1
|
Burns CDG, Fracasso A, Rousselet GA. Bias in data-driven replicability analysis of univariate brain-wide association studies. Sci Rep 2025; 15:6105. [PMID: 39972033 PMCID: PMC11840108 DOI: 10.1038/s41598-025-89257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Recent studies have used big neuroimaging datasets to answer an important question: how many subjects are required for reproducible brain-wide association studies? These data-driven approaches could be considered a framework for testing the reproducibility of several neuroimaging models and measures. Here we test part of this framework, namely estimates of statistical errors of univariate brain-behaviour associations obtained from resampling large datasets with replacement. We demonstrate that reported estimates of statistical errors are largely a consequence of bias introduced by random effects when sampling with replacement close to the full sample size. We show that future meta-analyses can largely avoid these biases by only resampling up to 10% of the full sample size. We discuss implications that reproducing mass-univariate association studies requires tens-of-thousands of participants, urging researchers to adopt other methodological approaches.
Collapse
Affiliation(s)
- Charles D G Burns
- School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, Scotland.
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, Scotland
| | - Guillaume A Rousselet
- School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, Scotland.
| |
Collapse
|
2
|
Sisk LM, Keding TJ, Cohodes EM, McCauley S, Pierre JC, Odriozola P, Kribakaran S, Haberman JT, Zacharek SJ, Hodges HR, Caballero C, Gold G, Huang AY, Talton A, Gee DG. Multivariate links between the developmental timing of adversity exposure and white matter tract connectivity in adulthood. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00060-6. [PMID: 39978462 DOI: 10.1016/j.bpsc.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Early-life adversity is pervasive worldwide and represents a potent risk factor for increased mental health burden across the lifespan. However, there is substantial individual heterogeneity in associations between adversity exposure, neurobiological changes, and mental health problems. Accounting for key features of adversity such as the developmental timing of exposure may clarify associations between adversity, neurodevelopment, and mental health. METHODS The present study leverages sparse canonical correlation analysis to characterize modes of covariation between adversity exposure across development and the connectivity of white matter tracts throughout the brain in a sample of 107 adults. RESULTS We found that adversity exposure during preschool-age and middle childhood (ages 4-5 and 8 in particular) were consistently linked across diffusion metrics with alterations in white matter tract connectivity. Whereas tracts supporting sensorimotor functions displayed higher connectivity with higher preschool-age and middle childhood adversity exposure, tracts supporting cortico-cortical communication displayed lower connectivity. Further, latent patterns of tract connectivity linked with adversity experienced across preschool-age and middle childhood (ages 3-8) were associated with post-traumatic stress symptoms in adulthood. CONCLUSIONS Our findings underscore that adversity exposure may differentially affect white matter in a function- and developmental-timing specific manner and suggest that adversity experienced between ages 3-8 may shape the development of white matter tracts across the brain in ways that are relevant for mental health in adulthood.
Collapse
Affiliation(s)
- Lucinda M Sisk
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Taylor J Keding
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Emily M Cohodes
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sarah McCauley
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Jasmyne C Pierre
- Department of Psychology, The City College of New York, New York, NY, USA
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sahana Kribakaran
- Department of Psychology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | | | - Sadie J Zacharek
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hopewell R Hodges
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Gillian Gold
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Audrey Y Huang
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Ashley Talton
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Tsikonofilos K, Kumar A, Ampatzis K, Garrett DD, Månsson KNT. THE PROMISE OF INVESTIGATING NEURAL VARIABILITY IN PSYCHIATRIC DISORDERS. Biol Psychiatry 2025:S0006-3223(25)00102-7. [PMID: 39954923 DOI: 10.1016/j.biopsych.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The synergy of psychiatry and neuroscience has recently sought to identify biomarkers that can diagnose mental health disorders, predict their progression, and forecast treatment efficacy. However, biomarkers have achieved limited success to date, potentially due to a narrow focus on specific aspects of brain signals. This highlights a critical need for methodologies that can fully exploit the potential of neuroscience to transform psychiatric practice. In recent years, there is emerging evidence of the ubiquity and importance of moment-to-moment neural variability for brain function. Single-neuron recordings and computational models have demonstrated the significance of variability even at the microscopic level. Concurrently, studies involving healthy humans using neuroimaging recording techniques have strongly indicated that neural variability, once dismissed as undesirable noise, is an important substrate for cognition. Given the cognitive disruption in several psychiatric disorders, neural variability is a promising biomarker in this context and careful consideration of design choices is necessary to advance the field. This review provides an overview of the significance and substrates of neural variability across different recording modalities and spatial scales. We also review the existing evidence supporting its relevance in the study of psychiatric disorders. Finally, we advocate for future research to investigate neural variability within disorder-relevant, task-based paradigms and longitudinal designs. Supported by computational models of brain activity, this framework holds the potential for advancing precision psychiatry in a powerful and experimentally feasible manner.
Collapse
Affiliation(s)
- Konstantinos Tsikonofilos
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Arvind Kumar
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Kristoffer N T Månsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Freund MC, Chen R, Chen G, Braver TS. Complementary benefits of multivariate and hierarchical models for identifying individual differences in cognitive control. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00447. [PMID: 39957839 PMCID: PMC11823007 DOI: 10.1162/imag_a_00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 02/18/2025]
Abstract
Understanding individual differences in cognitive control is a central goal in psychology and neuroscience. Reliably measuring these differences, however, has proven extremely challenging, at least when using standard measures in cognitive neuroscience such as response times or task-based fMRI activity. While prior work has pinpointed the source of the issue-the vast amount of cross-trial variability within these measures-solutions remain elusive. Here, we propose one potential way forward: an analytic framework that combines hierarchical Bayesian modeling with multivariate decoding of trial-level fMRI data. Using this framework and longitudinal data from the Dual Mechanisms of Cognitive Control project, we estimated individuals' neural responses associated with cognitive control within a color-word Stroop task, then assessed the reliability of these individuals' responses across a time interval of several months. We show that in many prefrontal and parietal brain regions, test-retest reliability was near maximal, and that only hierarchical models were able to reveal this state of affairs. Further, when compared to traditional univariate contrasts, multivariate decoding enabled individual-level correlations to be estimated with significantly greater precision. We specifically link these improvements in precision to the optimized suppression of cross-trial variability in decoding. Together, these findings not only indicate that cognitive control-related neural responses individuate people in a highly stable manner across time, but also suggest that integrating hierarchical and multivariate models provides a powerful approach for investigating individual differences in cognitive control, one that can effectively address the issue of high-variability measures.
Collapse
Affiliation(s)
- Michael C. Freund
- Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, United States
| | - Ruiqi Chen
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Gang Chen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Todd S. Braver
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, United States
| |
Collapse
|
5
|
Bresser T, Blanken TF, de Lange SC, Leerssen J, Foster-Dingley JC, Lakbila-Kamal O, Wassing R, Ramautar JR, Stoffers D, van den Heuvel MP, Van Someren EJW. Insomnia Subtypes Have Differentiating Deviations in Brain Structural Connectivity. Biol Psychiatry 2025; 97:302-312. [PMID: 38944140 DOI: 10.1016/j.biopsych.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Insomnia disorder is the most common sleep disorder. A better understanding of insomnia-related deviations in the brain could inspire better treatment. Insufficiently recognized heterogeneity within the insomnia population could obscure detection of involved brain circuits. In the current study, we investigated whether structural brain connectivity deviations differed between recently discovered and validated insomnia subtypes. METHODS Structural and diffusion-weighted 3T magnetic resonance imaging data from 4 independent studies were harmonized. The sample consisted of 73 control participants without sleep complaints and 204 participants with insomnia who were grouped into 5 insomnia subtypes based on their fingerprint of mood and personality traits assessed with the Insomnia Type Questionnaire. Linear regression correcting for age and sex was used to evaluate group differences in structural connectivity strength, indicated by fractional anisotropy, streamline volume density, and mean diffusivity and evaluated within 3 different atlases. RESULTS Insomnia subtypes showed differentiating profiles of deviating structural connectivity that were concentrated in different functional networks. Permutation testing against randomly drawn heterogeneous subsamples indicated significant specificity of deviation profiles in 4 of the 5 subtypes: highly distressed, moderately distressed reward sensitive, slightly distressed low reactive, and slightly distressed high reactive. Connectivity deviation profile significance ranged from p = .001 to p = .049 for different resolutions of brain parcellation and connectivity weight. CONCLUSIONS Our results provide an initial indication that different insomnia subtypes exhibit distinct profiles of deviations in structural brain connectivity. Subtyping insomnia may be essential for a better understanding of brain mechanisms that contribute to insomnia vulnerability.
Collapse
Affiliation(s)
- Tom Bresser
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Tessa F Blanken
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Psychological Methods, University of Amsterdam, Amsterdam, the Netherlands
| | - Siemon C de Lange
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeanne Leerssen
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands
| | - Jessica C Foster-Dingley
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands
| | - Oti Lakbila-Kamal
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rick Wassing
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Woolcock Institute and School of Psychological Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia; Sydney Local Health District, Sydney, New South Wales, Australia
| | - Jennifer R Ramautar
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, the Netherlands; Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Diederick Stoffers
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Eus J W Van Someren
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Hirjak D, Fritze S, Volkmer S, Northoff G. How to (not) decide about the motor vs psychomotor origin of psychomotor disturbances in depression. Mol Psychiatry 2025; 30:793-795. [PMID: 39354219 PMCID: PMC11746127 DOI: 10.1038/s41380-024-02698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024]
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner site Mannheim, Mannheim, Germany.
