1
|
Giovarelli M, Mocciaro E, Carnovale C, Cervia D, Perrotta C, Clementi E. Immunosenescence in skeletal muscle: The role-play in cancer cachexia chessboard. Semin Cancer Biol 2025; 111:48-59. [PMID: 40020976 DOI: 10.1016/j.semcancer.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increase in life expectancy, age-related conditions and diseases have become a widespread and relevant social burden. Among these, immunosenescence and cancer cachexia play a significant often intertwined role. Immunosenescence is the progressive aging decline of both the innate and adaptive immune systems leading to increased infection susceptibility, poor vaccination efficacy, autoimmune disease, and malignancies. Cancer cachexia affects elderly patients with cancer causing severe weight loss, muscle wasting, inflammation, and reduced response to therapies. Whereas the connections between immunosenescence and cancer cachexia have been raising attention, the molecular mechanisms still need to be completely elucidated. This review aims at providing the current knowledge about the interplay between immunosenescence, skeletal muscle, and cancer cachexia, analyzing the molecular pathways known so far to be involved. Finally, we highlight potential therapeutic strategies suited for elderly population aimed to block immunosenescence and to preserve muscle mass in cachexia, also presenting the analysis of the current state-of-the-art of related clinical trials.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo 01100, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| |
Collapse
|
2
|
Podraza-Farhanieh A, Spinelli R, Zatterale F, Nerstedt A, Gogg S, Blüher M, Smith U. Physical training reduces cell senescence and associated insulin resistance in skeletal muscle. Mol Metab 2025; 95:102130. [PMID: 40127780 DOI: 10.1016/j.molmet.2025.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Cell senescence (CS) is a key aging process that leads to irreversible cell cycle arrest and an altered secretory phenotype. In skeletal muscle (SkM), the accumulation of senescent cells contributes to sarcopenia. Despite exercise being a known intervention for maintaining SkM function and metabolic health, its effects on CS remain poorly understood. OBJECTIVES This study aimed to investigate the impact of exercise on CS in human SkM by analyzing muscle biopsies from young, normal-weight individuals and middle-aged individuals with obesity, both before and after exercise intervention. METHODS Muscle biopsies were collected from both groups before and after an exercise intervention. CS markers, insulin sensitivity (measured with euglycemic clamp), and satellite cell markers were analyzed. Additionally, in vitro experiments were conducted to evaluate the effects of cellular senescence on human satellite cells, focusing on key regulatory genes and insulin signaling. RESULTS Individuals with obesity showed significantly elevated CS markers, along with reduced expression of GLUT4 and PAX7, indicating impaired insulin action and regenerative potential. Exercise improved insulin sensitivity, reduced CS markers, and activated satellite cell response in both groups. In vitro experiments revealed that senescence downregulated key regulatory genes in satellite cells and impaired insulin signaling by reducing the Insulin Receptor β-subunit. CONCLUSIONS These findings highlight the role of CS in regulating insulin sensitivity in SkM and underscore the therapeutic potential of exercise in mitigating age- and obesity-related muscle dysfunction. Targeting CS through exercise or senolytic agents could offer a promising strategy for improving metabolic health and combating sarcopenia, particularly in at-risk populations.
Collapse
Affiliation(s)
- Agnieszka Podraza-Farhanieh
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden; Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Federica Zatterale
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden; Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Silvia Gogg
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden.
| |
Collapse
|
3
|
Oyabu M, Ohira Y, Fujita M, Yoshioka K, Kawaguchi R, Kubo A, Hatazawa Y, Yukitoshi H, Ortuste Quiroga HP, Horii N, Miura F, Araki H, Okano M, Hatada I, Gotoh H, Yoshizawa T, Fukada SI, Ogawa Y, Ito T, Ishihara K, Ono Y, Kamei Y. Dnmt3a overexpression disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces metabolic elasticity. iScience 2025; 28:112144. [PMID: 40151644 PMCID: PMC11937683 DOI: 10.1016/j.isci.2025.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/10/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Mammalian aging is reportedly driven by the loss of epigenetic information; however, its impact on skeletal muscle aging remains unclear. This study shows that aging mouse skeletal muscle exhibits increased DNA methylation, and overexpression of DNA methyltransferase 3a (Dnmt3a) induces an aging-like phenotype. Muscle-specific Dnmt3a overexpression leads to an increase in central nucleus-positive myofibers, predominantly in fast-twitch fibers, a shift toward slow-twitch fibers, elevated inflammatory and senescence markers, mitochondrial OXPHOS complex I reduction, and decreased basal autophagy. Dnmt3a overexpression resulted in reduced muscle mass and strength and impaired endurance exercise capacity with age, accompanied by an enhanced inflammatory signature. In addition, Dnmt3a overexpression reduced not only sensitivity to starvation-induced muscle atrophy but also the restorability from muscle atrophy. These findings suggest that increased DNA methylation disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces muscle metabolic elasticity.
Collapse
Affiliation(s)
- Mamoru Oyabu
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuto Ohira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Mariko Fujita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kiyoshi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan
| | - Runa Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukino Hatazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hinako Yukitoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Huascar Pedro Ortuste Quiroga
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hitoshi Gotoh
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tatsuya Yoshizawa
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - So-ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kengo Ishihara
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
4
|
Roig-Soriano J, Edo Á, Verdés S, Martín-Alonso C, Sánchez-de-Diego C, Rodriguez-Estevez L, Serrano AL, Abraham CR, Bosch A, Ventura F, Jordan BA, Muñoz-Cánoves P, Chillón M. Long-term effects of s-KL treatment in wild-type mice: Enhancing longevity, physical well-being, and neurological resilience. Mol Ther 2025; 33:1449-1465. [PMID: 39988871 DOI: 10.1016/j.ymthe.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025] Open
Abstract
Aging is a major risk factor for pathologies including sarcopenia, osteoporosis, and cognitive decline, which bring suffering, disability, and elevated economic and social costs. Therefore, new therapies are needed to achieve healthy aging. The protein Klotho (KL) has emerged as a promising anti-aging molecule due to its pleiotropic actions modulating insulin, insulin-like growth factor-1, and Wnt signaling pathways and reducing inflammatory and oxidative stress. Here, we explored the anti-aging potential of the secreted isoform of this protein on the non-pathological aging progression of wild-type mice. The delivery of an adeno-associated virus serotype 9 (AAV9) coding for secreted KL (s-KL) efficiently increased the concentration of s-KL in serum, resulting in a 20% increase in lifespan. Notably, KL treatment improved physical fitness, related to a reduction in muscle fibrosis and an increase in muscular regenerative capacity. KL treatment also improved bone microstructural parameters associated with osteoporosis. Finally, s-KL-treated mice exhibited increased cellular markers of adult neurogenesis and immune response, with transcriptomic analysis revealing induced phagocytosis and immune cell activity in the aged hippocampus. These results show the potential of elevating s-KL expression to simultaneously reduce the age-associated degeneration in multiple organs, increasing both life and health span.
Collapse
Affiliation(s)
- Joan Roig-Soriano
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Ángel Edo
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Sergi Verdés
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Carlos Martín-Alonso
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Laura Rodriguez-Estevez
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | | | - Assumpció Bosch
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Ciberned, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | - Miguel Chillón
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Unitat de Producció de Vectors (UPV), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
5
|
Ishihara S, Kayes MI, Makino H, Matsuda H, Kumagai A, Hayashi Y, Ferdaus SA, Kawakita E, Koya D, Kanasaki K. The PKM2 activator TEPP-46 suppresses cellular senescence in hydrogen peroxide-induced proximal tubular cells and kidney fibrosis in CD-1 db/db mice. J Diabetes Investig 2025; 16:598-607. [PMID: 39840670 PMCID: PMC11970295 DOI: 10.1111/jdi.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/23/2025] Open
Abstract
AIM/INTRODUCTION Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence. MATERIALS AND METHODS To investigate the effects of PKM2 activation on oxidative stress-induced cellular senescence, we conducted β-galactosidase staining and western blot analysis on human primary renal tubular cells (pRPTECs) treated with hydrogen peroxide with or without TEPP-46. IL-6 levels and glycolytic flux were measured. Cell viability and apoptosis were assessed via the MTS assay and caspase 3 cleavage. For in vivo experiments, we utilized CD-1db/db mice, a fibrotic type 2 diabetes model, which exhibit kidney fibrosis. After 4 weeks of TEPP-46 intervention, kidney fibrosis and the expression of senescence markers were analyzed. RESULTS In pRPTECs, hydrogen peroxide increased the number of β-galactosidase-positive cells, the expression of senescence markers (p16, p21, p53), and p38 phosphorylation; co-incubation with TEPP-46 suppressed these alterations. Hydrogen peroxide reduced cell viability, induced apoptosis, mesenchymal alterations, and increased lactate production and IL-6 secretion; co-incubation with TEPP-46 or a p38 inhibitor mitigated these effects. In CD-1db/db mice, TEPP-46 intervention suppressed apoptosis, fibrosis, and tended to reduce the levels of senescence-associated molecules in the kidney. CONCLUSIONS PKM2 activation could be a molecular target for protection against senescence-associated organ damage, including diabetic kidney disease.
