1
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
2
|
Schwartz CI, Abell NS, Li A, Aradhana, Tycko J, Truong A, Montgomery SB, Hess GT. Towards optimizing diversifying base editors for high-throughput studies of single- nucleotide variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.621003. [PMID: 39605325 PMCID: PMC11601328 DOI: 10.1101/2024.11.18.621003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Determining the phenotypic effects of single nucleotide variants is critical for understanding the genome and interpreting clinical sequencing results. Base editors, including diversifying base editors that create C>N mutations, are potent tools for installing point mutations in mammalian genomes and studying their effect on cellular function. Numerous base editor options are available for such studies, but little information exists on how the composition of the editor (deaminase, recruitment method, and fusion architecture) affects editing. To address this knowledge gap, the effect of various design features, such as deaminase recruitment and delivery method (electroporation or lentiviral transduction), on editing was assessed across ∼200 synthetic target sites. The direct fusion of a hyperactive variant of activation-induced cytidine deaminase to the N-terminus of dCas9 (DivA-BE) produced the highest editing efficiency, ∼4-fold better than the previous CRISPR-X method. Additionally, DivA-BE mutagenized the DNA strand that anneals to the targeting sgRNA to create G>N mutations, which were absent when the deaminase was fused to the C-terminus of dCas9. The DivA-BE editors efficiently diversified their target sites, an ideal characteristic for discovering functional variants. These and other findings provide a comprehensive analysis of how design features influence the activity of several popular base editors.
Collapse
|
3
|
Alves CRR, Das S, Krishnan V, Ha LL, Fox LR, Stutzman HE, Shamber CE, Kalailingam P, McCarthy S, Lino Cardenas CL, Fong CE, Imai T, Mitra S, Yun S, Wood RK, Benning FMC, Lawton J, Kim N, Silverstein RA, da Silva JF, de la Cruz D, Richa R, Malhotra R, Chung DY, Chao LH, Tsai SQ, Maguire CA, Lindsay ME, Kleinstiver BP, Musolino PL. In vivo Treatment of a Severe Vascular Disease via a Bespoke CRISPR-Cas9 Base Editor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.621817. [PMID: 39605323 PMCID: PMC11601241 DOI: 10.1101/2024.11.11.621817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Genetic vascular disorders are prevalent diseases that have diverse etiologies and few treatment options. Pathogenic missense mutations in the alpha actin isotype 2 gene (ACTA2) primarily affect smooth muscle cell (SMC) function and cause multisystemic smooth muscle dysfunction syndrome (MSMDS), a genetic vasculopathy that is associated with stroke, aortic dissection, and death in childhood. Here, we explored genome editing to correct the most common MSMDS-causative mutation ACTA2 R179H. In a first-in-kind approach, we performed mutation-specific protein engineering to develop a bespoke CRISPR-Cas9 enzyme with enhanced on-target activity against the R179H sequence. To directly correct the R179H mutation, we screened dozens of configurations of base editors (comprised of Cas9 enzymes, deaminases, and gRNAs) to develop a highly precise corrective A-to-G edit with minimal deleterious bystander editing that is otherwise prevalent when using wild-type SpCas9 base editors. We then created a murine model of MSMDS that exhibits phenotypes consistent with human patients, including vasculopathy and premature death, to explore the in vivo therapeutic potential of this base editing strategy. Delivery of the customized base editor via an engineered SMC-tropic adeno-associated virus (AAV-PR) vector substantially prolonged survival and rescued systemic phenotypes across the lifespan of MSMDS mice, including in the vasculature, aorta, and brain. Together, our optimization of a customized base editor highlights how bespoke CRISPR-Cas enzymes can enhance on-target correction while minimizing bystander edits, culminating in a precise editing approach that may enable a long-lasting treatment for patients with MSMDS.
Collapse
Affiliation(s)
- Christiano R R Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sabyasachi Das
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijai Krishnan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leillani L Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren R Fox
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah E Stutzman
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Claire E Shamber
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Siobhan McCarthy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christian L Lino Cardenas
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire E Fong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takahiko Imai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sunayana Mitra
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shuqi Yun
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rachael K Wood
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Joseph Lawton
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nahye Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Rachel A Silverstein
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard, Boston, MA, USA
| | - Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Demitri de la Cruz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Rashmi Richa
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mark E Lindsay
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Patricia L Musolino
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Hwang GH, Lee SH, Oh M, Kim S, Habib O, Jang HK, Kim HS, Kim Y, Kim CH, Kim S, Bae S. Large DNA deletions occur during DNA repair at 20-fold lower frequency for base editors and prime editors than for Cas9 nucleases. Nat Biomed Eng 2024:10.1038/s41551-024-01277-5. [PMID: 39496933 DOI: 10.1038/s41551-024-01277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
When used to edit genomes, Cas9 nucleases produce targeted double-strand breaks in DNA. Subsequent DNA-repair pathways can induce large genomic deletions (larger than 100 bp), which constrains the applicability of genome editing. Here we show that Cas9-mediated double-strand breaks induce large deletions at varying frequencies in cancer cell lines, human embryonic stem cells and human primary T cells, and that most deletions are produced by two repair pathways: end resection and DNA-polymerase theta-mediated end joining. These findings required the optimization of long-range amplicon sequencing, the development of a k-mer alignment algorithm for the simultaneous analysis of large DNA deletions and small DNA alterations, and the use of CRISPR-interference screening. Despite leveraging mutated Cas9 nickases that produce single-strand breaks, base editors and prime editors also generated large deletions, yet at approximately 20-fold lower frequency than Cas9. We provide strategies for the mitigation of such deletions.
Collapse
Affiliation(s)
- Gue-Ho Hwang
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minsik Oh
- School of Software Convergence, Myongji University, Seoul, Republic of Korea
| | - Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Heon Seok Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Youngkuk Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Chan Hyuk Kim
- School of Transdisciplinary Innovations, Seoul National University, Seoul, Republic of Korea
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lee SH, Wu J, Im D, Hwang GH, Jeong YK, Jiang H, Lee SJ, Jo DH, Goddard WA, Kim JH, Bae S. Bystander base editing interferes with visual function restoration in Leber congenital amaurosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619839. [PMID: 39484395 PMCID: PMC11526940 DOI: 10.1101/2024.10.23.619839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Base editors (BEs) have emerged as a powerful tool for gene correction with high activity. However, bystander base editing, a byproduct of BEs, presents challenges for precise editing. Here, we investigated the effects of bystander edits on phenotypic restoration in the context of Leber congenital amaurosis (LCA), a hereditary retinal disorder, as a therapeutic model. We observed that in rd12 of LCA model mice, the highest editing activity version of an adenine base editors (ABEs), ABE8e, generated substantial bystander editing, resulting in missense mutations despite RPE65 expression, preventing restoration of visual function. Through AlphaFold-based mutational scanning and molecular dynamics simulations, we identified that the ABE8e-driven L43P mutation disrupts RPE65 structure and function. Our findings underscore the need for more stringent requirements in developing precise BEs for future clinical applications.