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner site Mannheim, Mannheim, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner site Mannheim, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Lee HJ, Dworetsky A, Labora N, Gratton C. Using precision approaches to improve brain-behavior prediction. Trends Cogn Sci 2025; 29:170-183. [PMID: 39419740 DOI: 10.1016/j.tics.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Predicting individual behavioral traits from brain idiosyncrasies has broad practical implications, yet predictions vary widely. This constraint may be driven by a combination of signal and noise in both brain and behavioral variables. Here, we expand on this idea, highlighting the potential of extended sampling 'precision' studies. First, we discuss their relevance to improving the reliability of individualized estimates by minimizing measurement noise. Second, we review how targeted within-subject experiments, when combined with individualized analysis or modeling frameworks, can maximize signal. These improvements in signal-to-noise facilitated by precision designs can help boost prediction studies. We close by discussing the integration of precision approaches with large-sample consortia studies to leverage the advantages of both.
Collapse
Affiliation(s)
- Hyejin J Lee
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Ally Dworetsky
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Nathan Labora
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Department of Psychology, Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
8
|
Horien C, Mandino F, Greene AS, Shen X, Powell K, Vernetti A, O’Connor D, McPartland JC, Volkmar FR, Chun M, Chawarska K, Lake EM, Rosenberg MD, Satterthwaite T, Scheinost D, Finn E, Constable RT. What is the best brain state to predict autistic traits? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.24319457. [PMID: 39867399 PMCID: PMC11759253 DOI: 10.1101/2025.01.14.24319457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autism is a heterogeneous condition, and functional magnetic resonance imaging-based studies have advanced understanding of neurobiological correlates of autistic features. Nevertheless, little work has focused on the optimal brain states to reveal brain-phenotype relationships. In addition, there is a need to better understand the relevance of attentional abilities in mediating autistic features. Using connectome-based predictive modelling, we interrogate three datasets to determine scanning conditions that can boost prediction of clinically relevant phenotypes and assess generalizability. In dataset one, a sample of youth with autism and neurotypical participants, we find that a sustained attention task (the gradual onset continuous performance task) results in high prediction performance of autistic traits compared to a free-viewing social attention task and a resting-state condition. In dataset two, we observe the predictive network model of autistic traits generated from the sustained attention task generalizes to predict measures of attention in neurotypical adults. In dataset three, we show the same predictive network model of autistic traits from dataset one further generalizes to predict measures of social responsiveness in data from the Autism Brain Imaging Data Exchange. In sum, our data suggest that an in-scanner sustained attention challenge can help delineate robust markers of autistic traits and support the continued investigation of the optimal brain states under which to predict phenotypes in psychiatric conditions.
Collapse
Affiliation(s)
- Corey Horien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail S. Greene
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Kelly Powell
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - David O’Connor
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C. McPartland
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R. Volkmar
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Katarzyna Chawarska
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Monica D. Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Emily Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA
| | - R. Todd Constable
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Chen Q, Kenett YN, Cui Z, Takeuchi H, Fink A, Benedek M, Zeitlen DC, Zhuang K, Lloyd-Cox J, Kawashima R, Qiu J, Beaty RE. Dynamic switching between brain networks predicts creative ability. Commun Biol 2025; 8:54. [PMID: 39809882 PMCID: PMC11733278 DOI: 10.1038/s42003-025-07470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Creativity is hypothesized to arise from a mental state which balances spontaneous thought and cognitive control, corresponding to functional connectivity between the brain's Default Mode (DMN) and Executive Control (ECN) Networks. Here, we conduct a large-scale, multi-center examination of this hypothesis. Employing a meta-analytic network neuroscience approach, we analyze resting-state fMRI and creative task performance across 10 independent samples from Austria, Canada, China, Japan, and the United States (N = 2433)-constituting the largest and most ethnically diverse creativity neuroscience study to date. Using time-resolved network analysis, we investigate the relationship between creativity (i.e., divergent thinking ability) and dynamic switching between DMN and ECN. We find that creativity, but not general intelligence, can be reliably predicted by the number of DMN-ECN switches. Importantly, we identify an inverted-U relationship between creativity and the degree of balance between DMN-ECN switching, suggesting that optimal creative performance requires balanced brain network dynamics. Furthermore, an independent task-fMRI validation study (N = 31) demonstrates higher DMN-ECN switching during creative idea generation (compared to a control condition) and replicates the inverted-U relationship. Therefore, we provide robust evidence across multi-center datasets that creativity is tied to the capacity to dynamically switch between brain networks supporting spontaneous and controlled cognition.
Collapse
Affiliation(s)
- Qunlin Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Andreas Fink
- Department of Psychology, University of Graz, Graz, Austria
| | | | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kaixiang Zhuang
- IInstitute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - James Lloyd-Cox
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
10
|
Mooraj Z, Salami A, Campbell KL, Dahl MJ, Kosciessa JQ, Nassar MR, Werkle-Bergner M, Craik FIM, Lindenberger U, Mayr U, Rajah MN, Raz N, Nyberg L, Garrett DD. Toward a functional future for the cognitive neuroscience of human aging. Neuron 2025; 113:154-183. [PMID: 39788085 DOI: 10.1016/j.neuron.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age. Crucially, however, neither is able to capture brain activity representing specific cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into how aging affects real-time brain-behavior associations in any cognitive domain, from perception to higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first research framework that is built upon cognitive experimentation and emphasizes the importance of theory and longitudinal design.
Collapse
Affiliation(s)
- Zoya Mooraj
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Julian Q Kosciessa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, the Netherlands
| | - Matthew R Nassar
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - M Natasha Rajah
- Department of Psychiatry, McGill University Montreal, Montreal, QC H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| |
Collapse
|
11
|
Kang K, Seidlitz J, Bethlehem RAI, Xiong J, Jones MT, Mehta K, Keller AS, Tao R, Randolph A, Larsen B, Tervo-Clemmens B, Feczko E, Dominguez OM, Nelson SM, Schildcrout J, Fair DA, Satterthwaite TD, Alexander-Bloch A, Vandekar S. Study design features increase replicability in brain-wide association studies. Nature 2024; 636:719-727. [PMID: 39604734 PMCID: PMC11655360 DOI: 10.1038/s41586-024-08260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Brain-wide association studies (BWAS) are a fundamental tool in discovering brain-behaviour associations1,2. Several recent studies have shown that thousands of study participants are required for good replicability of BWAS1-3. Here we performed analyses and meta-analyses of a robust effect size index using 63 longitudinal and cross-sectional MRI studies from the Lifespan Brain Chart Consortium4 (77,695 total scans) to demonstrate that optimizing study design is critical for increasing standardized effect sizes and replicability in BWAS. A meta-analysis of brain volume associations with age indicates that BWAS with larger variability of the covariate and longitudinal studies have larger reported standardized effect size. Analysing age effects on global and regional brain measures from the UK Biobank and the Alzheimer's Disease Neuroimaging Initiative, we showed that modifying study design through sampling schemes improves standardized effect sizes and replicability. To ensure that our results are generalizable, we further evaluated the longitudinal sampling schemes on cognitive, psychopathology and demographic associations with structural and functional brain outcome measures in the Adolescent Brain and Cognitive Development dataset. We demonstrated that commonly used longitudinal models, which assume equal between-subject and within-subject changes can, counterintuitively, reduce standardized effect sizes and replicability. Explicitly modelling the between-subject and within-subject effects avoids conflating them and enables optimizing the standardized effect sizes for each separately. Together, these results provide guidance for study designs that improve the replicability of BWAS.
Collapse
Affiliation(s)
- Kaidi Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute of The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | | | - Jiangmei Xiong
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan T Jones
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kahini Mehta
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute of The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Department of Psychological Sciences, University of Connecticut, Mansfield, CT, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Mansfield, CT, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anita Randolph
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Bart Larsen
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Oscar Miranda Dominguez
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan Schildcrout
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute of The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute of The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions of language and executive function can survive across diverse real-world data: Dataset shifts in developmental populations. Dev Cogn Neurosci 2024; 70:101464. [PMID: 39447452 PMCID: PMC11538622 DOI: 10.1016/j.dcn.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Predictive modeling potentially increases the reproducibility and generalizability of neuroimaging brain-phenotype associations. Yet, the evaluation of a model in another dataset is underutilized. Among studies that undertake external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies (i.e., dataset shifts). Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized developmental samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. Through advanced methodological approaches, we demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features. Results indicate the potential of functional connectome-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of brain-phenotype associations in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Bioengineering, Northeastern University, Boston, MA 02120, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Hyde LW, Bezek JL, Michael C. The future of neuroscience in developmental psychopathology. Dev Psychopathol 2024; 36:2149-2164. [PMID: 38444150 DOI: 10.1017/s0954579424000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Developmental psychopathology started as an intersection of fields and is now a field itself. As we contemplate the future of this field, we consider the ways in which a newer, interdisciplinary field - human developmental neuroscience - can inform, and be informed by, developmental psychopathology. To do so, we outline principles of developmental psychopathology and how they are and/or can be implemented in developmental neuroscience. In turn, we highlight how the collaboration between these fields can lead to richer models and more impactful translation. In doing so, we describe the ways in which models from developmental psychopathology can enrich developmental neuroscience and future directions for developmental psychopathology.
