1
|
Hennessy MR, Creed SM, Gutridge AM, Rusali LE, Luo D, Sepehri B, Rhoda ES, Villegas JA, van Rijn RM, Riley AP. Discovery of Potent Kappa Opioid Receptor Agonists Derived from Akuammicine. J Med Chem 2024; 67:20842-20857. [PMID: 39565354 DOI: 10.1021/acs.jmedchem.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Akuammicine (1), an alkaloid isolated from Picralima nitida, is an agonist of the kappa opioid receptor (κOR). To establish structure-activity relationships (SARs) for this structurally unique κOR ligand, a collection of semisynthetic derivatives was synthesized. Evaluating these derivatives for their ability to activate the κOR and mu opioid receptor (μOR) revealed key SAR trends and identified derivatives with enhanced κOR potency. Most notably, substitutions to the C10 position of the aryl ring led to a > 200-fold improvement in κOR potency and nearly complete selectivity for the κOR. A selection of the most potent ligands was shown to possess differing abilities recruitment of β-Arrestin-2 to the κOR, indicating they have distinct signaling properties from each other and existing κOR ligands. The discovery of these κOR agonists underscores the potential of using natural products to identify new classes of potent and selective ligands and provides new tools to probe the κOR.
Collapse
Affiliation(s)
- Madeline R Hennessy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Simone M Creed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bakhtyar Sepehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Elizabeth S Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - José A Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Gou X, Chen Y, Ye Q, Meng Q, Jia Y, Li P, Wang Q, Wang J, Zhang C, Wang J, Dong Y. Preclinical evaluation of abuse potential of the peripherally-restricted kappa opioid receptor agonist HSK21542. Regul Toxicol Pharmacol 2024; 154:105731. [PMID: 39455048 DOI: 10.1016/j.yrtph.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
HSK21542 is a peripherally-restricted kappa opioid receptor (KOR) agonist developed for pain treatment. Because of the CNS pharmacological concern of opioid receptor activation, such as physical dependence and addiction potential, an assessment of abuse potential of HSK21542 was required prior to marketing approval. The preclinical abuse potential assessments for HSK21542 included the following studies: 1) intravenous self-administration study to explore the relative reinforcing efficacy in rats self-administering remifentanil; 2) rat drug discrimination study to examine the pharmacological similarity of the interoceptive or subjective effects of HSK21542 in rats discriminating pentazocine; 3) rat conditioned place preference (CPP) paradigm to test the rewarding effects; 4) rat natural physical dependence-spontaneous withdrawal study in rats chronically treated with HSK21542; 5) naloxone-precipitated withdrawal assay following chronic HSK21542 exposure to evaluate its physical dependence potential. The results showed that HSK21542 was devoid of behavioral evidence of positive reinforcing effect and did not share similar discriminative stimulus effects with pentazocine. HSK21542 also did not produce CPP in rats. In addition, HSK21542 did not produce spontaneous withdrawal or naloxone-precipitated withdrawal in rats with chronic treatments. Collectively, these preclinical findings suggest that HSK21542 has no abuse potential in animals, which demonstrate low abuse potential in humans.
Collapse
Affiliation(s)
- Xiaoli Gou
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Ying Chen
- Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China
| | - Qidi Ye
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Qingyuan Meng
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Yanli Jia
- Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China
| | - Peiyun Li
- Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China
| | | | - JianMin Wang
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Chen Zhang
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Ju Wang
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China.
| | - Yansheng Dong
- Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China.
| |
Collapse
|
3
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Li X, Nong X, Yang J, Li M, Wang Q, Sun M, Ma Q, Xu L, Wang Y. Exploring the Frontier of Cyclic Dipeptides: A Bioinformatics Approach to Potential Therapeutic Applications in Schizophrenia. Int J Mol Sci 2024; 25:11421. [PMID: 39518975 PMCID: PMC11546255 DOI: 10.3390/ijms252111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cyclic dipeptides (CDPs), known for their diverse biological activities, have potential therapeutic applications in mental and behavioral disorders (MBDs), particularly schizophrenia. This study explores the CDPs' therapeutic potential using bibliometric analysis, network pharmacology, molecular docking, and experimental verification, focusing on the interactions with the SIGMA1 receptor. A literature review over three decades utilizing the Web of Science Core Collection (WOSCC) was conducted to identify the emerging trends in CDPs research. A compound library was constructed from the PubChem database, and target prediction using SwissTargetPrediction revealed 800 potential protein targets. A compound-target network highlighted the key interactions with kinases, G protein-coupled receptors, and chromatin-modifying enzymes. Enrichment analysis revealed significant associations with schizophrenia and other MBDs. Schizophrenia-related targets among the potential protein targets were identified using the GEO database. Molecular docking results showed interactions of MC4R, OPRK1, SIGMA1, and CDK5R1 with various CDPs compounds, with SIGMA1 being especially noteworthy. Most CDPs exhibited lower binding energies than the control compounds NE-100 and duloxetine. Experimental validation demonstrated that CDPs such as Cyclo(Ala-Gln), Cyclo(Ala-His), and Cyclo(Val-Gly) exhibited IC50 values of 13.4, 19.4, and 11.5 μM, respectively, against SIGMA1, indicating biological activity. Our findings underscore their potential as therapeutic agents for schizophrenia, highlighting the need for further modifications to enhance specificity and efficacy. This work paves the way for future investigations into CDPs, contributing to developing targeted treatments for schizophrenia and related mental health disorders.