Collapse
Affiliation(s)
| | - Md. Imrul Kayes
- Faculty of Medicine, Internal MedicineShimane UniversityIzumoShimaneJapan
| | - Hirofumi Makino
- Faculty of Medicine, Internal MedicineShimane UniversityIzumoShimaneJapan
| | - Hiroaki Matsuda
- Faculty of Medicine, Internal MedicineShimane UniversityIzumoShimaneJapan
| | - Asako Kumagai
- Faculty of Medicine, Internal MedicineShimane UniversityIzumoShimaneJapan
- Department of Obstetrics and GynecologyJuntendo UniversityTokyoJapan
| | - Yoshihiro Hayashi
- Faculty of Medicine, Internal MedicineShimane UniversityIzumoShimaneJapan
- Department of Diabetes and EndocrinologyKanazawa Medical UniversityKahoku DistrictIshikawaJapan
| | | | - Emi Kawakita
- Faculty of Medicine, Internal MedicineShimane UniversityIzumoShimaneJapan
| | - Daisuke Koya
- Department of Diabetes and EndocrinologyKanazawa Medical UniversityKahoku DistrictIshikawaJapan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research InstituteKanazawa Medical UniversityKahoku DistrictIshikawaJapan
| | - Keizo Kanasaki
- Faculty of Medicine, Internal MedicineShimane UniversityIzumoShimaneJapan
- The Center for Integrated Kidney Research and Advance, Faculty of MedicineShimane UniversityIzumoShimaneJapan
| |
Collapse
|
6
|
Wang J, Guo P, Wu D, Yi J, Jiang Q, Hu J, Ouyang H. Rejuvenating Hyaline Cartilage with Senescence-Targeting Si-ADAM19 Delivery for Osteoarthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414419. [PMID: 39927476 PMCID: PMC11967805 DOI: 10.1002/advs.202414419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Osteoarthritis (OA) is one of the most common joint degenerative diseases without effective treatment, whose pathology is related to the local accumulation of senescent cells (SnCs). However, existing SnCs-scavenging drugs "senolytics" may lead to the exhaustion of stem and progenitor cells, impairing chondrocyte proliferation and cartilage regeneration. Here, ADAM19, a kind of endopeptidases from the ADAM (a disintegrin and metalloproteinase) family, is identified as a novel target for senescent chondrocyte rejuvenation. ADAM19 is elevated in senescent chondrocytes in both mice and human osteoarthritic joints, as well as in cellular senescence model in vitro. ADAM19 knockdown not only significantly attenuated senescent phenotype of chondrocytes, but also promoted cell proliferation and extracellular matrix synthesis. RNA sequencing revealed ADAM19 may regulate chondrocyte senescence mainly through the PI3K/AKT signal axis. In addition, a senescence-targeting small interfering RNA (siRNA) delivery system is developed for in vivo delivery of therapeutic siRNA. The complex selectively released ADAM19 siRNA in SnCs and performed high silencing effect on target gene. Furthermore, intra-articular (IA) injection of the complex once every two weeks in OA mice effectively reduced SnCs accumulation and promoted hyaline cartilage regeneration. This study provides a promising strategy for the development of regenerative RNA interference therapy.
Collapse
Affiliation(s)
- Jiasheng Wang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Peng Guo
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Dongmei Wu
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Junzhi Yi
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Qi Jiang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Jiajie Hu
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
- Zhejiang University‐University of Edinburgh InstituteZhejiang University School of MedicineHaining310058China
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
| |
Collapse
|
7
|
Wlaschek M, Maity P, Koroma AK, Geiger H, Singh K, Scharffetter-Kochanek K. Imbalanced redox dynamics induce fibroblast senescence leading to impaired stem cell pools and skin aging. Free Radic Biol Med 2025; 233:292-301. [PMID: 40154755 DOI: 10.1016/j.freeradbiomed.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Skin function depends on a meticulously regulated dynamic interaction of distinct skin compartments such as the epidermis and dermis. Adaptive responses at the molecular and cellular level are essential for these interactions - and if dysregulated - drive skin aging and other pathologies. After defining the role of redox homeodynamics in physiology and aging pathology, we focus on the redox distress-dependent aging of dermal fibroblasts including their progenitors. We here discuss the prime role of senescent fibroblasts in the control of their own endogenous niche and stem cell niches for epidermal stem cells, hair follicle stem cells, adipocyte precursors and muscle stem cells. We here review that redox imbalance induced reduction in Insulin-like Growth Factor-1 drives skin aging by the depletion of stem cell pools. This IGF-1 reduction is mediated via the redox-sensitive transcription factor JunB and also by the redox-dependent changes in sphingolipid-metabolism, among others. In addition, we will discuss the changes in the extracellular matrix of the skin affecting cellular senescence and the skin integrity and function in aging. The aim is a deeper understanding of the two main redox-dependent hubs such as JunB-induced depletion of IGF-1, and the sphingolipid-mediated remodeling of the cell membrane with its impact on IGF-1, fibroblast heterogeneity, function, senescence and plasticity in skin aging.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Albert Kallon Koroma
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Aging Research Institute (arc), Ulm University, Ulm, Germany; Institute for Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany.
| |
Collapse
|
8
|
Zhang X, Zhuang M, Zhang H, Zhu Y, Yang J, Wu X, Yu X, Tao J, Liu X. Melatonin-mediated cGAS-STING signal in senescent macrophages promote TNBC chemotherapy resistance and drive the SASP. J Biol Chem 2025:108438. [PMID: 40127867 DOI: 10.1016/j.jbc.2025.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/08/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
The build-up of senescent cells in tissues is a key indicator of aging, associated with negative prognosis and therapy resistance. Despite immune dysfunction related to aging, also known as immunosenescence, is recognized as a factor in this process, the exact mechanisms are still unclear. In this study, we reported that melatonin deficiency accelerated macrophage senescence in triple-negative breast cancer (TNBC), whereas, melatonin could defend macrophages against senescence through the Nfatc1-Trim26-cgas-Sting pathway. Mechanistically, melatonin enhanced the nuclear translocation of Nfatc1 and elevated Trim26 transcription levels. Trim26, functioning as an E3 ligase, ubiquitinates cgas, thereby inhibiting the activation of the cgas-Sing pathway and consequently preventing cell senescence. Conversely, melatonin deficiency induced cgas-Sting pathway activation to promote macrophage aging. Our results show that melatonin inhibited macrophage senescence and improved chemotherapy responsiveness, with further enhancement when combined with the cgas inhibitor (G150). Overall, our findings indicated that melatonin protects macrophages from immunosenescence, suggesting its therapeutic potential for enhancing chemotherapy response.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Minyu Zhuang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Hongfei Zhang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yanhui Zhu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Junzhe Yang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Xian Wu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Xiafei Yu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China.
| | - Jing Tao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaoan Liu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China.
| |
Collapse
|
9
|
Gong G, Shen S, Shen S, Wang R, Zheng T, Xu W, Wu J. YAP/TAZ-mediated nuclear membrane rupture in promoting senescence of skeletal muscle associated with COPD. Respir Res 2025; 26:98. [PMID: 40075503 PMCID: PMC11905641 DOI: 10.1186/s12931-025-03170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) often develop complications associated with sarcopenia; however, the underlying mechanisms remain unclear. Through a combination of in vitro and in vivo experiments, as well as bioinformatics analysis, our study identified YAP/TAZ as a key regulator of the aging phenotype in the skeletal muscle of COPD patients. In skeletal muscle affected by cigarette smoke-induced COPD, we observed significant reductions in YAP/TAZ levels, alongside markers indicative of skeletal muscle aging and dysfunction. Notably, overexpression of YAP/TAZ significantly improved these conditions. Our results suggest a novel mechanism whereby the maintenance of YAP/TAZ activity interacts with ACTR2 to preserve nuclear membrane integrity and reduce cytoplasmic dsDNA levels, thereby attenuating STING activation and cellular senescence. Additionally, we found that YAP is involved in the transcriptional regulation of the ACTR2 promoter region. Overall, preserving YAP/TAZ activity may help prevent skeletal muscle aging associated with COPD, representing a new strategy for intervening in COPD-related sarcopenia.
