1
|
England FJ, Bordeu I, Ng ME, Bang J, Kim B, Choi J, Cardoso EC, Koo BK, Simons BD, Lee JH. Sustained NF-κB activation allows mutant alveolar stem cells to co-opt a regeneration program for tumor initiation. Cell Stem Cell 2025; 32:375-390.e9. [PMID: 39978341 DOI: 10.1016/j.stem.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/30/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Disruptions to regulatory signals governing stem cell fate open the pathway to tumorigenesis. To determine how these programs become destabilized, we fate-map thousands of murine wild-type and KrasG12D-mutant alveolar type II (AT2) stem cells in vivo and find evidence for two independent AT2 subpopulations marked by distinct tumorigenic capacities. By combining clonal analyses with single-cell transcriptomics, we unveil striking parallels between lung regeneration and tumorigenesis that implicate Il1r1 as a common activator of AT2 reprogramming. We show that tumor evolution proceeds through the acquisition of lineage infidelity and reversible transitions between mutant states, which, in turn, modulate wild-type AT2 dynamics. Finally, we discover how sustained nuclear factor κB (NF-κB) activation sets tumorigenesis apart from regeneration, allowing mutant cells to subvert differentiation in favor of tumor growth.
Collapse
Affiliation(s)
- Frances J England
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ignacio Bordeu
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Minn-E Ng
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - JaeHak Bang
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Bumsoo Kim
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jinwook Choi
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Erik C Cardoso
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Benjamin D Simons
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Science, University of Cambridge, Cambridge CB3 0WA, UK.
| | - Joo-Hyeon Lee
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
2
|
Trastus LA, d'Adda di Fagagna F. The complex interplay between aging and cancer. NATURE AGING 2025:10.1038/s43587-025-00827-z. [PMID: 40038418 DOI: 10.1038/s43587-025-00827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025]
Abstract
Cancer is an age-related disease, but the interplay between cancer and aging is complex and their shared molecular drivers are deeply intertwined. This Review provides an overview of how different biological pathways affect cancer and aging, leveraging evidence mainly derived from animal studies. We discuss how genome maintenance and accumulation of DNA mutations affect tumorigenesis and tissue homeostasis during aging. We describe how age-related telomere dysfunction and cellular senescence intricately modulate tumor development through mechanisms involving genomic instability and inflammation. We examine how an aged immune system and chronic inflammation shape tumor immunosurveillance, fueling DNA damage and cellular senescence. Finally, as animal models are important to untangling the relative contributions of these aging-modulated pathways to cancer progression and to test interventions, we discuss some of the limitations of physiological and accelerated aging models, aiming to improve experimental designs and enhance translation.
Collapse
Affiliation(s)
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS-the AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
3
|
Luo G, Hu W, Yang J, Ding H, Xu C, Tong X, Ding C, Zhao J. Identification of G protein subunit alpha i3 as a promising oncotarget of LUAD. Cell Signal 2025; 127:111582. [PMID: 39733926 DOI: 10.1016/j.cellsig.2024.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Exploring new oncotargets essential for lung adenocarcinoma (LUAD) cell growth is important. Here the bioinformatical studies revealed that Gαi3 expression is elevated in LUAD tissues and its overexpression correlates with poor survival of the patients. Moreover, overexpression of Gαi3 mRNA and protein was detected in LUAD tissues of patients as well as in primary/immortalized LUAD cells. In both primary and immortalized LUAD cells, genetic silencing (by viral shRNA) or knockout ("KO", through CRISPR/Cas9 method) of Gαi3 potently inhibited LUAD cell proliferation and mobility. The results of caspase-3 activity assay, caspase-9 activity assay, histone DNA ELISA, TUNEL nuclear staining and Annexin V staining showed that inhibition of Gαi3 expression promoted apoptosis. In addition, a significant decrease in mitochondrial membrane potential was found in Gαi3-deficient LUAD cells by JC-1 staining. Overexpression of Gαi3 strengthened the proliferation and migration of LUAD cell. Gene set enrichment analysis revealed that Gαi3 was closely related to PI3k/Akt/mTOR, which we validated experimentally. Akt-S6K phosphorylation was downregulated following Gαi3 silencing or KO, but augmented after Gαi3 overexpression in primary LUAD cells. Restoring Akt-S6K phosphorylation by a S473D constitutively-active mutant Akt1 ameliorated Gαi3 KO-induced LUAD cell proliferation inhibition, migration suppression and apoptosis. In vivo, the growth of subcutaneous LUAD xenografts was largely inhibited after intratumoral injection of Gαi3 shRNA-expressing adeno-associated virus (AAV). Gαi3 downregulation, Akt-mTOR inhibition, proliferation inactivation and apoptosis were detected in the Gαi3 shRNA-treated LUAD xenografts. Together, targeting Gαi3 potently inhibited LUAD cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Gaomeng Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenxuan Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Tong
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Liu B, Jiang M, Wu Y, Zheng P, Gao X, Wang J. Impact of air pollution on the progress-free survival of non-small cell lung cancer patients with anti-PD-1/PD-L1 immunotherapy: A cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125683. [PMID: 39809379 DOI: 10.1016/j.envpol.2025.125683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Air pollution is a well-established risk factor for lung cancer, but limited evidence exists on its impact on the treatment of lung cancer. The objective of this study was to investigate the impact of key pollutants on the efficacy of PD-1/PD-L1 inhibitor immunotherapy in non-small cell lung cancer (NSCLC) patients, thereby providing clinicians with evidence to potentially enhance the efficacy of PD-1 therapy and inform policy decisions for cancer care. To this end, we conducted a study involving 361 NSCLC patients who received PD-1/PD-L1 inhibitor immunotherapy, examining the correlation between air pollution exposure and progression-free survival (PFS) following immunotherapy treatment. Their moving-average ambient levels up to 1 year of PM2.5 and its constituents (organic matter (OM), black carbon (BC), nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+)), as well as ozone (O3) were estimated using the Tracking Air Pollution in China dataset. Cox proportional hazards models were adopted to estimate the effects of exposure to each pollutant on PFS risk for NSCLC. 179 patients obtained the progression of NSCLC. While PM2.5 exposure prior to the immunotherapy was not associated with NSCLC progression, long-term exposure to BC and OM, the important organic components of PM2.5, were significantly associated with a higher risk of NSCLC progression with corresponding hazard ratios (HRs, 95% confidence intervals) of 2.42 (1.39, 4.23) and 2.41 (1.40, 4.14) for 1-year moving average, respectively. Short-term exposure to O3 was also associated with PFS with a HR of 1.64 (1.08, 2.50) for 3-month averaged exposure. Monotonic increasing dose-response relationships were further observed for the associations of BC, OM and O3 with PFS. Our findings imply the need of implementing effective measures for targeted reduction in specific sources of PM2.5 constituents (especially BC and OM) and O3 at different time windows to improve the prognosis of NSCLC patients especially for their PFS.
Collapse
Affiliation(s)
- Bin Liu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meijie Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Yuhua Wu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China; Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
5
|
Carra D, Maas SCE, Seoane JA, Alonso-Curbelo D. Exposomal determinants of non-genetic plasticity in tumor initiation. Trends Cancer 2025:S2405-8033(25)00011-1. [PMID: 40023688 DOI: 10.1016/j.trecan.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
The classical view of cancer as a genetically driven disease has been challenged by recent findings of oncogenic mutations in phenotypically healthy tissues, refocusing attention on non-genetic mechanisms of tumor initiation. In this context, gene-environment interactions take the stage, with recent studies showing how they unleash and redirect cellular and tissue plasticity towards protumorigenic states in response to the exposome, the ensemble of environmental factors impinging on tissue homeostasis. We conceptualize tumor-initiating plasticity as a phenotype-transforming force acting at three levels: cell-intrinsic, focusing on mutant epithelial cells' responses to environmental variation; reprogramming of non-neoplastic cells of the host, leading to protumor micro- and macroenvironments; and microbiome ecosystem dynamics. This perspective highlights cell, tissue, and organismal plasticity mechanisms underlying tumor initiation that are shaped by the exposome, and how their functional investigation may provide new opportunities to prevent, detect, and intercept cancer-promoting plasticity.
Collapse
Affiliation(s)
- Davide Carra
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Silvana C E Maas
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jose A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Direna Alonso-Curbelo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
6
|
Mazzilli SA, Rahal Z, Rouhani MJ, Janes SM, Kadara H, Dubinett SM, Spira AE. Translating premalignant biology to accelerate non-small-cell lung cancer interception. Nat Rev Cancer 2025:10.1038/s41568-025-00791-1. [PMID: 39994467 DOI: 10.1038/s41568-025-00791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/26/2025]
Abstract
Over the past decade, substantial progress has been made in the development of targeted and immune-based therapies for patients with advanced non-small-cell lung cancer. To further improve outcomes for patients with lung cancer, identifying and intercepting disease at the earliest and most curable stages are crucial next steps. With the recent implementation of low-dose computed tomography scan screening in populations at high risk, there is an emerging unmet need for new diagnostic, prognostic and therapeutic tools to help treat patients suspected of harbouring premalignant lesions and minimally invasive non-small-cell lung cancer. Continued advances in the identification of the earliest drivers of lung carcinogenesis are poised to address these unmet needs. Employing multimodal approaches to chart the temporal and spatial maps of the molecular events driving lung premalignant lesion progression will refine our understanding of early carcinogenesis. Elucidating the molecular drivers of premalignancy is critical to the development of biomarkers to detect those incubating a premalignant lesion, to stratify risk for progression to invasive cancer and to identify novel therapeutic targets to intercept that process. In this Review, we summarize emerging insights into the earliest cellular and molecular events associated with lung squamous and adenocarcinoma carcinogenesis and highlight the growing opportunity for translating these insights into clinical tools for early detection and disease interception to transform the outcomes for those at risk for lung cancer.
Collapse
Affiliation(s)
- Sarah A Mazzilli
- Sectional Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Zahraa Rahal
- Division of Pathology-Lab Medicine, Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Maral J Rouhani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Humam Kadara
- Division of Pathology-Lab Medicine, Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, and Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Avrum E Spira
- Sectional Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Johnson & Johnson Innovative Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Brücher BLDM. The Erosion of Healthcare and Scientific Integrity: A Growing Concern. J Healthc Leadersh 2025; 17:23-43. [PMID: 40007855 PMCID: PMC11853952 DOI: 10.2147/jhl.s506767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background Tremendous achievements in healthcare and science over the past 200 years have enhanced life expectancy in parallel with a shift from dogma to humanistic liberal education. Advancements in cancer have included vaccines treating causes of cancer (eg, hepatitis C- induced liver cancer and human papillomavirus-induced cervical cancer) along with improved cancer survival in children. In contrast, developments in cancer, frequently touted as "discoveries" or "breakthroughs" in media headlines, have been demonstrated to be ephemeral rather than game changers. In reality, cancer incidences are increasing, and relapse and mortality rates have not changed substantially. By this, we are experiencing today similar challenges to those before the so-called Humboldt reform. The trend towards managerialism with a focus on quantity in health care and science endangers their integrity. Methods Due to the complexity of integrity of healthcare and science, in-depth contemplation of this review contains foundations of actions in healthcare and science, information regarding cancer, as an example, quantity focus of healthcare, technology, publishing, marketing and media, predatory publishers, followed by psychologic and sociologic aspects which influence our perception. Results A complex paradoxical transformation has occurred, in which quality and humanism have been replaced by quantity, revenue, and marketing, together with "citation silence", (ignoring original findings), and increased corruption and misconduct. This shift explains why the integrity of healthcare and science is being eroded. Conclusion Countries and societies are only as strong as their healthcare and science, both of which are only as strong as their emphasis on quality and integrity. Awareness of this situation may represent a first step toward a renewed focus on accountability.
