1
|
Nielsen IH, Rovsing AB, Janns JH, Thomsen EA, Ruzo A, Bøggild A, Nedergaard F, Møller CT, Boesen T, Degn SE, Shah JV, Mikkelsen JG. Cell-targeted gene modification by delivery of CRISPR-Cas9 ribonucleoprotein complexes in pseudotyped lentivirus-derived nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102318. [PMID: 39329149 PMCID: PMC11426049 DOI: 10.1016/j.omtn.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
To fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2+/ACE2- population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout. Additionally, LVNPs pseudotyped with Edmonston strain measles virus glycoproteins (MV-H/F) delivered Cas9/sgRNA RNPs to CD46+ cells with and without additional expression of SLAM (signaling lymphocytic activation molecule; CD150). However, an engineered SLAM-specific measles virus pseudotype (measles virus-hemagglutinin/fusion [MV-H/F]-SLAM) efficiently targeted LVNPs to SLAM+ cells. Lentiviral vectors (LVs) pseudotyped with MV-H/F-SLAM efficiently transduced >80% of interleukin (IL)-4/IL-21-stimulated primary B cells cultured on CD40 ligand (CD40L)-expressing feeder cells. Notably, LVNPs pseudotyped with MV-H/F and MV-H/F-SLAM reached indel rates of >80% and >60% in stimulated primary B cells, respectively. Collectively, our findings demonstrate the modularity of LVNP-directed delivery of ready-to-function Cas9/sgRNA complexes. Using a panel of different pseudotypes, we provide evidence that LVNPs can be engineered to induce effective indel formation in a subpopulation of cells defined by the expression of surface receptors.
Collapse
Affiliation(s)
- Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Bruun Rovsing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jacob Hørlück Janns
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Albert Ruzo
- Sana Biotechnology, Inc, Cambridge, MA 02139, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Frederikke Nedergaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2024:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
George CA, Sahu SU, de Oñate L, Souza BSDF, Wilson RC. Genome Editing Therapy for the Blood: Ex Vivo Success and In Vivo Prospects. CRISPR J 2024; 7:231-248. [PMID: 39324895 DOI: 10.1089/crispr.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Hematopoietic stem cells (HSCs) provide the body with a continuous supply of healthy, functional blood cells. In patients with hematopoietic malignancies, immunodeficiencies, lysosomal storage disorders, and hemoglobinopathies, therapeutic genome editing offers hope for corrective intervention, with even modest editing efficiencies likely to provide clinical benefit. Engineered white blood cells, such as T cells, can be applied therapeutically to address monogenic disorders of the immune system, HIV infection, or cancer. The versatility of CRISPR-based tools allows countless new medical interventions for diseases of the blood, and rapid ex vivo success has been demonstrated in hemoglobinopathies via transplantation of the patient's HSCs following genome editing in a laboratory setting. Here we review recent advances in therapeutic genome editing of HSCs and T cells, focusing on the progress in ex vivo contexts, the promise of improved access via in vivo delivery, as well as the ongoing preclinical efforts that may enable the transition from ex vivo to in vivo administration. We discuss the challenges, limitations, and future prospects of this rapidly developing field, which may one day establish CRISPR as the standard of care for some diseases affecting the blood.
Collapse
Affiliation(s)
- Christy A George
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Srishti U Sahu
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Lorena de Oñate
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Ross C Wilson
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
5
|
Ueda N, Cahen M, Leonard J, Deleurme L, Dreano S, Sirac C, Galy A, Moreaux J, Danger Y, Cogné M. Single-hit genome editing optimized for maturation in B cells redirects their specificity toward tumor antigens. Sci Rep 2024; 14:22432. [PMID: 39342013 PMCID: PMC11438885 DOI: 10.1038/s41598-024-74005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
T-cell-based adoptive immunotherapy is a new pillar of cancer care. Tumor-redirected B cells could also contribute to therapy if their manipulation to rewire immunoglobulin (Ig) genes is mastered. We designed a single-chain Ig-encoding cassette ("scFull-Ig") that redirects antigen specificity when inserted at a single position of the IgH locus. This design, which places combined IgH and IgL variable genes downstream of a pVH promoter, nevertheless preserves all Ig functional domains and the intrinsic mechanisms that regulate expression from the IgM B cell receptor (BCR) expression to Ig secretion, somatic hypermutation and class switching. This single-locus editing provides an efficient and safe strategy to both disrupt endogenous Ig expression and encode a new Ig paratope. As a proof of concept, the functionality of scFull BCR and/or secreted Ig was validated against two different classical human tumor antigens, HER2 and hCD20. Once validated in cell lines, the strategy was extended to primary B cells, confirming the successful engineering of BCR and Ig expression and the ability of scFull-Ig to undergo further class switching. These results further pave the way for future B cell-based adoptive immunotherapy and strategies to express a therapeutic mAb with a variety of switched H-chains that provide complementary functions.