Collapse
Affiliation(s)
- Xingyu Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xuexiang Nong
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Chinese Academy of Sciences, Kunming 650201, China
| | - Minyue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qiuling Wang
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Min Sun
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Qichen Ma
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Ling Xu
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Fan L, Zhuang Y, Wu H, Li H, Xu Y, Wang Y, He L, Wang S, Chen Z, Cheng J, Xu HE, Wang S. Structural basis of psychedelic LSD recognition at dopamine D 1 receptor. Neuron 2024; 112:3295-3310.e8. [PMID: 39094559 DOI: 10.1016/j.neuron.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiqiong Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Licong He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang 261021, China
| | - Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China.
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
6
|
Trojniak AE, Dang VQ, Czekner KM, Russo RJ, Mather LM, Stahl EL, Cameron MD, Bohn LM, Aubé J. Synthesis and evaluation of 3,4,5-trisubstituted triazoles as G protein-biased kappa opioid receptor agonists. Eur J Med Chem 2024; 276:116627. [PMID: 38971050 PMCID: PMC11316643 DOI: 10.1016/j.ejmech.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Kappa opioid receptor (KOR) agonists represent promising therapeutics for pain relief due to their analgesic properties along with lower abuse potential than opioids that act at the mu opioid receptor. However, typical KOR agonists produce sedation and dysphoria. Previous studies have shown that G protein signaling-biased KOR agonists may present a means to untangle the desired analgesic properties from undesired side effects. In this paper, we report a new series of G protein signaling-biased KOR agonists entailing -S- → -CH2- replacement in a previously reported KOR agonist, triazole 1.1. With an optimized carbon linker in hand, further development of the scaffold was undertaken to investigate the appendages of the triazole core. The structure-activity relationship study of this series is described, including several analogues that display enhanced potency while maintaining G protein-signaling bias compared to triazole 1.1.
Collapse
Affiliation(s)
- Ashley E Trojniak
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Vuong Q Dang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Kerri M Czekner
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Robin J Russo
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Lilyan M Mather
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Edward L Stahl
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Michael D Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Laura M Bohn
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA.
| |
Collapse
|
7
|
Roth BL, Krumm BE. Molecular glues as potential GPCR therapeutics. Biochem Pharmacol 2024; 228:116402. [PMID: 38945274 DOI: 10.1016/j.bcp.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
"Molecular Glues" are defined as small molecules that can either be endogenous or synthetic which promote interactions between proteins at their interface. Allosteric modulators, specifically GPCR allosteric modulators, can promote both the association and the dissociation of a given receptor's transducer but accomplishes this "at a distance" from the interface. However, recent structures of GPCR G protein complexes in the presence of allosteric modulators indicate that some GPCR allosteric modulators can act as "molecular glues" interacting with both the receptor and the transducer at the interface biasing transducer signaling in both a positive and negative manner depending on the transducer. Given these phenomena we discuss the implications for this class of allosteric modulators to be used as molecular tools and for future drug development.
Collapse
Affiliation(s)
- Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Brian E Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Zhang MY, Ao JY, Liu N, Chen T, Lu SY. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin 2024:10.1038/s41401-024-01385-7. [PMID: 39256608 DOI: 10.1038/s41401-024-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Institute of Hepatobiliary and Pancreatic Surgery, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China.