Collapse
Affiliation(s)
- Björn L D M Brücher
- European Academy of Sciences and Arts (EASA), Salzburg, Austria
- Theodor-Billroth-Academy® with its INCORE, International Consortium of Research Excellence, Munich, Germany
- Theodor-Billroth-Academy® with its INCORE, International Consortium of Research Excellence, Sacramento, CA, USA
- Department of Surgery, Medical University Lausitz – Carl-Thiem, Cottbus, Germany
| |
Collapse
|
8
|
Chen IC, Chen YM, Yang HW, Tseng JS, Yang TY. Interplay of Polygenic Risk Score, Smoking Statuses, and Air Pollution on Lung Adenocarcinoma Risk in a Taiwanese Population. Respirology 2025. [PMID: 39956994 DOI: 10.1111/resp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVE We determined the impact of genetic susceptibility and its interaction with smoking and air pollution on the risk of developing lung adenocarcinoma. METHODS This retrospective case-control study utilised data from Taiwan Precision Medicine Initiative (TPMI) project conducted between June 2019 and November 2022. The study population consisted of lung adenocarcinoma patients and 1:4 age-, gender-, and index year-matched non-lung cancer controls. We analysed polygenic risk scores (PRS), smoking status, as well as PM2.5 and PM10 exposures. RESULTS A total of 681 lung adenocarcinoma patients and 2724 non-lung cancer participants were included. PRS was significantly higher among lung adenocarcinoma patients than controls (p < 0.001). Overall, a higher PRS was associated with a higher risk of lung adenocarcinoma. A high PM2.5 exposure was associated with a higher risk of lung adenocarcinoma (OR 1.88 [95% CI 1.12-3.14], p = 0.0163) among never-smokers with low genetic risk. Never-smokers with a higher genetic risk were associated with a higher OR for lung adenocarcinoma with the highest OR among Q4 participants with high PM2.5 exposure (4.97 [95% CI 3.10-7.97], p < 0.001). There was no significant impact of PM2.5 exposure among individuals with higher genetic risks. Similar phenomena were observed in the PM10 analyses. There were no significant correlations of PRS with risk of lung adenocarcinoma among smokers. CONCLUSION PRS significantly predicted lung adenocarcinoma incident cases in a dose-dependent manner among never-smokers. The PRS effect was not noted in smokers. The results were consistent among participants exposed to different air pollution levels.
Collapse
Affiliation(s)
- I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Wen Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Lung Cancer Comprehensive Care and Research Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsung-Ying Yang
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Lung Cancer Comprehensive Care and Research Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Lim JU, Jung J, Kim YW, Kim CY, Lee SH, Park DW, Choi SI, Ji W, Yeo CD, Lee SH. Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges. Biomedicines 2025; 13:470. [PMID: 40002883 PMCID: PMC11852785 DOI: 10.3390/biomedicines13020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have transformed the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. However, treatment resistance remains a major challenge in clinical practice. The tumor microenvironment (TME) is a complex system composed of tumor cells, immune and non-immune cells, and non-cellular components. Evidence indicates that dynamic changes in TME during TKI treatment are associated with the development of resistance. Research has focused on identifying how each component of the TME interacts with tumors and TKIs to understand therapeutic targets that could address TKI resistance. In this review, we describe how TME components, such as immune cells, fibroblasts, blood vessels, immune checkpoint proteins, and cytokines, interact with EGFR-mutant tumors and how they can promote resistance to TKIs. Furthermore, we discuss potential strategies targeting TME as a novel therapeutic approach.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Sue In Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Thakur C, Saran U, Chen F. Editorial: The impact of specific environmental exposures on breast, lung, and colon cancer: advancing public health strategies for enhanced outcomes. Front Public Health 2025; 13:1483915. [PMID: 40027496 PMCID: PMC11868267 DOI: 10.3389/fpubh.2025.1483915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Uttara Saran
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fei Chen
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
11
|
Parkin JGH, Dean LSN, Bell JA, Easton NHC, Edgeway LJ, Cooper MJ, Ridley R, Conforti F, Wang S, Yao L, Li J, Raj HV, Downward J, Gerlofs-Nijland M, Cassee FR, Wang Y, Cook RB, Jones MG, Davies DE, Loxham M. Copper-enriched automotive brake wear particles perturb human alveolar cellular homeostasis. Part Fibre Toxicol 2025; 22:4. [PMID: 39940013 PMCID: PMC11823208 DOI: 10.1186/s12989-024-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Airborne fine particulate matter with diameter < 2.5 μm (PM2.5), can reach the alveolar regions of the lungs, and is associated with over 4 million premature deaths per year worldwide. However, the source-specific consequences of PM2.5 exposure remain poorly understood. A major, but unregulated source is car brake wear, which exhaust emission reduction measures have not diminished. METHODS We used an interdisciplinary approach to investigate the consequences of brake-wear PM2.5 exposure upon lung alveolar cellular homeostasis using diesel exhaust PM as a comparator. This involved RNA-Seq to analyse global transcriptomic changes, metabolic analyses to investigate glycolytic reprogramming, mass spectrometry to determine PM composition, and reporter assays to provide mechanistic insight into differential effects. RESULTS We identified brake-wear PM from copper-enriched non-asbestos organic, and ceramic brake pads as inducing the greatest oxidative stress, inflammation, and pseudohypoxic HIF activation (a pathway implicated in diseases associated with air pollution exposure, including cancer, and pulmonary fibrosis), as well as perturbation of metabolism, and metal homeostasis compared with brake wear PM from low- or semi-metallic pads, and also, importantly, diesel exhaust PM. Compositional and metal chelator analyses identified that differential effects were driven by copper. CONCLUSIONS We demonstrate here that brake-wear PM may perturb cellular homeostasis more than diesel exhaust PM. Our findings demonstrate the potential differences in effects, not only for non-exhaust vs exhaust PM, but also amongst different sources of non-exhaust PM. This has implications for our understanding of the potential health effects of road vehicle-associated PM. More broadly, our findings illustrate the importance of PM composition on potential health effects, highlighting the need for targeted legislation to protect public health.
Collapse
Affiliation(s)
- James G H Parkin
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK.
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK
| | - Joseph A Bell
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Natasha H C Easton
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Liam J Edgeway
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew J Cooper
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Robert Ridley
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Helen Vethakan Raj
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Yihua Wang
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Richard B Cook
- National Centre for Advanced Tribology (nCATS), Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Donna E Davies
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK.
| |
Collapse
|
12
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC, Mato JM. S-Adenosylmethionine: A Multifaceted Regulator in Cancer Pathogenesis and Therapy. Cancers (Basel) 2025; 17:535. [PMID: 39941901 PMCID: PMC11816870 DOI: 10.3390/cancers17030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
S-adenosylmethionine (SAMe) is a key methyl donor that plays a critical role in a variety of cellular processes, such as DNA, RNA and protein methylation, essential for maintaining genomic stability, regulating gene expression and maintaining cellular homeostasis. The involvement of SAMe in cancer pathogenesis is multifaceted, as through its multiple cellular functions, it can influence tumor initiation, progression and therapeutic resistance. In addition, the connection of SAMe with polyamine synthesis and oxidative stress management further underscores its importance in cancer biology. Recent studies have highlighted the potential of SAMe as a biomarker for cancer diagnosis and prognosis. Furthermore, the therapeutic implications of SAMe are promising, with evidence suggesting that SAMe supplementation or modulation could improve the efficacy of existing cancer treatments by restoring proper methylation patterns and mitigating oxidative damage and protect against damage induced by chemotherapeutic drugs. Moreover, targeting methionine cycle enzymes to both regulate SAMe availability and SAMe-independent regulatory effects, particularly in methionine-dependent cancers such as colorectal and lung cancer, presents a promising therapeutic approach. Additionally, exploring epitranscriptomic regulations, such as m6A modifications, and their interaction with non-coding RNAs could enhance our understanding of tumor progression and resistance mechanisms. Precision medicine approaches integrating patient subtyping and combination therapies with chemotherapeutics, such as decitabine or doxorubicin, together with SAMe, can enhance chemosensitivity and modulate epigenomics, showing promising results that may improve treatment outcomes. This review comprehensively examines the various roles of SAMe in cancer pathogenesis, its potential as a diagnostic and prognostic marker, and its emerging therapeutic applications. While SAMe modulation holds significant promise, challenges such as bioavailability, patient stratification and context-dependent effects must be addressed before clinical implementation. In addition, better validation of the obtained results into specific cancer animal models would also help to bridge the gap between research and clinical practice.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| |
Collapse
|
13
|
Ricarte M, Portugal J, Amato F, Van Drooge BL, Jaén C, Pyambri M, Ridolfo S, Casado M, Bedia C, Elihn K, Olofsson U, Piña B. Toxicity assessment of airborne ultrafine particles: Role of transport emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178435. [PMID: 39827641 DOI: 10.1016/j.scitotenv.2025.178435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1). We observed distinct toxic effects related to different forms of oxidative stress and to inflammatory response, the two types of negative outcomes more closely related to the known epidemiological impacts of air pollution. The highest toxicity values were detected in sites receiving car and/or ship emissions, with maximums during the cold season. Chemical analysis followed by correlation and source apportionment analyses identified PAHs, combustion engines, and biomass burning emissions as the main drivers of the observed toxic effects. Therefore, traffic restrictions, car emission limits, and reduction of combustion processes are necessary to eliminate or at least to limit airborne toxicity in urban environments.
Collapse
Affiliation(s)
- Marina Ricarte
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Barend L Van Drooge
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Clara Jaén
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Maryam Pyambri
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Sharon Ridolfo
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Carmen Bedia
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11419 Stockholm, Sweden
| | - Ulf Olofsson
- Department of Machine Design, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain.
| |
Collapse
|
14
|
Chen-Ming G, Bo W, Xiao-Han S. Biomagnetic monitoring of urban atmospheric pollution: A review of magnetic signatures from different types of plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178518. [PMID: 39824111 DOI: 10.1016/j.scitotenv.2025.178518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Biomagnetic monitoring has rapidly emerged as a valuable tool in urban atmospheric pollution (UAP) assessment due to its high spatial resolution, complementing traditional monitoring systems. This review systematically elucidates the principles of plant dust retention and the factors influencing it, while also reviewing the advancements in global research on UAP monitoring through the magnetic properties of various plant species. We provide a comprehensive analysis of the current applications of biomagnetic monitoring in UAP and identify critical challenges, including species-specific monitoring discrepancies, complex pollution sources, and non-standardized sample preparation methods. Additionally, we propose future research directions to address these challenges and enhance the efficacy of biomagnetic monitoring in UAP.