Collapse
Affiliation(s)
- Luke W Hyde
- Department of Psychology, Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jessica L Bezek
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Chauvin RJ, Dosenbach NUF. Design tips for reproducible studies linking the brain to behaviour. Nature 2024; 636:581-583. [PMID: 39681642 DOI: 10.1038/d41586-024-03650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
15
|
Dall'Aglio L, Johanson SU, Mallard T, Lamballais S, Delaney S, Smoller JW, Muetzel RL, Tiemeier H. Psychiatric neuroimaging at a crossroads: Insights from psychiatric genetics. Dev Cogn Neurosci 2024; 70:101443. [PMID: 39500134 PMCID: PMC11570172 DOI: 10.1016/j.dcn.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024] Open
Abstract
Thanks to methodological advances, large-scale data collections, and longitudinal designs, psychiatric neuroimaging is better equipped than ever to identify the neurobiological underpinnings of youth mental health problems. However, the complexity of such endeavors has become increasingly evident, as the field has been confronted by limited clinical relevance, inconsistent results, and small effect sizes. Some of these challenges parallel those historically encountered by psychiatric genetics. In past genetic research, robust findings were historically undermined by oversimplified biological hypotheses, mistaken assumptions about expectable effect sizes, replication problems, confounding by population structure, and shared biological patterns across disorders. Overcoming these challenges has contributed to current successes in the field. Drawing parallels across psychiatric genetics and neuroimaging, we identify key shared challenges as well as pinpoint relevant insights that could be gained in psychiatric neuroimaging from the transition that occurred from the candidate gene to (post) genome-wide "eras" of psychiatric genetics. Finally, we discuss the prominent developmental component of psychiatric neuroimaging and how that might be informed by epidemiological and omics approaches. The evolution of psychiatric genetic research offers valuable insights that may expedite the resolution of key challenges in psychiatric neuroimaging, thus potentially moving our understanding of psychiatric pathophysiology forward.
Collapse
Affiliation(s)
- Lorenza Dall'Aglio
- Department of Child and Adolescent Psychology and Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Saúl Urbina Johanson
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Travis Mallard
- Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Scott Delaney
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Ryan L Muetzel
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Hardikar S, Mckeown B, Schaare HL, Wallace RS, Xu T, Lauckener ME, Valk SL, Margulies DS, Turnbull A, Bernhardt BC, Vos de Wael R, Villringer A, Smallwood J. Macro-scale patterns in functional connectivity associated with ongoing thought patterns and dispositional traits. eLife 2024; 13:RP93689. [PMID: 39565648 DOI: 10.7554/elife.93689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks - ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this 'tri-partite' view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.
Collapse
Affiliation(s)
- Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Bronte Mckeown
- Department of Psychology, Queen's University, Kingston, Canada
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | | | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Mark Edgar Lauckener
- Max Planck Research Group: Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Day Clinic of Cognitive Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Hardikar S, McKeown B, Turnbull A, Xu T, Valk SL, Bernhardt BC, Margulies DS, Milham MP, Jefferies E, Leech R, Villringer A, Smallwood J. Personality traits vary in their association with brain activity across situations. Commun Biol 2024; 7:1498. [PMID: 39533085 PMCID: PMC11557894 DOI: 10.1038/s42003-024-07061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Human cognition supports complex behaviour across a range of situations, and traits (e.g. personality) influence how we react in these different contexts. Although viewing traits as situationally grounded is common in social sciences, often studies attempting to link brain activity to human traits examine brain-trait associations in a single task, or, under passive conditions like wakeful rest. These studies, often referred to as brain wide association studies (BWAS) have recently become the subject of controversy because results are often unreliable even with large sample sizes. Although there are important statistical reasons why BWAS yield inconsistent results, we hypothesised that the situation in which brain activity is measured will impact the power in detecting a reliable link to specific traits. We performed a state-space analysis where tasks from the Human Connectome Project (HCP) were organized into a low-dimensional space based on how they activated different large-scale neural systems. We examined how individuals' observed brain activity across these different contexts related to their personality. We found that for multiple personality traits, stronger associations with brain activity emerge in some tasks than others. These data highlight the importance of context-bound views for understanding how brain activity links to trait variation in human behaviour.
Collapse
Affiliation(s)
- Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Max Planck School of Cognition, Stephanstrasse 1A, Leipzig, Germany.
- Department of Psychology, Queens University, Kingston, ON, Canada.
| | - Brontë McKeown
- Department of Psychology, Queens University, Kingston, ON, Canada
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Stephanstrasse 1A, Leipzig, Germany
- Day Clinic of Cognitive Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
18
|
Gotts SJ, Gilmore AW, Martin A. Harnessing slow event-related fMRI to investigate trial-level brain-behavior relationships during object identification. Front Hum Neurosci 2024; 18:1506661. [PMID: 39600471 PMCID: PMC11588689 DOI: 10.3389/fnhum.2024.1506661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Understanding brain-behavior relationships is the core goal of cognitive neuroscience. However, these relationships-especially those related to complex cognitive and psychopathological behaviors-have recently been shown to suffer from very small effect sizes (0.1 or less), requiring potentially thousands of participants to yield robust findings. Here, we focus on a much more optimistic case utilizing task-based fMRI and a multi-echo acquisition with trial-level brain-behavior associations measured within participant. In a visual object identification task for which the behavioral measure is response time (RT), we show that while trial-level associations between BOLD and RT can similarly suffer from weak effect sizes, converting these associations to their corresponding group-level effects can yield robust peak effect sizes (Cohen's d = 1.0 or larger). Multi-echo denoising (Multi-Echo ICA or ME-ICA) yields larger effects than optimally combined multi-echo with no denoising, which is in turn an improvement over standard single-echo acquisition. While estimating these brain-behavior relationships benefits from the inclusion of a large number of trials per participant, even a modest number of trials (20-30 or more) yields robust group-level effect sizes, with replicable effects obtainable with relatively standard sample sizes (N = 20-30 participants per sample).
Collapse
Affiliation(s)
- Stephen J. Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Adrian W. Gilmore
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Freund MC, Chen R, Chen G, Braver TS. Complementary benefits of multivariate and hierarchical models for identifying individual differences in cognitive control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591032. [PMID: 38712215 PMCID: PMC11071497 DOI: 10.1101/2024.04.24.591032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Understanding individual differences in cognitive control is a central goal in psychology and neuroscience. Reliably measuring these differences, however, has proven extremely challenging, at least when using standard measures in cognitive neuroscience such as response times or task-based fMRI activity. While prior work has pinpointed the source of the issue - the vast amount of cross-trial variability within these measures - solutions remain elusive. Here, we propose one potential way forward: an analytic framework that combines hierarchical Bayesian modeling with multivariate decoding of trial-level fMRI data. Using this framework and longitudinal data from the Dual Mechanisms of Cognitive Control project, we estimated individuals' neural responses associated with cognitive control within a color-word Stroop task, then assessed the reliability of these individuals' responses across a time interval of several months. We show that in many prefrontal and parietal brain regions, test-retest reliability was near maximal, and that only hierarchical models were able to reveal this state of affairs. Further, when compared to traditional univariate contrasts, multivariate decoding enabled individual-level correlations to be estimated with significantly greater precision. We specifically link these improvements in precision to the optimized suppression of cross-trial variability in decoding. Together, these findings not only indicate that cognitive control-related neural responses individuate people in a highly stable manner across time, but also suggest that integrating hierarchical and multivariate models provides a powerful approach for investigating individual differences in cognitive control, one that can effectively address the issue of high-variability measures.
Collapse
Affiliation(s)
- Michael C. Freund
- Department of Cognitive and Psychological Sciences, Brown University, St. Louis
| | - Ruiqi Chen
- Division of Biology and Biomedical Sciences, Washington University in St. Louis
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, USA
| | - Todd S. Braver
- Division of Biology and Biomedical Sciences, Washington University in St. Louis
- Department of Radiology, Washington University in St. Louis
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| |
Collapse
|
20
|
Makowski C, Nichols TE, Dale AM. Quality over quantity: powering neuroimaging samples in psychiatry. Neuropsychopharmacology 2024; 50:58-66. [PMID: 38902353 PMCID: PMC11525971 DOI: 10.1038/s41386-024-01893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging has been widely adopted in psychiatric research, with hopes that these non-invasive methods will provide important clues to the underpinnings and prediction of various mental health symptoms and outcomes. However, the translational impact of neuroimaging has not yet reached its promise, despite the plethora of computational methods, tools, and datasets at our disposal. Some have lamented that too many psychiatric neuroimaging studies have been underpowered with respect to sample size. In this review, we encourage this discourse to shift from a focus on sheer increases in sample size to more thoughtful choices surrounding experimental study designs. We propose considerations at multiple decision points throughout the study design, data modeling and analysis process that may help researchers working in psychiatric neuroimaging boost power for their research questions of interest without necessarily increasing sample size. We also provide suggestions for leveraging multiple datasets to inform each other and strengthen our confidence in the generalization of findings to both population-level and clinical samples. Through a greater emphasis on improving the quality of brain-based and clinical measures rather than merely quantity, meaningful and potentially translational clinical associations with neuroimaging measures can be achieved with more modest sample sizes in psychiatry.
Collapse
Affiliation(s)
- Carolina Makowski
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anders M Dale
- Departments of Radiology and Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Marek S, Laumann TO. Replicability and generalizability in population psychiatric neuroimaging. Neuropsychopharmacology 2024; 50:52-57. [PMID: 39215207 PMCID: PMC11526127 DOI: 10.1038/s41386-024-01960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Studies linking mental health with brain function in cross-sectional population-based association studies have historically relied on small, underpowered samples. Given the small effect sizes typical of such brain-wide associations, studies require samples into the thousands to achieve the statistical power necessary for replicability. Here, we detail how small sample sizes have hampered replicability and provide sample size targets given established association strength benchmarks. Critically, while replicability will improve with larger samples, it is not guaranteed that observed effects will meaningfully apply to target populations of interest (i.e., be generalizable). We discuss important considerations related to generalizability in psychiatric neuroimaging and provide an example of generalizability failure due to "shortcut learning" in brain-based predictions of mental health phenotypes. Shortcut learning is a phenomenon whereby machine learning models learn an association between the brain and an unmeasured construct (the shortcut), rather than the intended target of mental health. Given the complex nature of brain-behavior interactions, the future of epidemiological approaches to brain-based studies of mental health will require large, diverse samples with comprehensive assessment.
