to increasing bone mass and reducing blood glucose levels, activating the HIF-1α pathway by specifically knocking out Von Hippel‒Lindau (Vhl) in osteoblasts partially alleviated the symptoms of streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), including increased glucose clearance in the diabetic state, protection of pancreatic β cell from STZ-induced apoptosis, promotion of pancreatic β cell proliferation, and stimulation of insulin secretion. Further screening of bone-derived factors revealed that islet regeneration-derived protein III gamma (RegIIIγ) is an osteoblast-derived hypoxia-sensing factor critical for protection against STZ-induced T1DM. In addition, we found that iminodiacetic acid deferoxamine (SF-DFO), a compound that mimics hypoxia and targets bone tissue, can alleviate symptoms of STZ-induced T1DM by activating the HIF-1α-RegIIIγ pathway in the skeleton. These data suggest that the osteoblastic HIF-1α-RegIIIγ pathway is a potential target for treating T1DM.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Leilei Chang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, 388 Zuchongzhi Road, Kunshan, 215300, Jiangsu, China
| | - Wenkai Ye
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Nijiati Tulufu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhou Dan
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jin Qi
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
47
|
Wang C, Tanizawa H, Hill C, Havas A, Zhang Q, Liao L, Hao X, Lei X, Wang L, Nie H, Qi Y, Tian B, Gardini A, Kossenkov AV, Goldman A, Berger SL, Noma KI, Adams PD, Zhang R. METTL3-mediated chromatin contacts promote stress granule phase separation through metabolic reprogramming during senescence. Nat Commun 2024; 15:5410. [PMID: 38926365 PMCID: PMC11208586 DOI: 10.1038/s41467-024-49745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.
Collapse
Affiliation(s)
- Chen Wang
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Connor Hill
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Aaron Havas
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Qiang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Liping Liao
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xue Hao
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xue Lei
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Lu Wang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Nie
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Qi
- Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Bin Tian
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Alessandro Gardini
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew V Kossenkov
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Aaron Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Shelley L Berger
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ken-Ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Rugang Zhang
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Monnat RJ. James German and the Quest to Understand Human RECQ Helicase Deficiencies. Cells 2024; 13:1077. [PMID: 38994931 PMCID: PMC11240319 DOI: 10.3390/cells13131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
James German's work to establish the natural history and cancer risk associated with Bloom syndrome (BS) has had a strong influence on the generation of scientists and clinicians working to understand other RECQ deficiencies and heritable cancer predisposition syndromes. I summarize work by us and others below, inspired by James German's precedents with BS, to understand and compare BS with the other heritable RECQ deficiency syndromes with a focus on Werner syndrome (WS). What we know, unanswered questions and new opportunities are discussed, as are potential ways to treat or modify WS-associated disease mechanisms and pathways.
Collapse
Affiliation(s)
- Raymond J Monnat
- Departments of Laboratory Medicine/Pathology and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
Wang Y, Zhang J, Liu Y, Yue X, Han K, Kong Z, Dong Y, Yang Z, Fu Z, Tang C, Shi C, Zhao X, Han M, Wang Z, Zhang Y, Chen C, Li A, Sun P, Zhu D, Zhao K, Jiang X. Realveolarization with inhalable mucus-penetrating lipid nanoparticles for the treatment of pulmonary fibrosis in mice. SCIENCE ADVANCES 2024; 10:eado4791. [PMID: 38865465 PMCID: PMC11168475 DOI: 10.1126/sciadv.ado4791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The stemness loss-associated dysregeneration of impaired alveolar type 2 epithelial (AT2) cells abolishes the reversible therapy of idiopathic pulmonary fibrosis (IPF). We here report an inhalable mucus-penetrating lipid nanoparticle (LNP) for codelivering dual mRNAs, promoting realveolarization via restoring AT2 stemness for IPF treatment. Inhalable LNPs were first formulated with dipalmitoylphosphatidylcholine and our in-house-made ionizable lipids for high-efficiency pulmonary mucus penetration and codelivery of dual messenger RNAs (mRNAs), encoding cytochrome b5 reductase 3 and bone morphogenetic protein 4, respectively. After being inhaled in a bleomycin model, LNPs reverses the mitochondrial dysfunction through ameliorating nicotinamide adenine dinucleotide biosynthesis, which inhibits the accelerated senescence of AT2 cells. Concurrently, pathological epithelial remodeling and fibroblast activation induced by impaired AT2 cells are terminated, ultimately prompting alveolar regeneration. Our data demonstrated that the mRNA-LNP system exhibited high protein expression in lung epithelial cells, which markedly extricated the alveolar collapse and prolonged the survival of fibrosis mice, providing a clinically viable strategy against IPF.
Collapse
Affiliation(s)
- Yan Wang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Xiao Yue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Kun Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhichao Kong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Yuanmin Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhipeng Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chunwei Tang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chongdeng Shi
- Department of Emergency, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Xiaotian Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Maosen Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhibin Wang
- Lingyi iTECH Manufacturing Co. Ltd., No. 2988, Taidong Road, Xiangcheng District, Suzhou, Jiangsu Province 215000, China
| | - Yulin Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chen Chen
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong Province 250012, China
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Danqing Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 4572A Academic Building, Clear Water Bay, Kowloon 999077 Hong Kong, China
| | - Kun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
50
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|