Collapse
Affiliation(s)
- Ge Gong
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuping Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shaoran Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ran Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tianping Zheng
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
11
|
Gross PS, Durán-Laforet V, Ho LT, Melchor GS, Zia S, Manavi Z, Barclay WE, Lee SH, Shults N, Selva S, Alvarez E, Plemel JR, Fu MM, Schafer DP, Huang JK. Senescent-like microglia limit remyelination through the senescence associated secretory phenotype. Nat Commun 2025; 16:2283. [PMID: 40055369 PMCID: PMC11889183 DOI: 10.1038/s41467-025-57632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The capacity to regenerate myelin in the central nervous system diminishes with age. This decline is particularly evident in multiple sclerosis (MS), a chronic demyelinating disease. Whether cellular senescence, a hallmark of aging, contributes to remyelination impairment remains unknown. Here, we show that senescent cells accumulate within demyelinated lesions after injury, and treatments with senolytics enhances remyelination in young and middle-aged mice but not aged mice. In young mice, we observe the upregulation of senescence-associated transcripts, primarily in microglia and macrophages, after demyelination, followed by a reduction during remyelination. However, in aged mice, senescence-associated factors persist within lesions, correlating with inefficient remyelination. Proteomic analysis of the senescence-associated secretory phenotype (SASP) reveals elevated levels of CCL11/Eotaxin-1 in lesions of aged mice, which is found to inhibit oligodendrocyte maturation. These results suggest therapeutic targeting of SASP components, such as CCL11, may improve remyelination in aging and MS.
Collapse
Affiliation(s)
- Phillip S Gross
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lana T Ho
- Department of Molecular and Cell Biology (MCB), University of California Berkeley, Berkeley, CA, USA
| | - George S Melchor
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Zeeba Manavi
- Department of Biology, Georgetown University, Washington, DC, USA
| | - William E Barclay
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sung Hyun Lee
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Nataliia Shults
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Sean Selva
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Enrique Alvarez
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Meng-Meng Fu
- Department of Molecular and Cell Biology (MCB), University of California Berkeley, Berkeley, CA, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeffrey K Huang
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
12
|
Kang X, Zhao K, Huang Z, Fukada SI, Qi XW, Miao H. Pdgfrα + stromal cells, a key regulator for tissue homeostasis and dysfunction in distinct organs. Genes Dis 2025; 12:101264. [PMID: 39759120 PMCID: PMC11696774 DOI: 10.1016/j.gendis.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 01/07/2025] Open
Abstract
Pdgfrα+ stromal cells are a group of cells specifically expressing Pdgfrα, which may be mentioned with distinct names in different tissues. Importantly, the findings from numerous studies suggest that these cells share exactly similar biomarkers and properties, show complex functions in regulating the microenvironment, and are critical to tissue regeneration, repair, and degeneration. Comparing the similarities and differences between distinct tissue-resident Pdgfrα+ stromal cells is helpful for us to more comprehensively and deeply understand the behaviors of these cells and to explore some common regulating mechanisms and therapeutical targets. In this review, we summarize previous and current findings on Pdgfrα+ stromal cells in various tissues and discuss the crosstalk between Pdgfrα+ stromal cells and microenvironment.
Collapse
Affiliation(s)
- Xia Kang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610000, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhu Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610000, China
| | - So-ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 564-0871, Japan
| | - Xiao-wei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
13
|
Gorbunova V, Seluanov A. SIRT5 slows skeletal muscle ageing by alleviating inflammation. Nat Metab 2025; 7:447-449. [PMID: 40087406 DOI: 10.1038/s42255-025-01228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Affiliation(s)
- Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
14
|
Légaré C, Berglund JA, Duchesne E, Dumont NA. New Horizons in Myotonic Dystrophy Type 1: Cellular Senescence as a Therapeutic Target. Bioessays 2025; 47:e202400216. [PMID: 39723693 PMCID: PMC11848125 DOI: 10.1002/bies.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging). This hypervariable disease affects multiple systems, such as the musculoskeletal, central nervous, gastrointestinal, and others. Despite advances in understanding the underlying pathogenic mechanism of DM1, numerous gaps persist in our understanding, hindering elucidation of the heterogeneity and severity of its symptoms. Accumulating evidence indicates that the toxic intracellular RNA accumulation associated with DM1 triggers cellular senescence. These cells are in a state of irreversible cell cycle arrest and secrete a cocktail of cytokines, referred to as a senescence-associated secretory phenotype (SASP), that can have harmful effects on neighboring cells and more broadly. We hypothesize that cellular senescence contributes to the pathophysiology of DM1, and clearance of senescent cells is a promising therapeutic approach for DM1. We will discuss the therapeutic potential of different senotherapeutic drugs, especially senolytics that eliminate senescent cells, and senomorphics that reduce SASP expression.
Collapse
Affiliation(s)
- Cécilia Légaré
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
| | - J. Andrew Berglund
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- Department of Biological Sciences, College of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
| | - Elise Duchesne
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris)Centre Intégré Universitaire de Santé et de Services Sociaux Capitale‐NationaleQuébecQuebecCanada
| | - Nicolas A. Dumont
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- School of rehabilitationFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
15
|
Zhou X, Tian X, Chen J, Li Y, Lv N, Liu H, Liu T, Yang H, Chen X, Xu Y, He F. Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409644. [PMID: 39823536 PMCID: PMC11905074 DOI: 10.1002/advs.202409644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/15/2024] [Indexed: 01/19/2025]
Abstract
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM). Further studies demonstrate that Y-ECM significantly rejuvenates mitochondrial energy metabolism in adult BMMSCs (A-BMMSCs) through the promotion of mitochondrial respiratory functions and amelioration of oxidative stress. A-BMMSCs cultured on Y-ECM exhibited enhanced multi-lineage differentiation potentials in vitro and ectopic bone formation in vivo. Mechanistically, silencing of silent information regulator type 3 (SIRT3) gene abolished the protective impact of Y-ECM on A-BMMSCs. Notably, a novel composite biomaterial combining hyaluronic acid methacrylate hydrogel microspheres with Y-ECM is developed, which yielded substantial improvements in the healing of bone defects in an aged rat model. Collectively, these findings underscore the pivotal role of Y-ECM in maintaining mitochondrial redox homeostasis and present a promising therapeutic strategy for the repair of aged bone defects.
Collapse
Affiliation(s)
- Xinfeng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jianan Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yantong Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
16
|
Luo X, Zhang Y, Zeng Y, Yang D, Zhou Z, Zheng Z, Xiao P, Ding X, Li Q, Chen J, Deng Q, Zhong X, Qiu S, Yan W. Nanotherapies Based on ROS Regulation in Oral Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409087. [PMID: 39887942 PMCID: PMC11884622 DOI: 10.1002/advs.202409087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/28/2024] [Indexed: 02/01/2025]
Abstract
Oral diseases rank among the most prevalent clinical conditions globally, typically involving detrimental factors such as infection, inflammation, and injury in their occurrence, development, and outcomes. The concentration of reactive oxygen species (ROS) within cells has been demonstrated as a pivotal player in modulating these intricate pathological processes, exerting significant roles in restoring oral functionality and maintaining tissue structural integrity. Due to their enzyme-like catalytic properties, unique composition, and intelligent design, ROS-based nanomaterials have garnered considerable attention in oral nanomedicine. Such nanomaterials have the capacity to influence the spatiotemporal dynamics of ROS within biological systems, guiding the evolution of intra-ROS to facilitate therapeutic interventions. This paper reviews the latest advancements in the design, functional customization, and oral medical applications of ROS-based nanomaterials. Through the analysis of the components and designs of various novel nanozymes and ROS-based nanoplatforms responsive to different stimuli dimensions, it elaborates on their impacts on the dynamic behavior of intra-ROS and their potential regulatory mechanisms within the body. Furthermore, it discusses the prospects and strategies of nanotherapies based on ROS scavenging and generation in oral diseases, offering alternative insights for the design and development of nanomaterials for treating ROS-related conditions.