Collapse
Affiliation(s)
- Scott Marek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Neuroimaging Labs Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- AI Institute for Health, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Neuroimaging Labs Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Prompiengchai S, Dunlop K. Breakthroughs and challenges for generating brain network-based biomarkers of treatment response in depression. Neuropsychopharmacology 2024; 50:230-245. [PMID: 38951585 PMCID: PMC11525717 DOI: 10.1038/s41386-024-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Treatment outcomes widely vary for individuals diagnosed with major depressive disorder, implicating a need for deeper understanding of the biological mechanisms conferring a greater likelihood of response to a particular treatment. Our improved understanding of intrinsic brain networks underlying depression psychopathology via magnetic resonance imaging and other neuroimaging modalities has helped reveal novel and potentially clinically meaningful biological markers of response. And while we have made considerable progress in identifying such biomarkers over the last decade, particularly with larger, multisite trials, there are significant methodological and practical obstacles that need to be overcome to translate these markers into the clinic. The aim of this review is to review current literature on brain network structural and functional biomarkers of treatment response or selection in depression, with a specific focus on recent large, multisite trials reporting predictive accuracy of candidate biomarkers. Regarding pharmaco- and psychotherapy, we discuss candidate biomarkers, reporting that while we have identified candidate biomarkers of response to a single intervention, we need more trials that distinguish biomarkers between first-line treatments. Further, we discuss the ways prognostic neuroimaging may help to improve treatment outcomes to neuromodulation-based therapies, such as transcranial magnetic stimulation and deep brain stimulation. Lastly, we highlight obstacles and technical developments that may help to address the knowledge gaps in this area of research. Ultimately, integrating neuroimaging-derived biomarkers into clinical practice holds promise for enhancing treatment outcomes and advancing precision psychiatry strategies for depression management. By elucidating the neural predictors of treatment response and selection, we can move towards more individualized and effective depression interventions, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
| | - Katharine Dunlop
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada.
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Kupers ER, Knapen T, Merriam EP, Kay KN. Principles of intensive human neuroimaging. Trends Neurosci 2024; 47:856-864. [PMID: 39455343 PMCID: PMC11563852 DOI: 10.1016/j.tins.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.
Collapse
Affiliation(s)
- Eline R Kupers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, the Netherlands; Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
24
|
Ramduny J, Kelly C. Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction. Neuropsychopharmacology 2024; 50:114-123. [PMID: 39147868 PMCID: PMC11525788 DOI: 10.1038/s41386-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the "functional connectome" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Gell M, Noble S, Laumann TO, Nelson SM, Tervo-Clemmens B. Psychiatric neuroimaging designs for individualised, cohort, and population studies. Neuropsychopharmacology 2024; 50:29-36. [PMID: 39143320 PMCID: PMC11525483 DOI: 10.1038/s41386-024-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024]
Abstract
Psychiatric neuroimaging faces challenges to rigour and reproducibility that prompt reconsideration of the relative strengths and limitations of study designs. Owing to high resource demands and varying inferential goals, current designs differentially emphasise sample size, measurement breadth, and longitudinal assessments. In this overview and perspective, we provide a guide to the current landscape of psychiatric neuroimaging study designs with respect to this balance of scientific goals and resource constraints. Through a heuristic data cube contrasting key design features, we discuss a resulting trade-off among small sample, precision longitudinal studies (e.g., individualised studies and cohorts) and large sample, minimally longitudinal, population studies. Precision studies support tests of within-person mechanisms, via intervention and tracking of longitudinal course. Population studies support tests of generalisation across multifaceted individual differences. A proposed reciprocal validation model (RVM) aims to recursively leverage these complementary designs in sequence to accumulate evidence, optimise relative strengths, and build towards improved long-term clinical utility.
Collapse
Affiliation(s)
- Martin Gell
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Stephanie Noble
- Psychology Department, Northeastern University, Boston, MA, USA
- Bioengineering Department, Northeastern University, Boston, MA, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Knyazev GG, Savostyanov AN, Bocharov AV, Saprigyn AE, Levin EA. Investigating the properties of fMRI-based signature of recognizing one's own face. Biol Psychol 2024; 193:108960. [PMID: 39647600 DOI: 10.1016/j.biopsycho.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Multivariate pattern analysis has revolutionized the field of neuroimaging. Many hope it will help elucidate how mental states are encoded in brain activity, though others caution that such optimism may be premature. In this study, we sought to identify an fMRI-based signature of a relatively simple but basic feeling of recognizing one's own face (SFRS), and to examine its properties. The fMRI data were acquired while participants attempted to recognize themselves in images of morphed faces. A series of binary classifications ('self' vs. 'not self') showed that the localization of most prognostic areas is consistent with published results based on univariate analysis. SFRS response classified between 'self' and 'not self' with 100 % accuracy and could accurately predict the morphing stages of presented face images. Mediation analyses showed that SFRS response acted as a mediator between the proportions of self in images and the decision to accept a given image as self. The relative insensitivity of SFRS to spatial smoothing and comparable predictive performance of a small subset of randomly selected voxels allow us to conclude that the information necessary to distinguish between the two mental states must be derived from the whole brain, and that this information is spatially smooth.
Collapse
Affiliation(s)
- G G Knyazev
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
| | - A N Savostyanov
- Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - A V Bocharov
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - A E Saprigyn
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - E A Levin
- Meshalkin National Medical Research Center, Russia
| |
Collapse
|
27
|
Libedinsky I, Helwegen K, Boonstra J, Simón LG, Gruber M, Repple J, Kircher T, Dannlowski U, van den Heuvel MP. Polyconnectomic Scoring of Functional Connectivity Patterns Across Eight Neuropsychiatric and Three Neurodegenerative Disorders. Biol Psychiatry 2024:S0006-3223(24)01665-2. [PMID: 39424166 DOI: 10.1016/j.biopsych.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Neuropsychiatric and neurodegenerative disorders involve diverse changes in brain functional connectivity. As an alternative to approaches that search for specific mosaic patterns of affected connections and networks, we used polyconnectomic scoring to quantify disorder-related whole-brain connectivity signatures into interpretable, personalized scores. METHODS The polyconnectomic score (PCS) measures the extent to which an individual's functional connectivity mirrors the whole-brain circuitry characteristics of a trait. We computed PCSs for 8 neuropsychiatric conditions (attention-deficit/hyperactivity disorder, anxiety-related disorders, autism spectrum disorder, obsessive-compulsive disorder, bipolar disorder, major depressive disorder, schizoaffective disorder, and schizophrenia) and 3 neurodegenerative conditions (Alzheimer's disease, frontotemporal dementia, and Parkinson's disease) across 22 datasets with resting-state functional magnetic resonance imaging data from 10,667 individuals (5325 patients, 5342 control participants). We also examined PCSs in 26,673 individuals from the population-based UK Biobank cohort. RESULTS PCSs were consistently higher in out-of-sample patients across 6 of the 8 neuropsychiatric and across all 3 investigated neurodegenerative disorders ([minimum, maximum]: area under the receiver operating characteristic curve = [0.55, 0.73], false discovery rate-corrected p [pFDR] = [1.8 × 10-16, 4.5 × 10-2]). Individuals with elevated PCS levels for neuropsychiatric conditions exhibited higher neuroticism (pFDR < 9.7 × 10-5), lower cognitive performance (pFDR < 5.3 × 10-5), and lower general well-being (pFDR < 9.7 × 10-4). CONCLUSIONS Our findings reveal generalizable whole-brain connectivity alterations in brain disorders. Polyconnectomic scoring effectively aggregates disorder-related signatures across the entire brain into an interpretable, participant-specific metric. A toolbox is provided for PCS computation.
Collapse
Affiliation(s)
- Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jackson Boonstra
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laura Guerrero Simón
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Preller KH, Scholpp J, Wunder A, Rosenbrock H. Neuroimaging Biomarkers for Drug Discovery and Development in Schizophrenia. Biol Psychiatry 2024; 96:666-673. [PMID: 38272287 DOI: 10.1016/j.biopsych.2024.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Schizophrenia is a chronic mental illness that affects up to 1% of the population. While efficacious therapies are available for positive symptoms, effective treatment of cognitive and negative symptoms remains an unmet need after decades of research. New developments in the field of neuroimaging are accelerating our knowledge gain regarding the underlying pathophysiology of symptoms in schizophrenia and psychosis spectrum disorders, inspiring new targets for drug development. However, no validated and qualified biomarkers are currently available to support the development of new therapeutics. This review summarizes the current use of neuroimaging technology in clinical drug development for psychotic disorders. As exemplified by drug development programs that target NMDA receptor hypofunction, neuroimaging results play a critical role in target discovery and establishing target engagement and dose selection. Furthermore, pharmacological neuroimaging may provide response biomarkers that allow for early decision making in proof-of-concept studies that leverage pharmacological challenge models in healthy volunteers. That said, while response and predictive biomarkers are starting to be evaluated in patient populations, they continue to play a limited role. Novel approaches to neuroimaging data acquisition and analysis may aid the establishment of biomarkers that are predictive at the individual level in the future. Nevertheless, various gaps in knowledge need to be addressed and biomarkers need to be validated to establish them as "fit for purpose" in drug development.