Collapse
MESH Headings
- Humans
- B-Lymphocytes/immunology
- Gene Editing/methods
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/genetics
- Immunotherapy, Adoptive/methods
- Immunoglobulin Class Switching/genetics
Collapse
Affiliation(s)
- Natsuko Ueda
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Marine Cahen
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
- Control of the B-cell Response & Lymphoproliferation, INSERM U1262, CNRS UMR 7276, Limoges University, 87025, Limoges, France
| | - Jenny Leonard
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Laurent Deleurme
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Stéphane Dreano
- CNRS-UMR 6290, Institute of Genetics and Development, 35000, Rennes, France
| | - Christophe Sirac
- Control of the B-cell Response & Lymphoproliferation, INSERM U1262, CNRS UMR 7276, Limoges University, 87025, Limoges, France
| | - Anne Galy
- Integrare Research Unit UMR_S951, Inserm, Genethon, Université Paris-Saclay, University of Evry, 91000, Evry, France
| | - Jérôme Moreaux
- CNRS-UM UMR 9002, Institute of Human Genetics, 34090, Montpellier, France
| | - Yannic Danger
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Michel Cogné
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France.
| |
Collapse
|
6
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Hoffmann MD, Sorensen RJ, Extross A, He Y, Schmidt D. Protein Carrier AAV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607995. [PMID: 39185209 PMCID: PMC11343202 DOI: 10.1101/2024.08.14.607995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
AAV is widely used for efficient delivery of DNA payloads. The extent to which the AAV capsid can be used to deliver a protein payload is unexplored. Here, we report engineered AAV capsids that directly package proteins - Protein Carrier AAV (pcAAV). Nanobodies inserted into the interior of the capsid mediate packaging of a cognate protein, including Green Fluorescent Protein (GFP), Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. We show that protein packaging efficiency is affected by the nanobody insertion position, the capsid protein isoform into which the nanobody is inserted, and the subcellular localization of the packaged protein during recombinant AAV capsid production; each of these factors can be rationally engineered to optimize protein packaging efficiency. We demonstrate that proteins packaged within pcAAV retain their enzymatic activity and that pcAAV can bind and enter the cell to deliver the protein payload. Establishing pcAAV as a protein delivery platform may expand the utility of AAV as a therapeutic and research tool.
Collapse
Affiliation(s)
- Mareike D. Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ryan J. Sorensen
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ajay Extross
- Department of Molecular, Cellular, Developmental Biology, and Genetics
| | - Yungui He
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
8
|
Siebart JC, Chan CS, Yao X, Su FY, Kwong GA. In vivo gene delivery to immune cells. Curr Opin Biotechnol 2024; 88:103169. [PMID: 38972172 PMCID: PMC11316639 DOI: 10.1016/j.copbio.2024.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/16/2023] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Immune cell therapies are an emerging class of living drugs that rely on the delivery of therapeutic transgenes to enhance, modulate, or restore cell function, such as those that encode for tumor-targeting receptors or replacement proteins. However, many cellular immunotherapies are autologous treatments that are limited by high manufacturing costs, typical vein-to-vein time of 3-4 weeks, and severe immune-related adverse effects. To address these issues, different classes of gene delivery vehicles are being developed to target specific immune cell subsets in vivo to address the limitations of ex vivo manufacturing, modulate therapeutic responses in situ, and reduce on- and off-target toxicity. The success of in vivo gene delivery to immune cells - which is being tested at the preclinical and clinical stages of development for the treatment of cancer, infectious diseases, and autoimmunity - is paramount for the democratization of cellular immunotherapies.