Collapse
Affiliation(s)
- Xin Luo
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yanli Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuting Zeng
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Dehong Yang
- Department of Orthopedics Spinal SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhiyan Zhou
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Ziting Zheng
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Ping Xiao
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xian Ding
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianlin Li
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jiaping Chen
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianwen Deng
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xincen Zhong
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Sijie Qiu
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Yan
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
17
|
Liu P, Guo H, Huang X, Liu A, Zhu T, Zheng C, Fu F, Zhang K, Li S, Luo X, Tian J, Jin Y, Xuan K, Sui B. Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration. Bone Res 2025; 13:21. [PMID: 39922812 PMCID: PMC11807224 DOI: 10.1038/s41413-024-00386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 02/10/2025] Open
Abstract
Healthy aging is a common goal for humanity and society, and one key to achieving it is the rejuvenation of senescent resident stem cells and empowerment of aging organ regeneration. However, the mechanistic understandings of stem cell senescence and the potential strategies to counteract it remain elusive. Here, we reveal that the aging bone microenvironment impairs the Golgi apparatus thus diminishing mesenchymal stem cell (MSC) function and regeneration. Interestingly, replenishment of cell aggregates-derived extracellular vesicles (CA-EVs) rescues Golgi dysfunction and empowers senescent MSCs through the Golgi regulatory protein Syntaxin 5. Importantly, in vivo administration of CA-EVs significantly enhanced the bone defect repair rate and improved bone mass in aging mice, suggesting their therapeutic value for treating age-related osteoporosis and promoting bone regeneration. Collectively, our findings provide insights into Golgi regulation in stem cell senescence and bone aging, which further highlight CA-EVs as a potential rejuvenative approach for aging bone regeneration.
Collapse
Affiliation(s)
- Peisheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hao Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ting Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chenxi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Fei Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kaichao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinyan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiongyi Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China.
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
18
|
Li Y, Li C, Sun Q, Liu X, Chen F, Cheung Y, Zhao Y, Xie T, Chazaud B, Sun H, Wang H. Skeletal muscle stem cells modulate niche function in Duchenne muscular dystrophy mouse through YY1-CCL5 axis. Nat Commun 2025; 16:1324. [PMID: 39900599 PMCID: PMC11790879 DOI: 10.1038/s41467-025-56474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are indispensable for muscle regeneration and tightly regulated by macrophages (MPs) and fibro-adipogenic progenitors (FAPs) in their niche. Deregulated MuSC/MP/FAP interactions and the ensuing inflammation and fibrosis are hallmarks of dystrophic muscle. Here we demonstrate intrinsic deletion of transcription factor Yin Yang 1 (YY1) in MuSCs exacerbates dystrophic pathologies by altering composition and heterogeneity of MPs and FAPs. Further analysis reveals YY1 loss induces expression of immune genes in MuSCs, including C-C motif chemokine ligand 5 (Ccl5). Augmented CCL5 secretion promotes MP recruitment via CCL5/C-C chemokine receptor 5 (CCR5) crosstalk, which subsequently hinders FAP clearance through elevated Transforming growth factor-β1 (TGFβ1). Maraviroc-mediated pharmacological blockade of the CCL5/CCR5 axis effectively mitigates muscle dystrophy and improves muscle performance. Lastly, we demonstrate YY1 represses Ccl5 transcription by binding to its enhancer thus facilitating promoter-enhancer looping. Altogether, our study demonstrates the critical role of MuSCs in actively shaping their niche and provides novel insight into the therapeutic intervention of muscle dystrophy.
Collapse
MESH Headings
- Animals
- YY1 Transcription Factor/metabolism
- YY1 Transcription Factor/genetics
- Chemokine CCL5/metabolism
- Chemokine CCL5/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Macrophages/metabolism
- Receptors, CCR5/metabolism
- Receptors, CCR5/genetics
- Mice, Inbred mdx
- Stem Cell Niche
- Mice, Knockout
- Maraviroc/pharmacology
- Mice, Inbred C57BL
- Male
- Transforming Growth Factor beta1/metabolism
- Stem Cells/metabolism
- Disease Models, Animal
Collapse
Grants
- 82172436 National Natural Science Foundation of China (National Science Foundation of China)
- 14115319, 14100620, 14106521, 14105823, 14120420, 14103522, 14105123 Research Grants Council, University Grants Committee (RGC, UGC)
- T13-602/21-N Research Grants Council, University Grants Committee (RGC, UGC)
- C6018-19GF Research Grants Council, University Grants Committee (RGC, UGC)
- 10210906, 08190626 Research Grants Council, University Grants Committee (RGC, UGC)
- AoE/M-402/20 Research Grants Council, University Grants Committee (RGC, UGC)
- STG1/E-403/24-N Research Grants Council, University Grants Committee (RGC, UGC)
- National Key R&D Program of China to H.W. (2022YFA0806003) Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China to H.W. (10210906 and 08190626)
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Chuhan Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Xingyuan Liu
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengyuan Chen
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeelo Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ting Xie
- Center for Tissue Regeneration and Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bénédicte Chazaud
- Unité Physiopathologie et Génétique du Neurone et du Muscle, UMR CNRS 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Hao Sun
- Warshel Institute for Computational Biology, Faculty of Medicine, Chinese University of Hong Kong (Shenzhen), Guangdong, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
19
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
21
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2025; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Parry TL, Gilmore LA, Khamoui AV. Pan-cancer secreted proteome and skeletal muscle regulation: insight from a proteogenomic data-driven knowledge base. Funct Integr Genomics 2025; 25:14. [PMID: 39812750 DOI: 10.1007/s10142-024-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers. Tumor proteins having significant pan-cancer associations with muscle were referenced against secretome proteins secreted to blood from the Human Protein Atlas, then verified as increased in paired tumor vs. normal tissues in pan-cancer manner. This workflow revealed seven secreted proteins from cancers afflicting kidneys, head and neck, lungs and pancreas that classified as protein-binding activity modulator, extracellular matrix protein or intercellular signaling molecule. Concordance of these biomarkers with validated molecular signatures of cachexia and senescence supported relevance to muscle and cachexia disease biology, and high tumor expression of the biomarker set associated with lower overall survival. In this article, we discuss avenues by which skeletal muscle and cachexia may be regulated by these candidate pan-cancer proteins secreted to blood, and conceptualize a strategy that considers them collectively as a biomarker signature with potential for refinement by data analytics and radiogenomics for predictive testing of future risk in a non-invasive, blood-based panel amenable to broad uptake and early management.
Collapse
Affiliation(s)
- Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
23
|
Dalle S, Schouten M, Vanderbeke K, Van Parys E, Ramaekers M, Thomis M, Costamagna D, Koppo K. The CB1 antagonist Rimonabant improves muscle regeneration and remodels the inflammatory and endocannabinoid profile upon injury in male mice. Life Sci 2025; 361:123296. [PMID: 39645163 DOI: 10.1016/j.lfs.2024.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Skeletal muscle regeneration upon injury requires timely activation of inflammatory, myogenic, fibrotic, apoptotic and anabolic systems. Optimization of these features might improve the recovery process. Whereas recent data indicate that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1) antagonism, is involved in the regulation of inflammatory, myogenic, fibrotic, apoptotic and anabolic pathways, it was never studied whether CB1 antagonism can improve muscle regeneration. The present study investigated the effect of the CB1 antagonist Rimonabant (10 mg/kg/d) on functional (5 days post-cardiotoxin injury; 5DPI) and molecular muscle responses (3DPI and 7DPI) in mice. Rimonabant prevented cardiotoxin-induced muscle strength loss 5DPI, increased myofiber growth (7DPI) and improved the muscle molecular profile 3DPI and 7DPI. In general, inflammation (e.g. p-p65NF-κB, CD80) and apoptosis (e.g. cleaved caspase-3, cleaved PARP) were downregulated by Rimonabant, whereas it upregulated the expression of Pax7 but other myogenic factors remained unaffected by rimonabant. In addition, Rimonabant restored the injury-induced (inflammatory) lipid profile to a large extent, including oxygenated fatty acids, unsaturated fatty acids and endocannabinoids such as 2-arachidonoyl glycerol and palmitoylethanolamide. Altogether, these data show that the endocannabinoid system might be a novel therapeutic target to improve muscle regeneration, which is relevant for age- and disease-related muscle degeneration.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; MOVANT Research Group, Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium.
| | - Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Kaat Vanderbeke
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Evy Van Parys
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Martine Thomis
- Physical Activity, Sports & Health Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Domiziana Costamagna
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
24
|
Runyan CE, Luo L, Welch LC, Lu Z, Chen F, Schleck MJ, Nafikova RA, Grant RA, Aillon RP, Senkow KJ, Bunyan EG, Plodzeen WT, Abdala-Valencia H, Weiss C, Dada LA, Thorp EB, Sznajder JI, Chandel NS, Misharin AV, Budinger GRS. Tissue-resident skeletal muscle macrophages promote recovery from viral pneumonia-induced sarcopenia in normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631996. [PMID: 39868236 PMCID: PMC11760773 DOI: 10.1101/2025.01.09.631996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sarcopenia, which diminishes lifespan and healthspan in the elderly, is commonly exacerbated by viral pneumonia, including influenza and COVID-19. In a study of influenza A pneumonia in mice, young mice fully recovered from sarcopenia, while older mice did not. We identified a population of tissue-resident skeletal muscle macrophages that form a spatial niche with satellite cells and myofibers in young mice but are lost with age. Mice with a gain-of-function mutation in the Mertk receptor maintained this macrophage-myofiber interaction during aging and fully recovered from influenza-induced sarcopenia. In contrast, deletion of Mertk in macrophages or loss of Cx3cr1 disrupted this niche, preventing muscle regeneration. Heterochronic parabiosis did not restore the niche in old mice. These findings suggest that age-related loss of Mertk in muscle tissue-resident macrophages disrupts the cellular signaling necessary for muscle regeneration after viral pneumonia, offering a potential target to mitigate sarcopenia in aging.