Collapse
Affiliation(s)
- Gu Chen-Ming
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wang Bo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Sun Xiao-Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
15
|
Hutchings H, Wang A, Grady S, Popoff A, Zhang Q, Okereke I. Influence of air quality on lung cancer in people who have never smoked. J Thorac Cardiovasc Surg 2025; 169:454-461.e2. [PMID: 38936598 DOI: 10.1016/j.jtcvs.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Lung cancer is the leading cause of cancer-related death. The percentage of people who have never smoked with lung cancer has risen recently, but alternative risk factors require further study. Our goal was to determine the influence of air quality on incidence of lung cancer in people who have smoked or never smoked. METHODS The cancer registry from a large urban medical center was queried to include every new diagnosis of lung cancer from 2013 to 2021. Air quality and pollution data for the county were obtained from the US Environmental Protection Agency from 1980 to 2018. Patient demographics, location of residence, smoking history, and tumor stage were recorded. Bivariate comparison analyses were conducted in R (R Foundation for Statistical Computing). RESULTS A total of 2223 new cases of lung cancer were identified. Mean age was 69.2 years. There was a nonsmoking rate of 8.1%. A total of 37% of patients identified as a racial minority. People who have never smoked were more likely to be diagnosed at an advanced stage. When analyzing geographic distribution, incidence of lung cancer among people who have never smoked was more closely associated with highly polluted areas. People who have never smoked with lung cancer had significantly higher exposure levels of multiple pollutants. CONCLUSIONS Newly diagnosed lung cancer appears to be more related to poor air quality among people who have never smoked than people who have smoked. Future studies are needed to examine the associations of specific pollutants with lung cancer incidence.
Collapse
Affiliation(s)
| | - Anqi Wang
- Department of Public Health Sciences, Henry Ford Health, Detroit, Mich
| | - Sue Grady
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Mich
| | - Andrew Popoff
- Department of Surgery, Henry Ford Health, Detroit, Mich
| | - Qiong Zhang
- Department of Public Health Sciences, Henry Ford Health, Detroit, Mich
| | - Ikenna Okereke
- Department of Surgery, Henry Ford Health, Detroit, Mich.
| |
Collapse
|
16
|
DeMarini DM, Gwinn W, Watkins E, Reisfeld B, Chiu WA, Zeise L, Barupal D, Bhatti P, Cross K, Dogliotti E, Fritz JM, Germolec D, Andersen MHG, Guyton KZ, Jinot J, Phillips DH, Reddel RR, Rothman N, van den Berg M, Vermeulen RC, Vineis P, Wang A, Whelan M, Ghantous A, Korenjak M, Zavadil J, Herceg Z, Perdomo S, Dossus L, Chittiboyina S, Cuomo D, Kaldor J, Pasqual E, Rigutto G, Wedekind R, Facchin C, El Ghissassi F, de Conti A, Schubauer-Berigan MK, Madia F. IARC Workshop on the Key Characteristics of Carcinogens: Assessment of End Points for Evaluating Mechanistic Evidence of Carcinogenic Hazards. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:25001. [PMID: 39899356 PMCID: PMC11790013 DOI: 10.1289/ehp15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The 10 key characteristics (KCs) of carcinogens form the basis of a framework to identify, organize, and evaluate mechanistic evidence relevant to carcinogenic hazard identification. The 10 KCs are related to mechanisms by which carcinogens cause cancer. The International Agency for Research on Cancer (IARC) Monographs programme has successfully applied the KCs framework for the mechanistic evaluation of different types of exposures, including chemicals, metals, and complex exposures, such as environmental, occupational, or dietary exposures. The use of this framework has significantly enhanced the identification and organization of relevant mechanistic data, minimized bias in evaluations, and enriched the knowledge base regarding the mechanisms of known and suspected carcinogens. OBJECTIVES We sought to report the main outcomes of an IARC Scientific Workshop convened by the IARC to establish appropriate, transparent, and uniform application of the KCs in future IARC Monographs evaluations. METHODS A group of experts from different disciplines reviewed the IARC Monographs experience with the KCs of carcinogens, discussing three main themes: a) the interpretation of end points forming the evidence base for the KCs, b) the incorporation of data from novel assays on the KCs, and c) the integration of the mechanistic evidence as part of cancer hazard identification. The workshop participants assessed the relevance and the informativeness of multiple KCs-associated end points for the evaluation of mechanistic evidence in studies of exposed humans and experimental systems. DISCUSSION Consensus was reached on how to enhance the use of in silico, molecular, and cellular high-output and high-throughput data. In addition, approaches to integrate evidence across the KCs and opportunities to improve methodologies of mechanistic evaluation of cancer hazards were explored. The findings described herein and in a forthcoming IARC technical report will support future working groups of experts in reporting and interpreting results under the KCs framework within the IARC Monographs or in other contexts. https://doi.org/10.1289/EHP15389.
Collapse
Affiliation(s)
- David M. DeMarini
- US Environmental Protection Agency (EPA; Retired), Research Triangle Park, North Carolina, USA
| | - William Gwinn
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Emily Watkins
- Department of Life Sciences, University of Roehampton, London, UK
| | - Brad Reisfeld
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Weihsueh A. Chiu
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California EPA, Sacramento, California, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Parveen Bhatti
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Dori Germolec
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Kathryn Z. Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | | | - David H. Phillips
- Department of Analytical, Environmental & Forensic Sciences, King’s College London, London, UK
| | - Roger R. Reddel
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA
| | - Martin van den Berg
- Department of Population Health, Utrecht University, Utrecht, the Netherlands
| | - Roel C.H. Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paolo Vineis
- School of Public Health, Imperial College, London, UK
| | - Amy Wang
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Maurice Whelan
- European Commission, Joint Research Centre, Ispra, Italy
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Laure Dossus
- Nutrition and Metabolism Branch, IARC, Lyon, France
| | | | | | - John Kaldor
- IARC Monographs Programme, IARC, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu M, Chen J, Gao L, Cai S, Dong H. Microplastic exposure induces HSP90α secretion and aggravates asthmatic airway remodeling via PI3K-Akt-mTOR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117828. [PMID: 39923560 DOI: 10.1016/j.ecoenv.2025.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Microplastics pollution has raised a considerable awareness due to their extensive distribution in the environment. It has potential side effects on human health. Microplastics can enter the human respiratory system, then deposit in the lung, destroying the structure of the bronchus and alveoli, and causing pulmonary inflammation, mucus production, and airway hyperresponsiveness, leading to the aggravation of asthma. Nevertheless, the underlying mechanism remains elusive. There are several cytokines involved in the inflammatory response of asthma. Heat shock protein 90α(HSP90α) is one of cytokines involving in inflammation which is a member of the HSPs family. The aim of this study is to explore the mechanism by which microplastics influence the secretion of HSP90α and the progression of asthma. Initially, we found that microplastics were destroyed airway epithelial barrier, resulting in inherent dysfunction in the secretion of HSP90α. Then, microplastics were proved to activate PI3K-Akt-mTOR pathway by prompting airway epithelial cells secrete HSP90α and proliferation of airway smooth muscle cells(ASMCs), leading to airway narrowing and hypersensitivity. 1G6-D7 is a monoclonal antibody to HSP90, which can reverse the pulmonary inflammation infiltration, mucus production, and airway hyperresponsiveness(AHR). Overall, these finding suggested that microplastics elicited inflammation via the PI3K-Akt-mTOR signaling pathway and stimulated the proliferation of ASMCs. Hence, the present study unveils a novel mechanism responsible for microplastic-induced inflammation and airway hyperreactivity, establishing a basis for further research and risk evaluations of microplastics.
Collapse
Affiliation(s)
- Mingming Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiyuan Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
18
|
Fu G, Li D, Wu W, Yan M. Distributions and trends in the global burden of young-onset tracheal, bronchus, and lung cancer by region, age, and sex from 1990 to 2021: An age-period-cohort analysis. Cancer Epidemiol 2025; 94:102734. [PMID: 39740272 DOI: 10.1016/j.canep.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND The young onset Tracheal, Bronchus, and Lung Cancer (TBLC) exhibits distinct gene mutations and clinical characteristics. With worsening air pollution, the incidence of young onset TBLC is increasing, resulting in significant economic burdens. The specific epidemiology of the disease burden remains elusive. METHODS The updated Global Burden of Disease (GBD) 2021 study was employed. This study reports on the disease burden trends of young TBLC (≤54 years) and its risk factors. Data is presented as counts and age-standardized rates (ASRs) per 100,000 people across different age groups, years, sexes, sociodemographic levels (SDI), and geographic locations (global, regional, and national). An age-period-cohort (APC) model was used to analyze longitudinal curves on age, period, and cohort effects for young TBLC. Decomposition analysis broke down temporal changes into three factors: population aging, population growth, and epidemiological change, to quantify the changes and identify their causes. An inequality index was applied to examine the inequality of disease burden of young TBLC by sex across different SDI levels between 1990 and 2021. RESULTS From 1990-2021, the global number of individuals under 55 diagnosed with TBLC increased from 320,715 to 489,080, representing a 52 % rise. However, the age-standardized rates of prevalence (Average annual percentage changes (AAPC) -0.05 %), incidence (AAPC -0.59 %), mortality (AAPC -0.88 %), and disability-adjusted life-years (DALYs) (AAPC -0.92 %) all showed a notable decline tendency. In 2021, there were 258,360 new diagnoses and 207,000 deaths from young TBLC, with ASRs of incidence and mortality at 6.43 and 5.49 per 100,000, respectively. Regionally, East Asia bore the highest burden, with about 117,730 new young TBLC cases and an ASR of 12.01 per 100,000 people. Decomposition analysis indicated that population growth was the primary driver for the increased prevalence of young TBLC. While tobacco-related DALYs for young TBLC decreased globally, tobacco remains the leading risk factor. In contrast, air pollution-related DALYs have significantly increased in middle and lower SDI regions. Over the past two decades, the burden of young TBLC among females has grown substantially, with increased inequality observed in 2021. Tobacco was the largest contributor to the PAF of young female DALYs in high SDI regions, whereas air pollution was the leading contributor in other SDI regions. CONCLUSION While the total number of young TBLC cases has been on the rise trend, primarily due to population changes, the ASRs of young TBLC burdens have decreased over the past two decades. In 2021, East Asia recorded the highest ASRs for young TBLC in terms of prevalence, incidence, and mortality. Tobacco remains the primary risk factor for young TBLC, and the DALYs burden from tobacco use has significantly decreased. However, the incidence of TBLC among non-smoking young females has grown rapidly over the past two decades, mainly due to air pollution, leading to increased inequality.