| | - Shao-Yong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
10
|
Tchekalarova J, Pechlivanova D, Rangelov M, Todorova N, Stoyanova T, Assenov B, Todorov P. A novel cinnamic and caffeic acid-conjugated peptide analogs with anticonvulsant and analgesic potency: Comparative analyses of trans/cis isomers. Drug Dev Res 2024; 85:e22236. [PMID: 39032052 DOI: 10.1002/ddr.22236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
The novel cinnamic acid (CA) (H4-CA, H5-CA, and H7-CA) and caffeic acid (KA) (H4-KA, H5-KA, and H7-KA) hemorphin analogs have recently been synthesized and their trans isomers have been tested for antiseizure and antinociceptive activity. In the present study, the cis forms of these compounds were tested and compared with their trans isomers in seizure and nociception tests in mice. The cis-H5-CA and H7-CA compounds showed efficacy against psychomotor seizures, whereas the trans isomers were ineffective. Both the cis and trans KA isomers were ineffective in the 6-Hz test. In the maximal electroshock (MES) test, the cis isomers showed superior antiseizure activity to the trans forms of CA and KA conjugates, respectively. The suppression of seizure propagation by cis-H5-CA and the cis-H5-KA was reversed by a kappa opioid receptor (KOR) antagonist. Naloxone and naltrindole were not effective. The cis-isomers of CA conjugates and cis-H7-KA produced significantly stronger antinociceptive effects than their trans-isomers. The cis-H5-CA antinociception was blocked by naloxone in the acute phase and by naloxone and KOR antagonists in the inflammatory phase of the formalin test. The antinociception of the KA conjugates was not abolished by opioid receptor blockade. None of the tested conjugates affected the thermal nociceptive threshold. The results of the docking analysis also suggest a model-specific mechanism related to the activity of the cis-isomers of CA and KA conjugates in relation to opioid receptors. Our findings pave the way for the further development of novel opioid-related antiseizure and antinociceptive therapeutics.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Daniela Pechlivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Medicine Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with centre of phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsveta Stoyanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Borislav Assenov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Medicine Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| |
Collapse
|
11
|
Che T, Varga B, Bernhard SM, El Daibani A, Zaidi S, Lam J, Aguilar J, Appourchaux K, Nazarova A, Kouvelis A, Eans S, Margolis E, Fay J, Pradhan A, Katritch V, McLaughlin J, Majumdar S. Structure-Guided Design of Partial Agonists at an Opioid Receptor. RESEARCH SQUARE 2024:rs.3.rs-4664764. [PMID: 39070616 PMCID: PMC11276012 DOI: 10.21203/rs.3.rs-4664764/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The persistence of chronic pain and continuing overdose deaths from pain-relieving opioids targeting μ opioid receptor (μOR) have fueled the need for reliable long-term analgesics which use different targets and mechanisms. The δ opioid receptor (δOR) is a potential alternative target for non-addictive analgesics to alleviate chronic pain, made more attractive by its lack of respiratory depression associated with μOR agonists. However, early δOR full agonists were found to induce seizures, precluding clinical use. Partial δOR agonists may offer more controlled activation of the receptor compared to full agonists, but the development of such ligands has been hindered by uncertainty over the molecular mechanism mediating partial agonism. Using a structure-based approach, we explored the engagement of the sodium binding pocket in δOR and developed a bitopic ligand, C6-Quino, predicted to be a selective δOR partial agonist. Functional studies of C6-Quino revealed that it displayed δOR partial agonist activity at both G-protein and arrestin pathways. Its interaction with the sodium pocket was confirmed and analyzed using a single particle cryo-EM. Additionally, C6-Quino demonstrated favorable chemical and physiological properties like oral activity, and analgesic activity in multiple chronic pain models. Notably, μOR-related hyperlocomotion and respiratory depression, and δOR-related convulsions, were not observed at analgesic doses of C6-Quino. This fundamentally new approach to designing δOR ligands provides a blueprint for the development of partial agonists as safe analgesics and acts as a generic method to optimize signaling profiles of other Class A GPCRs.
Collapse
Affiliation(s)
- Tao Che
- Washington University in St. Louis
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bernhard SM, Han J, Che T. GPCR-G protein selectivity revealed by structural pharmacology. FEBS J 2024; 291:2784-2791. [PMID: 38151714 PMCID: PMC11209754 DOI: 10.1111/febs.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Receptor-G protein promiscuity is frequently observed in class A G protein-coupled receptors (GPCRs). In particular, GPCRs can couple with G proteins from different families (Gαs, Gαq/11, Gαi/o, and Gα12/13) or the same family subtypes. The molecular basis underlying the selectivity/promiscuity is not fully revealed. We recently reported the structures of kappa opioid receptor (KOR) in complex with the Gi/o family subtypes [Gαi1, GαoA, Gαz, and Gustducin (Gαg)] determined by cryo-electron microscopy (cryo-EM). The structural analysis, in combination with pharmacological studies, provides insights into Gi/o subtype selectivity. Given the conserved sequence identity and activation mechanism between different G protein families, the findings within Gi/o subtypes could be likely extended to other families. Understanding the KOR-Gi/o or GPCR-G protein selectivity will facilitate the development of more precise therapeutics targeting a specific G protein subtype.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Cryoelectron Microscopy
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/genetics
- Protein Binding
- Animals
- Protein Conformation
- Models, Molecular
Collapse
Affiliation(s)
- Sarah M. Bernhard
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Jianming Han
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Gisemba SA, Ferracane MJ, Murray TF, Aldrich JV. A Bicyclic Analog of the Linear Peptide Arodyn Is a Potent and Selective Kappa Opioid Receptor Antagonist. Molecules 2024; 29:3109. [PMID: 38999061 PMCID: PMC11243530 DOI: 10.3390/molecules29133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.