Collapse
Affiliation(s)
- Constance E Runyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Lucy Luo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Fei Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Maxwell J Schleck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Radmila A Nafikova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Raul Piseaux Aillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Elsie G Bunyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - William T Plodzeen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Craig Weiss
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Sciences. Northwestern University. Chicago, IL, USA
| |
Collapse
|
25
|
Chi A, Yang C, Liu J, Zhai Z, Shi X. Reconstructing the Stem Leydig Cell Niche via the Testicular Extracellular Matrix for the Treatment of Testicular Leydig Cell Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410808. [PMID: 39555675 PMCID: PMC11727238 DOI: 10.1002/advs.202410808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Therapies involving the use of stem Leydig cells (SLCs), as testicular mesenchymal stromal cells, have shown great promise in the treatment of Leydig cell (LC) dysfunction in aging males. However, the outcomes of these therapies are not satisfactory. In this study, it is demonstrated that the aging microenvironment of the testicular interstitium impairs the function of SLCs, leading to poor regeneration of LCs and, consequently, inefficient functional restoration. The study develops a decellularized testicular extracellular matrix (dTECM) hydrogel from young pigs and evaluates its safety and feasibility as a supportive niche for the expansion and differentiation of SLCs. dTECM hydrogel facilitates the steroidogenic differentiation of SLCs into LCs, the primary producers of testosterone. The combination of SLCs with a dTECM hydrogel leads to a significant and sustained increase in testosterone levels, which promotes the restoration of spermatogenesis and fertility in an LC-deficient and aged mouse model. Mechanistically, collagen 1 within the dTECM is identified as a key factor contributing to these effects. Notably, symptoms associated with testosterone deficiency syndrome are significantly alleviated in aged mice. These findings may aid the design of therapeutic interventions for patients with testosterone deficiency in the clinic.
Collapse
Affiliation(s)
- Ani Chi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Chao Yang
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Jie Liu
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zhichen Zhai
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
26
|
Alibhai FJ, Tobin SW. Characterization of Age-Dependent Changes in Skeletal Muscle Repair and Regeneration Using a Mouse Model of Acute Muscle Injury. Methods Mol Biol 2025; 2857:169-180. [PMID: 39348065 DOI: 10.1007/978-1-0716-4128-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Acute skeletal muscle injury initiates a process of necrosis, debris clearance, and ultimately tissue regeneration via myogenesis. While skeletal muscle stem cells (MuSCs) are responsible for populating the proliferative myogenic progenitor pool to fuel muscle repair, recruited and resident immune cells have a central role in the regulation of muscle regeneration via the execution of phagocytosis and release of soluble factors that act directly on MuSCs to regulate myogenic differentiation. Therefore, the timing of MuSC proliferation and differentiation is closely linked to the populations and behaviors of immune cells present within skeletal muscle. This has important implications for aging and muscle repair, as systemic changes in immune system function contribute to a decline in muscle regenerative capacity. Here, we present adapted protocols for the isolation of mononuclear cells from skeletal muscles for the quantification of immune cell populations using flow cytometry. We also describe a cardiotoxin skeletal muscle injury protocol and detail the expected outcomes including immune cell infiltration to the injured sites and formation of new myocytes. As immune cell function is substantially influenced by aging, we extend these approaches and outcomes to aged mice.
Collapse
Affiliation(s)
| | - Stephanie W Tobin
- Department of Biology, Trent University, Peterborough, ON, Canada.
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
27
|
Liao P, Tong S, Du L, Mei J, Wang B, Lu Y, Yao M, Zhang C, Liu D, Zhong Z, Ye F, Gao J. Single-cell transcriptomics identifies the common perturbations of monocyte/macrophage lineage cells in inflammaging of bone marrow. J Orthop Translat 2025; 50:85-96. [PMID: 39868348 PMCID: PMC11762928 DOI: 10.1016/j.jot.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear. Methods We collected bone marrow from telomerase-deficient mice (telomerase RNA component, TERCko/ko), 5 × FAD mice and Dmp1 Cre -DTA ki/wt mice and High-fat diet-fed mice (HFD), and lumbar 5 nerve compression mice. We performed scRNA-Seq analysis on bone marrow obtained from these mouse models to investigate the potential shared pathway of bone marrow inflammation. Results We identified the monocyte/macrophage lineage was activated via the App-Cd74 axis in multiple aging and inflammatory mouse models. Increased expression of CD38 and Ly6a, and decreased expression of Col1a and Lif in macrophages serve as shared changes in different mouse models. The activated macrophages, interacting with other cells, control the expansion of B cells via the CD52-Siglec-G axis. The Ccl6-Ccr2 and Ccl9-Ccr1 ligand-receptor pairs, along with Fn1 and C3-related pathways in macrophages, were associated with immune cell activation and the recruitment of lymphocytes. Interactions with mesenchymal cells were enriched for integrins (Itga4), Fn1, and adhesion molecules (Vcam1). Conclusion Our study demonstrates that monocyte/macrophage lineage stimulation is a key event in bone marrow inflammaging. We identified common differentially expressed genes and activated pathways in this lineage, suggesting potential targets for future interventions. The translational potential of this article Our study revealed shared genes and ligand-receptor pairs in the activated monocyte/macrophage lineage within inflammaging bone marrow. These findings offer potential therapeutic targets for cell-specific anti-inflammatory treatments.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
28
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
29
|
Wei W, Qi X, Cheng B, Zhang N, Zhao Y, Qin X, He D, Chu X, Shi S, Cai Q, Yang X, Cheng S, Meng P, Hui J, Pan C, Liu L, Wen Y, Liu H, Jia Y, Zhang F. A prospective study of associations between accelerated biological aging and twenty musculoskeletal disorders. COMMUNICATIONS MEDICINE 2024; 4:266. [PMID: 39695190 DOI: 10.1038/s43856-024-00706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Musculoskeletal disorders pose major public health challenges, and accelerated biological aging may increase their risk. This study investigates the association between biological aging and musculoskeletal disorders, with a focus on sex-related differences. METHODS We analyzed data from 172,332 UK Biobank participants (mean age of 56.03 ± 8.10 years). Biological age was calculated using the KDM-BA and PhenoAge algorithms based on blood biomarkers. Musculoskeletal disorders were diagnosed using the ICD-10 criteria, with sample sizes ranging from 1,182 to 23,668. Logistic regression assessed cross-sectional associations between age acceleration (AA) metrics and musculoskeletal disorders. Accelerated Failure Time (AFT) model was used for survival analysis to evaluate the relationships between AAs and musculoskeletal disorders onset. Models were adjusted for demographic, lifestyle, and socio-economic covariates. The threshold of P-values were set by the Holm-Bonferroni correction. RESULTS Cross-sectional analyses reveal significant associations between AAs and fourteen musculoskeletal disorders. Survival analyses indicate that AAs significantly accelerate the onset of nine musculoskeletal disorders, including inflammatory polyarthropathies (RTKDM-BA = 0.993; RTPhenoAge = 0.983), systemic connective tissue disorders (RTKDM-BA = 0.987; RTPhenoAge = 0.980), spondylopathies (RTPhenoAge= 0.994), disorders of bone density and structure (RTPhenoAge= 0.991), gout (RTPhenoAge= 0.968), arthritis (RTPhenoAge= 0.991), pain in joint (RTPhenoAge= 0.989), low back pain (RTPhenoAge= 0.986), and osteoporosis (RTPhenoAge= 0.994). Sensitivity analyses are consistent with the primary findings. Sex-specific variations are observed, with AAs accelerating spondylopathies, arthritis, and low back pain in females, while osteoporosis is accelerated in males. CONCLUSION Accelerated biological aging is significantly associated with the incidence of several musculoskeletal disorders. These insights highlight the importance of biological age assessments in gauging musculoskeletal disorder risk, aiding early detection, prevention, and management.