Collapse
Affiliation(s)
- Guohao Fu
- Xuzhou Central Hospital, China; Xuzhou Clinical School of Nanjing Medical University, China
| | - Dan Li
- Xuzhou Central Hospital, China; Xuzhou Clinical School of Nanjing Medical University, China
| | - Wenhao Wu
- Xuzhou Central Hospital, China; Xuzhou Clinical School of Nanjing Medical University, China
| | - Minghua Yan
- Xuzhou Central Hospital, China; Xuzhou Clinical School of Nanjing Medical University, China.
| |
Collapse
|
19
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2025; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
20
|
Gunani M, Winayak R, Agarwal A, Ghose A, Das R, Prabhash K, Noronha V, Banna GL, Boussios S, Mitra S. Spotlight on Lung Cancer Disparities in India. JCO Glob Oncol 2025; 11:e2400327. [PMID: 39919262 DOI: 10.1200/go-24-00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/26/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Affiliation(s)
- Manas Gunani
- Department of Medicine, Allegheny Health Network, Pittsburgh, PA
| | - Rahul Winayak
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
- United Kingdom and Ireland Global Cancer Network, Manchester, United Kingdom
| | - Anisha Agarwal
- Department of Medicine, Ascension Saint Joseph Hospital, Chicago, IL
| | - Aruni Ghose
- United Kingdom and Ireland Global Cancer Network, Manchester, United Kingdom
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Cancer Institute, Cancer Research UK City of London, Queen Mary University of London, London, United Kingdom
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, United Kingdom
- Immuno-Oncology Clinical Network, Liverpool, United Kingdom
- Inequalities Network, European Cancer Organisation, Brussels, Belgium
| | - Rounak Das
- Department of Oncology, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, United Kingdom
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Giuseppe Luigi Banna
- Department of Medical Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, United Kingdom
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury, United Kingdom
- King's College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London, United Kingdom
- Kent Medway Medical School, University of Kent, Canterbury, United Kingdom
- AELIA Organization, 9th Km Thessaloniki - Thermi, Thessaloniki, Greece
| | - Swarupa Mitra
- Department of Radiation Oncology, Fortis Cancer Institute, Fortis Memorial Research Institute, Gurugram, India
| |
Collapse
|
21
|
Gao J, Li T, Guo W, Yan M, Liu J, Yao X, Lv M, Ding Y, Qin H, Wang M, Liu R, Liu J, Shi C, Shi J, Qu G, Jiang G. Arginine Metabolism Reprogramming in Perfluorooctanoic Acid (PFOA)-Induced Liver Injury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1506-1518. [PMID: 39792631 DOI: 10.1021/acs.est.4c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent pollutant that has gained worldwide attention, owing to its widespread presence in the environment. Previous studies have reported that PFOA upregulates lipid metabolism and is associated with liver injury in humans. However, when the fatty acid degradation pathway is activated, lipid accumulation still occurs, suggesting the presence of unknown pathways and mechanisms that remain to be elucidated. In this study, adult C57BL/6N mice were exposed to PFOA at 0.1, 1, and 10 mg/kg/day. Using integrated metabolomics and transcriptomics, it was uncovered that arginine metabolism was differentially downregulated in all three groups. In vitro studies confirmed the downregulation of arginine metabolism in MIHA cell lines treated with PFOA. Supplementation of arginine could effectively rescue liver injury and downregulate the chemokine levels caused by PFOA. This finding highlights the contribution of arginine metabolism in maintaining liver health following PFOA exposure and suggests potential mechanisms of metabolic and immune modulation.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tiantian Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Wei Guo
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Meilin Yan
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Junran Liu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yun Ding
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province 266237, China
| | - Hua Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, Sino-Danish Center for Education and Research, UCAS, Beijing 100190, P. R. China
| | - Runzeng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province 266237, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
22
|
Savy T, Flanders L, Karpanasamy T, Sun M, Gerlinger M. Cancer evolution: from Darwin to the Extended Evolutionary Synthesis. Trends Cancer 2025:S2405-8033(25)00001-9. [PMID: 39880745 DOI: 10.1016/j.trecan.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
The fundamental evolutionary nature of cancer has been recognized for decades. Increasingly powerful genetic and single cell sequencing technologies, as well as preclinical models, continue to unravel the evolution of premalignant cells, and progression to metastatic stages and to drug-resistant end-stage disease. Here, we summarize recent advances and distil evolutionary principles and their relevance for the clinic. We reveal how cancer cell and microenvironmental plasticity are intertwined with Darwinian evolution and demonstrate the need for a conceptual framework that integrates these processes. This warrants the adoption of the recently developed Extended Evolutionary Synthesis (EES).
Collapse
Affiliation(s)
- Thomas Savy
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lucy Flanders
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK
| | | | - Min Sun
- St Bartholomew's Hospital, London, London, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK.
| |
Collapse
|
23
|
Zeng Y, Zhu G, Peng W, Cai H, Lu C, Ye L, Jin M, Wang J. Transcriptome-Wide Analysis of N6-Methyladenosine-Modified Long Noncoding RNAs in Particulate Matter-Induced Lung Injury. TOXICS 2025; 13:98. [PMID: 39997913 PMCID: PMC11860755 DOI: 10.3390/toxics13020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification plays a crucial role in the regulation of diverse cellular processes influenced by environmental factors. Nevertheless, the involvement of m6A-modified long noncoding RNAs (lncRNAs) in the pathogenesis of lung injury induced by particulate matter (PM) remains largely unexplored. METHODS Here, we establish a mouse model of PM-induced lung injury. We utilized m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq) to identify differentially expressed m6A peaks on long non-coding RNAs (lncRNAs). Concurrently, we performed lncRNA sequencing (lncRNA-seq) to determine the differentially expressed lncRNAs. The candidate m6A-modified lncRNAs in the lung tissues of mice were identified through the intersection of the data obtained from these two sequencing approaches. RESULTS A total of 664 hypermethylated m6A peaks on 644 lncRNAs and 367 hypomethylated m6A peaks on 358 lncRNAs are confirmed. We use bioinformatic tools to analyze the potential functions and pathways of these m6A-modified lncRNAs, revealing their involvement in regulating inflammation, immune response, and metabolism-related pathways. Three key m6A-modified lncRNAs (lncRNA NR_003508, lncRNA uc008scb.1, and lncRNA ENSMUST00000159072) are identified through a joint analysis of the MeRIP-seq and lncRNA-seq data, and their validation is carried out using MeRIP-PCR and qRT-PCR. Analysis of the coding-non-coding gene co-expression network reveals that m6A-modified lncRNAs NR_003508 and uc008scb.1 participate in regulating pathways associated with inflammation and immune response. CONCLUSIONS This study first provides a comprehensive transcriptome-wide analysis of m6A methylation profiling in lncRNAs associated with PM-induced lung injury and identifies three pivotal candidate m6A-modified lncRNAs. These findings shed light on a novel regulatory mechanism underlying PM-induced lung injury.
Collapse
Affiliation(s)
- Yingying Zeng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China; (Y.Z.); (G.Z.); (W.P.); (H.C.); (C.L.)
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200030, China;
| | - Guiping Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China; (Y.Z.); (G.Z.); (W.P.); (H.C.); (C.L.)
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200030, China;
| | - Wenjun Peng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China; (Y.Z.); (G.Z.); (W.P.); (H.C.); (C.L.)
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200030, China;
| | - Hui Cai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China; (Y.Z.); (G.Z.); (W.P.); (H.C.); (C.L.)
| | - Chong Lu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China; (Y.Z.); (G.Z.); (W.P.); (H.C.); (C.L.)
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200030, China;
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200030, China;
| | - Meiling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200030, China;
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China; (Y.Z.); (G.Z.); (W.P.); (H.C.); (C.L.)
| |
Collapse
|
24
|
Xu J, Ling Z, Yin L, Xu D, Wu S, Chen R. CircDNA2-Educated YTHDF2 Phase Separation Promotes PM 2.5-Induced Malignant Transformation Through the Blunting of GADD45A Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410532. [PMID: 39823477 DOI: 10.1002/advs.202410532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM2.5) and lung cancer. However, the mechanism underlying this association needs to be further elucidated. Circular RNAs (circRNAs) have emerged as an important topic in the field of epigenetics and are involved in various cancers. This study aimed to explore the molecular basis of PM2.5-induced lung cancer from an epigenetic perspective and identify potential biomarkers. Initially, the construction of a chronic PM2.5 exposure model confirmed that PM2.5 exposure promoted the malignant transformation of human bronchial epithelial (HBE) cells. Mechanistically, abnormally upregulated circDNA2 inhibited the tumor suppressor gene growth arrest and DNA damage 45 alpha (GADD45A) mRNA in an N6-methyladenosine (m6A)-dependent manner, mediated by YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) after PM2.5 exposure. Further analyses revealed that circDNA2 can specifically bind to the YTHDF2 LC domain to promote YTHDF2 protein liquid-liquid phase separation (LLPS), providing sufficient evidence linking LLPS and particulate pollutant-induced tumorigenesis. In conclusion, this study provides new insights into the role of circDNA2 in PM2.5-induced lung cancer and confirms its clinical value as a potential prognostic biomarker for lung cancer.
Collapse
Affiliation(s)
- Jie Xu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, 650500, P. R. China
| | - Zhi Ling
- School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
| | - Lijia Yin
- School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
| | - Duo Xu
- School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Laboratory of Allergic Diseases, Capital Medical University, Beijing, 100069, P. R. China
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, 710032, P. R. China
| |
Collapse
|
25
|
Cao J, Yang Y, Liu X, Huang Y, Xie Q, Kadushkin A, Nedelko M, Wu D, Aquilina NJ, Li X, Cai X, Li R. Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis. Part Fibre Toxicol 2025; 22:1. [PMID: 39810232 PMCID: PMC11731361 DOI: 10.1186/s12989-024-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis. METHODS We conducted a comprehensive analysis of the trajectory of metal oxide nanoparticles (MeONPs) within pulmonary systems. Two biological media (simulated lung fluid and phagolysosomal simulated fluid) and two cell lines (macrophages and epithelial cells) were meticulously chosen to scrutinize MeONP behaviors. Their interactions with MeONPs, also referred to as nano-bio interactions, can lead to alterations in the properties of the MeONPs as well as specific cellular responses. Physicochemical properties of MeONPs were assessed in biological media. The impact of MeONPs on cell membranes, lysosomes, mitochondria, and cytoplasmic components was evaluated using fluorescent probes, colorimetric enzyme substrates, and ELISA. The fibrogenic potential of MeONPs in mouse lungs was assessed by examining collagen deposition and growth factor release. Random forest classification was employed for analyzing in chemico, in vitro and in vivo data to identify predictive descriptors. RESULTS The nano-bio interactions induced diverse changes in the 4 characteristics of MeONPs and had variable effects on the 14 cellular functions, which were quantitatively evaluated in chemico and in vitro. Among these 18 quantitative features, seven features were found to play key roles in predicting the pro-fibrogenic potential of MeONPs. Notably, IL-1β was identified as the most important feature, contributing 27.8% to the model's prediction. Mitochondrial activity (specifically NADH levels) in macrophages followed closely with a contribution of 17.6%. The remaining five key features include TGF-β1 release and NADH levels in epithelial cells, dissolution in lysosomal simulated fluids, zeta potential, and the hydrodynamic size of MeONPs. CONCLUSIONS The pro-fibrogenic potential of MeONPs can be predicted by combination of key features at nano-bio interfaces, simulating their behavior and interactions within the lung environment. Among the 18 quantitative features, a combination of seven in chemico and in vitro descriptors could be leveraged to predict lung fibrosis in animals. Our findings offer crucial insights for developing in silico predictive models for nano-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yuhui Yang
- School of Public Health, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, Minsk, 220089, Belarus
| | - Mikhail Nedelko
- B.I. Stepanov Institute of Physics of National Academy of Sciences of Belarus, 68Nezalezhnasti Ave, Minsk, 220072, Belarus
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Noel J Aquilina
- Department of Chemistry, University of Malta, Msida, 2080, MSD, Malta
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
- CEET, Nanotechnology Centre, VSB-Technical University of Ostrava, 17 listopadu, Ostrava, 2172-15, 70800, Czech Republic.
| |
Collapse
|
26
|
Chen X, Wu D, Tan Y, Song X, Chen J, Li Q. Absence of a Causal Link between Elemental Carbon Exposure and Short-Term Respiratory Toxicity in Human-Derived Organoids and Cellular Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:668-678. [PMID: 39730302 DOI: 10.1021/acs.est.4c11256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM2.5) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion. EC contributes approximately 1 order of magnitude less to PM2.5 toxicity than PAHs, despite its positive associations with PM2.5-induced toxic potency (p < 0.0001). Furthermore, PAHs contribute 71.9 ± 12.2% and 61.9 ± 32.8% of the overall toxic potency of PM2.5 emitted from typical incomplete burning of solid and liquid fuels, respectively, while the PM2.5 toxicity significantly correlates with PAHs content (r = 0.94, p = 0.002). Hence, EC is not a cause of inducing acute toxicity, likely attributed to coemitted PAHs. These findings provide causal evidence for understanding the respiratory health risks associated with exposure to PM2.5 and further benefit to establishing efficient air pollution control policies.