Collapse
Affiliation(s)
- Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Wu
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dongjoon Im
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United Sates
| | - Gue-ho Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - You Kyeong Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hui Jiang
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seok Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - William A. Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United Sates
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03082, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Cha JH, Lee SH, Yun Y, Choi WH, Koo H, Jung SH, Chae HB, Lee DH, Lee SJ, Jo DH, Kim JH, Song JJ, Chae JH, Lee JH, Park J, Kang JY, Bae S, Lee SY. Discovery of novel disease-causing mutation in SSBP1 and its correction using adenine base editor to improve mitochondrial function. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102257. [PMID: 39104869 PMCID: PMC11299580 DOI: 10.1016/j.omtn.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Mutations in nuclear genes regulating mitochondrial DNA (mtDNA) replication are associated with mtDNA depletion syndromes. Using whole-genome sequencing, we identified a heterozygous mutation (c.272G>A:p.Arg91Gln) in single-stranded DNA-binding protein 1 (SSBP1), a crucial protein involved in mtDNA replisome. The proband manifested symptoms including sensorineural deafness, congenital cataract, optic atrophy, macular dystrophy, and myopathy. This mutation impeded multimer formation and DNA-binding affinity, leading to reduced efficiency of mtDNA replication, altered mitochondria dynamics, and compromised mitochondrial function. To correct this mutation, we tested two adenine base editor (ABE) variants on patient-derived fibroblasts. One variant, NG-Cas9-based ABE8e (NG-ABE8e), showed higher editing efficacy (≤30%) and enhanced mitochondrial replication and function, despite off-target editing frequencies; however, risks from bystander editing were limited due to silent mutations and off-target sites in non-translated regions. The other variant, NG-Cas9-based ABE8eWQ (NG-ABE8eWQ), had a safer therapeutic profile with very few off-target effects, but this came at the cost of lower editing efficacy (≤10% editing). Despite this, NG-ABE8eWQ-edited cells still restored replication and improved mtDNA copy number, which in turn recovery of compromised mitochondrial function. Taken together, base editing-based gene therapies may be a promising treatment for mitochondrial diseases, including those associated with SSBP1 mutations.
Collapse
Affiliation(s)
- Ju Hyuen Cha
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won Hoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hansol Koo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Jung
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiho Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
9
|
Yang X, Zhu P, Gui J. Advancements of CRISPR-Mediated Base Editing in Crops and Potential Applications in Populus. Int J Mol Sci 2024; 25:8314. [PMID: 39125884 PMCID: PMC11313136 DOI: 10.3390/ijms25158314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024] Open
Abstract
Base editing represents a cutting-edge genome editing technique that utilizes the CRISPR system to guide base deaminases with high precision to specific genomic sites, facilitating the targeted alteration of individual nucleotides. Unlike traditional gene editing approaches, base editing does not require DNA double-strand breaks or donor templates. It functions independently of the cellular DNA repair machinery, offering significant advantages in terms of both efficiency and accuracy. In this review, we summarize the core design principles of various DNA base editors, their distinctive editing characteristics, and tactics to refine their efficacy. We also summarize their applications in crop genetic improvement and explore their potential contributions to forest genetic engineering.
Collapse
Affiliation(s)
| | | | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (X.Y.); (P.Z.)
| |
Collapse
|
10
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
11
|
Wang D, Zhang Y, Zhang J, Zhao J. Advances in base editing: A focus on base transversions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108515. [PMID: 39454989 DOI: 10.1016/j.mrrev.2024.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/29/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Single nucleotide variants (SNVs) constitute the most frequent variants that cause human genetic diseases. Base editors (BEs) comprise a new generation of CRISPR-based technologies, which are considered to have a promising future for curing genetic diseases caused by SNVs as they enable the direct and irreversible correction of base mutations. Two of the early types of BEs, cytosine base editor (CBE) and adenine base editor (ABE), mediate C-to-T, T-to-C, A-to-G, and G-to-A base transition mutations. Together, these represent half of all the known disease-associated SNVs. However, the remaining transversion (i.e., purine-pyrimidine) mutations cannot be restored by direct deamination and so these require the replacement of the entire base. Recently, a variety of base transversion editors were developed and so these add to the currently available BEs enabling the correction of all types of point mutation. However, compared to the base transition editors (including CBEs and ABEs), base transversion editors are still in the early development stage. In this review, we describe the basics and advances of the various base transversion editors, highlight their limitations, and discuss their potential for treating human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| | - YiZhan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jinning Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
12
|
Tong H, Wang H, Wang X, Liu N, Li G, Wu D, Li Y, Jin M, Li H, Wei Y, Li T, Yuan Y, Shi L, Yao X, Zhou Y, Yang H. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase. Nat Commun 2024; 15:4897. [PMID: 38851742 PMCID: PMC11162499 DOI: 10.1038/s41467-024-49343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.
Collapse
Affiliation(s)
- Huawei Tong
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
| | | | - Xuchen Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nana Liu
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Danni Wu
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yun Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hengbin Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yinghui Wei
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- School of Future Technology on Bio-Breeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Linyu Shi
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Xuan Yao
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yingsi Zhou
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Feola M, Pulicani S, Tkach D, Boyne A, Hong R, Mayer L, Duclert A, Duchateau P, Juillerat A. Comprehensive analysis of the editing window of C-to-T TALE base editors. Sci Rep 2024; 14:12870. [PMID: 38834632 PMCID: PMC11150444 DOI: 10.1038/s41598-024-63203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
One of the most recent advances in the genome editing field has been the addition of "TALE Base Editors", an innovative platform for cell therapy that relies on the deamination of cytidines within double strand DNA, leading to the formation of an uracil (U) intermediate. These molecular tools are fusions of transcription activator-like effector domains (TALE) for specific DNA sequence binding, split-DddA deaminase halves that will, upon catalytic domain reconstitution, initiate the conversion of a cytosine (C) to a thymine (T), and an uracil glycosylase inhibitor (UGI). We developed a high throughput screening strategy capable to probe key editing parameters in a precisely defined genomic context in cellulo, excluding or minimizing biases arising from different microenvironmental and/or epigenetic contexts. Here we aimed to further explore how target composition and TALEB architecture will impact the editing outcomes. We demonstrated how the nature of the linker between TALE array and split DddAtox head allows us to fine tune the editing window, also controlling possible bystander activity. Furthermore, we showed that both the TALEB architecture and spacer length separating the two TALE DNA binding regions impact the target TC editing dependence by the surrounding bases, leading to more restrictive or permissive editing profiles.
Collapse
|
14
|
Zhang D, Boch J. Development of TALE-adenine base editors in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1067-1077. [PMID: 37997697 PMCID: PMC11022790 DOI: 10.1111/pbi.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Base editors enable precise nucleotide changes at targeted genomic loci without requiring double-stranded DNA breaks or repair templates. TALE-adenine base editors (TALE-ABEs) are genome editing tools, composed of a DNA-binding domain from transcription activator-like effectors (TALEs), an engineered adenosine deaminase (TadA8e), and a cytosine deaminase domain (DddA), that allow A•T-to-G•C editing in human mitochondrial DNA. However, the editing ability of TALE-ABEs in plants apart from chloroplast DNA has not been described, so far, and the functional role how DddA enhances TadA8e is still unclear. We tested a series of TALE-ABEs with different deaminase fusion architectures in Nicotiana benthamiana and rice. The results indicate that the double-stranded DNA-specific cytosine deaminase DddA can boost the activities of single-stranded DNA-specific deaminases (TadA8e or APOBEC3A) on double-stranded DNA. We analysed A•T-to-G•C editing efficiencies in a β-glucuronidase reporter system and showed precise adenine editing in genomic regions with high product purity in rice protoplasts. Furthermore, we have successfully regenerated rice plants with A•T-to-G•C mutations in the chloroplast genome using TALE-ABE. Consequently, TALE-adenine base editors provide alternatives for crop improvement and gene therapy by editing nuclear or organellar genomes.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| | - Jens Boch
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| |
Collapse
|
15
|
Yang H, Zhang H, Li X. Navigating the future of retinitis pigmentosa treatments: A comprehensive analysis of therapeutic approaches in rd10 mice. Neurobiol Dis 2024; 193:106436. [PMID: 38341159 DOI: 10.1016/j.nbd.2024.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.