Collapse
Affiliation(s)
- Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
- Precision medicine center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
30
|
Tokizane K, Imai SI. Inter-organ communication is a critical machinery to regulate metabolism and aging. Trends Endocrinol Metab 2024:S1043-2760(24)00320-5. [PMID: 39694728 DOI: 10.1016/j.tem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Inter-organ communication (IOC) is a complex mechanism involved in maintaining metabolic homeostasis and healthy aging. Dysregulation of distinct forms of IOC is linked to metabolic derangements and age-related pathologies, implicating these processes as a potential target for therapeutic intervention to promote healthy aging. In this review, we delve into IOC mediated by hormonal signaling, circulating factors, organelle signaling, and neuronal networks and examine their roles in regulating metabolism and aging. Given the role of the hypothalamus as a high-order control center for aging and longevity, we particularly emphasize the importance of its communication with peripheral organs and pave the way for a better understanding of this critical machinery in metabolism and aging.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, 63110, MO, USA.
| |
Collapse
|
31
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Tighanimine K. Lipid remodeling in context of cellular senescence. Biochimie 2024; 227:47-52. [PMID: 39299535 DOI: 10.1016/j.biochi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| |
Collapse
|
33
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Walter LD, Orton JL, Ntekas I, Fong EHH, Maymi VI, Rudd BD, De Vlaminck I, Elisseeff JH, Cosgrove BD. Transcriptomic analysis of skeletal muscle regeneration across mouse lifespan identifies altered stem cell states. NATURE AGING 2024; 4:1862-1881. [PMID: 39578558 PMCID: PMC11645289 DOI: 10.1038/s43587-024-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
In aging, skeletal muscle regeneration declines due to alterations in both myogenic and non-myogenic cells and their interactions. This regenerative dysfunction is not understood comprehensively or with high spatiotemporal resolution. We collected an integrated atlas of 273,923 single-cell transcriptomes and high-resolution spatial transcriptomic maps from muscles of young, old and geriatric mice (~5, 20 and 26 months old) at multiple time points following myotoxin injury. We identified eight immune cell types that displayed accelerated or delayed dynamics by age. We observed muscle stem cell states and trajectories specific to old and geriatric muscles and evaluated their association with senescence by scoring experimentally derived and curated gene signatures in both single-cell and spatial transcriptomic data. This revealed an elevation of senescent-like muscle stem cell subsets within injury zones uniquely in aged muscles. This Resource provides a holistic portrait of the altered cellular states underlying muscle regenerative decline across mouse lifespan.
Collapse
Affiliation(s)
- Lauren D Walter
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
| | - Jessica L Orton
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Viviana I Maymi
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin D Cosgrove
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
35
|
Herman AB, Gorospe M. Molecular tools for analysing in vivo senescence. Nat Rev Mol Cell Biol 2024; 25:954. [PMID: 39402191 DOI: 10.1038/s41580-024-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Allison B Herman
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
36
|
Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C, Li J, Zuo Y, Sun Y, Xu G, Liu B, Ai J, Liu F, Zhao L, Zhang J, Zhang H, Sun S, Huang H, Zhang Y, Ye Y, Fan Y, Zheng F, Hu J, Zhang B, Li J, Feng X, Zhang F, Zhuang Y, Li T, Yu Y, Bao Z, Pan S, Rodriguez Esteban C, Liu Z, Deng H, Wen F, Song M, Wang S, Zhu G, Yang J, Jiang T, Song W, Izpisua Belmonte JC, Qu J, Zhang W, Gu Y, Liu GH. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 2024; 187:7025-7044.e34. [PMID: 39500323 DOI: 10.1016/j.cell.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
To systematically characterize the loss of tissue integrity and organ dysfunction resulting from aging, we produced an in-depth spatial transcriptomic profile of nine tissues in male mice during aging. We showed that senescence-sensitive spots (SSSs) colocalized with elevated entropy in organizational structure and that the aggregation of immunoglobulin-expressing cells is a characteristic feature of the microenvironment surrounding SSSs. Immunoglobulin G (IgG) accumulated across the aged tissues in both male and female mice, and a similar phenomenon was observed in human tissues, suggesting the potential of the abnormal elevation of immunoglobulins as an evolutionarily conserved feature in aging. Furthermore, we observed that IgG could induce a pro-senescent state in macrophages and microglia, thereby exacerbating tissue aging, and that targeted reduction of IgG mitigated aging across various tissues in male mice. This study provides a high-resolution spatial depiction of aging and indicates the pivotal role of immunoglobulin-associated senescence during the aging process.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Zhejun Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Geng
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Jiaming Li
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Beibei Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Ai
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Feifei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Liyun Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jiachen Zhang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Haoyan Huang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanxia Ye
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Jinghao Hu
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Baohu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Zhang
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sipei Pan
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Zhili Liu
- BGI Research, Shenzhen 518083, China
| | | | - Feng Wen
- BGI Research, Beijing 102601, China
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Ying Gu
- BGI Research, Shenzhen 518083, China; BGI Research, Beijing 102601, China; BGI Research, Hangzhou 310030, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
37
|
Yao Y, Ritzmann F, Miethe S, Kattler-Lackes K, Colakoglu B, Herr C, Kamyschnikow A, Brand M, Garn H, Yildiz D, Langer F, Bals R, Beisswenger C. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. Mol Med 2024; 30:227. [PMID: 39578767 PMCID: PMC11585087 DOI: 10.1186/s10020-024-00990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Impaired interaction of fibroblasts with pneumocytes contributes to the progression of chronic lung disease such as idiopathic pulmonary fibrosis (IPF). Mucin 5B (MUC5B) is associated with IPF. Here we analyzed the interaction of primary fibroblasts and alveolar type 2 (AT2) pneumocytes in the organoid model. Single-cell analysis, histology, and qRT-PCR revealed that fibroblasts expressing high levels of fibrosis markers regulate STAT3 signaling in AT2 cells, which is accompanied by cystic organoid growth and MUC5B expression. Cystic growth and MUC5B expression were also caused by the cytokine IL-6. The PI3K-Akt signaling pathway was activated in fibroblasts. The drug dasatinib prevented the formation of MUC5B-expressing cystic organoids. MUC5B associated with AT2 cells in samples obtained from IPF patients. Our model shows that fibrotic primary fibroblasts induce impaired differentiation of AT2 cells via STAT3 signaling pathways, as observed in IPF patients. It can be used for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | | | - Betül Colakoglu
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421, Homburg, Germany
| | - Frank Langer
- Department of Thoracic- and Cardiovascular Surgery, Saarland University Hospital, Homburg/Saar, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
38
|
Ancel S, Michaud J, Migliavacca E, Jomard C, Fessard A, Garcia P, Karaz S, Raja S, Jacot GE, Desgeorges T, Sánchez-García JL, Tauzin L, Ratinaud Y, Brinon B, Métairon S, Pinero L, Barron D, Blum S, Karagounis LG, Heshmat R, Ostovar A, Farzadfar F, Scionti I, Mounier R, Gondin J, Stuelsatz P, Feige JN. Nicotinamide and pyridoxine stimulate muscle stem cell expansion and enhance regenerative capacity during aging. J Clin Invest 2024; 134:e163648. [PMID: 39531334 PMCID: PMC11645154 DOI: 10.1172/jci163648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Skeletal muscle relies on resident muscle stem cells (MuSCs) for growth and repair. Aging and muscle diseases impair MuSC function, leading to stem cell exhaustion and regenerative decline that contribute to the progressive loss of skeletal muscle mass and strength. In the absence of clinically available nutritional solutions specifically targeting MuSCs, we used a human myogenic progenitor high-content imaging screen of natural molecules from food to identify nicotinamide (NAM) and pyridoxine (PN) as bioactive nutrients that stimulate MuSCs and have a history of safe human use. NAM and PN synergize via CK1-mediated cytoplasmic β-catenin activation and AKT signaling to promote amplification and differentiation of MuSCs. Oral treatment with a combination of NAM and PN accelerated muscle regeneration in vivo by stimulating MuSCs, increased muscle strength during recovery, and overcame MuSC dysfunction and regenerative failure during aging. Levels of NAM and bioactive PN spontaneously declined during aging in model organisms and interindependently associated with muscle mass and walking speed in a cohort of 186 aged people. Collectively, our results establish the NAM/PN combination as a nutritional intervention that stimulates MuSCs, enhances muscle regeneration, and alleviates age-related muscle decline with a direct opportunity for clinical translation.