Collapse
Affiliation(s)
- Xiu Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yifei Tan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiwen Song
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Ke L, Liu J, Feng G, Li X, Zhang Y, Zhang S, Ma X, Di Q. Effects of acute PM 2.5 purification on cognitive function and underlying mechanisms: Evidence from integrating alternative splicing into multi-omics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137214. [PMID: 39823879 DOI: 10.1016/j.jhazmat.2025.137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
The relationship between fine particulate matter (PM2.5) and cognition has been extensively investigated. However, the causal impact of acute PM2.5 purification on cognition improvement and the underlying biological mechanisms remain relatively opaque. Our double-blinded randomized controlled trial assessed the impact of acute PM2.5 purification on executive function, underpinned by multi-omics approaches including alternative splicing (AS) analysis. A total of 93 participants experienced a two-hour exposure to either reduced and normal PM2.5 levels. We measured the cognition of healthy young adults, collected peripheral blood before and after intervention, and performed multi-omics analysis including transcriptomics, metabolomics, and proteomics. Results indicated that reducing PM2.5 by 1 μg/m3 was associated with a 0.10 % (95 % CI: [0.18 %, 0.01 %]; p = 0.031) improvement in executive function. Notably, we identified 96 AS events without concurrent transcriptional amount alterations. Multi-layered omics analyses revealed disrupted pathways in hypoxia, mitochondrial function and energy metabolism, and immune responses, validated by ELISA and biochemical assay. These findings demonstrated short-term improvements of cognition following PM2.5 purification and provide mechanistic understandings of PM2.5-induced cognition alterations. This study underscores the significance of incorporating AS in the molecular framework of multi-omics research by exploring variable exon splicing, which could enrich multi-omics analysis methodologies and expose to broader audience.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China; School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jianxiu Liu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Guoqing Feng
- School of Medicine, Tsinghua University, Beijing 100084, China; School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xingtian Li
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Yao Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; Soochow College, Soochow University, Suzhou 215006, China.
| | - Shiqi Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Kureshi CT, Dougan SK. Cytokines in cancer. Cancer Cell 2025; 43:15-35. [PMID: 39672170 PMCID: PMC11841838 DOI: 10.1016/j.ccell.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Cytokines are proteins used by immune cells to communicate with each other and with cells in their environment. The pleiotropic effects of cytokine networks are determined by which cells express cytokines and which cells express cytokine receptors, with downstream outcomes that can differ based on cell type and environmental cues. Certain cytokines, such as interferon (IFN)-γ, have been clearly linked to anti-tumor immunity, while others, such as the innate inflammatory cytokines, promote oncogenesis. Here we provide an overview of the functional roles of cytokines in the tumor microenvironment. Although we have a sophisticated understanding of cytokine networks, therapeutically targeting cytokine pathways in cancer has been challenging. We discuss current progress in cytokine blockade, cytokine-based therapies, and engineered cytokine therapeutics as emerging cancer treatments of interest.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Zhang X, Pei Z, Wang Y, Pang Y, Hao H, Liu Q, Wu M, Zhang R, Zhang H. Associations of short-term exposure to air pollution with risk of pulmonary space-occupying lesions morbidity based on a time-series study. BMC Public Health 2025; 25:112. [PMID: 39789511 PMCID: PMC11721322 DOI: 10.1186/s12889-024-21245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Pulmonary space-occupying lesions are typical chronic pulmonary diseases that contribute significantly to healthcare resource use and impose a large disease burden in China. A time-series ecological trend study was conducted to investigate the associations between environmental factors and hospitalizations for pulmonary space-occupying lesions in North of China from 2014 to 2022. METHODS The DLNM was used to quantify the association of environmental factors with lung cancer admissions. The heating-, age-, gender-, malignancy-specific effects were further estimated to identify the susceptible groups. RESULTS During the study period, fluctuations in air pollutants and climate conditions closely mirrored changes in hospitalizations for pulmonary space-occupying lesions. Totally, the distributed lag surface showed clear positive associations between pulmonary tumor hospitalization and PM2.5 (RRlag30: 1.000912; 95%CI: 1.000076, 1.00175), PM10 (RRlag30: 1.002246; 95%CI: 1.000474, 1.004021), SO2 (RRlag30: 1.002714; 95%CI: 1.001071, 1.004414), CO (RRlag30: 1.002231; 95%CI: 1.000592, 1.003873). Additionally, the associations between air pollutants and hospitalizations for pulmonary space-occupying lesions were significantly stronger during the heating season. Population aged 65 or older, females and those diagnosed with malignancies were more vulnerable for the risk of pulmonary space-occupying lesions diseases due to air pollution exposure. CONCLUSIONS The present study illustrated risk and burden for pulmonary space-occupying lesions hospitalization associated with air pollution, especially among population aged ≥ 65, or female.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, PR China
| | - Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, PR China
| | - Yan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Haiyan Hao
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang city, Hebei Province, 050017, PR China.
| | - Helin Zhang
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, PR China.
| |
Collapse
|
30
|
Lu J, Zhao X, Gan S. Global, regional and national burden of tracheal, bronchus, and lung cancer attributable to ambient particulate matter pollution from 1990 to 2021: an analysis of the global burden of disease study. BMC Public Health 2025; 25:108. [PMID: 39789484 PMCID: PMC11720299 DOI: 10.1186/s12889-024-21226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The ambient particulate matter pollution may play a critical role in the initiation and development of tracheal, bronchus, and lung (TBL) cancer. Up to now, far too little attention has been paid to TBL cancer attributable to ambient particulate matter pollution. This study aims to assess the disease burden of TBL cancer attributable to ambient particulate matter pollution in global, regional and national from 1990 to 2021 to update the epidemiology data of this disease. METHODS Leveraging data from the Global Burden of Disease (GBD) 2021 study, we analyzed the worldwide burden of TBL cancer resulting from ambient particulate matter pollution using indices including disability-adjusted life years (DALYs), age-standardised rate of DALYs (ASDR). This burden was further segmented based on variables including geographical location, and socio-demographic index (SDI), age and sex. RESULTS The ASDR per 100,000 population of TBL cancer attributable to ambient particulate matter pollution increased by 0.2%[95% UI 0.1 to 0.3] to 79.6[95% UI 49.0 to 111.2] from 1990 to 2021 Globally. Middle-aged and elderly individuals accounted for the majority of the disease burden, with the highest value at the 65-69 years. Most of the disease burden was concentrated in countries with High-middle SDI. There was a positive correlation between ASDR of TBL cancer due to particulate matter pollution and the SDI(ρ = 0.66, p < 0.001). East Asia and Central Europe exhibited higher observed values than the fitted curves, while such as Austraiasia South Asia and Western Sub-Saharan Africa had a lower observed values than the fitted curves. Decomposition analysis showed that population aging and growth were the two major drivers of the increase in DALYs. CONCLUSIONS The disease burden of TBL cancer attributable to ambient particulate matter pollution has increased, especially in regions and countries with High-middle SDI.
Collapse
Affiliation(s)
- Jianguo Lu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, P. R. China.
| | - Xiangmei Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, P. R. China
| | - Shaoyin Gan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, P. R. China
| |
Collapse
|
31
|
Kehm RD, Lloyd SE, Burke KR, Terry MB. Advancing environmental epidemiologic methods to confront the cancer burden. Am J Epidemiol 2025; 194:195-207. [PMID: 39030715 PMCID: PMC11735972 DOI: 10.1093/aje/kwae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Even though many environmental carcinogens have been identified, studying their effects on specific cancers has been challenging in nonoccupational settings, where exposures may be chronic but at lower levels. Although exposure measurement methods have improved considerably, along with key opportunities to integrate multi-omic platforms, there remain challenges that need to be considered, particularly around the design of studies. Cancer studies typically exclude individuals with prior cancers and start recruitment in midlife. This translates into a failure to capture individuals who may have been most susceptible because of both germline susceptibility and higher early-life exposures that lead to premature mortality from cancer and/or other environmentally caused diseases like lung diseases. Using the example of breast cancer, we demonstrate how integration of susceptibility, both for cancer risk and for exposure windows, may provide a more complete picture regarding the harm of many different environmental exposures. Choice of study design is critical to examining the effects of environmental exposures, and it will not be enough to just rely on the availability of existing cohorts and samples within these cohorts. In contrast, new, diverse, early-onset case-control studies may provide many benefits to understanding the impact of environmental exposures on cancer risk and mortality. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Rebecca D Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Susan E Lloyd
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Kimberly R Burke
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, United States
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton MA 02460, United States
| |
Collapse
|
32
|
Sen T, Dotsu Y, Corbett V, Puri S, Sen U, Boyle TA, Mack P, Hirsch F, Aljumaily R, Naqash AR, Sukrithan V, Karim NA. Pulmonary neuroendocrine neoplasms: the molecular landscape, therapeutic challenges, and diagnosis and management strategies. Lancet Oncol 2025; 26:e13-e33. [PMID: 39756451 DOI: 10.1016/s1470-2045(24)00374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 01/07/2025]
Abstract
Lung neuroendocrine neoplasms are a group of diverse, heterogeneous tumours that range from well-differentiated, low-grade neuroendocrine tumours-such as typical and atypical carcinoids-to high-grade, poorly differentiated aggressive malignancies, such as large-cell neuroendocrine carcinoma (LCNEC) and small-cell lung cancer (SCLC). While the incidence of SCLC has decreased, the worldwide incidence of other pulmonary neuroendocrine neoplasms has been increasing over the past decades. In addition to the standard histopathological classification of lung neuroendocrine neoplasms, the introduction of molecular and sequencing techniques has led to new advances in understanding the biology of these diseases and might influence future classifications and staging that can subsequently improve management guidelines in the adjuvant or metastatic settings. Due to the rarity of neuroendocrine neoplasms, there is a paucity of prospective studies that focus on the lungs, especially in rare, well-differentiated carcinoids and LCNECs. In contrast with the success of targeted therapies in non-small-cell lung cancer (NSCLC), high-grade neuroendocrine carcinomas of the lung often only have a few specific targetable gene alterations. Optimal therapy for LCNECs is not well defined and treatment recommendations are based on extrapolating guidelines for the management of patients with SCLC and NSCLC. This Review explores the epidemiology, diagnosis, and staging of lung neuroendocrine neoplasms to date. In addition, we focus on the evolving molecular landscape and biomarkers, ranging from tumour phenotypes to functional imaging studies and novel molecular biomarkers. We outline the various clinical outcomes, challenges, the treatment landscape, ongoing clinical trials, and future directions.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yosuke Dotsu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Virginia Corbett
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonam Puri
- Division of Clinical Oncology, The Huntsman Cancer Institute at The University of Utah, Salt Lake City, UT, USA
| | - Utsav Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Phil Mack
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred Hirsch