Collapse
Affiliation(s)
- Hongli Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| |
Collapse
|
16
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Sun Y, Chen Q, Cheng Y, Wang X, Deng Z, Zhou F, Sun Y. Design and Engineering of Light-Induced Base Editors Facilitating Genome Editing with Enhanced Fidelity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305311. [PMID: 38039441 PMCID: PMC10837352 DOI: 10.1002/advs.202305311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Indexed: 12/03/2023]
Abstract
Base editors, which enable targeted locus nucleotide conversion in genomic DNA without double-stranded breaks, have been engineered as powerful tools for biotechnological and clinical applications. However, the application of base editors is limited by their off-target effects. Continuously expressed deaminases used for gene editing may lead to unwanted base alterations at unpredictable genomic locations. In the present study, blue-light-activated base editors (BLBEs) are engineered based on the distinct photoswitches magnets that can switch from a monomer to dimerization state in response to blue light. By fusing the N- and C-termini of split DNA deaminases with photoswitches Magnets, efficient A-to-G and C-to-T base editing is achieved in response to blue light in prokaryotic and eukaryotic cells. Furthermore, the results showed that BLBEs can realize precise blue light-induced gene editing across broad genomic loci with low off-target activity at the DNA- and RNA-level. Collectively, these findings suggest that the optogenetic utilization of base editing and optical base editors may provide powerful tools to promote the development of optogenetic genome engineering.
Collapse
Affiliation(s)
- Yangning Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Qi Chen
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yanbing Cheng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Xi Wang
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Zixin Deng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Fuling Zhou
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuhui Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| |
Collapse
|
18
|
Cho SI, Lim K, Hong S, Lee J, Kim A, Lim CJ, Ryou S, Lee JM, Mok YG, Chung E, Kim S, Han S, Cho SM, Kim J, Kim EK, Nam KH, Oh Y, Choi M, An TH, Oh KJ, Lee S, Lee H, Kim JS. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA. Cell 2024; 187:95-109.e26. [PMID: 38181745 DOI: 10.1016/j.cell.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.
Collapse
Affiliation(s)
- Sung-Ik Cho
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kayeong Lim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seongho Hong
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Jaesuk Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Annie Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | | | | | - Ji Min Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Geun Mok
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; GreenGene Inc., Seoul 08790, Republic of Korea
| | - Eugene Chung
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seunghun Han
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jieun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Yeji Oh
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Minkyung Choi
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seonghyun Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Edgene, Inc., Seoul 08790, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
| | - Hyunji Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea.
| | - Jin-Soo Kim
- Edgene, Inc., Seoul 08790, Republic of Korea; NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
19
|
Kim JS, Chen J. Base editing of organellar DNA with programmable deaminases. Nat Rev Mol Cell Biol 2024; 25:34-45. [PMID: 37794167 DOI: 10.1038/s41580-023-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria and chloroplasts are organelles that include their own genomes, which encode key genes for ATP production and carbon dioxide fixation, respectively. Mutations in mitochondrial DNA can cause diverse genetic disorders and are also linked to ageing and age-related diseases, including cancer. Targeted editing of organellar DNA should be useful for studying organellar genes and developing novel therapeutics, but it has been hindered by lack of efficient tools in living cells. Recently, CRISPR-free, protein-only base editors, such as double-stranded DNA deaminase toxin A-derived cytosine base editors (DdCBEs) and adenine base editors (ABEs), have been developed, which enable targeted organellar DNA editing in human cell lines, animals and plants. In this Review, we present programmable deaminases developed for base editing of organellar DNA in vitro and discuss mitochondrial DNA editing in animals, and plastid genome (plastome) editing in plants. We also discuss precision and efficiency limitations of these tools and propose improvements for therapeutic, agricultural and environmental applications.
Collapse
Affiliation(s)
- Jin-Soo Kim
- NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore.
- Edgene, Seoul, South Korea.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
20
|
Wang Z, Yuan H, Yang L, Ma L, Zhang Y, Deng J, Li X, Xiao W, Li Z, Qiu J, Ouyang H, Pang D. Decreasing predictable DNA off-target effects and narrowing editing windows of adenine base editors by fusing human Rad18 protein variant. Int J Biol Macromol 2023; 253:127418. [PMID: 37848112 DOI: 10.1016/j.ijbiomac.2023.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Adenine base editors, enabling targeted A-to-G conversion in genomic DNA, have enormous potential in therapeutic applications. However, the currently used adenine base editors are limited by wide editing windows and off-target effects in genetic therapy. Here, we report human e18 protein, a RING type E3 ubiquitin ligase variant, fusing with adenine base editors can significantly improve the preciseness and narrow the editing windows compared with ABEmax and ABE8e by diminishing the abundance of base editor protein. As a proof of concept, ABEmax-e18 and ABE8e-e18 dramatically decrease Cas9-dependent and Cas9-independent off-target effects than traditional adenine base editors. Moreover, we utilized ABEmax-e18 to establish syndactyly mouse models and achieve accurate base conversion at human PCSK9 locus in HepG2 cells which exhibited its potential in genetic therapy. Furthermore, a truncated version of base editors-RING (ABEmax-RING or AncBE4max-RING), which fusing the 63 amino acids of e18 protein RING domain to the C terminal of ABEmax or AncBE4max, exhibited similar effect compared to ABEmax-e18 or AncBE4max-e18.In summary, the e18 or RING protein fused with base editors strengthens the precise toolbox in gene modification and maybe works well with various base editing tools with a more applicable to precise genetic therapies in the future.
Collapse
Affiliation(s)
- Ziru Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China.
| | - Lin Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jiacheng Deng
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xueyuan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenyu Xiao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jiazhang Qiu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China.