Collapse
Affiliation(s)
- Katrin H Preller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany; Boehringer Ingelheim (Schweiz) GmbH, Basel, Switzerland.
| | - Joachim Scholpp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas Wunder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Holger Rosenbrock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
29
|
Rosenblatt M, Tejavibulya L, Sun H, Camp CC, Khaitova M, Adkinson BD, Jiang R, Westwater ML, Noble S, Scheinost D. Power and reproducibility in the external validation of brain-phenotype predictions. Nat Hum Behav 2024; 8:2018-2033. [PMID: 39085406 DOI: 10.1038/s41562-024-01931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024]
Abstract
Brain-phenotype predictive models seek to identify reproducible and generalizable brain-phenotype associations. External validation, or the evaluation of a model in external datasets, is the gold standard in evaluating the generalizability of models in neuroimaging. Unlike typical studies, external validation involves two sample sizes: the training and the external sample sizes. Thus, traditional power calculations may not be appropriate. Here we ran over 900 million resampling-based simulations in functional and structural connectivity data to investigate the relationship between training sample size, external sample size, phenotype effect size, theoretical power and simulated power. Our analysis included a wide range of datasets: the Healthy Brain Network, the Adolescent Brain Cognitive Development Study, the Human Connectome Project (Development and Young Adult), the Philadelphia Neurodevelopmental Cohort, the Queensland Twin Adolescent Brain Project, and the Chinese Human Connectome Project; and phenotypes: age, body mass index, matrix reasoning, working memory, attention problems, anxiety/depression symptoms and relational processing. High effect size predictions achieved adequate power with training and external sample sizes of a few hundred individuals, whereas low and medium effect size predictions required hundreds to thousands of training and external samples. In addition, most previous external validation studies used sample sizes prone to low power, and theoretical power curves should be adjusted for the training sample size. Furthermore, model performance in internal validation often informed subsequent external validation performance (Pearson's r difference <0.2), particularly for well-harmonized datasets. These results could help decide how to power future external validation studies.
Collapse
Affiliation(s)
- Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chris C Camp
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Milana Khaitova
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Margaret L Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Dunlop K, Grosenick L, Downar J, Vila-Rodriguez F, Gunning FM, Daskalakis ZJ, Blumberger DM, Liston C. Dimensional and Categorical Solutions to Parsing Depression Heterogeneity in a Large Single-Site Sample. Biol Psychiatry 2024; 96:422-434. [PMID: 38280408 DOI: 10.1016/j.biopsych.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Recent studies have reported significant advances in modeling the biological basis of heterogeneity in major depressive disorder, but investigators have also identified important technical challenges, including scanner-related artifacts, a propensity for multivariate models to overfit, and a need for larger samples with more extensive clinical phenotyping. The goals of the current study were to evaluate dimensional and categorical solutions to parsing heterogeneity in depression that are stable and generalizable in a large, single-site sample. METHODS We used regularized canonical correlation analysis to identify data-driven brain-behavior dimensions that explain individual differences in depression symptom domains in a large, single-site dataset comprising clinical assessments and resting-state functional magnetic resonance imaging data for 328 patients with major depressive disorder and 461 healthy control participants. We examined the stability of clinical loadings and model performance in held-out data. Finally, hierarchical clustering on these dimensions was used to identify categorical depression subtypes. RESULTS The optimal regularized canonical correlation analysis model yielded 3 robust and generalizable brain-behavior dimensions that explained individual differences in depressed mood and anxiety, anhedonia, and insomnia. Hierarchical clustering identified 4 depression subtypes, each with distinct clinical symptom profiles, abnormal resting-state functional connectivity patterns, and antidepressant responsiveness to repetitive transcranial magnetic stimulation. CONCLUSIONS Our results define dimensional and categorical solutions to parsing neurobiological heterogeneity in major depressive disorder that are stable, generalizable, and capable of predicting treatment outcomes, each with distinct advantages in different contexts. They also provide additional evidence that regularized canonical correlation analysis and hierarchical clustering are effective tools for investigating associations between functional connectivity and clinical symptoms.
Collapse
Affiliation(s)
- Katharine Dunlop
- Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faith M Gunning
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Weill Cornell Medicine, New York, New York; Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, New York; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
31
|
Grogans SE, Hur J, Barstead MG, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Fox AS, Smith JF, DeYoung KA, Shackman AJ. Neuroticism/Negative Emotionality Is Associated with Increased Reactivity to Uncertain Threat in the Bed Nucleus of the Stria Terminalis, Not the Amygdala. J Neurosci 2024; 44:e1868232024. [PMID: 39009438 PMCID: PMC11308352 DOI: 10.1523/jneurosci.1868-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Neuroticism/negative emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and well-being. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment to psychiatric illness. Animal research suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to humans has remained unclear. Here we used a novel combination of psychometric, psychophysiological, and neuroimaging approaches to test this hypothesis in an ethnoracially diverse, sex-balanced sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is preferentially associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat (aversive multimodal stimulation), whereas N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to threat-related faces. It is often assumed that different threat paradigms are interchangeable assays of individual differences in brain function, yet this has rarely been tested. Our results revealed negligible associations between BST/Ce reactivity to the anticipation of threat and the presentation of threat-related faces, indicating that the two tasks are nonfungible. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for refining mechanistic research.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Allegra S Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee 37240
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478
| | | | - Andrew S Fox
- Department of Psychology, University of California, Davis, California 95616
- California National Primate Research Center, University of California, Davis, California 95616
| | - Jason F Smith
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Kathryn A DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
32
|
Rutherford S, Lasagna CA, Blain SD, Marquand AF, Wolfers T, Tso IF. Social Cognition and Functional Connectivity in Early and Chronic Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00212-X. [PMID: 39117275 DOI: 10.1016/j.bpsc.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Individuals with schizophrenia (SZ) experience impairments in social cognition that contribute to poor functional outcomes. However, mechanisms of social cognitive dysfunction in SZ remain poorly understood, which impedes the design of novel interventions to improve outcomes. In this preregistered project, we examined the representation of social cognition in the brain's functional architecture in early and chronic SZ. METHODS The study contains 2 parts: a confirmatory and an exploratory portion. In the confirmatory portion, we identified resting-state connectivity disruptions evident in early and chronic SZ. We performed a connectivity analysis using regions associated with social cognitive dysfunction in early and chronic SZ to test whether aberrant connectivity observed in chronic SZ (n = 47 chronic SZ and n = 52 healthy control participants) was also present in early SZ (n = 71 early SZ and n = 47 healthy control participants). In the exploratory portion, we assessed the out-of-sample generalizability and precision of predictive models of social cognition. We used machine learning to predict social cognition and established generalizability with out-of-sample testing and confound control. RESULTS Results revealed decreases between the left inferior frontal gyrus and the intraparietal sulcus in early and chronic SZ, which were significantly associated with social and general cognition and global functioning in chronic SZ and with general cognition and global functioning in early SZ. Predictive modeling revealed the importance of out-of-sample evaluation and confound control. CONCLUSIONS This work provides insights into the functional architecture in early and chronic SZ and suggests that inferior frontal gyrus-intraparietal sulcus connectivity could be a prognostic biomarker of social impairments and a target for future interventions (e.g., neuromodulation) focused on improved social functioning.
Collapse
Affiliation(s)
- Saige Rutherford
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Cognition, Brain, Behavior, Nijmegen, the Netherlands; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.
| | - Carly A Lasagna
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Scott D Blain
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| | - Andre F Marquand
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Cognition, Brain, Behavior, Nijmegen, the Netherlands
| | - Thomas Wolfers
- Department of Psychiatry, University of Tübingen, Tübingen, Germany; German Centre for Mental Health, University of Tübingen, Tübingen, Germany
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Tenekedjieva LT, McCalley DM, Goldstein-Piekarski AN, Williams LM, Padula CB. Transdiagnostic Mood, Anxiety, and Trauma Symptom Factors in Alcohol Use Disorder: Neural Correlates Across 3 Brain Networks. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:837-845. [PMID: 38432622 DOI: 10.1016/j.bpsc.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is associated with high rates of trauma, mood, and anxiety disorders. Across these diagnoses, individual symptoms substantially overlap, highlighting the need for a transdiagnostic approach. Furthermore, there is limited research on how transdiagnostic psychopathology impacts the neural correlates of AUD. Thus, we aimed to identify symptom factors spanning diagnoses and examine how they relate to the neurocircuitry of addiction. METHODS Eighty-six veterans with AUD completed self-report measures and reward, incentive salience, and cognitive control functional magnetic resonance imaging tasks. Factor analysis was performed on self-reported trauma, depression, anxiety, and stress symptoms to obtain transdiagnostic symptom compositions. Neural correlates of a priori-defined regions of interest in the 3 networks were assessed. Independent sample t tests were used to compare the same nodes by DSM-5 diagnosis. RESULTS Four symptom factors were identified: Trauma distress, Negative affect, Hyperarousal, and Somatic anxiety. Trauma distress score was associated with increased cognitive control activity during response inhibition (dorsal anterior cingulate cortex). Negative affect was related to lower activation in reward regions (right caudate) but higher activation in cognitive control regions during response inhibition (left dorsolateral prefrontal cortex). Hyperarousal was related to lower reward activity during monetary reward anticipation (left caudate, right caudate). Somatic anxiety was not significantly associated with brain activation. No difference in neural activity was found by posttraumatic stress disorder, major depressive disorder, or generalized anxiety disorder diagnosis. CONCLUSIONS These hypothesis-generating findings offer transdiagnostic symptom factors that are differentially associated with neural function and could guide us toward a brain-based classification of psychiatric dysfunction in AUD. Results warrant further investigation of transdiagnostic approaches in addiction.