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raid Aljumaily
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Abdul Rafeh Naqash
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Vineeth Sukrithan
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | |
Collapse
|
33
|
Chen CY, Huang KY, Chen CC, Chang YH, Li HJ, Wang TH, Yang PC. The role of PM2.5 exposure in lung cancer: mechanisms, genetic factors, and clinical implications. EMBO Mol Med 2025; 17:31-40. [PMID: 39578555 PMCID: PMC11729863 DOI: 10.1038/s44321-024-00175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Lung cancer is one of the most critical global health threats, as the second most common cancer and leading cause of cancer deaths globally. While smoking is the primary risk factor, an increasing number of cases occur in nonsmokers, with lung cancer in nonsmokers (LCNS) now recognized as the fifth leading cause of cancer mortality worldwide. Recent evidence identifies air pollution, particularly fine particulate matter (PM2.5), as a significant risk factor in LCNS. PM2.5 can increase oxidative stress and inflammation, induce genetic alterations and activation of oncogenes (including the epidermal growth factor receptor, EGFR), and contribute to lung cancer progression. This review summarizes the current understanding of how exposure to PM2.5 induces lung carcinogenesis and accelerates lung cancer development. It underscores the importance of prevention and early detection while calling for targeted therapies to combat the detrimental effects of air pollution. An integrated approach that combines research, public health policy, and clinical practice is essential to reduce the lung cancer burden and improve outcomes for those affected by PM2.5 exposurrre.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- BioBank, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Yen Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Program for Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Chin-Chuan Chen
- BioBank, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Hsuan Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Jung Li
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- BioBank, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Pan-Chyr Yang
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
34
|
Karim NA, Rabea AM, Mack PC, Subramanian J, Khalil E, Sherif M, Marawan R, Gaafar T, Shash L, Suzuki K, Ahluwalia M, Wahba H, Aboelela S, Al Ahmadi A, Al Husaini H, Mohsen N, Khaled R, Kassem N, Khaled H, El Said N, Zakhary N, Shoukry D, ElSadieque AA, Alsedfy MY, Islam S, ElSherbiny H, El Deftar M, Awad N, Mohamed AR, Gandara D, Kelly K, Sen T. State of Lung Cancer in Egypt: Moving Towards Improved Guidelines for Prevention, Screening, Treatment, and Clinical Care Programs. JTO Clin Res Rep 2025; 6:100776. [PMID: 39790369 PMCID: PMC11712008 DOI: 10.1016/j.jtocrr.2024.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/14/2024] [Accepted: 11/16/2024] [Indexed: 01/12/2025] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality globally and presents significant challenges in Egypt. In 2023, the first annual meeting of the Thoracic Oncology Multidisciplinary Faculty, organized by the Egyptian Cancer Research Network and the Egyptian Society of Respiratory Neoplasms, was held in Cairo, Egypt. The meeting aimed to address gaps in lung cancer management across Egypt and the broader Middle East and North Africa region. The discussions focused on the challenges posed by NSCLC and SCLC and emphasized the need for enhanced prevention, early detection, and treatment strategies. Key areas of concern include limited access to advanced diagnostics, such as comprehensive genomic profiling, and the underutilization of targeted therapies and immunotherapies, mainly owing to financial barriers. The meeting highlighted the importance of strengthening lung cancer screening programs, improving smoking cessation efforts, and addressing environmental risk factors like air pollution. Furthermore, the event underscored the need for greater research and collaboration, particularly in areas like precision oncology. The conference concluded with strategic recommendations to improve lung cancer prevention, screening, and treatment, aligning Egypt's lung cancer care with global advancements and ensuring equitable access to cutting-edge therapies.
Collapse
Affiliation(s)
- Nagla Abdel Karim
- Inova Schar Cancer Institute, Virginia, USA
- University of Virginia, Virginia, USA
| | | | - Philip C. Mack
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Ehab Khalil
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mai Sherif
- Kasr Al Aini Faculty of Medicine-Cairo University, Cairo, Egypt
| | - Radwa Marawan
- Kasr Al Aini Faculty of Medicine-Cairo University, Cairo, Egypt
| | - Tagrid Gaafar
- Kasr Al Aini Faculty of Medicine-Cairo University, Cairo, Egypt
| | - Lobna Shash
- Faculty of Medicine-Ain Shams University, Cairo, Egypt
| | - Kei Suzuki
- Inova Schar Cancer Institute, Virginia, USA
- University of Virginia, Virginia, USA
| | | | - Hisham Wahba
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salma Aboelela
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Asrar Al Ahmadi
- Ohio State University, Ohio, USA
- King Abdel Aziz University, Cairo, Egypt
| | | | - Nada Mohsen
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rana Khaled
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Neemat Kassem
- Kasr Al Aini Faculty of Medicine-Cairo University, Cairo, Egypt
| | - Hussein Khaled
- National Cancer Institute, Cairo University, Cairo, Egypt
- Former Minister of High Education
| | - Noha El Said
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nadia Zakhary
- National Cancer Institute, Cairo University, Cairo, Egypt
- Former Minister of Scientific Research
- Member of the National Council for Women (NCW)
| | - Dina Shoukry
- Kasr Al Aini Faculty of Medicine-Cairo University, Cairo, Egypt
- President of Central Research Ethics Committee, Supreme Council of University Hospitals, XX, X
- Forensic Medicine and Toxicology, Armed Forces College of Medicine, Cairo, Egypt
| | - Alaa Abdullah ElSadieque
- Egyptian Cancer Research Network, Academy of Scientific Research and Technology, Cairo, Egypt
- Medical Biophysics Department, Medical Research Institute, Alexandria University Cancer Research Cluster, Alexandria University, XX, X
| | - M. Yasser Alsedfy
- Egyptian Cancer Research Network, Academy of Scientific Research and Technology, Cairo, Egypt
- Department of Radiology, Faculty of Applied Health Sciences, Sphinx University, New Assiut, Egypt
| | - Shaheen Islam
- Department of Pulmonary, Augusta University, Augusta, Georgia, USA
| | - Hend ElSherbiny
- Kasr Al Aini Faculty of Medicine-Cairo University, Cairo, Egypt
| | | | - Noha Awad
- Egyptian Cancer Research Network, Academy of Scientific Research and Technology, Cairo, Egypt
- Epidemiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | | | | | - Karen Kelly
- UC Davis Cancer Center, USA
- The International Association for the Study of Lung Cancer, USA
| | - Triparna Sen
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
35
|
Bond M, Tomelleri A, Reatini MA, Campochiaro C, Cattani G, Dagna L, Rossini M, Dejaco C, Adami G. Impact of Exposure to Environmental Particulate Matter on the Onset of Giant Cell Arteritis. Arthritis Care Res (Hoboken) 2025; 77:30-37. [PMID: 39014894 DOI: 10.1002/acr.25404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the association between exposure to particulate matter with an aerodynamic diameter ≤10 μm (PM10) and the development of giant cell arteritis (GCA) and its ischemic complications. METHODS This was case-crossover study on consecutive patients who received a diagnosis of GCA in three hospitals in northern Italy between 2013 and 2021. The PM10 hourly and daily average concentrations, collected in the Italian monitoring network and archived by Istituto Superiore per la Protezione e la Ricerca Ambientale, were determined using European reference. We used a Bayesian hierarchical model to determine patients' daily exposures to them. We employed conditional logistic regression to estimate the effect of exposure on GCA symptoms onset or ischemic complications. RESULTS We included 232 patients. A positive association was observed between exposure to PM10 and GCA risk, with an incremental odd of 27.1% (95% confidence interval 5.8-52.6) for every 10-μg/m3 increase in PM10 concentration within a 60-day period. We did not find any significant association for shorter periods or with ischemic complications. Subgroup analysis found a significantly higher incremental risk at a 60-day lag for patients ≥70 years old. Comparing patients who were chronically exposed to high PM10 levels (26.9 ± 13.8 μg/m3) to those who were not (11.9 ± 7.9 μg/m3) revealed that only in the former group was there an association between GCA onset and increased PM10 levels in the preceding 60 days. CONCLUSION Exposure to environmental PM10 in the preceding 60 days seems to be associated with an increased risk of developing GCA, especially in older individuals with prolonged exposure to high levels of air pollution.
Collapse
Affiliation(s)
- Milena Bond
- Hospital of Bruneck, Teaching Hospital of the Paracelsus Medical University, Brunico, Italy
| | | | - Maria A Reatini
- Italian Institute for Environmental Protection and Research, Rome, Italy
| | | | - Giorgio Cattani
- Italian Institute for Environmental Protection and Research, Rome, Italy
| | | | | | - Christian Dejaco
- Hospital of Bruneck, Teaching Hospital of the Paracelsus Medical University, Brunico, Italy, and Medical University, Graz, Austria
| | | |
Collapse
|
36
|
Goddard KAB, Feuer EJ, Umar A, Castle PE. Accelerating progress to reduce the cancer burden through prevention and control in the United States. J Natl Cancer Inst 2025; 117:20-28. [PMID: 39222932 PMCID: PMC11717421 DOI: 10.1093/jnci/djae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Improvements in cancer prevention and control are poised to be main contributors in reducing the burden of cancer in the United States. We quantify top opportunities to accelerate progress using projected life-years gained and deaths averted as measures. We project that over the next 25 years, realistic gains from tobacco control can contribute 0.4-17 million additional life-years gained per intervention and 8.4 million additional life-years gained from improving uptake of screening programs over the lifetime of 25 annual cohorts. Additional opportunities include addressing modifiable risk factors (excess weight, alcohol consumption), improving methods to prevent or treat oncogenic infections, and reducing cancer health disparities. Investment is needed in the pipeline of new preventive agents and technologies for early detection to continue progress. There is also a need for additional research to improve the access to and uptake of existing and emerging interventions for cancer prevention and control and to address health disparities. These gains are undeniably within our power to realize for the US population.
Collapse
Affiliation(s)
- Katrina A B Goddard
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric J Feuer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Sharma R, Khubchandani J. Global, Regional, and National Burden of Tracheal, Bronchus, and Lung Cancer in 2022: Evidence from the GLOBOCAN Study. EPIDEMIOLOGIA 2024; 5:785-795. [PMID: 39727425 DOI: 10.3390/epidemiologia5040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Tracheal Bronchus and Lung cancers (TBL) represent one of the leading causes of cancer deaths worldwide. This study aimed to examine the disease and economic burden of TBL cancers in 185 countries worldwide in 2022. METHODS The estimates of TBL cancer incidence and mortality (counts and age-standardized rates) were obtained from the GLOBOCAN 2022 data produced by the International Agency for Research on Cancer. Mortality-to-incidence ratios (MIR) were utilized as a proxy of 5-year survival rates. Multivariate regression was utilized to examine the association between TBL cancer burden and tobacco use prevalence. RESULTS Globally, there were 2.48 million incident cases and 1.82 million deaths due to TBL cancers in 2022. Males accounted for 63.4% of incident cases (1.57 million) and 67.85% of TBL deaths (1.23 million) in 2022. For both sexes combined, the age-standardized rate was 23.1 per 100,000, and the age-standardized mortality rate was 16.8/100,000. The Mortality-to-incidence ratio (MIR) at the global level stood at 0.71. Eastern Asia had the largest burden of TBL cancers among the 21 UN-defined regions, with around 51% of incident cases (1.24 million) and 46.9% of global deaths (851,876), followed by Northern America (incidence: 257,284; deaths: 150,675) and Eastern Europe (incidence: 158,141; deaths: 126,840). At the country level, human development index (HDI) and adult tobacco use prevalence could explain 67% and 64% variation in ASIR and ASMR, respectively. HDI was statistically significantly related to MIR, explaining a 48% variation in MIR. CONCLUSIONS With 1.9 million deaths in 2022, TBL cancer is a significant global cause of mortality. Despite the knowledge and awareness of smoking and lung cancer, adult smoking rates remain high in many countries, including the United States and China. Renewed and sustained global efforts are needed to reduce smoking prevalence and PM2.5 levels, particularly in China and low- and middle-income countries.