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China.
| |
Collapse
|
21
|
Zhang A, Shan T, Sun Y, Chen Z, Hu J, Hu Z, Ming Z, Zhu Z, Li X, He J, Liu S, Jiang L, Dong X, Wu Y, Wang Y, Liu Y, Li C, Wan J. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2597-2610. [PMID: 37571976 PMCID: PMC10651138 DOI: 10.1111/pbi.14156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
CRISPR-based directed evolution is an effective breeding biotechnology to improve agronomic traits in plants. However, its gene diversification is still limited using individual single guide RNA. We described here a multiplexed orthogonal base editor (MoBE), and a randomly multiplexed sgRNAs assembly strategy to maximize gene diversification. MoBE could induce efficiently orthogonal ABE (<36.6%), CBE (<36.0%), and A&CBE (<37.6%) on different targets, while the sgRNA assembling strategy randomized base editing events on various targets. With respective 130 and 84 targets from each strand of the 34th exon of rice acetyl-coenzyme A carboxylase (OsACC), we observed the target-scaffold combination types up to 27 294 in randomly dual and randomly triple sgRNA libraries. We further performed directed evolution of OsACC using MoBE and randomly dual sgRNA libraries in rice, and obtained single or linked mutations of stronger herbicide resistance. These strategies are useful for in situ directed evolution of functional genes and may accelerate trait improvement in rice.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Tiaofeng Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Yan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhipeng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Jianjian Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhichao Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Ziheng Ming
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhitao Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Xue Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Jun He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome EditingInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
22
|
Chen X, McAndrew MJ, Lapinaite A. Unlocking the secrets of ABEs: the molecular mechanism behind their specificity. Biochem Soc Trans 2023; 51:1635-1646. [PMID: 37526140 PMCID: PMC10586758 DOI: 10.1042/bst20221508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
CRISPR-Cas, the bacterial immune systems, have transformed the field of genome editing by providing efficient, easily programmable, and accessible tools for targeted genome editing. DNA base editors (BE) are state-of-the-art CRISPR-based technology, allowing for targeted modifications of individual nucleobases within the genome. Among the BEs, adenine base editors (ABEs) have shown great potential due to their ability to convert A-to-G with high efficiency. However, current ABEs have limitations in terms of their specificity and targeting range. In this review, we provide an overview of the molecular mechanism of ABEs, with a focus on the mechanism of deoxyadenosine deamination by evolved tRNA-specific adenosine deaminase (TadA). We discuss how mutations and adjustments introduced via both directed evolution as well as rational design have improved ABE efficiency and specificity. This review offers insights into the molecular mechanism of ABEs, providing a roadmap for future developments in the precision genome editing field.
Collapse
Affiliation(s)
- Xiaoyu Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, U.S.A
| | | | - Audrone Lapinaite
- School of Molecular Sciences, Arizona State University, Tempe, AZ, U.S.A
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
23
|
Song Z, Zhang G, Huang S, Liu Y, Li G, Zhou X, Sun J, Gao P, Chen Y, Huang X, Liu J, Wang X. PE-STOP: A versatile tool for installing nonsense substitutions amenable for precise reversion. J Biol Chem 2023; 299:104942. [PMID: 37343700 PMCID: PMC10365944 DOI: 10.1016/j.jbc.2023.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
The rapid advances in genome editing technologies have revolutionized the study of gene functions in cell or animal models. The recent generation of double-stranded DNA cleavage-independent base editors has been suitably adapted for interrogation of protein-coding genes on the basis of introducing premature stop codons or disabling the start codons. However, such versions of stop/start codon-oriented genetic tools still present limitations on their versatility, base-level precision, and target specificity. Here, we exploit a newly developed prime editor (PE) that differs from base editors by its adoption of a reverse transcriptase activity, which enables incorporation of various types of precise edits templated by a specialized prime editing guide RNA. Based on such a versatile platform, we established a prime editing-empowered method (PE-STOP) for installation of nonsense substitutions, providing a complementary approach to the present gene-targeting tools. PE-STOP is bioinformatically predicted to feature substantially expanded coverage in the genome space. In practice, PE-STOP introduces stop codons with good efficiencies in human embryonic kidney 293T and N2a cells (with medians of 29% [ten sites] and 25% [four sites] editing efficiencies, respectively), while exhibiting minimal off-target effects and high on-target precision. Furthermore, given the fact that PE installs prime editing guide RNA-templated mutations, we introduce a unique strategy for precise genetic rescue of PE-STOP-dependent nonsense mutation via the same PE platform. Altogether, the present work demonstrates a versatile and specific tool for gene inactivation and for functional interrogation of nonsense mutations.
Collapse
Affiliation(s)
- Ziguo Song
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiquan Zhang
- Zhejiang Lab, Hangzhou, Zhejiang, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianhui Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayuan Sun
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China.
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
24
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
25
|
Gao Z, Jiang W, Zhang Y, Zhang L, Yi M, Wang H, Ma Z, Qu B, Ji X, Long H, Zhang S. Amphioxus adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U and A-to-I deamination of DNA. Commun Biol 2023; 6:744. [PMID: 37464027 PMCID: PMC10354150 DOI: 10.1038/s42003-023-05134-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Adenosine-to-inosine tRNA-editing enzyme has been identified for more than two decades, but the study on its DNA editing activity is rather scarce. We show that amphioxus (Branchiostoma japonicum) ADAT2 (BjADAT2) contains the active site 'HxE-PCxxC' and the key residues for target-base-binding, and amphioxus ADAT3 (BjADAT3) harbors both the N-terminal positively charged region and the C-terminal pseudo-catalytic domain important for recognition of substrates. The sequencing of BjADAT2-transformed Escherichia coli genome suggests that BjADAT2 has the potential to target E. coli DNA and can deaminate at TCG and GAA sites in the E. coli genome. Biochemical analyses further demonstrate that BjADAT2, in complex with BjADAT3, can perform A-to-I editing of tRNA and convert C-to-U and A-to-I deamination of DNA. We also show that BjADAT2 preferentially deaminates adenosines and cytidines in the loop of DNA hairpin structures of substrates, and BjADAT3 also affects the type of DNA substrate targeted by BjADAT2. Finally, we find that C89, N113, C148 and Y156 play critical roles in the DNA editing activity of BjADAT2. Collectively, our study indicates that BjADAT2/3 is the sole naturally occurring deaminase with both tRNA and DNA editing capacity identified so far in Metazoa.
Collapse
Affiliation(s)
- Zhan Gao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China.
| | - Wanyue Jiang
- Institute of Evolution & Marine Biodiversity, KLMME, Ocean University of China, 266003, Qingdao, China
| | - Yu Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Mengmeng Yi
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Haitao Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Zengyu Ma
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Baozhen Qu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Xiaohan Ji
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China
| | - Hongan Long
- Institute of Evolution & Marine Biodiversity, KLMME, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, 266237, Qingdao, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 266003, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, 266237, Qingdao, China.
| |
Collapse
|
26
|
Lue NZ, Liau BB. Base editor screens for in situ mutational scanning at scale. Mol Cell 2023; 83:2167-2187. [PMID: 37390819 PMCID: PMC10330937 DOI: 10.1016/j.molcel.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
A fundamental challenge in biology is understanding the molecular details of protein function. How mutations alter protein activity, regulation, and response to drugs is of critical importance to human health. Recent years have seen the emergence of pooled base editor screens for in situ mutational scanning: the interrogation of protein sequence-function relationships by directly perturbing endogenous proteins in live cells. These studies have revealed the effects of disease-associated mutations, discovered novel drug resistance mechanisms, and generated biochemical insights into protein function. Here, we discuss how this "base editor scanning" approach has been applied to diverse biological questions, compare it with alternative techniques, and describe the emerging challenges that must be addressed to maximize its utility. Given its broad applicability toward profiling mutations across the proteome, base editor scanning promises to revolutionize the investigation of proteins in their native contexts.