Collapse
Affiliation(s)
- Solomon A Gisemba
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | | | - Thomas F Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68102, USA
| | - Jane V Aldrich
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Liu H, Huang R, Zhuo Z, Zhang X, Wu L, Guo Z, Wen F, An L, Yuan H, Zhang Y, Xu Y. Activation of kappa opioid receptor suppresses post-traumatic osteoarthritis via sequestering STAT3 on the plasma membrane. Cell Commun Signal 2024; 22:335. [PMID: 38890746 PMCID: PMC11186255 DOI: 10.1186/s12964-024-01709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Kappa opioid receptor (KOR) signaling is involved in joint development and inflammation in Osteoarthritis (OA), while the biochemical mechanism remains unclarified. This study aims to investigate downstream molecular events of KOR activation, to provide novel perspectives in OA pathology. METHODS U50,488H, a selective KOR agonist, was intra-articularly injected in mice upon destabilization of the medial meniscus (DMM) as OA models, with PBS injection as control. The behavioral and histological evaluation was assessed by hot plate test and red solid green staining, respectively. Alterations in mRNA and protein expression were assessed by RNA-seq, RT-qPCR, immunohistochemistry and western blotting (WB) in chondrocytes treated with TNF-α or TNF-α + U50,488H. Proteins interacted with KOR were explored using proximity labeling followed by mass spectrometry and then testified by co-immunoprecipitation (Co-IP) assay and immunofluorescence (IF). RESULTS OA-induced pain was reduced and cartilage degeneration was alleviated upon KOR activation in DMM mice. In chondrocytes, activation of KOR reversed the upregulation of MMPs, IL-6, IL-1β and phosphorylated(p-) STAT3, stimulated by TNF-α, while the expression of NF-κB, MAPKs and AKT signaling weren't reversed. RNA-seq and IF results presented that KOR activation evidently reduced STAT3 nuclear translocation in chondrocytes upon TNF-α stimuli. The reduction may be resulted from the binding of KOR and STAT3 in the plasma membrane, revealed by proximity labeling and Co-IP results. CONCLUSIONS KOR activation protects cartilage from OA, and this protective effect is mainly exerted via sequestering STAT3 on the plasma membrane, resulting in inactivation of STAT3-dependent immune responses which otherwise contributes to OA.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renhuan Huang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziang Zhuo
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinru Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Wu
- iView Therapeutics, Inc., Cranbury, NJ, USA
| | - Zhen Guo
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuping Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hang Yuan
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Li Z, Huang R, Xia M, Chang N, Guo W, Liu J, Dong F, Liu B, Varghese A, Aslam A, Patterson TA, Hong H. Decoding the κ Opioid Receptor (KOR): Advancements in Structural Understanding and Implications for Opioid Analgesic Development. Molecules 2024; 29:2635. [PMID: 38893511 PMCID: PMC11173883 DOI: 10.3390/molecules29112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The opioid crisis in the United States is a significant public health issue, with a nearly threefold increase in opioid-related fatalities between 1999 and 2014. In response to this crisis, society has made numerous efforts to mitigate its impact. Recent advancements in understanding the structural intricacies of the κ opioid receptor (KOR) have improved our knowledge of how opioids interact with their receptors, triggering downstream signaling pathways that lead to pain relief. This review concentrates on the KOR, offering crucial structural insights into the binding mechanisms of both agonists and antagonists to the receptor. Through comparative analysis of the atomic details of the binding site, distinct interactions specific to agonists and antagonists have been identified. These insights not only enhance our understanding of ligand binding mechanisms but also shed light on potential pathways for developing new opioid analgesics with an improved risk-benefit profile.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (R.H.); (M.X.)
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (R.H.); (M.X.)
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Wenjing Guo
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Bailang Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Ann Varghese
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Aasma Aslam
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Tucker A. Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Huixiao Hong
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (R.H.); (M.X.)