Collapse
Affiliation(s)
- Rajesh Sharma
- Department of Humanities and Social Sciences, National Institute of Technology Kurukshetra, Kurukshetra 136119, India
| | - Jagdish Khubchandani
- Department of Public Health Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
38
|
Hänggi K, Li J, Gangadharan A, Liu X, Celias DP, Osunmakinde O, Keske A, Davis J, Ahmad F, Giron A, Anadon CM, Gardner A, DeNardo DG, Shaw TI, Beg AA, Yu X, Ruffell B. Interleukin-1α release during necrotic-like cell death generates myeloid-driven immunosuppression that restricts anti-tumor immunity. Cancer Cell 2024; 42:2015-2031.e11. [PMID: 39577420 PMCID: PMC11631672 DOI: 10.1016/j.ccell.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Necroptosis can promote antigen-specific immune responses, suggesting induced necroptosis as a therapeutic approach for cancer. Here we sought to determine the mechanism of immune activation but found the necroptosis mediators RIPK3 and MLKL dispensable for tumor growth in genetic and implantable models of breast or lung cancer. Surprisingly, inducing necroptosis within established breast tumors generates a myeloid suppressive microenvironment that inhibits T cell function, promotes tumor growth, and reduces survival. This was dependent upon the release of the nuclear alarmin interleukin-1α (IL-1α) by dying cells. Critically, IL-1α release occurs during chemotherapy and targeting this molecule reduces the immunosuppressive capacity of tumor myeloid cells and promotes CD8+ T cell recruitment and effector function. Neutralizing IL-1α enhances the efficacy of single agent paclitaxel or combination therapy with PD-1 blockade in preclinical models. Low IL1A levels correlates with positive patient outcome in several solid malignancies, particularly in patients treated with chemotherapy.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Jie Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Achintyan Gangadharan
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxian Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daiana P Celias
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olabisi Osunmakinde
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Aysenur Keske
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joshua Davis
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Auriane Giron
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
39
|
Meyer ML, Hirsch FR, Bunn PA, Ujhazy P, Fredrickson D, Berg CD, Carbone DP, Halmos B, Singh H, Borghaei H, Ferris A, Langer C, Dacic S, Mok TS, Peters S, Johnson BE. Calls to action on lung cancer management and research. Oncologist 2024; 29:e1634-e1645. [PMID: 39002167 PMCID: PMC11630765 DOI: 10.1093/oncolo/oyae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 07/15/2024] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths globally, remains a pressing health issue despite significant medical advances. The New York Lung Cancer Foundation brought together experts from academia, the pharmaceutical and biotech industries as well as organizational leaders and patient advocates, to thoroughly examine the current state of lung cancer diagnosis, treatment, and research. The goal was to identify areas where our understanding is incomplete and to develop collaborative public health and scientific strategies to generate better patient outcomes, as highlighted in our "Calls to Action." The consortium prioritized 8 different calls to action. These include (1) develop strategies to cure more patients with early-stage lung cancer, (2) investigate carcinogenesis leading to lung cancers in patients without a history of smoking, (3) harness precision medicine for disease interception and prevention, (4) implement solutions to deliver prevention measures and effective therapies to individuals in under-resourced countries, (5) facilitate collaborations with industry to collect and share data and samples, (6) create and maintain open access to big data repositories, (7) develop new immunotherapeutic agents for lung cancer treatment and prevention, and (8) invest in research in both the academic and community settings. These calls to action provide guidance to representatives from academia, the pharmaceutical and biotech industries, organizational and regulatory leaders, and patient advocates to guide ongoing and planned initiatives.
Collapse
Affiliation(s)
- May-Lucie Meyer
- Hematology and Oncology Department, Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine and Thoracic Oncology Center, New York, NY, United States
| | - Fred R Hirsch
- Hematology and Oncology Department, Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine and Thoracic Oncology Center, New York, NY, United States
| | - Paul A Bunn
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Peter Ujhazy
- Translational Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, United States
| | | | | | - David P Carbone
- Division of Medical Oncology, The Ohio State University—James Comprehensive Cancer Center, Columbus, OH, United States
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Harpreet Singh
- US Food and Drug Administration (FDA), Washington, DC, United States
| | | | | | - Corey Langer
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanja Dacic
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Tony S Mok
- State Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Solange Peters
- Department of Oncology, University Hospital CHUV, Lausanne, Switzerland
| | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 PMCID: PMC7617408 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
41
|
Li X, Zhang J, Wang M, Li H, Zhang W, Sun J, Zhang L, Zheng Y, Liu J, Tang J. Pulmonary surfactant biogenesis blockage mediated polyhexamethylene guanidine disinfectant induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136307. [PMID: 39488979 DOI: 10.1016/j.jhazmat.2024.136307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The widespread use of disinfectants and inhalation exposure to aerosolized forms is closely associated with adverse health effects on the respiratory system and pulmonary fibrosis, but the mechanism remains unclear. Here, we investigated the time-course pulmonary fibrosis effects of polyhexamethylene guanidine (PHMG) disinfectant inhalation exposure and elucidated its underlying mechanism. Specifically, scRNA-seq analysis revealed an initial increase in epithelial cell numbers after 4 weeks of PHMG exposure during induced pulmonary fibrosis, followed by a subsequent decrease after 8 weeks of exposure. Mechanistically, PHMG disrupted autophagic flux leading to intracellular accumulation and blocked pulmonary surfactant biogenesis in alveolar type II epithelial (AT2) cells both in vitro and in vivo. Furthermore, intervention studies using metformin confirmed that autophagy dysfunction mediated the blockage of pulmonary surfactant biogenesis in AT2 cells, playing a pivotal role in PHMG-induced pulmonary fibrosis. Our elucidation of these toxicological mechanisms provides valuable insights into the pathogenesis of pulmonary fibrosis triggered by environmental PHMG exposure, thereby offering a promising therapeutic target for mitigating and treating PHMG-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Li
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jianzhong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Haonan Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiayin Sun
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jinglong Tang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
42
|
Zhang Q, Wang S, Chen X, Song X, Wu D, Qian J, Qin Z, Zhang H, Li Q, Chen J. Unequal toxic effects of size-segregated single particles emitted from typical industrial plants, vehicles, and road dust. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136419. [PMID: 39522209 DOI: 10.1016/j.jhazmat.2024.136419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The health risks of particulate matters (PMs) associated with their chemical components and sizes have attracted increasing attention. However, the toxic effect of critical toxic components in size-segregated PMs from specific emission source remains unclear. We present the toxicity of size-segregated elements in PMs via integrating toxic analysis and online single-particle measurements of real-world industrial plants, vehicles, and road dust. The number fractions of elemental carbon (EC)- and Fe-containing particles were 5-11 and 3-12 folds greater than those of other metal-containing particles, respectively. A unimodal distribution with the peak at 0.4 µm was observed for the toxic metals emitted from industrial plants and road dust, while the distribution was relatively flat for vehicles. When integrating the abundance with toxicity of metals, especially Mn, Cu, V, and Fe, the peak for PM toxicity occurred at 0.4 µm for road dust, 0.4-0.7 µm for industrial plants, and 0.8 µm for vehicle-emitted PM. The inhalation risk in the alveolar region increased for these source-emitted PMs due to the efficient deposition of toxic PMs within 0.4-0.8 µm. These results reveal the complex coupling of health risks and size distributions of PMs, and further highlight that the health-oriented control of air pollution should consider PM1.
Collapse
Affiliation(s)
- Qi Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shuibing Wang
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Xiu Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiwen Song
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St, Toronto, Ontario M3H 5T4, Canada
| | - Jing Qian
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Zhiyong Qin
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Hong Zhang
- Anhui Research Academy of Ecological Environmental Sciences, Hefei 230071, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
43
|
Martínez-Jiménez F, Chowell D. Genetic immune escape in cancer: timing and implications for treatment. Trends Cancer 2024:S2405-8033(24)00254-1. [PMID: 39632211 DOI: 10.1016/j.trecan.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Genetic immune escape (GIE) alterations pose a significant challenge in cancer by enabling tumors to evade immune detection. These alterations, which can vary significantly across cancer types, may often arise early in clonal evolution and contribute to malignant transformation. As tumors evolve, GIE alterations are positively selected, allowing immune-resistant clones to proliferate. In addition to genetic changes, the tumor microenvironment (TME) and non-genetic factors such as inflammation, smoking, and environmental exposures play crucial roles in promoting immune evasion. Understanding the timing and mechanisms of GIE, alongside microenvironmental influences, is crucial for improving early detection and developing more effective therapeutic interventions. This review highlights the implications of GIE in cancer development and immunotherapy resistance, and emphasizes the need for integrative approaches.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Hartwig Medical Foundation, Amsterdam, The Netherlands.
| | - Diego Chowell
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Bauer AK, Romo D, Friday F, Cho K, Velmurugan K, Upham BL. Non-Genotoxic and Environmentally Relevant Lower Molecular Weight Polycyclic Aromatic Hydrocarbons Significantly Increase Tumorigenicity of Benzo[ a]pyrene in a Lung Two-Stage Mouse Model. TOXICS 2024; 12:882. [PMID: 39771097 PMCID: PMC11679119 DOI: 10.3390/toxics12120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[a]pyrene (B[a]P), a legacy PAH. We specifically determined the effects of an LMW PAH mixture containing 1-methylanthracene (1MeA), fluoranthene (Flthn), and phenanthrene (Phe) combined with B[a]P on lung tumor promotion. To test this hypothesis, we used a two-stage, initiation/promotion BALB/ByJ female lung tumor mouse model. The mice were initiated with 3-methylcholanthrene followed by exposures to B[a]P, the LMW PAH mixture, and the combination of the LMW PAH mixture plus B[a]P, all at 10 mg/kg. The LMW PAHs combined with B[a]P significantly increased the promotion and incidence of lung tumors over that of B[a]P alone. The LMW PAHs in the absence of B[a]P did not significantly promote tumors, indicating strong co-promotional activities. We further assessed the effects of these PAHs on other hallmarks of cancer, namely, bronchoalveolar lavage fluid inflammatory infiltrates, pro-inflammatory transcripts, KC protein content, and mRNA expression of the gap junction (Gja1) and epiregulin (Ereg) genes. The LMW PAHs increased the biomarkers of inflammation, decreased Gja1 expression, and increased Ereg expression, all consistent with tumor promotion. This study indicates that non-genotoxic LMW PAHs can contribute to the cancer process and warrants further studies to assess the carcinogenic risks of other LMW PAHs.