Collapse
Affiliation(s)
- Nicholas Z Lue
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
27
|
Li K, Qin LY, Zhang ZX, Yan CX, Gu Y, Sun XM, Huang H. Powerful Microbial Base-Editing Toolbox: From Optimization Strategies to Versatile Applications. ACS Synth Biol 2023; 12:1586-1598. [PMID: 37224027 DOI: 10.1021/acssynbio.3c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Base editors (BE) based on CRISPR systems are practical gene-editing tools which continue to drive frontier advances of life sciences. BEs are able to efficiently induce point mutations at target sites without double-stranded DNA cleavage. Hence, they are widely employed in the fields of microbial genome engineering. As applications of BEs continue to expand, the demands for base-editing efficiency, fidelity, and versatility are also on the rise. In recent years, a series of optimization strategies for BEs have been developed. By engineering the core components of BEs or adopting different assembly methods, the performance of BEs has been well optimized. Moreover, series of newly established BEs have significantly expanded the base-editing toolsets. In this Review, we will summarize the current efforts for BE optimization, introduce several novel BEs with versatility, and look forward to the broadened applications for industrial microorganisms.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Ling-Yun Qin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
28
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
29
|
Liu J, Zhang Y, Guo R, Zhao Y, Sun R, Guo S, Lu W, Zhao M. Targeted CD7 CAR T-cells for treatment of T-Lymphocyte leukemia and lymphoma and acute myeloid leukemia: recent advances. Front Immunol 2023; 14:1170968. [PMID: 37215124 PMCID: PMC10196106 DOI: 10.3389/fimmu.2023.1170968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The high expression of CD7 targets in T-cell acute lymphoblastic leukemia (T-ALL) and T-lymphoma has attracted considerable attention from researchers. However, because CD7 chimeric antigen receptor (CAR) T-cells undergo fratricide, CD7 CAR T-cells develop an exhaustion phenotype that impairs the effect of CAR T-cells. There have been significant breakthroughs in CD7-targeted CAR T-cell therapy in the past few years. The advent of gene editing, protein blockers, and other approaches has effectively overcome the adverse effects of conventional methods of CD7 CAR T-cells. This review, in conjunction with recent advances in the 64th annual meeting of the American Society of Hematology (ASH), provides a summary of the meaningful achievements in CD7 CAR T-cell generations and clinical trials over the last few years.
Collapse
Affiliation(s)
- Jile Liu
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Ruiting Guo
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Yifan Zhao
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Rui Sun
- Department of Hematology, School of Medicine, Nankai University, Tianjin, China
| | - Shujing Guo
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
30
|
Lam DK, Feliciano PR, Arif A, Bohnuud T, Fernandez TP, Gehrke JM, Grayson P, Lee KD, Ortega MA, Sawyer C, Schwaegerle ND, Peraro L, Young L, Lee SJ, Ciaramella G, Gaudelli NM. Improved cytosine base editors generated from TadA variants. Nat Biotechnol 2023; 41:686-697. [PMID: 36624149 PMCID: PMC10188367 DOI: 10.1038/s41587-022-01611-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
Cytosine base editors (CBEs) enable programmable genomic C·G-to-T·A transition mutations and typically comprise a modified CRISPR-Cas enzyme, a naturally occurring cytidine deaminase, and an inhibitor of uracil repair. Previous studies have shown that CBEs utilizing naturally occurring cytidine deaminases may cause unguided, genome-wide cytosine deamination. While improved CBEs that decrease stochastic genome-wide off-targets have subsequently been reported, these editors can suffer from suboptimal on-target performance. Here, we report the generation and characterization of CBEs that use engineered variants of TadA (CBE-T) that enable high on-target C·G to T·A across a sequence-diverse set of genomic loci, demonstrate robust activity in primary cells and cause no detectable elevation in genome-wide mutation. Additionally, we report cytosine and adenine base editors (CABEs) catalyzing both A-to-I and C-to-U editing (CABE-Ts). Together with ABEs, CBE-Ts and CABE-Ts enable the programmable installation of all transition mutations using laboratory-evolved TadA variants with improved properties relative to previously reported CBEs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kin D Lee
- Beam Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Neugebauer ME, Hsu A, Arbab M, Krasnow NA, McElroy AN, Pandey S, Doman JL, Huang TP, Raguram A, Banskota S, Newby GA, Tolar J, Osborn MJ, Liu DR. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol 2023; 41:673-685. [PMID: 36357719 PMCID: PMC10188366 DOI: 10.1038/s41587-022-01533-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Cytosine base editors (CBEs) are larger and can suffer from higher off-target activity or lower on-target editing efficiency than current adenine base editors (ABEs). To develop a CBE that retains the small size, low off-target activity and high on-target activity of current ABEs, we evolved the highly active deoxyadenosine deaminase TadA-8e to perform cytidine deamination using phage-assisted continuous evolution. Evolved TadA cytidine deaminases contain mutations at DNA-binding residues that alter enzyme selectivity to strongly favor deoxycytidine over deoxyadenosine deamination. Compared to commonly used CBEs, TadA-derived cytosine base editors (TadCBEs) offer similar or higher on-target activity, smaller size and substantially lower Cas-independent DNA and RNA off-target editing activity. We also identified a TadA dual base editor (TadDE) that performs equally efficient cytosine and adenine base editing. TadCBEs support single or multiplexed base editing at therapeutically relevant genomic loci in primary human T cells and primary human hematopoietic stem and progenitor cells. TadCBEs expand the utility of CBEs for precision gene editing.
Collapse
Affiliation(s)
- Monica E Neugebauer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Mandana Arbab
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Nicholas A Krasnow
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Amber N McElroy
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Smriti Pandey
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jordan L Doman
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark J Osborn
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Chen L, Zhu B, Ru G, Meng H, Yan Y, Hong M, Zhang D, Luan C, Zhang S, Wu H, Gao H, Bai S, Li C, Ding R, Xue N, Lei Z, Chen Y, Guan Y, Siwko S, Cheng Y, Song G, Wang L, Yi C, Liu M, Li D. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat Biotechnol 2023; 41:663-672. [PMID: 36357717 DOI: 10.1038/s41587-022-01532-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Biyun Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haowei Meng
- School of Life Sciences, Peking University, Beijing, China
| | - Yongchang Yan
- School of Life Sciences, Peking University, Beijing, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Wu
- School of Life Sciences, Peking University, Beijing, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Sijia Bai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changqing Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruoyi Ding
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhixin Lei
- School of Life Sciences, Peking University, Beijing, China
| | - Yuting Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Genome Engineering and Therapy, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- School of Life Sciences, Peking University, Beijing, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- BRL Medicine, Inc., Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
33
|
Jing Q, Liu W, Jiang H, Liao Y, Yang Q, Xing Y. Highly Efficient A-to-G Editing in PFFs via Multiple ABEs. Genes (Basel) 2023; 14:genes14040908. [PMID: 37107666 PMCID: PMC10137487 DOI: 10.3390/genes14040908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Cytosine base editors (CBEs) and adenine base editors (ABEs) are recently developed CRISPR-mediated genome-editing tools that do not introduce double-strand breaks. In this study, five ABEs, ABE7.10, ABEmax, NG-ABEmax, ABE8e and NG-ABE8e, were used to generate A-to-G (T-to-C) conversions in five genome loci in porcine fetal fibroblasts (PFFs). Variable yet appreciable editing efficiencies and variable activity windows were observed in these targeting regions via these five editors. The strategy of two sgRNAs in one vector exhibited superior editing efficiency to that of using two separate sgRNA expression vectors. ABE-mediated start-codon mutation in APOE silenced its expression of protein and, unexpectedly, eliminated the vast majority of its mRNA. No off-target DNA site was detected for these editors. Substantial off-target RNA events were present in the ABE-edited cells, but no KEGG pathway was found to be significantly enriched. Our study supports that ABEs are powerful tools for A-to-G (T-to-C) point-mutation modification in porcine cells.