Collapse
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Charline Jomard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Aurélie Fessard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pauline Garcia
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sruthi Raja
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume E. Jacot
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Thibaut Desgeorges
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Loic Tauzin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Yann Ratinaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucas Pinero
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Stephanie Blum
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
| | - Leonidas G. Karagounis
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Isabella Scionti
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jerome N. Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Yu W, Yu Y, Sun S, Lu C, Zhai J, Lei Y, Bai F, Wang R, Chen J. Immune Alterations with Aging: Mechanisms and Intervention Strategies. Nutrients 2024; 16:3830. [PMID: 39599617 PMCID: PMC11597283 DOI: 10.3390/nu16223830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Aging is the result of a complex interplay of physical, environmental, and social factors, leading to an increased prevalence of chronic age-related diseases that burden health and social care systems. As the global population ages, it is crucial to understand the aged immune system, which undergoes declines in both innate and adaptive immunity. This immune decline exacerbates the aging process, creating a feedback loop that accelerates the onset of diseases, including infectious diseases, autoimmune disorders, and cancer. Intervention strategies, including dietary adjustments, pharmacological treatments, and immunomodulatory therapies, represent promising approaches to counteract immunosenescence. These interventions aim to enhance immune function by improving the activity and interactions of aging-affected immune cells, or by modulating inflammatory responses through the suppression of excessive cytokine secretion and inflammatory pathway activation. Such strategies have the potential to restore immune homeostasis and mitigate age-related inflammation, thus reducing the risk of chronic diseases linked to aging. In summary, this review provides insights into the effects and underlying mechanisms of immunosenescence, as well as its potential interventions, with particular emphasis on the relationship between aging, immunity, and nutritional factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (W.Y.)
| |
Collapse
|
40
|
Tabata S, Matsuda K, Soeda S, Nagai K, Izumi Y, Takahashi M, Motomura Y, Ichikawa Nagasato A, Moro K, Bamba T, Okada M. NFκB dynamics-dependent epigenetic changes modulate inflammatory gene expression and induce cellular senescence. FEBS J 2024; 291:4951-4968. [PMID: 39011799 DOI: 10.1111/febs.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Upregulation of nuclear factor κB (NFκB) signaling is a hallmark of aging and a major cause of age-related chronic inflammation. However, its effect on cellular senescence remains unclear. Here, we show that alteration of NFκB nuclear dynamics from oscillatory to sustained by depleting a negative feedback regulator of NFκB pathway, NFκB inhibitor alpha (IκBα), in the presence of tumor necrosis factor α (TNFα) promotes cellular senescence. Sustained NFκB activity enhanced inflammatory gene expression through increased NFκB-DNA binding and slowed the cell cycle. IκBα protein was decreased under replicative or oxidative stress in vitro. Furthermore, a decrease in IκBα protein and an increase in DNA-NFκB binding at the transcription start sites of age-associated genes in aged mouse hearts suggested that nuclear NFκB dynamics may play a critical role in the progression of aging. Our study suggests that nuclear NFκB dynamics-dependent epigenetic changes regulated over time in a living system, possibly through a decrease in IκBα, enhance the expression of inflammatory genes to advance the cells to a senescent state.
Collapse
Affiliation(s)
- Sho Tabata
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Keita Matsuda
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Shou Soeda
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Kenshiro Nagai
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | | | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Laboratory for Innate Immune Systems, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mariko Okada
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| |
Collapse
|
41
|
Matteini F, Montserrat‐Vazquez S, Florian MC. Rejuvenating aged stem cells: therapeutic strategies to extend health and lifespan. FEBS Lett 2024; 598:2776-2787. [PMID: 38604982 PMCID: PMC11586596 DOI: 10.1002/1873-3468.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Aging is associated with a global decline in stem cell function. To date, several strategies have been proposed to rejuvenate aged stem cells: most of these result in functional improvement of the tissue where the stem cells reside, but the impact on the lifespan of the whole organism has been less clearly established. Here, we review some of the most recent work dealing with interventions that improve the regenerative capacity of aged somatic stem cells in mammals and that might have important translational possibilities. Overall, we underscore that somatic stem cell rejuvenation represents a strategy to improve tissue homeostasis upon aging and present some recent approaches with the potential to affect health span and lifespan of the whole organism.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - Sara Montserrat‐Vazquez
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine ProgramThe Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P‐CMR[C])BarcelonaSpain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- The Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
42
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
43
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
44
|
Lyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, Olsen A, Groth A, Simon AK, Brunet A, Jamil A, Kulaga A, Bhatti A, Yaden B, Pedersen BK, Schumacher B, Djordjevic B, Kennedy B, Chen C, Huang CY, Correll CU, Murphy CT, Ewald CY, Chen D, Valenzano DR, Sołdacki D, Erritzoe D, Meyer D, Sinclair DA, Chini EN, Teeling EC, Morgen E, Verdin E, Vernet E, Pinilla E, Fang EF, Bischof E, Mercken EM, Finger F, Kuipers F, Pun FW, Gyülveszi G, Civiletto G, Zmudze G, Blander G, Pincus HA, McClure J, Kirkland JL, Peyer J, Justice JN, Vijg J, Gruhn JR, McLaughlin J, Mannick J, Passos J, Baur JA, Betts-LaCroix J, Sedivy JM, Speakman JR, Shlain J, von Maltzahn J, Andreasson KI, Moody K, Palikaras K, Fortney K, Niedernhofer LJ, Rasmussen LJ, Veenhoff LM, Melton L, Ferrucci L, Quarta M, Koval M, Marinova M, Hamalainen M, Unfried M, Ringel MS, Filipovic M, Topors M, Mitin N, Roy N, Pintar N, Barzilai N, Binetti P, Singh P, Kohlhaas P, Robbins PD, Rubin P, Fedichev PO, Kamya P, Muñoz-Canoves P, de Cabo R, Faragher RGA, Konrad R, Ripa R, Mansukhani R, Büttner S, Wickström SA, Brunemeier S, Jakimov S, Luo S, Rosenzweig-Lipson S, Tsai SY, Dimmeler S, Rando TA, Peterson TR, Woods T, Wyss-Coray T, Finkel T, Strauss T, Gladyshev VN, Longo VD, Dwaraka VB, Gorbunova V, Acosta-Rodríguez VA, Sorrentino V, Sebastiano V, Li W, Suh Y, Zhavoronkov A, Scheibye-Knudsen M, Bakula D. Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. Aging (Albany NY) 2024; 16:12955-12976. [PMID: 39418098 PMCID: PMC11552646 DOI: 10.18632/aging.206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
The recent unprecedented progress in ageing research and drug discovery brings together fundamental research and clinical applications to advance the goal of promoting healthy longevity in the human population. We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest developments in healthspan biotechnology, with a particular emphasis on artificial intelligence (AI), biomarkers and clocks, geroscience, and clinical trials and interventions for healthy longevity. Moreover, we provide an overview of academic research and the biotech industry focused on targeting ageing as the root of age-related diseases to combat multimorbidity and extend healthspan. We propose that the integration of generative AI, cutting-edge biological technology, and longevity medicine is essential for extending the productive and healthy human lifespan.