| |
Collapse
|
16
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
17
|
Mukhaleva E, Ma N, van der Velden WJC, Gogoshin G, Branciamore S, Bhattacharya S, Rodin AS, Vaidehi N. Bayesian network models identify cooperative GPCR:G protein interactions that contribute to G protein coupling. J Biol Chem 2024; 300:107362. [PMID: 38735478 PMCID: PMC11176750 DOI: 10.1016/j.jbc.2024.107362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024] Open
Abstract
Cooperative interactions in protein-protein interfaces demonstrate the interdependency or the linked network-like behavior and their effect on the coupling of proteins. Cooperative interactions also could cause ripple or allosteric effects at a distance in protein-protein interfaces. Although they are critically important in protein-protein interfaces, it is challenging to determine which amino acid pair interactions are cooperative. In this work, we have used Bayesian network modeling, an interpretable machine learning method, combined with molecular dynamics trajectories to identify the residue pairs that show high cooperativity and their allosteric effect in the interface of G protein-coupled receptor (GPCR) complexes with Gα subunits. Our results reveal six GPCR:Gα contacts that are common to the different Gα subtypes and show strong cooperativity in the formation of interface. Both the C terminus helix5 and the core of the G protein are codependent entities and play an important role in GPCR coupling. We show that a promiscuous GPCR coupling to different Gα subtypes, makes all the GPCR:Gα contacts that are specific to each Gα subtype (Gαs, Gαi, and Gαq). This work underscores the potential of data-driven Bayesian network modeling in elucidating the intricate dependencies and selectivity determinants in GPCR:G protein complexes, offering valuable insights into the dynamic nature of these essential cellular signaling components.
Collapse
Affiliation(s)
- Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| |
Collapse
|
18
|
Eliasof A, Liu-Chen LY, Li Y. Peptide-derived ligands for the discovery of safer opioid analgesics. Drug Discov Today 2024; 29:103950. [PMID: 38514040 PMCID: PMC11127667 DOI: 10.1016/j.drudis.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Drugs targeting the μ-opioid receptor (MOR) remain the most efficacious analgesics for the treatment of pain, but activation of MOR with current opioid analgesics also produces harmful side effects, notably physical dependence, addiction, and respiratory depression. Opioid peptides have been accepted as promising candidates for the development of safer and more efficacious analgesics. To develop peptide-based opioid analgesics, strategies such as modification of endogenous opioid peptides, development of multifunctional opioid peptides, G protein-biased opioid peptides, and peripherally restricted opioid peptides have been reported. This review seeks to provide an overview of the opioid peptides that produce potent antinociception with much reduced side effects in animal models and highlight the potential advantages of peptides as safer opioid analgesics.
Collapse
Affiliation(s)
- Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lee-Yuan Liu-Chen
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
19
|
Li Z, Ye R, He Q, Lu J, Sun Y, Sun X, Tang S, Hu S, Chai J, Kong L, Liu X, Chen J, Fang Y, Lan Y, Xie Q, Liu J, Shao L, Fu W, Wang Y, Li W. Discovery of an Ortho-Substituted N-Cyclopropylmethyl-7α-phenyl-6,14- endoethano-tetrahydronorthebaine Derivative as a Selective and Potent Kappa Opioid Receptor Agonist with Subsided Sedative Effect. J Med Chem 2024. [PMID: 38647397 DOI: 10.1021/acs.jmedchem.3c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Research into kappa opioid receptor (KOR) agonists with attenuated central-nervous-system side effects is a critical focus for developing productive and safe analgesics. Herein, a series of ortho-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoethano-tetrahydronorthebaines were designed, synthesized, and subjected to bioassays. Compound 7a exhibited high subtype selectivity and potent agonistic activity toward KOR (KOR, Ki = 3.9 nM, MOR/KOR = 270, DOR/KOR = 1075; [35S]GTPγS binding, EC50 = 3.4 nM). Additionally, this compound exhibited robust and persistent antinociceptive effects in rodent models with different animal strains (hot plate test, ED50 = 0.20-0.30 mg/kg, i.p.; abdominal constriction test, ED50 = 0.20-0.60 mg/kg, i.p.), with its KOR-mediated mechanism for antinociception firmly established. Notably, compound 7a, unlike conventional KOR agonists, displayed minimal sedation and aversion at the antinociceptive ED50 dose. This feature addresses a crucial limitation in existing KOR agonists, positioning compound 7a as a promising novel therapeutic agent.