Collapse
Affiliation(s)
- Qiqi Jing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haoyun Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaya Liao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiang Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
34
|
Abstract
With the advent of recombinant DNA technology in the 1970s, the idea of using gene therapies to treat human genetic diseases captured the interest and imagination of scientists around the world. Years later, enabled largely by the development of CRISPR-based genome editing tools, the field has exploded, with academic labs, startup biotechnology companies, and large pharmaceutical corporations working in concert to develop life-changing therapeutics. In this Essay, we highlight base editing technologies and their development from bench to bedside. Base editing, first reported in 2016, is capable of installing C•G to T•A and A•T to G•C point mutations, while largely circumventing some of the pitfalls of traditional CRISPR/Cas9 gene editing. Despite their youth, these technologies have been widely used by both academic labs and therapeutics-based companies. Here, we provide an overview of the mechanics of base editing and its use in clinical trials.
Collapse
Affiliation(s)
- Elizabeth M. Porto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
35
|
Getting better all the time - recent progress in the development of CRISPR/Cas-based tools for plant genome engineering. Curr Opin Biotechnol 2023; 79:102854. [PMID: 36455451 DOI: 10.1016/j.copbio.2022.102854] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
Since their first adaptation for plant genome editing, clustered regularly interspaced short palindromic repeats/CRISPR-associated system nucleases and tools have revolutionized the field. While early approaches focused on targeted mutagenesis that relies on mutagenic repair of induced double-strand breaks, newly developed tools now enable the precise induction of predefined modifications. Constant efforts to optimize these tools have led to the generation of more efficient base editors with enlarged editing windows and have enabled previously unachievable C-G transversions. Prime editors were also optimized for the application in plants and now allow to accurately induce substitutions, insertions, and deletions. Recently, great progress was made through precise restructuring of chromosomes, which enables not only the breakage or formation of genetic linkages but also the swapping of promoters.
Collapse
|
36
|
Kweon J, Jang AH, Kwon E, Kim U, Shin HR, See J, Jang G, Lee C, Koo T, Kim S, Kim Y. Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery. Exp Mol Med 2023; 55:377-384. [PMID: 36720917 PMCID: PMC9981745 DOI: 10.1038/s12276-023-00938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023] Open
Abstract
Various CRISPR‒Cas9 orthologs are used in genome engineering. One of the smallest Cas9 orthologs is cjCas9 derived from Campylobacter jejuni, which is a highly specific genome editing tool. Here, we developed cjCas9-based base editors including a cytosine base editor (cjCBEmax) and an adenine base editor (cjABE8e) that can successfully induce endogenous base substitutions by up to 91.2% at the HPD gene in HEK293T cells. Analysis of the base editing efficiency of 13 endogenous target sites showed that the active windows of cjCBEmax and cjABE8e are wider than those of spCas9-based base editors and that their specificities are slightly lower than that of cjCas9. Importantly, engineered cjCas9 and gRNA scaffolds can improve the base editing efficiency of cjABE8e by up to 6.4-fold at the HIF1A gene in HEK293T cells. Due to its small size, cjABE8e can be packaged in a single adeno-associated virus vector with two tandem arrays of gRNAs, and the delivery of the resulting AAV could introduce base substitutions at endogenous ANGPT2 and HPD target sites. Overall, our findings have expanded the potential of the use of base editors for in vivo or ex vivo therapeutic approaches.
Collapse
Affiliation(s)
- Jiyeon Kweon
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - An-Hee Jang
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Eunji Kwon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ungi Kim
- Toolgen, Inc., Seoul, 08501, Republic of Korea
| | - Ha Rim Shin
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jieun See
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chaeyeon Lee
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taeyoung Koo
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | | | - Yongsub Kim
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
37
|
Zhang S, Song L, Yuan B, Zhang C, Cao J, Chen J, Qiu J, Tai Y, Chen J, Qiu Z, Zhao XM, Cheng TL. TadA reprogramming to generate potent miniature base editors with high precision. Nat Commun 2023; 14:413. [PMID: 36702845 PMCID: PMC9879996 DOI: 10.1038/s41467-023-36004-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Although miniature CRISPR-Cas12f systems were recently developed, the editing efficacy and targeting range of derived miniature cytosine and adenine base editors (miniCBEs and miniABEs) have not been comprehensively addressed. Moreover, functional miniCBEs have not yet be established. Here we generate various Cas12f-derived miniCBEs and miniABEs with improved editing activities and diversified targeting scopes. We reveal that miniCBEs generated with traditional cytidine deaminases exhibit wide editing windows and high off-targeting effects. To improve the editing signatures of classical CBEs and derived miniCBEs, we engineer TadA deaminase with mutagenesis screening to generate potent miniCBEs with high precision and minimized off-target effects. We show that newly designed miniCBEs and miniABEs are able to correct pathogenic mutations in cell lines and introduce genetic mutations efficiently via adeno-associated virus delivery in the brain in vivo. Together, this study provides alternative strategies for CBE development, expands the toolkits of miniCBEs and miniABEs and offers promising therapeutic tools for clinical applications.
Collapse
Affiliation(s)
- Shuqian Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jinlong Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jiayi Qiu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hopsital, Fudan University, Shanghai, 200032, China.
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Zhang S, Yuan B, Cao J, Song L, Chen J, Qiu J, Qiu Z, Zhao XM, Chen J, Cheng TL. TadA orthologs enable both cytosine and adenine editing of base editors. Nat Commun 2023; 14:414. [PMID: 36702837 PMCID: PMC9880001 DOI: 10.1038/s41467-023-36003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Cytidine and adenosine deaminases are required for cytosine and adenine editing of base editors respectively, and no single deaminase could enable concurrent and comparable cytosine and adenine editing. Additionally, distinct properties of cytidine and adenosine deaminases lead to various types of off-target effects, including Cas9-indendepent DNA off-target effects for cytosine base editors (CBEs) and RNA off-target effects particularly severe for adenine base editors (ABEs). Here we demonstrate that 25 TadA orthologs could be engineered to generate functional ABEs, CBEs or ACBEs via single or double mutations, which display minimized Cas9-independent DNA off-target effects and genotoxicity, with orthologs B5ZCW4, Q57LE3, E8WVH3, Q13XZ4 and B3PCY2 as promising candidates for further engineering. Furthermore, RNA off-target effects of TadA ortholog-derived base editors could be further reduced or even eliminated by additional single mutation. Taken together, our work expands the base editing toolkits, and also provides important clues for the potential evolutionary process of deaminases.
Collapse
Affiliation(s)
- Shuqian Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jinlong Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jiayi Qiu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- National Clinical Research Center for Aging and Medicine, Huashan Hopsital, Fudan University, Shanghai, 200032, China
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Song B, Bae S. Introduction and Perspectives of DNA Base Editors. Methods Mol Biol 2023; 2606:3-11. [PMID: 36592303 DOI: 10.1007/978-1-0716-2879-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA base editors, one of the CRISPR-based genome editing tools, can induce targeted point mutations at desired sites. Their superiority is based on the fact that they can perform efficient and precise gene editing without generating a DNA double-strand break (DSB) or requiring a donor DNA template. Since they were first developed, significant efforts have been made to improve DNA base editors in order to overcome problems such as off-target edits on DNA/RNA and bystander mutations in editing windows. Here, we provide an overview of DNA base editors with a summary about the history of development of DNA base editors and report on efforts to improve them.