Collapse
Affiliation(s)
- Yu-Xuan Lyu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Qiang Fu
- Institute of Aging Medicine, College of Pharmacy, Binzhou Medical University, Yantai, China
- Anti-aging Innovation Center, Subei Research Institute at Shanghai Jiaotong University, China
- Shandong Cellogene Pharmaceutics Co. LTD, Yantai, China
| | - Dominika Wilczok
- Duke Kunshan University, Kunshan, Jiangsu, China
- Duke University, Durham, NC, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Aaron King
- Foresight Institute, San Francisco, CA 91125, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Alexandra Stolzing
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | | | - Andrea B. Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Olsen
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katharina Simon
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- The Kennedy Institute of Rheumatology, Oxford, UK
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aisyah Jamil
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Anton Kulaga
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | - Benjamin Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University - Purdue University Indianapolis, Indianapolis Indiana 46077, USA
| | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - Boris Djordjevic
- 199 Biotechnologies Ltd., London, UK
- University College London, London, UK
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chieh Chen
- Molecular, Cellular, And Integrative Physiology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Christoph U. Correll
- Zucker School of Medicine at Hofstra/Northwell, NY 10001, USA
- Charité - University Medicine, Berlin, Germany
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Friedrich Schiller University, Jena, Germany
| | | | - David Erritzoe
- Centre for Psychedelic Research, Dpt Brain Sciences, Imperial College London, UK
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 02108, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, Belfield, Univeristy College Dublin, Dublin 4, Ireland
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Erik Vernet
- Research and Early Development, Maaleov 2760, Denmark
| | | | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evelyne Bischof
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Evi M. Mercken
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Fabian Finger
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Folkert Kuipers
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | | | | | | | - Harold A. Pincus
- Department of Psychiatry, Columbia University, New York, NY 10012, USA
| | | | - James L. Kirkland
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jan Vijg
- Department of Genetics Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jennifer R. Gruhn
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Joan Mannick
- Tornado Therapeutics, Cambrian Bio Inc. PipeCo, New York, NY 10012, USA
| | - João Passos
- Department of Physiology and Biomedical Engineering and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19019, USA
| | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02860, USA
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg and Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelsey Moody
- Ichor Life Sciences, Inc., LaFayette, NY 13084, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55414, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisa Melton
- Nature Biotechnology, Springer Nature, London, UK
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21201, USA
| | - Marco Quarta
- Rubedo Life Sciences, Sunnyvale, CA 94043, USA
- Turn Biotechnologies, Mountain View 94039, CA, USA
- Phaedon Institute, Oakland, CA 94501, USA
| | - Maria Koval
- Institute of Biochemistry of the Romanian Academy, Romania
| | - Maria Marinova
- Fertility and Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Hamalainen
- Longevity Biotech Fellowship, Longevity Acceleration Fund, Vitalism, SF Bay, CA 94101, USA
| | - Maximilian Unfried
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117608, Singapore
| | | | - Milos Filipovic
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V., Dortmund, Germany
| | - Mourad Topors
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | | | | | | | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10452, USA
| | | | | | | | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN 55111, USA
| | | | | | - Petrina Kamya
- Insilico Medicine Canada Inc., Montreal, Quebec H3B 4W8 Canada
| | - Pura Muñoz-Canoves
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland 21201, USA
| | | | | | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | - Shih-Yin Tsai
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany
| | - Thomas A. Rando
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tina Woods
- Collider Heath, London, UK
- Healthy Longevity Champion, National Innovation Centre for Ageing, UK
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15106, USA
| | - Tzipora Strauss
- Sheba Longevity Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Valter D. Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90001, USA
| | | | - Vera Gorbunova
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Victoria A. Acosta-Rodríguez
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincenzo Sorrentino
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Wenbin Li
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York City, NY 10032, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
45
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
46
|
Han L, Ji Y, Yu Y, Ni Y, Zeng H, Zhang X, Liu H, Zhang Y. Trajectory-centric framework TrajAtlas reveals multi-scale differentiation heterogeneity among cells, genes, and gene modules in osteogenesis. PLoS Genet 2024; 20:e1011319. [PMID: 39436962 PMCID: PMC11530032 DOI: 10.1371/journal.pgen.1011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Osteoblasts, the key cells responsible for bone formation and the maintenance of skeletal integrity, originate from a diverse array of progenitor cells. However, the mechanisms underlying osteoblast differentiation from these multiple osteoprogenitors remain poorly understood. To address this knowledge gap, we developed a comprehensive framework to investigate osteoblast differentiation at multiple scales, encompassing cells, genes, and gene modules. We constructed a reference atlas focused on differentiation, which incorporates various osteoprogenitors and provides a seven-level cellular taxonomy. To reconstruct the differentiation process, we developed a model that identifies the transcription factors and pathways involved in differentiation from different osteoprogenitors. Acknowledging that covariates such as age and tissue type can influence differentiation, we created an algorithm to detect differentially expressed genes throughout the differentiation process. Additionally, we implemented methods to identify conserved pseudotemporal gene modules across multiple samples. Overall, our framework systematically addresses the heterogeneity observed during osteoblast differentiation from diverse sources, offering novel insights into the complexities of bone formation and serving as a valuable resource for understanding osteogenesis.
Collapse
Affiliation(s)
- Litian Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
47
|
Huang N, Zou K, Zhong Y, Luo Y, Wang M, Xiao L. Hotspots and trends in satellite cell research in muscle regeneration: A bibliometric visualization and analysis from 2010 to 2023. Heliyon 2024; 10:e37529. [PMID: 39309858 PMCID: PMC11415684 DOI: 10.1016/j.heliyon.2024.e37529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background The incidence of muscle atrophy or sports injuries is increasing with time and population aging, thereby attracting considerable attention to muscle generation research. Muscle satellite cells, which play an important role in this process, lack comprehensive literature regarding their use for muscle regeneration. Hence, this study aimed to analyze the hotspots and trends in satellite cell research from 2010 to 2023, providing a reference for muscle regeneration research. Methods Studies on satellite cells' role in muscle regeneration from 2010 to 2023 were retrieved from the Web of Science Core Collection. Using CiteSpace and VOSviewer, we analyzed annual publications, authors and co-citing authors, countries and institutions, journals and co-citing journals, co-citing references, and keywords. Results From 2010 to 2023, 1468 papers were retrieved, indicating an overall increasing trend in the number of annual publications related to satellite cells in muscle regeneration. The United States had the highest number of publications, while the Institut National de la Santé et de la Recherche Médicale was the institution with the most publications. Among journals, " PloS One" had the highest number of published papers, and "Cell" emerged as the most co-cited journal. A total of 7425 authors were involved, with Michael A. Rudnicki being the author with the highest number of publications and the most co-cited author. The most cited reference was "Satellite cells and the muscle stem cell niche." Among keywords, "satellite cells" was the most common, with "heterogeneity" having the highest centrality. Frontier themes included "Duchenne muscular dystrophy," "skeletal muscle," "in-vivo," "muscle regeneration," "mice," "muscle atrophy," "muscle fibers," "inflammation," " mesenchymal stem cells," and "satellite cell." Conclusion This study presents the current status and trends in satellite cell research on muscle regeneration from 2010 to 2023 using bibliometric analyses, providing valuable insights into numerous future research directions.
Collapse
Affiliation(s)
- Nan Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Kang Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Yanbiao Zhong
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Yun Luo
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Maoyuan Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Li Xiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| |
Collapse
|
48
|
Wang J, Wang R, Li Y, Huang J, Liu Y, Wang J, Xian P, Zhang Y, Yang Y, Zhang H, Li J. Lipolysis engages CD36 to promote ZBP1-mediated necroptosis-impairing lung regeneration in COPD. Cell Rep Med 2024; 5:101732. [PMID: 39255796 PMCID: PMC11525022 DOI: 10.1016/j.xcrm.2024.101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Lung parenchyma destruction represents a severe condition commonly found in chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. Promoting lung regeneration is crucial for achieving clinical improvement. However, no therapeutic drugs are approved to improve the regeneration capacity due to incomplete understanding of the underlying pathogenic mechanisms. Here, we identify a positive feedback loop formed between adipose triglyceride lipase (ATGL)-mediated lipolysis and overexpression of CD36 specific to lung epithelial cells, contributing to disease progression. Genetic deletion of CD36 in lung epithelial cells and pharmacological inhibition of either ATGL or CD36 effectively reduce COPD pathogenesis and promote lung regeneration in mice. Mechanistically, disruption of the ATGL-CD36 loop rescues Z-DNA binding protein 1 (ZBP1)-induced cell necroptosis and restores WNT/β-catenin signaling. Thus, we uncover a crosstalk between lipolysis and lung epithelial cells, suggesting the regenerative potential for therapeutic intervention by targeting the ATGL-CD36-ZBP1 axis in COPD.
Collapse
Affiliation(s)
- Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ru Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yicun Li
- Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiayi Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Xian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuanhang Zhang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanmei Yang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
49
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
50
|
Selvais CM, Davis-López de Carrizosa MA, Versele R, Dubuisson N, Noel L, Brichard SM, Abou-Samra M. Challenging Sarcopenia: Exploring AdipoRon in Aging Skeletal Muscle as a Healthspan-Extending Shield. Antioxidants (Basel) 2024; 13:1073. [PMID: 39334732 PMCID: PMC11428238 DOI: 10.3390/antiox13091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Sarcopenia, characterized by loss of muscle mass, quality, and function, poses significant risks in aging. We previously demonstrated that long-term treatment with AdipoRon (AR), an adiponectin receptor agonist, alleviated myosteatosis and muscle degeneration in middle-aged obese mice. This study aimed to determine if a shorter AR treatment could effectively offset sarcopenia in older mice. Two groups of old mice (20-23 months) were studied, one untreated (O) and one orally-treated with AR (O-AR) at 50 mg/kg/day for three months, compared with control 3-month-old young mice (Y) or 10-month-old young-adult mice (C-10). Results showed that AR remarkably inversed the loss of muscle mass by restoring the sarcopenia index and fiber count, which were greatly diminished with age. Additionally, AR successfully saved muscle quality of O mice by halving the accumulation of tubular aggregates and aberrant mitochondria, through AMPK pathway activation and enhanced autophagy. AR also bolstered muscle function by rescuing mitochondrial activity and improving exercise endurance. Finally, AR markedly curbed muscle fibrosis and mitigated local/systemic inflammation. Thus, a late three-month AR treatment successfully opposed sarcopenia and counteracted various hallmarks of aging, suggesting AR as a promising anti-aging therapy for skeletal muscles, potentially extending healthspan.
Collapse
Affiliation(s)
- Camille M Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Maria A Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41004 Seville, Spain
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Sonia M Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|