Collapse
Affiliation(s)
- Jamison C Siebart
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ching S Chan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Xinyi Yao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA; Georgia ImmunoEngineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
9
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy-chain antibodies. Nat Biomed Eng 2024:10.1038/s41551-024-01240-4. [PMID: 39039240 DOI: 10.1038/s41551-024-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
The immunoglobulin locus of B cells can be reprogrammed by genome editing to produce custom or non-natural antibodies that are not induced by immunization. However, current strategies for antibody reprogramming require complex expression cassettes and do not allow for customization of the constant region of the antibody. Here we show that human B cells can be edited at the immunoglobulin heavy-chain locus to express heavy-chain-only antibodies that support alterations to both the fragment crystallizable domain and the antigen-binding domain, which can be based on both antibody and non-antibody components. Using the envelope protein (Env) from the human immunodeficiency virus as a model antigen, we show that B cells edited to express heavy-chain antibodies to Env support the regulated expression of B cell receptors and antibodies through alternative splicing and that the cells respond to the Env antigen in a tonsil organoid model of immunization. This strategy allows for the reprogramming of human B cells to retain the potential for in vivo amplification while producing molecules with flexibility of composition beyond that of standard antibodies.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Eric J Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Buck AM, LaFranchi BH, Henrich TJ. Gaining momentum: stem cell therapies for HIV cure. Curr Opin HIV AIDS 2024; 19:194-200. [PMID: 38686850 PMCID: PMC11155292 DOI: 10.1097/coh.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW Durable HIV-1 remission has been reported in a person who received allogeneic stem cell transplants (SCTs) involving CCR5 Δ32/Δ32 donor cells. Much of the reduction in HIV-1 burden following allogeneic SCT with or without donor cells inherently resistant to HIV-1 infection is likely due to cytotoxic graft-versus-host effects on residual recipient immune cells. Nonetheless, there has been growing momentum to develop and implement stem cell therapies that lead to durable long-term antiretroviral therapy (ART)-free remission without the need for SCT. RECENT FINDINGS Most current research leverages gene editing techniques to modify hematopoietic stem cells which differentiate into immune cells capable of harboring HIV-1. Approaches include targeting genes that encode HIV-1 co-receptors using Zinc Finger Nucleases (ZFN) or CRISPR-Cas-9 to render a pool of adult or progenitor cells resistant to de-novo infection. Other strategies involve harnessing multipotent mesenchymal stromal cells to foster immune environments that can more efficiently recognize and target HIV-1 while promoting tissue homeostasis. SUMMARY Many of these strategies are currently in a state of infancy or adolescence; nonetheless, promising preclinical and first-in-human studies have been performed, providing further rationale to focus resources on stem cell therapies.
Collapse
Affiliation(s)
- Amanda M Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
11
|
Renner A, Stahringer A, Ruppel KE, Fricke S, Koehl U, Schmiedel D. Development of KoRV-pseudotyped lentiviral vectors for efficient gene transfer into freshly isolated immune cells. Gene Ther 2024; 31:378-390. [PMID: 38684788 PMCID: PMC11257948 DOI: 10.1038/s41434-024-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Allogeneic cell therapies, such as those involving macrophages or Natural Killer (NK) cells, are of increasing interest for cancer immunotherapy. However, the current techniques for genetically modifying these cell types using lenti- or gamma-retroviral vectors present challenges, such as required cell pre-activation and inefficiency in transduction, which hinder the assessment of preclinical efficacy and clinical translation. In our study, we describe a novel lentiviral pseudotype based on the Koala Retrovirus (KoRV) envelope protein, which we identified based on homology to existing pseudotypes used in cell therapy. Unlike other pseudotyped viral vectors, this KoRV-based envelope demonstrates remarkable efficiency in transducing freshly isolated primary human NK cells directly from blood, as well as freshly obtained monocytes, which were differentiated to M1 macrophages as well as B cells from multiple donors, achieving up to 80% reporter gene expression within three days post-transduction. Importantly, KoRV-based transduction does not compromise the expression of crucial immune cell receptors, nor does it impair immune cell functionality, including NK cell viability, proliferation, cytotoxicity as well as phagocytosis of differentiated macrophages. Preserving immune cell functionality is pivotal for the success of cell-based therapeutics in treating various malignancies. By achieving high transduction rates of freshly isolated immune cells before expansion, our approach enables a streamlined and cost-effective automated production of off-the-shelf cell therapeutics, requiring fewer viral particles and less manufacturing steps. This breakthrough holds the potential to significantly reduce the time and resources required for producing e.g. NK cell therapeutics, expediting their availability to patients in need.