Collapse
Affiliation(s)
- Lea-Tereza Tenekedjieva
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California.
| | - Daniel M McCalley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California
| | - Claudia B Padula
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
34
|
Botvinik-Nezer R, Petre B, Ceko M, Lindquist MA, Friedman NP, Wager TD. Placebo treatment affects brain systems related to affective and cognitive processes, but not nociceptive pain. Nat Commun 2024; 15:6017. [PMID: 39019888 PMCID: PMC11255344 DOI: 10.1038/s41467-024-50103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Drug treatments for pain often do not outperform placebo, and a better understanding of placebo mechanisms is needed to improve treatment development and clinical practice. In a large-scale fMRI study (N = 392) with pre-registered analyses, we tested whether placebo analgesic treatment modulates nociceptive processes, and whether its effects generalize from conditioned to unconditioned pain modalities. Placebo treatment caused robust analgesia in conditioned thermal pain that generalized to unconditioned mechanical pain. However, placebo did not decrease pain-related fMRI activity in brain measures linked to nociceptive pain, including the Neurologic Pain Signature (NPS) and spinothalamic pathway regions, with strong support for null effects in Bayes Factor analyses. In addition, surprisingly, placebo increased activity in some spinothalamic regions for unconditioned mechanical pain. In contrast, placebo reduced activity in a neuromarker associated with higher-level contributions to pain, the Stimulus Intensity Independent Pain Signature (SIIPS), and affected activity in brain regions related to motivation and value, in both pain modalities. Individual differences in behavioral analgesia were correlated with neural changes in both modalities. Our results indicate that cognitive and affective processes primarily drive placebo analgesia, and show the potential of neuromarkers for separating treatment influences on nociception from influences on evaluative processes.
Collapse
Affiliation(s)
- Rotem Botvinik-Nezer
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Bogdan Petre
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Marta Ceko
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
35
|
Kincses B, Forkmann K, Schlitt F, Jan Pawlik R, Schmidt K, Timmann D, Elsenbruch S, Wiech K, Bingel U, Spisak T. An externally validated resting-state brain connectivity signature of pain-related learning. Commun Biol 2024; 7:875. [PMID: 39020002 PMCID: PMC11255216 DOI: 10.1038/s42003-024-06574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Pain can be conceptualized as a precision signal for reinforcement learning in the brain and alterations in these processes are a hallmark of chronic pain conditions. Investigating individual differences in pain-related learning therefore holds important clinical and translational relevance. Here, we developed and externally validated a novel resting-state brain connectivity-based predictive model of pain-related learning. The pre-registered external validation indicates that the proposed model explains 8-12% of the inter-individual variance in pain-related learning. Model predictions are driven by connections of the amygdala, posterior insula, sensorimotor, frontoparietal, and cerebellar regions, outlining a network commonly described in aversive learning and pain. We propose the resulting model as a robust and highly accessible biomarker candidate for clinical and translational pain research, with promising implications for personalized treatment approaches and with a high potential to advance our understanding of the neural mechanisms of pain-related learning.
Collapse
Affiliation(s)
- Balint Kincses
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany.
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany.
| | - Katarina Forkmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Frederik Schlitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Robert Jan Pawlik
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Tamas Spisak
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
| |
Collapse
|
36
|
Constant-Varlet C, Nakai T, Prado J. Intergenerational transmission of brain structure and function in humans: a narrative review of designs, methods, and findings. Brain Struct Funct 2024; 229:1327-1348. [PMID: 38710874 DOI: 10.1007/s00429-024-02804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Children often show cognitive and affective traits that are similar to their parents. Although this indicates a transmission of phenotypes from parents to children, little is known about the neural underpinnings of that transmission. Here, we provide a general overview of neuroimaging studies that explore the similarity between parents and children in terms of brain structure and function. We notably discuss the aims, designs, and methods of these so-called intergenerational neuroimaging studies, focusing on two main designs: the parent-child design and the multigenerational design. For each design, we also summarize the major findings, identify the sources of variability between studies, and highlight some limitations and future directions. We argue that the lack of consensus in defining the parent-child transmission of brain structure and function leads to measurement heterogeneity, which is a challenge for future studies. Additionally, multigenerational studies often use measures of family resemblance to estimate the proportion of variance attributed to genetic versus environmental factors, though this estimate is likely inflated given the frequent lack of control for shared environment. Nonetheless, intergenerational neuroimaging studies may still have both clinical and theoretical relevance, not because they currently inform about the etiology of neuromarkers, but rather because they may help identify neuromarkers and test hypotheses about neuromarkers coming from more standard neuroimaging designs.
Collapse
Affiliation(s)
- Charlotte Constant-Varlet
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France.
| | - Tomoya Nakai
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France
- Araya Inc., Tokyo, Japan
| | - Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France.
| |
Collapse
|
37
|
Kang K, Seidlitz J, Bethlehem RA, Xiong J, Jones MT, Mehta K, Keller AS, Tao R, Randolph A, Larsen B, Tervo-Clemmens B, Feczko E, Miranda Dominguez O, Nelson S, Schildcrout J, Fair D, Satterthwaite TD, Alexander-Bloch A, Vandekar S. Study design features increase replicability in cross-sectional and longitudinal brain-wide association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.29.542742. [PMID: 37398345 PMCID: PMC10312450 DOI: 10.1101/2023.05.29.542742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Brain-wide association studies (BWAS) are a fundamental tool in discovering brain-behavior associations. Several recent studies showed that thousands of study participants are required for good replicability of BWAS because the standardized effect sizes (ESs) are much smaller than the reported standardized ESs in smaller studies. Here, we perform analyses and meta-analyses of a robust effect size index using 63 longitudinal and cross-sectional magnetic resonance imaging studies from the Lifespan Brain Chart Consortium (77,695 total scans) to demonstrate that optimizing study design is critical for increasing standardized ESs and replicability in BWAS. A meta-analysis of brain volume associations with age indicates that BWAS with larger variability in covariate have larger reported standardized ES. In addition, the longitudinal studies we examined reported systematically larger standardized ES than cross-sectional studies. Analyzing age effects on global and regional brain measures from the United Kingdom Biobank and the Alzheimer's Disease Neuroimaging Initiative, we show that modifying longitudinal study design through sampling schemes improves the standardized ESs and replicability. Sampling schemes that improve standardized ESs and replicability include increasing between-subject age variability in the sample and adding a single additional longitudinal measurement per subject. To ensure that our results are generalizable, we further evaluate these longitudinal sampling schemes on cognitive, psychopathology, and demographic associations with structural and functional brain outcome measures in the Adolescent Brain and Cognitive Development dataset. We demonstrate that commonly used longitudinal models can, counterintuitively, reduce standardized ESs and replicability. The benefit of conducting longitudinal studies depends on the strengths of the between- versus within-subject associations of the brain and non-brain measures. Explicitly modeling between- versus within-subject effects avoids averaging the effects and allows optimizing the standardized ESs for each separately. Together, these results provide guidance for study designs that improve the replicability of BWAS.
Collapse
Affiliation(s)
- Kaidi Kang
- Department of Biostatistics, Vanderbilt University Medical Center
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
- Lifespan Brain Institute of The Children’s Hospital of Philadelphia and Penn Medicine
| | | | - Jiangmei Xiong
- Department of Biostatistics, Vanderbilt University Medical Center
| | - Megan T. Jones
- Department of Biostatistics, Vanderbilt University Medical Center
| | - Kahini Mehta
- Department of Psychiatry, University of Pennsylvania
- Lifespan Brain Institute of The Children’s Hospital of Philadelphia and Penn Medicine
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania
| | - Arielle S. Keller
- Department of Psychiatry, University of Pennsylvania
- Lifespan Brain Institute of The Children’s Hospital of Philadelphia and Penn Medicine
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center
| | - Anita Randolph
- Department of Pediatrics, University of Minnesota Medical School
| | - Bart Larsen
- Department of Pediatrics, University of Minnesota Medical School
| | - Brenden Tervo-Clemmens
- Department of Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota Medical School
| | | | - Steve Nelson
- Department of Pediatrics, University of Minnesota Medical School
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Damien Fair
- Department of Pediatrics, University of Minnesota Medical School
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania
- Lifespan Brain Institute of The Children’s Hospital of Philadelphia and Penn Medicine
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
- Lifespan Brain Institute of The Children’s Hospital of Philadelphia and Penn Medicine
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center
| |
Collapse
|
38
|
Makowski C, Brown TT, Zhao W, Hagler Jr DJ, Parekh P, Garavan H, Nichols TE, Jernigan TL, Dale AM. Leveraging the adolescent brain cognitive development study to improve behavioral prediction from neuroimaging in smaller replication samples. Cereb Cortex 2024; 34:bhae223. [PMID: 38880786 PMCID: PMC11180541 DOI: 10.1093/cercor/bhae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional magnetic resonance imaging (MRI). We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM Study to inform the replication sample size required with univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~ 100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100 subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many research programs and grants.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Timothy T Brown
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| | - Weiqi Zhao
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Donald J Hagler Jr
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| |
Collapse
|
39
|
Harp NR, Wager TD, Kober H. Neuromarkers in addiction: definitions, development strategies, and recent advances. J Neural Transm (Vienna) 2024; 131:509-523. [PMID: 38630190 DOI: 10.1007/s00702-024-02766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Substance use disorders (SUDs) are the most costly and prevalent psychiatric conditions. Recent calls emphasize a need for biomarkers-measurable, stable indicators of normal and abnormal processes and response to treatment or environmental agents-and, in particular, brain-based neuromarkers that will advance understanding of the neurobiological basis of SUDs and clinical practice. To develop neuromarkers, researchers must be grounded in evidence that a putative marker (i) is sensitive and specific to the psychological phenomenon of interest, (ii) constitutes a predictive model, and (iii) generalizes to novel observations (e.g., through internal cross-validation and external application to novel data). These neuromarkers may be used to index risk of developing SUDs (susceptibility), classify individuals with SUDs (diagnostic), assess risk for progression to more severe pathology (prognostic) or index current severity of pathology (monitoring), detect response to treatment (response), and predict individualized treatment outcomes (predictive). Here, we outline guidelines for developing and assessing neuromarkers, we then review recent advances toward neuromarkers in addiction neuroscience centering our discussion around neuromarkers of craving-a core feature of SUDs. In doing so, we specifically focus on the Neurobiological Craving Signature (NCS), which show great promise for meeting the demand of neuromarkers.