Collapse
Affiliation(s)
- Beomjong Song
- Medical Research Center Organization: Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sangsu Bae
- Medical Research Center Organization: Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Chen L, Zhang S, Xue N, Hong M, Zhang X, Zhang D, Yang J, Bai S, Huang Y, Meng H, Wu H, Luan C, Zhu B, Ru G, Gao H, Zhong L, Liu M, Liu M, Cheng Y, Yi C, Wang L, Zhao Y, Song G, Li D. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol 2023; 19:101-110. [PMID: 36229683 DOI: 10.1038/s41589-022-01163-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
Adenine base editors (ABEs) catalyze A-to-G transitions showing broad applications, but their bystander mutations and off-target editing effects raise safety concerns. Through structure-guided engineering, we found ABE8e with an N108Q mutation reduced both adenine and cytosine bystander editing, and introduction of an additional L145T mutation (ABE9), further refined the editing window to 1-2 nucleotides with eliminated cytosine editing. Importantly, ABE9 induced very minimal RNA and undetectable Cas9-independent DNA off-target effects, which mainly installed desired single A-to-G conversion in mouse and rat embryos to efficiently generate disease models. Moreover, ABE9 accurately edited the A5 position of the protospacer sequence in pathogenic homopolymeric adenosine sites (up to 342.5-fold precision over ABE8e) and was further confirmed through a library of guide RNA-target sequence pairs. Owing to the minimized editing window, ABE9 could further broaden the targeting scope for precise correction of pathogenic single-nucleotide variants when fused to Cas9 variants with expanded protospacer adjacent motif compatibility. bpNLS, bipartite nuclear localization signals.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaohui Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Sijia Bai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yifan Huang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haowei Meng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hao Wu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Biyun Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, China.
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
41
|
Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:16-27. [PMID: 36589710 PMCID: PMC9792702 DOI: 10.1016/j.omtn.2022.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Leber congenital amaurosis (LCA), an inherited retinal degeneration, causes severe visual dysfunction in children and adolescents. In patients with LCA, pathogenic variants, such as RPE65, are evident in specific genes, related to the functions of retinal pigment epithelium and photoreceptors. In contrast to the original Cas9, base editing tools can correct pathogenic substitutions without generation of DNA double-stranded breaks (DSBs). In this study, dual adeno-associated virus (AAV) vectors containing split adenine base editors (ABEs) with trans-splicing intein were prepared for in vivo base editing in retinal degeneration of 12 (rd12) mice, an animal model of LCA, possessing a nonsense mutation of C to T transition in the Rpe65 gene (p.R44X). Subretinal injection of AAV-ABE in retinal pigment epithelial cells of rd12 mice resulted in an A to G transition. The on-target editing was sufficient for recovery of wild-type mRNA, RPE65 protein, and light-induced electrical responses from the retina. Compared with our previous therapeutic editing strategies using Cas9 and prime editing, or with the gene transfer strategy shown in the current study, our results suggest that, considering the editing efficacy and functional recovery, ABEs could be a strong, reliable method for correction of pathogenic variants in the treatment of LCA.
Collapse
|
42
|
Wang M, Yan F, Zhou H. Protocol for targeted modification of the rice genome using base editing. STAR Protoc 2022; 3:101865. [PMID: 36595935 PMCID: PMC9676627 DOI: 10.1016/j.xpro.2022.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
Base editing is a precision genome-editing approach that is widely utilized to generate single-nucleotide variants (SNVs) in genomes. Here, we present a protocol to perform targeted adenine (A)-to-guanine (G) substitution in rice using adenine base editor (ABE). We detail the design of sgRNA, CRISPR plasmid construction, rapid genetic transformation of rice, and genotyping of editing events. This protocol can be applied to cytosine base editing in rice as well. For complete details on the use and execution of this protocol, please refer to Yan et al. (2021).1.
Collapse
Affiliation(s)
- Meixia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China,Corresponding author
| | - Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China,Corresponding author
| |
Collapse
|
43
|
Sheriff A, Guri I, Zebrowska P, Llopis-Hernandez V, Brooks IR, Tekkela S, Subramaniam K, Gebrezgabher R, Naso G, Petrova A, Balon K, Onoufriadis A, Kujawa D, Kotulska M, Newby G, Łaczmański Ł, Liu DR, McGrath JA, Jacków J. ABE8e adenine base editor precisely and efficiently corrects a recurrent COL7A1 nonsense mutation. Sci Rep 2022; 12:19643. [PMID: 36385635 PMCID: PMC9666996 DOI: 10.1038/s41598-022-24184-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Base editing introduces precise single-nucleotide edits in genomic DNA and has the potential to treat genetic diseases such as the blistering skin disease recessive dystrophic epidermolysis bullosa (RDEB), which is characterized by mutations in the COL7A1 gene and type VII collagen (C7) deficiency. Adenine base editors (ABEs) convert A-T base pairs to G-C base pairs without requiring double-stranded DNA breaks or donor DNA templates. Here, we use ABE8e, a recently evolved ABE, to correct primary RDEB patient fibroblasts harboring the recurrent RDEB nonsense mutation c.5047 C > T (p.Arg1683Ter) in exon 54 of COL7A1 and use a next generation sequencing workflow to interrogate post-treatment outcomes. Electroporation of ABE8e mRNA into a bulk population of RDEB patient fibroblasts resulted in remarkably efficient (94.6%) correction of the pathogenic allele, restoring COL7A1 mRNA and expression of C7 protein in western blots and in 3D skin constructs. Off-target DNA analysis did not detect off-target editing in treated patient-derived fibroblasts and there was no detectable increase in A-to-I changes in the RNA. Taken together, we have established a highly efficient pipeline for gene correction in primary fibroblasts with a favorable safety profile. This work lays a foundation for developing therapies for RDEB patients using ex vivo or in vivo base editing strategies.