Collapse
Affiliation(s)
- Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Rufeng Ye
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jiashuo Lu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yanting Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Xiujian Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Siyuan Tang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Shuyang Hu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jingrui Chai
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Xiaoning Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Jing Chen
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Fang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yingjie Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou 310053, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
20
|
Labani N, Gbahou F, Lian S, Liu J, Jockers R. 2023 Julius Axelrod Symposium: Plant-Derived Molecules Acting on G Protein-Coupled Receptors. Mol Pharmacol 2024; 105:328-347. [PMID: 38458772 DOI: 10.1124/molpharm.123.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Plant extracts have played a significant role in traditional medicine for centuries, contributing to improved health and the treatment of various human illnesses. G protein-coupled receptors (GPCRs) are crucial in numerous physiologic functions, and there is growing evidence suggesting their involvement in the therapeutic effects of many plant extracts. In recent years, scientists have identified an expanding number of isolated molecules responsible for the biologic activity of these extracts, with many believed to act on GPCRs. This article critically reviews the evidence supporting the modulation of GPCR function by these plant-derived molecules through direct binding. Structural information is now available for some of these molecules, allowing for a comparison of their binding mode with that of endogenous GPCR ligands. The final section explores future trends and challenges, focusing on the identification of new plant-derived molecules with both orthosteric and allosteric binding modes, as well as innovative strategies for designing GPCR ligands inspired by these plant-derived compounds. In conclusion, plant-derived molecules are anticipated to play an increasingly vital role as therapeutic drugs and serve as templates for drug design. SIGNIFICANCE STATEMENT: This minireview summarizes the most pertinent publications on isolated plant-derived molecules interacting with G protein-coupled receptors (GPCRs) and comments on available structural information on GPCR/plant-derived ligand pairs. Future challenges and trends for the isolation and characterization of plant-derived molecules and drug design are discussed.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Florence Gbahou
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Shuangyu Lian
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Ralf Jockers
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| |
Collapse
|
21
|
Kim Y, Gumpper RH, Liu Y, Kocak DD, Xiong Y, Cao C, Deng Z, Krumm BE, Jain MK, Zhang S, Jin J, Roth BL. Bitter taste receptor activation by cholesterol and an intracellular tastant. Nature 2024; 628:664-671. [PMID: 38600377 DOI: 10.1038/s41586-024-07253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.
Collapse
Affiliation(s)
- Yoojoong Kim
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ryan H Gumpper
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D Dewran Kocak
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Can Cao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian E Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manish K Jain
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Suno R. Exploring Diverse Signaling Mechanisms of G Protein-Coupled Receptors through Structural Biology. J Biochem 2024; 175:357-365. [PMID: 38382646 DOI: 10.1093/jb/mvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Recent advancements in structural biology have facilitated the elucidation of complexes involving G protein-coupled receptors (GPCRs) and their associated signal transducers, including G proteins and arrestins. A comprehensive analysis of these structures provides profound insights into the dynamics of signaling mechanisms. These structural revelations can potentially guide the development of drugs to minimize side effects through targeted and selective signaling. Understanding the binding modes of different signal-selective ligands is imperative for future drug research and development. Here, we conduct a comparative examination of the structural details of various GPCR-signal transducer complexes and delve into the molecular basis of the currently proposed signal selectivity.
Collapse
Affiliation(s)
- Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan
| |
Collapse
|
23
|
Jones AJY, Harman TH, Harris M, Lewis OE, Ladds G, Nietlispach D. Binding kinetics drive G protein subtype selectivity at the β 1-adrenergic receptor. Nat Commun 2024; 15:1334. [PMID: 38351103 PMCID: PMC10864275 DOI: 10.1038/s41467-024-45680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) bind to different G protein α-subtypes with varying degrees of selectivity. The mechanism by which GPCRs achieve this selectivity is still unclear. Using 13C methyl methionine and 19F NMR, we investigate the agonist-bound active state of β1AR and its ternary complexes with different G proteins in solution. We find the receptor in the ternary complexes adopts very similar conformations. In contrast, the full agonist-bound receptor active state assumes a conformation differing from previously characterised activation intermediates or from β1AR in ternary complexes. Assessing the kinetics of binding for the agonist-bound receptor with different G proteins, we find the increased affinity of β1AR for Gs results from its much faster association with the receptor. Consequently, we suggest a kinetic-driven selectivity gate between canonical and secondary coupling which arises from differential favourability of G protein binding to the agonist-bound receptor active state.
Collapse
Affiliation(s)
- Andrew J Y Jones
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Thomas H Harman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Oliver E Lewis
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
24
|
Fordyce BA, Roth BL. Making Sense of Psychedelics in the CNS. Int J Neuropsychopharmacol 2024; 27:pyae007. [PMID: 38289825 PMCID: PMC10888522 DOI: 10.1093/ijnp/pyae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
For centuries, ancient lineages have consumed psychedelic compounds from natural sources. In the modern era, scientists have since harnessed the power of computational tools, cellular assays, and behavioral metrics to study how these compounds instigate changes on molecular, cellular, circuit-wide, and system levels. Here, we provide a brief history of psychedelics and their use in science, medicine, and culture. We then outline current techniques for studying psychedelics from a pharmacological perspective. Finally, we address known gaps in the field and potential avenues of further research to broaden our collective understanding of physiological changes induced by psychedelics, the limits of their therapeutic capabilities, and how researchers can improve and inform treatments that are rapidly becoming accessible worldwide.