Collapse
Affiliation(s)
- Nicholas R Harp
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tor D Wager
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
40
|
Kim N, Kim MJ, Strauman TJ, Hariri AR. Intrinsic functional connectivity of motor and heteromodal association cortex predicts individual differences in regulatory focus. PNAS NEXUS 2024; 3:pgae167. [PMID: 38711811 PMCID: PMC11071117 DOI: 10.1093/pnasnexus/pgae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Regulatory focus theory (RFT) describes two cognitive-motivational systems for goal pursuit-the promotion and prevention systems-important for self-regulation and previously implicated in vulnerability to psychopathology. According to RFT, the promotion system is engaged in attaining ideal goals (e.g. hopes and dreams), whereas the prevention system is associated with accomplishing ought goals (e.g. duties and obligations). Prior task-based functional magnetic resonance imaging (fMRI) studies have mostly explored the mapping of these two systems onto the activity of a priori brain regions supporting motivation and executive control in both healthy and depressed adults. However, complex behavioral processes such as those guided by individual differences in regulatory focus are likely supported by widely distributed patterns of intrinsic functional connectivity. We used data-driven connectome-based predictive modeling to identify patterns of distributed whole-brain intrinsic network connectivity associated with individual differences in promotion and prevention system orientation in 1,307 young university volunteers. Our analyses produced a network model predictive of prevention but not promotion orientation, specifically the subjective experience of successful goal pursuit using prevention strategies. The predictive model of prevention success was highlighted by decreased intrinsic functional connectivity of both heteromodal association cortices in the parietal and limbic networks and the primary motor cortex. We discuss these findings in the context of strategic inaction, which drives individuals with a strong dispositional prevention orientation to inhibit their behavioral tendencies in order to shield the self from potential losses, thus maintaining the safety of the status quo but also leading to trade-offs in goal pursuit success.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Psychology, Sungkyunkwan University, Seoul 03063, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, South Korea
| | - M Justin Kim
- Department of Psychology, Sungkyunkwan University, Seoul 03063, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, South Korea
| | - Timothy J Strauman
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
41
|
Dafflon J, Moraczewski D, Earl E, Nielson DM, Loewinger G, McClure P, Thomas AG, Pereira F. Reliability and predictability of phenotype information from functional connectivity in large imaging datasets. ARXIV 2024:arXiv:2405.00255v1. [PMID: 38745697 PMCID: PMC11092871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
One of the central objectives of contemporary neuroimaging research is to create predictive models that can disentangle the connection between patterns of functional connectivity across the entire brain and various behavioral traits. Previous studies have shown that models trained to predict behavioral features from the individual's functional connectivity have modest to poor performance. In this study, we trained models that predict observable individual traits (phenotypes) and their corresponding singular value decomposition (SVD) representations - herein referred to as latent phenotypes from resting state functional connectivity. For this task, we predicted phenotypes in two large neuroimaging datasets: the Human Connectome Project (HCP) and the Philadelphia Neurodevelopmental Cohort (PNC). We illustrate the importance of regressing out confounds, which could significantly influence phenotype prediction. Our findings reveal that both phenotypes and their corresponding latent phenotypes yield similar predictive performance. Interestingly, only the first five latent phenotypes were reliably identified, and using just these reliable phenotypes for predicting phenotypes yielded a similar performance to using all latent phenotypes. This suggests that the predictable information is present in the first latent phenotypes, allowing the remainder to be filtered out without any harm in performance. This study sheds light on the intricate relationship between functional connectivity and the predictability and reliability of phenotypic information, with potential implications for enhancing predictive modeling in the realm of neuroimaging research.
Collapse
Affiliation(s)
- Jessica Dafflon
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Dustin Moraczewski
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Dylan M Nielson
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Gabriel Loewinger
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Adam G Thomas
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Francisco Pereira
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Madar A, Kurtz-David V, Hakim A, Levy DJ, Tavor I. Pre-acquired Functional Connectivity Predicts Choice Inconsistency. J Neurosci 2024; 44:e0453232024. [PMID: 38508713 PMCID: PMC11063819 DOI: 10.1523/jneurosci.0453-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Economic choice theories usually assume that humans maximize utility in their choices. However, studies have shown that humans make inconsistent choices, leading to suboptimal behavior, even without context-dependent manipulations. Previous studies showed that activation in value and motor networks are associated with inconsistent choices at the moment of choice. Here, we investigated if the neural predispositions, measured before a choice task, can predict choice inconsistency in a later risky choice task. Using functional connectivity (FC) measures from resting-state functional magnetic resonance imaging (rsfMRI), derived before any choice was made, we aimed to predict subjects' inconsistency levels in a later-performed choice task. We hypothesized that rsfMRI FC measures extracted from value and motor brain areas would predict inconsistency. Forty subjects (21 females) completed a rsfMRI scan before performing a risky choice task. We compared models that were trained on FC that included only hypothesized value and motor regions with models trained on whole-brain FC. We found that both model types significantly predicted inconsistency levels. Moreover, even the whole-brain models relied mostly on FC between value and motor areas. For external validation, we used a neural network pretrained on FC matrices of 37,000 subjects and fine-tuned it on our data and again showed significant predictions. Together, this shows that the tendency for choice inconsistency is predicted by predispositions of the nervous system and that synchrony between the motor and value networks plays a crucial role in this tendency.
Collapse
Affiliation(s)
- Asaf Madar
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vered Kurtz-David
- Coller School of Management, Tel Aviv University, Tel Aviv 69978, Israel
- Grossman School of Medicine, New York University, New York, New York 10016
| | - Adam Hakim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dino J Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Coller School of Management, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Abuwarda H, Trainer A, Horien C, Shen X, Ju S, Constable RT, Fredericks C. Whole-brain functional connectivity predicts groupwise and sex-specific tau PET in preclincal Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587791. [PMID: 38617320 PMCID: PMC11014551 DOI: 10.1101/2024.04.02.587791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Preclinical Alzheimer's disease, characterized by the initial accumulation of amyloid and tau pathologies without symptoms, presents a critical opportunity for early intervention. Yet, the interplay between these pathological markers and the functional connectome during this window remains understudied. We therefore set out to elucidate the relationship between the functional connectome and amyloid and tau, as assessed by PET imaging, in individuals with preclinical AD using connectome-based predictive modeling (CPM). We found that functional connectivity predicts tau PET, outperforming amyloid PET models. These models were predominantly governed by linear relationships between functional connectivity and tau. Tau models demonstrated a stronger correlation to global connectivity than underlying tau PET. Furthermore, we identify sex-based differences in the ability to predict regional tau, without any underlying differences in tau PET or global connectivity. Taken together, these results suggest tau is more closely coupled to functional connectivity than amyloid in preclinical disease, and that multimodal predictive modeling approaches stand to identify unique relationships that any one modality may be insufficient to discern.
Collapse
|
44
|
Hsiao PYA, Kim MJ, Chou FCB, Chen PHA. Intersubject representational similarity analysis uncovers the impact of state anxiety on brain activation patterns in the human extrastriate cortex. Brain Imaging Behav 2024; 18:412-420. [PMID: 38324234 DOI: 10.1007/s11682-024-00854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The current study used functional magnetic resonance imaging (fMRI) and showed that state anxiety modulated extrastriate cortex activity in response to emotionally-charged visual images. State anxiety and neuroimaging data from 53 individuals were subjected to an intersubject representational similarity analysis (ISRSA), wherein the geometries between neural and behavioral data were compared. This analysis identified the extrastriate cortex (fusiform gyrus and area MT) to be the sole regions whose activity patterns covaried with state anxiety. Importantly, we show that this brain-behavior association is revealed when treating state anxiety data as a multidimensional response pattern, rather than a single composite score. This suggests that ISRSA using multivariate distances may be more sensitive in identifying the shared geometries between self-report questionnaires and brain imaging data. Overall, our findings demonstrate that a transient state of anxiety may influence how visual information - especially those relevant to the valence dimension - is processed in the extrastriate cortex.