Collapse
Affiliation(s)
- Adam Sheriff
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Ina Guri
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Paulina Zebrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Virginia Llopis-Hernandez
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Imogen R Brooks
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Stavroula Tekkela
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Kavita Subramaniam
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Ruta Gebrezgabher
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Gaetano Naso
- Molecular and Cellular Immunology Unit, UCL GOS Institute of Child Health, London, UK
| | - Anastasia Petrova
- Molecular and Cellular Immunology Unit, UCL GOS Institute of Child Health, London, UK
| | - Katarzyna Balon
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Dorota Kujawa
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Martyna Kotulska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Gregory Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - John A McGrath
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Joanna Jacków
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK.
| |
Collapse
|
44
|
Huang C, Li Q, Li J. Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:471-500. [PMID: 37724161 PMCID: PMC10388762 DOI: 10.1515/mr-2022-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
Advancements in genome editing enable permanent changes of DNA sequences in a site-specific manner, providing promising approaches for treating human genetic disorders caused by gene mutations. Recently, genome editing has been applied and achieved significant progress in treating inherited genetic disorders that remain incurable by conventional therapy. Here, we present a review of various programmable genome editing systems with their principles, advantages, and limitations. We introduce their recent applications for treating inherited diseases in the clinic, including sickle cell disease (SCD), β-thalassemia, Leber congenital amaurosis (LCA), heterozygous familial hypercholesterolemia (HeFH), etc. We also discuss the paradigm of ex vivo and in vivo editing and highlight the promise of somatic editing and the challenge of germline editing. Finally, we propose future directions in delivery, cutting, and repairing to improve the scope of clinical applications.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
45
|
Tu T, Song Z, Liu X, Wang S, He X, Xi H, Wang J, Yan T, Chen H, Zhang Z, Lv X, Lv J, Huang XF, Zhao J, Lin CP, Gao C, Zhang J, Gu F. A precise and efficient adenine base editor. Mol Ther 2022; 30:2933-2941. [PMID: 35821638 PMCID: PMC9481987 DOI: 10.1016/j.ymthe.2022.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Adenine base editors (ABEs) are novel genome-editing tools, and their activity has been greatly enhanced by eight additional mutations, thus named ABE8e. However, elevated catalytic activity was concomitant with frequent generation of bystander mutations. This bystander effect precludes its safe applications required in human gene therapy. To develop next-generation ABEs that are both catalytically efficient and positionally precise, we performed combinatorial engineering of NG-ABE8e. We identify a novel variant (NG-ABE9e), which harbors nine mutations. NG-ABE9e exhibits robust and precise base-editing activity in human cells, with more than 7-fold bystander editing reduction at some sites, compared with NG-ABE8e. To demonstrate its practical utility, we used NG-ABE9e to correct the frequent T17M mutation in Rhodopsin for autosomal dominant retinitis pigmentosa. It reduces bystander editing by ∼4-fold while maintaining comparable efficiency. NG-ABE9e possesses substantially higher activity than NG-ABEmax and significantly lower bystander editing than NG-ABE8e in rice. Therefore, this study provides a versatile and improved adenine base editor for genome editing.
Collapse
Affiliation(s)
- Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Xiaoyu Liu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue He
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haitao Xi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahua Wang
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tong Yan
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Chen
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Feng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
46
|
Kim DY, Chung Y, Lee Y, Jeong D, Park KH, Chin HJ, Lee JM, Park S, Ko S, Ko JH, Kim YS. Hypercompact adenine base editors based on transposase B guided by engineered RNA. Nat Chem Biol 2022; 18:1005-1013. [PMID: 35915259 DOI: 10.1038/s41589-022-01077-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022]
Abstract
Transposon-associated transposase B (TnpB) is deemed an ancestral protein for type V, Cas12 family members, and the closest ancestor to UnCas12f1. Previously, we reported a set of engineered guide RNAs supporting high indel efficiency for Cas12f1 in human cells. Here we suggest a new technology whereby the engineered guide RNAs also manifest high-efficiency programmable endonuclease activity for TnpB. We have termed this technology TaRGET (TnpB-augment RNA-based Genome Editing Technology). Having this feature in mind, we established TnpB-based adenine base editors (ABEs). A Tad-Tad mutant (V106W, D108Q) dimer fused to the C terminus of dTnpB (D354A) showed the highest levels of A-to-G conversion. The limited targetable sites for TaRGET-ABE were expanded with engineered variants of TnpB or optimized deaminases. Delivery of TaRGET-ABE also ensured potent A-to-G conversion rates in mammalian genomes. Collectively, the TaRGET-ABE will contribute to improving precise genome-editing tools that can be delivered by adeno-associated viruses, thereby harnessing the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene therapy.
Collapse
Affiliation(s)
| | | | - Yujin Lee
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
| | - Dongmin Jeong
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
| | - Kwang-Hyun Park
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
| | - Hyun Jung Chin
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
| | - Jeong Mi Lee
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
| | | | - Sumin Ko
- GenKOre, Daejeon, Republic of Korea
| | - Jeong-Heon Ko
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
| | - Yong-Sam Kim
- GenKOre, Daejeon, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea.
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea.
| |
Collapse
|
47
|
Rong L, Chen D, Huang X, Sun L. Delivery of Cas9-guided ABE8e into stem cells using poly(l-lysine) polypeptides for correction of the hemophilia-associated FIX missense mutation. Biochem Biophys Res Commun 2022; 628:49-56. [DOI: 10.1016/j.bbrc.2022.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
|
48
|
Zhao D, Jiang G, Li J, Chen X, Li S, Wang J, Zhou Z, Pu S, Dai Z, Ma Y, Bi C, Zhang X. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Res 2022; 50:4161-4170. [PMID: 35349689 PMCID: PMC9023296 DOI: 10.1093/nar/gkac201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
CRISPR base editing techniques tend to edit multiple bases in the targeted region, which is a limitation for precisely reverting disease-associated single-nucleotide polymorphisms (SNPs). We designed an imperfect gRNA (igRNA) editing methodology, which utilized a gRNA with one or more bases that were not complementary to the target locus to direct base editing toward the generation of a single-base edited product. Base editing experiments illustrated that igRNA editing with CBEs greatly increased the single-base editing fraction relative to normal gRNA editing with increased editing efficiencies. Similar results were obtained with an adenine base editor (ABE). At loci such as DNMT3B, NSD1, PSMB2, VIATA hs267 and ANO5, near-perfect single-base editing was achieved. Normally an igRNA with good single-base editing efficiency could be selected from a set of a few igRNAs, with a simple protocol. As a proof-of-concept, igRNAs were used in the research to construct cell lines of disease-associated SNP causing primary hyperoxaluria construction research. This work provides a simple strategy to achieve single-base base editing with both ABEs and CBEs and overcomes a key obstacle that limits the use of base editors in treating SNP-associated diseases or creating disease-associated SNP-harboring cell lines and animal models.
Collapse
Affiliation(s)
- Dongdong Zhao
- College of Life Science, Tianjin Normal University, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Guo Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Xuxu Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jie Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Zhubo Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
49
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
50
|
Habib O, Habib G, Hwang GH, Bae S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 2022; 50:1187-1197. [PMID: 35018468 PMCID: PMC8789035 DOI: 10.1093/nar/gkab1295] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Prime editing is a versatile and precise genome editing technique that can directly copy desired genetic modifications into target DNA sites without the need for donor DNA. This technique holds great promise for the analysis of gene function, disease modeling, and the correction of pathogenic mutations in clinically relevant cells such as human pluripotent stem cells (hPSCs). Here, we comprehensively tested prime editing in hPSCs by generating a doxycycline-inducible prime editing platform. Prime editing successfully induced all types of nucleotide substitutions and small insertions and deletions, similar to observations in other human cell types. Moreover, we compared prime editing and base editing for correcting a disease-related mutation in induced pluripotent stem cells derived form a patient with α 1-antitrypsin (A1AT) deficiency. Finally, whole-genome sequencing showed that, unlike the cytidine deaminase domain of cytosine base editors, the reverse transcriptase domain of a prime editor does not lead to guide RNA-independent off-target mutations in the genome. Our results demonstrate that prime editing in hPSCs has great potential for complementing previously developed CRISPR genome editing tools.
Collapse
Affiliation(s)
- Omer Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gizem Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| |
Collapse
|