Collapse
Affiliation(s)
- Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Deedee Romo
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Finnegan Friday
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Kaila Cho
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Brad L. Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
45
|
Panagiotou E, Vathiotis IA, Makrythanasis P, Hirsch F, Sen T, Syrigos K. Biological and therapeutic implications of the cancer-related germline mutation landscape in lung cancer. THE LANCET. RESPIRATORY MEDICINE 2024; 12:997-1005. [PMID: 38885686 DOI: 10.1016/s2213-2600(24)00124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
Although smoking is the primary cause of lung cancer, only about 15% of lifelong smokers develop the disease. Moreover, a substantial proportion of lung cancer cases occur in never-smokers, highlighting the potential role of inherited genetic factors in the cause of lung cancer. Lung cancer is significantly more common among those with a positive family history, especially for early-onset disease. Therefore, the presence of pathogenic germline variants might act synergistically with environmental factors. The incorporation of next-generation sequencing in routine clinical practice has led to the identification of cancer-predisposing mutations in an increasing proportion of patients with lung cancer. This Review summarises the landscape of germline susceptibility in lung cancer and highlights the importance of germline testing in patients diagnosed with the disease, which has the potential to identify individuals at risk, with implications for tailored therapeutic approaches and successful prevention through genetic counselling and screening.
Collapse
Affiliation(s)
- Emmanouil Panagiotou
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A Vathiotis
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Genetic Medicine and Development, Medical School, University of Geneva, Geneva, Switzerland; Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fred Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Triparna Sen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Konstantinos Syrigos
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Tang HW, Voon FL, Sim EUH. Association Between Incense Burning and the Risk of Lung Cancer in Asian Population: Meta-Analysis of Nine Case-Control Studies. Cancer Rep (Hoboken) 2024; 7:e70095. [PMID: 39725665 DOI: 10.1002/cnr2.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Various studies have explored the potential association between incense burning and the risk of lung cancer. However, the findings from these studies have been inconsistent. OBJECTIVES This study aimed to provide a more comprehensive understanding of the relationship between incense burning and lung cancer risk in the Asian population through a meta-analysis. METHODS This meta-analysis, which includes nine case-control studies conducted in Asia and identified through Google Scholar, PubMed, and ScienceDirect up to January 7, 2024, was performed to evaluate the relevant literature. Using a fixed-effects model, the pooled odds ratio (OR) was calculated to determine the overall association between incense burning and lung cancer. RESULTS The results of the meta-analysis revealed a significant association between incense burning and the development of lung cancer (pooled OR = 1.33, 95% confidence interval [CI]: 1.20-1.48). Furthermore, a subgroup analysis was conducted based on smoking status. It was found that ever-smokers had a significantly higher risk of developing lung cancer when exposed to incense burning (pooled OR = 1.34, 95% CI: 1.09-1.65). Both hospital-based case-control studies (pooled OR = 1.28, 95% CI: 1.10-1.48) and population-based case-control studies (pooled OR = 1.39, 95% CI: 1.21-1.60) yielded significant associations between incense burning and lung cancer. Limitations of this study include the lack of detailed histologic information in most of the selected studies, highlighting the need for future research to include cohort studies that can more accurately assess the association between incense smoke inhalation and specific lung cancer subtypes. CONCLUSION In conclusion, the findings of this meta-analysis, based on nine case-control studies, suggest that the risk of developing lung cancer among Asians may increase with exposure to incense burning.
Collapse
Affiliation(s)
- Hui-Wen Tang
- Faculty of Resource Science and Technology, University Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Fui-Ling Voon
- Faculty of Resource Science and Technology, University Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Edmund Ui-Hang Sim
- Faculty of Resource Science and Technology, University Malaysia Sarawak, Kota Samarahan, Malaysia
| |
Collapse
|
47
|
Wang W, Li J, Qie X. Comprehensive utilization of in silico approach and in vitro experiment to unveil the molecular mechanisms of mono (2-ethylhexyl) phthalate-induced lung adenocarcinoma. Bioorg Chem 2024; 153:107947. [PMID: 39520789 DOI: 10.1016/j.bioorg.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP), the main bioactive metabolite of commonly used plasticizer Di (2-ethylhexyl) phthalate, has received increasing attention due to its carcinogenic toxicity. This study aims to systematically explore the molecular mechanisms underlying MEHP-induced lung adenocarcinoma (LUAD). Firstly, network toxicology was employed to construct the interaction network of MEHP-targeted LUAD-related proteins and identify core proteins. Subsequently, functional analyses were used to determine the key pathways of these proteins enriched. Next, expression and survival analyses of multiple public datasets were conducted to emphasize the importance of core genes, and an optimized prognostic model was constructed based on independent prognostic genes to explore the relationship of gene risk with immune infiltration and immunotherapy. Ultimately, molecular docking and dynamics simulation were used to predict the binding modes and affinities of MEHP with core proteins, and surface plasmon resonance experiments were utilized to further validate their direct interactions. The findings demonstrated that MEHP targets 167 LUAD-related proteins, including 28 core target proteins. These proteins form the critical networks that regulate cancer and immune-associated pathways to induce the occurrence and development of LUAD, and further coordinate patient prognosis and treatment by altering the immune microenvironment. Most importantly, their direct interactions (especially PTGS2) lay the structural foundation of MEHP regulating core proteins, greatly supporting its LUAD toxicity. In conclusion, this study introduces a novel approach for evaluating the safety of plasticizers and elucidates the molecular mechanisms behind MEHP-induced LUAD, thus offering new and effective targets and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, China.
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, Guangdong, China
| | - Xingwang Qie
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, HymonBio Co., Ltd, Suzhou 215434, Jiangsu, China
| |
Collapse
|
48
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024; 24:850-866. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Meyer ML, Peters S, Mok TS, Lam S, Yang PC, Aggarwal C, Brahmer J, Dziadziuszko R, Felip E, Ferris A, Forde PM, Gray J, Gros L, Halmos B, Herbst R, Jänne PA, Johnson BE, Kelly K, Leighl NB, Liu S, Lowy I, Marron TU, Paz-Ares L, Rizvi N, Rudin CM, Shum E, Stahel R, Trunova N, Bunn PA, Hirsch FR. Lung cancer research and treatment: global perspectives and strategic calls to action. Ann Oncol 2024; 35:1088-1104. [PMID: 39413875 DOI: 10.1016/j.annonc.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Lung cancer remains a critical public health issue, presenting multifaceted challenges in prevention, diagnosis, and treatment. This article aims to review the current landscape of lung cancer research and management, delineate the persistent challenges, and outline pragmatic solutions. MATERIALS AND METHODS Global experts from academia, regulatory agencies such as the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), the National Cancer Institute (NCI), professional societies, the pharmaceutical and biotech industries, and patient advocacy groups were gathered by the New York Lung Cancer Foundation to review the state of the art in lung cancer and to formulate calls to action. RESULTS Improving lung cancer management and research involves promoting tobacco cessation, identifying individuals at risk who could benefit from early detection programs, and addressing treatment-related toxicities. Efforts should focus on conducting well-designed trials to determine the optimal treatment sequence. Research into innovative biomarkers and therapies is crucial for more personalized treatment. Ensuring access to appropriate care for all patients, whether enrolled in clinical trials or not, must remain a priority. CONCLUSIONS Lung cancer is a major health burden worldwide, and its treatment has become increasingly complex over the past two decades. Improvement in lung cancer management and research requires unified messaging and global collaboration, expanded education, and greater access to screening, biomarker testing, treatment, as well as increased representativeness, participation, and diversity in clinical trials.
Collapse
Affiliation(s)
- M-L Meyer
- Icahn School of Medicine, Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, USA. https://twitter.com/mayluciemeyer
| | - S Peters
- Department of Oncology, University Hospital (CHUV), Lausanne, Switzerland
| | - T S Mok
- State Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - S Lam
- Department of Integrative Oncology, BC Cancer and the University of British Columbia, Vancouver, Canada
| | - P-C Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - C Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - J Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Kimmel Cancer Center, Baltimore, USA
| | - R Dziadziuszko
- Medical University of Gdansk, Department of Oncology and Radiotherapy, Gdansk, Poland
| | - E Felip
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - A Ferris
- LUNGevity Foundation, Chicago, USA
| | - P M Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Kimmel Cancer Center, Baltimore, USA
| | - J Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - L Gros
- Department of Radiology, Mount Sinai Hospital, New York, USA
| | - B Halmos
- Department of Oncology, MD Montefiore Einstein Comprehensive Cancer Center, New York, USA
| | - R Herbst
- Department of Medical Oncology, Yale Comprehensive Cancer Center, New Haven, USA
| | - P A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, USA
| | - B E Johnson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - K Kelly
- International Association for the Study of Lung Cancer, Denver, USA
| | - N B Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - S Liu
- Division of Medicine, Georgetown University, Washington, USA
| | - I Lowy
- Regeneron Pharmaceuticals, Inc., Tarrytown, USA
| | - T U Marron
- Early Phase Trials Unit and Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - L Paz-Ares
- Department of Oncology Hospital Universitario 12 de Octubre, Madrid, Spain
| | - N Rizvi
- Synthekine, Inc., Menlo Park, USA
| | - C M Rudin
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Shum
- Division of Medical Oncology, Department of Medicine, Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA
| | - R Stahel
- ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - N Trunova
- Global Medical Affairs, Genmab, Princeton
| | - P A Bunn
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, USA
| | - F R Hirsch
- Icahn School of Medicine, Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, USA.
| |
Collapse
|
50
|
Whitrock JN, Carter MM, Pratt CG, Brokamp C, Harvey K, Pan J, Rai S, Salfity H, Starnes SL, Van Haren RM. The Role of Environmental Exposures on Survival After Non-Small Cell Lung Cancer Resection. ANNALS OF THORACIC SURGERY SHORT REPORTS 2024; 2:618-623. [PMID: 39790616 PMCID: PMC11708564 DOI: 10.1016/j.atssr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 01/12/2025]
Abstract
Background Socioeconomic status and pollution exposure have been described as risk factors for poor survival in patients with non-small cell lung cancer (NSCLC). However, the relationship between these factors is complex and inadequately studied. This study aimed to evaluate the relationship between environmental and social factors and their impact on survival after NSCLC resection. Methods A prospective database for all patients with NSCLC who underwent primary resection from 2006 to 2021 was analyzed. Ambient fine particulate matter (air pollution smaller than 2.5 μm [PM2.5]), greenness, and deprivation index (a measure of neighborhood-level material deprivation composed of 6 factors) were linked to individual patients by geocoding their residential address. Results A total of 661 patients who underwent pulmonary resection for NSCLC were evaluated. Black patients had increased levels of community deprivation compared with White patients; however, there was no difference in PM2.5 exposure or overall survival between races. Increased PM2.5 exposure was an independent predictor of worse survival on univariable and multivariable analysis (hazard ratio, 1.06; P = .003). Conclusions Increased PM2.5 exposure is associated with worse overall survival in resected NSCLC and was a more significant factor than race and material deprivation in this population. Interventions to reduce environmental air pollution could improve lung cancer survival.
Collapse
Affiliation(s)
- Jenna N. Whitrock
- Cincinnati Research in Outcomes and Safety in Surgery (CROSS) Research Group, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michela M. Carter
- Cincinnati Research in Outcomes and Safety in Surgery (CROSS) Research Group, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Catherine G. Pratt
- Cincinnati Research in Outcomes and Safety in Surgery (CROSS) Research Group, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Krysten Harvey
- Cincinnati Research in Outcomes and Safety in Surgery (CROSS) Research Group, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jianmin Pan
- University of Cincinnati Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shesh Rai
- University of Cincinnati Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hai Salfity
- Division of Thoracic Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sandra L. Starnes
- Division of Thoracic Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert M. Van Haren
- Cincinnati Research in Outcomes and Safety in Surgery (CROSS) Research Group, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Thoracic Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|