Collapse
Affiliation(s)
- Blake A Fordyce
- Department of Neuroscience, UNC Chapel Hill Medical School Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Provasi D, Filizola M. Enhancing Opioid Bioactivity Predictions through Integration of Ligand-Based and Structure-Based Drug Discovery Strategies with Transfer and Deep Learning Techniques. J Phys Chem B 2023; 127:10691-10699. [PMID: 38084046 PMCID: PMC11252170 DOI: 10.1021/acs.jpcb.3c05306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The opioid epidemic has cast a shadow over public health, necessitating immediate action to address its devastating consequences. To effectively combat this crisis, it is crucial to discover better opioid drugs with reduced addiction potential. Artificial intelligence-based and other machine learning tools, particularly deep learning models, have garnered significant attention in recent years for their potential to advance drug discovery. However, using these tools poses challenges, especially when training samples are insufficient to achieve adequate prediction performance. In this study, we investigate the effectiveness of transfer learning in building robust deep learning models to enhance ligand bioactivity prediction for each individual opioid receptor (OR) subtype. This is achieved by leveraging knowledge obtained from pretraining a model using supervised learning on a larger data set of bioactivity data combined with ligand-based and structure-based molecular descriptors related to the entire OR subfamily. Our studies hold the potential to advance opioid research by enabling the rapid identification of novel chemical probes with specific bioactivities, which can aid in the study of receptor function and contribute to the future development of improved opioid therapeutics.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, United States
| |
Collapse
|
26
|
Muratspahić E, Deibler K, Han J, Tomašević N, Jadhav KB, Olivé-Marti AL, Hochrainer N, Hellinger R, Koehbach J, Fay JF, Rahman MH, Hegazy L, Craven TW, Varga BR, Bhardwaj G, Appourchaux K, Majumdar S, Muttenthaler M, Hosseinzadeh P, Craik DJ, Spetea M, Che T, Baker D, Gruber CW. Design and structural validation of peptide-drug conjugate ligands of the kappa-opioid receptor. Nat Commun 2023; 14:8064. [PMID: 38052802 PMCID: PMC10698194 DOI: 10.1038/s41467-023-43718-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Despite the increasing number of GPCR structures and recent advances in peptide design, the development of efficient technologies allowing rational design of high-affinity peptide ligands for single GPCRs remains an unmet challenge. Here, we develop a computational approach for designing conjugates of lariat-shaped macrocyclized peptides and a small molecule opioid ligand. We demonstrate its feasibility by discovering chemical scaffolds for the kappa-opioid receptor (KOR) with desired pharmacological activities. The designed De Novo Cyclic Peptide (DNCP)-β-naloxamine (NalA) exhibit in vitro potent mixed KOR agonism/mu-opioid receptor (MOR) antagonism, nanomolar binding affinity, selectivity, and efficacy bias at KOR. Proof-of-concept in vivo efficacy studies demonstrate that DNCP-β-NalA(1) induces a potent KOR-mediated antinociception in male mice. The high-resolution cryo-EM structure (2.6 Å) of the DNCP-β-NalA-KOR-Gi1 complex and molecular dynamics simulations are harnessed to validate the computational design model. This reveals a network of residues in ECL2/3 and TM6/7 controlling the intrinsic efficacy of KOR. In general, our computational de novo platform overcomes extensive lead optimization encountered in ultra-large library docking and virtual small molecule screening campaigns and offers innovation for GPCR ligand discovery. This may drive the development of next-generation therapeutics for medical applications such as pain conditions.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Kristine Deibler
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Novo Nordisk Research Center Seattle, Novo Nordisk A/S, 530 Fairview Ave N #5000, Seattle, WA, 97403, USA
| | - Jianming Han
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Kirtikumar B Jadhav
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Aina-Leonor Olivé-Marti
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Nadine Hochrainer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Faculty for Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Mohammad Homaidur Rahman
- Department of Pharmaceutical and Administrative Sciences, Saint Louis College of Pharmacy, University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, 63110, USA
| | - Lamees Hegazy
- Department of Pharmaceutical and Administrative Sciences, Saint Louis College of Pharmacy, University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, 63110, USA
| | - Timothy W Craven
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Parisa Hosseinzadeh
- Department of Bioengineering, Knight Campus, University of Oregon, Eugene, OR, 97403, USA
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, WA, 98195, USA.