Collapse
Affiliation(s)
- Po-Yuan A Hsiao
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - M Justin Kim
- Department of Psychology, Sungkyunkwan University, Seoul, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Feng-Chun B Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Pin-Hao A Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Sangchooli A, Zare-Bidoky M, Fathi Jouzdani A, Schacht J, Bjork JM, Claus ED, Prisciandaro JJ, Wilson SJ, Wüstenberg T, Potvin S, Ahmadi P, Bach P, Baldacchino A, Beck A, Brady KT, Brewer JA, Childress AR, Courtney KE, Ebrahimi M, Filbey FM, Garavan H, Ghahremani DG, Goldstein RZ, Goudriaan AE, Grodin EN, Hanlon CA, Haugg A, Heilig M, Heinz A, Holczer A, Van Holst RJ, Joseph JE, Juliano AC, Kaufman MJ, Kiefer F, Khojasteh Zonoozi A, Kuplicki RT, Leyton M, London ED, Mackey S, McClernon FJ, Mellick WH, Morley K, Noori HR, Oghabian MA, Oliver JA, Owens M, Paulus MP, Perini I, Rafei P, Ray LA, Sinha R, Smolka MN, Soleimani G, Spanagel R, Steele VR, Tapert SF, Vollstädt-Klein S, Wetherill RR, Witkiewitz K, Yuan K, Zhang X, Verdejo-Garcia A, Potenza MN, Janes AC, Kober H, Zilverstand A, Ekhtiari H. Parameter Space and Potential for Biomarker Development in 25 Years of fMRI Drug Cue Reactivity: A Systematic Review. JAMA Psychiatry 2024; 81:414-425. [PMID: 38324323 PMCID: PMC11304510 DOI: 10.1001/jamapsychiatry.2023.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Importance In the last 25 years, functional magnetic resonance imaging drug cue reactivity (FDCR) studies have characterized some core aspects in the neurobiology of drug addiction. However, no FDCR-derived biomarkers have been approved for treatment development or clinical adoption. Traversing this translational gap requires a systematic assessment of the FDCR literature evidence, its heterogeneity, and an evaluation of possible clinical uses of FDCR-derived biomarkers. Objective To summarize the state of the field of FDCR, assess their potential for biomarker development, and outline a clear process for biomarker qualification to guide future research and validation efforts. Evidence Review The PubMed and Medline databases were searched for every original FDCR investigation published from database inception until December 2022. Collected data covered study design, participant characteristics, FDCR task design, and whether each study provided evidence that might potentially help develop susceptibility, diagnostic, response, prognostic, predictive, or severity biomarkers for 1 or more addictive disorders. Findings There were 415 FDCR studies published between 1998 and 2022. Most focused on nicotine (122 [29.6%]), alcohol (120 [29.2%]), or cocaine (46 [11.1%]), and most used visual cues (354 [85.3%]). Together, these studies recruited 19 311 participants, including 13 812 individuals with past or current substance use disorders. Most studies could potentially support biomarker development, including diagnostic (143 [32.7%]), treatment response (141 [32.3%]), severity (84 [19.2%]), prognostic (30 [6.9%]), predictive (25 [5.7%]), monitoring (12 [2.7%]), and susceptibility (2 [0.5%]) biomarkers. A total of 155 interventional studies used FDCR, mostly to investigate pharmacological (67 [43.2%]) or cognitive/behavioral (51 [32.9%]) interventions; 141 studies used FDCR as a response measure, of which 125 (88.7%) reported significant interventional FDCR alterations; and 25 studies used FDCR as an intervention outcome predictor, with 24 (96%) finding significant associations between FDCR markers and treatment outcomes. Conclusions and Relevance Based on this systematic review and the proposed biomarker development framework, there is a pathway for the development and regulatory qualification of FDCR-based biomarkers of addiction and recovery. Further validation could support the use of FDCR-derived measures, potentially accelerating treatment development and improving diagnostic, prognostic, and predictive clinical judgments.
Collapse
Affiliation(s)
- Arshiya Sangchooli
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Mehran Zare-Bidoky
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fathi Jouzdani
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph Schacht
- Department of Psychiatry, University of Colorado School of Medicine, Aurora
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, Richmond
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park
| | - James J Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, State College
| | - Torsten Wüstenberg
- Field of Focus IV, Core Facility for Neuroscience of Self-Regulation (CNSR), Heidelberg University, Heidelberg, Germany
| | - Stéphane Potvin
- Department of Psychiatry and Addiction, Université de Montréal, Montréal, Quebec, Canada
| | - Pooria Ahmadi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alex Baldacchino
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen T Brady
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Judson A Brewer
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | | | | | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anneke E Goudriaan
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- BrainsWay Inc, Winston-Salem, North Carolina
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Ruth J Van Holst
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jane E Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | | | - Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arash Khojasteh Zonoozi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington
| | - F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - William H Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Kirsten Morley
- Specialty of Addiction Medicine, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hamid R Noori
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Jason A Oliver
- TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Max Owens
- Department of Psychiatry, University of Vermont, Burlington
| | | | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Parnian Rafei
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Lara A Ray
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany
| | - Vaughn R Steele
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Anhui, China
| | | | - Marc N Potenza
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Amy C Janes
- Cognitive and Pharmacological Neuroimaging Unit, National Institute on Drug Abuse, Baltimore, Maryland
| | - Hedy Kober
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
46
|
Hadi Z, Mahmud M, Seemungal BM. Brain Mechanisms Explaining Postural Imbalance in Traumatic Brain Injury: A Systematic Review. Brain Connect 2024; 14:144-177. [PMID: 38343363 DOI: 10.1089/brain.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Introduction: Persisting imbalance and falls in community-dwelling traumatic brain injury (TBI) survivors are linked to reduced long-term survival. However, a detailed understanding of the impact of TBI upon the brain mechanisms mediating imbalance is lacking. To understand the state of the art concerning the brain mechanisms mediating imbalance in TBI, we performed a systematic review of the literature. Methods: PubMed, Web of Science, and Scopus were searched and peer-reviewed research articles in humans, with any severity of TBI (mild, moderate, severe, or concussion), which linked a postural balance assessment (objective or subjective) with brain imaging (through computed tomography, T1-weighted imaging, functional magnetic resonance imaging [fMRI], resting-state fMRI, diffusion tensor imaging, magnetic resonance spectroscopy, single-photon emission computed tomography, electroencephalography, magnetoencephalography, near-infrared spectroscopy, and evoked potentials) were included. Out of 1940 articles, 60 were retrieved and screened, and 25 articles fulfilling inclusion criteria were included. Results: The most consistent finding was the link between imbalance and the cerebellum; however, the regions within the cerebellum were inconsistent. Discussion: The lack of consistent findings could reflect that imbalance in TBI is due to a widespread brain network dysfunction, as opposed to focal cortical damage. The inconsistency in the reported findings may also be attributed to heterogeneity of methodology, including data analytical techniques, small sample sizes, and choice of control groups. Future studies should include a detailed clinical phenotyping of vestibular function in TBI patients to account for the confounding effect of peripheral vestibular disorders on imbalance and brain imaging.
Collapse
Affiliation(s)
- Zaeem Hadi
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Mohammad Mahmud
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Harp NR, Nielsen AN, Schultz DH, Neta M. In the face of ambiguity: intrinsic brain organization in development predicts one's bias toward positivity or negativity. Cereb Cortex 2024; 34:bhae102. [PMID: 38494885 PMCID: PMC10945044 DOI: 10.1093/cercor/bhae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Exacerbated negativity bias, including in responses to ambiguity, represents a common phenotype of internalizing disorders. Individuals differ in their propensity toward positive or negative appraisals of ambiguity. This variability constitutes one's valence bias, a stable construct linked to mental health. Evidence suggests an initial negativity in response to ambiguity that updates via regulatory processes to support a more positive bias. Previous work implicates the amygdala and prefrontal cortex, and regions of the cingulo-opercular system, in this regulatory process. Nonetheless, the neurodevelopmental origins of valence bias remain unclear. The current study tests whether intrinsic brain organization predicts valence bias among 119 children and adolescents (6 to 17 years). Using whole-brain resting-state functional connectivity, a machine-learning model predicted valence bias (r = 0.20, P = 0.03), as did a model restricted to amygdala and cingulo-opercular system features (r = 0.19, P = 0.04). Disrupting connectivity revealed additional intra-system (e.g. fronto-parietal) and inter-system (e.g. amygdala to cingulo-opercular) connectivity important for prediction. The results highlight top-down control systems and bottom-up perceptual processes that influence valence bias in development. Thus, intrinsic brain organization informs the neurodevelopmental origins of valence bias, and directs future work aimed at explicating related internalizing symptomology.
Collapse
Affiliation(s)
- Nicholas R Harp
- Department of Psychiatry, Yale University, 300 George Street, New Haven, CT 06511, United States
| | - Ashley N Nielsen
- Department of Neurology, Washington University, 660 S. Euclid Ave., St. Louis, MO 63110, United States
| | - Douglas H Schultz
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, C89 East Stadium, Lincoln, NE 68588, United States
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, C89 East Stadium, Lincoln, NE 68588, United States
| |
Collapse
|
48
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
49
|
Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D. Data leakage inflates prediction performance in connectome-based machine learning models. Nat Commun 2024; 15:1829. [PMID: 38418819 PMCID: PMC10901797 DOI: 10.1038/s41467-024-46150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Predictive modeling is a central technique in neuroimaging to identify brain-behavior relationships and test their generalizability to unseen data. However, data leakage undermines the validity of predictive models by breaching the separation between training and test data. Leakage is always an incorrect practice but still pervasive in machine learning. Understanding its effects on neuroimaging predictive models can inform how leakage affects existing literature. Here, we investigate the effects of five forms of leakage-involving feature selection, covariate correction, and dependence between subjects-on functional and structural connectome-based machine learning models across four datasets and three phenotypes. Leakage via feature selection and repeated subjects drastically inflates prediction performance, whereas other forms of leakage have minor effects. Furthermore, small datasets exacerbate the effects of leakage. Overall, our results illustrate the variable effects of leakage and underscore the importance of avoiding data leakage to improve the validity and reproducibility of predictive modeling.
Collapse
Affiliation(s)
- Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
50
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in brain-behavior relationships in the first two years of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578147. [PMID: 38352542 PMCID: PMC10862872 DOI: 10.1101/2024.01.31.578147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.
Collapse
Affiliation(s)
- Sonja J Fenske
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Janelle Liu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haitao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| | - Marcio A Diniz
- The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| |
Collapse
|