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Che T, Roth BL. Molecular basis of opioid receptor signaling. Cell 2023; 186:5203-5219. [PMID: 37995655 PMCID: PMC10710086 DOI: 10.1016/j.cell.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Opioids are used for pain management despite the side effects that contribute to the opioid crisis. The pursuit of non-addictive opioid analgesics remains unattained due to the unresolved intricacies of opioid actions, receptor signaling cascades, and neuronal plasticity. Advancements in structural, molecular, and computational tools illuminate the dynamic interplay between opioids and opioid receptors, as well as the molecular determinants of signaling pathways, which are potentially interlinked with pharmacological responses. Here, we review the molecular basis of opioid receptor signaling with a focus on the structures of opioid receptors bound to endogenous peptides or pharmacological agents. These insights unveil specific interactions that dictate ligand selectivity and likely their distinctive pharmacological profiles. Biochemical analysis further unveils molecular features governing opioid receptor signaling. Simultaneously, the synergy between computational biology and medicinal chemistry continues to expedite the discovery of novel chemotypes with the promise of yielding more efficacious and safer opioid compounds.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill 27599, NC, USA.
| |
Collapse
|
28
|
Ramos-Gonzalez N, Paul B, Majumdar S. IUPHAR themed review: Opioid efficacy, bias, and selectivity. Pharmacol Res 2023; 197:106961. [PMID: 37844653 DOI: 10.1016/j.phrs.2023.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Drugs acting at the opioid receptor family are clinically used to treat chronic and acute pain, though they represent the second line of treatment behind GABA analogs, antidepressants and SSRI's. Within the opioid family mu and kappa opioid receptor are commonly targeted. However, activation of the mu opioid receptor has side effects of constipation, tolerance, dependence, euphoria, and respiratory depression; activation of the kappa opioid receptor leads to dysphoria and sedation. The side effects of mu opioid receptor activation have led to mu receptor drugs being widely abused with great overdose risk. For these reasons, newer safer opioid analgesics are in high demand. For many years a focus within the opioid field was finding drugs that activated the G protein pathway at mu opioid receptor, without activating the β-arrestin pathway, known as biased agonism. Recent advances have shown that this may not be the way forward to develop safer analgesics at mu opioid receptor, though there is still some promise at the kappa opioid receptor. Here we discuss recent novel approaches to develop safer opioid drugs including efficacy vs bias and fine-tuning receptor activation by targeting sub-pockets in the orthosteric site, we explore recent works on the structural basis of bias, and we put forward the suggestion that Gα subtype selectivity may be an exciting new area of interest.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Barnali Paul
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Tchekalarova J, Todorov P, Rangelov M, Stoyanova T, Todorova N. Additive Anticonvulsant Profile and Molecular Docking Analysis of 5,5'-Diphenylhydantoin Schiff Bases and Phenytoin. Biomedicines 2023; 11:2912. [PMID: 38001914 PMCID: PMC10669120 DOI: 10.3390/biomedicines11112912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Four 5,5'-diphenylhydantoin Schiff bases possessing different aromatic species (SB1-SB4) were recently synthesized and characterized using spectroscopic and electrochemical tools. The present study aimed to ascertain the anticonvulsant activity of the novel phenytoin derivatives SB1-Ph, SB2-Ph, SB3-Ph, and SB4-Ph, containing different electron-donor and electron-acceptor groups, and their possible mechanism of action. The SB2-Ph exhibited the highest potency to suppress the seizure spread with ED50 = 8.29 mg/kg, comparable to phenytoin (ED50 = 5.96 mg/kg). While SB2-Ph did not produce neurotoxicity and sedation, it decreased locomotion and stereotypy compared to control. When administered in combination, the four Schiff bases decreased the phenytoin ED50 by more than 2× and raised the protective index by more than 7× (phenytoin+SB2-Ph). The strongest correlation between in-vivo and docking study results was found for ligands' interaction energies with kappa and delta receptors. These data, combined with the worst interaction energies of our ligands with the mu receptor, suggest that the primary mechanism of their action involves the kappa and delta receptors, where the selectivity to the kappa receptor leads to higher biological effects. Our findings suggest that the four Schiff bases might be promising candidates with potential applications as a safe and effective adjuvant in epilepsy.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Tsveta Stoyanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
30
|
Provasi D, Filizola M. Enhancing Opioid Bioactivity Predictions through Integration of Ligand-Based and Structure-Based Drug Discovery Strategies with Transfer and Deep Learning Techniques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552065. [PMID: 37609329 PMCID: PMC10441297 DOI: 10.1101/2023.08.04.552065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The opioid epidemic has cast a shadow over public health, necessitating immediate action to address its devastating consequences. To effectively combat this crisis, it is crucial to discover better opioid drugs with reduced addiction potential. Artificial intelligence-based and other machine learning tools, particularly deep learning models, have garnered significant attention in recent years for their potential to advance drug discovery. However, utilizing these tools poses challenges, especially when training samples are insufficient to achieve adequate prediction performance. In this study, we investigate the effectiveness of transfer learning using combined ligand-based and structure-based molecular descriptors from the entire opioid receptor (OR) subfamily in building robust deep learning models for enhanced bioactivity prediction of opioid ligands at each individual OR subtype. Our studies hold the potential to greatly advance opioid research by enabling the rapid identification of novel chemical probes with specific bioactivities, which can aid in the study of receptor function and contribute to the future development of improved opioid therapeutics.
Collapse
|
31
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|