Collapse
Affiliation(s)
- Alexander Renner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Anika Stahringer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany.
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
12
|
Banda A, Impomeni O, Singh A, Baloch AR, Hu W, Jaijyan DK. Precision in Action: The Role of Clustered Regularly Interspaced Short Palindromic Repeats/Cas in Gene Therapies. Vaccines (Basel) 2024; 12:636. [PMID: 38932365 PMCID: PMC11209408 DOI: 10.3390/vaccines12060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy for sickle cell anemia marks the beginning of a new era in gene editing. However, delivering CRISPR specifically into diseased cells in vivo is a significant challenge and an area of intense research. The identification of new CRISPR/Cas variants, particularly ultra-compact CAS systems with robust gene editing activities, paves the way for the low-capacity delivery vectors to be used in gene therapies. CRISPR/Cas technology has evolved beyond editing DNA to cover a wide spectrum of functionalities, including RNA targeting, disease diagnosis, transcriptional/epigenetic regulation, chromatin imaging, high-throughput screening, and new disease modeling. CRISPR/Cas can be used to engineer B-cells to produce potent antibodies for more effective vaccines and enhance CAR T-cells for the more precise and efficient targeting of tumor cells. However, CRISPR/Cas technology has challenges, including off-target effects, toxicity, immune responses, and inadequate tissue-specific delivery. Overcoming these challenges necessitates the development of a more effective and specific CRISPR/Cas delivery system. This entails strategically utilizing specific gRNAs in conjunction with robust CRISPR/Cas variants to mitigate off-target effects. This review seeks to delve into the intricacies of the CRISPR/Cas mechanism, explore progress in gene therapies, evaluate gene delivery systems, highlight limitations, outline necessary precautions, and scrutinize the ethical considerations associated with its application.
Collapse
Affiliation(s)
- Amrutha Banda
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Olivia Impomeni
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Aparana Singh
- Department of Chemistry, National Institute of Technology Agartala, Agartala 799046, India;
| | - Abdul Rasheed Baloch
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Wenhui Hu
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Dabbu Kumar Jaijyan
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
13
|
Lin H, Li C, Zhang W, Wu B, Wang Y, Wang S, Wang D, Li X, Huang H. Synthetic Cells and Molecules in Cellular Immunotherapy. Int J Biol Sci 2024; 20:2833-2859. [PMID: 38904025 PMCID: PMC11186374 DOI: 10.7150/ijbs.94346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular immunotherapy has emerged as an exciting strategy for cancer treatment, as it aims to enhance the body's immune response to tumor cells by engineering immune cells and designing synthetic molecules from scratch. Because of the cytotoxic nature, abundance in peripheral blood, and maturation of genetic engineering techniques, T cells have become the most commonly engineered immune cells to date. Represented by chimeric antigen receptor (CAR)-T therapy, T cell-based immunotherapy has revolutionized the clinical treatment of hematological malignancies. However, serious side effects and limited efficacy in solid tumors have hindered the clinical application of cellular immunotherapy. To address these limitations, various innovative strategies regarding synthetic cells and molecules have been developed. On one hand, some cytotoxic immune cells other than T cells have been engineered to explore the potential of targeted elimination of tumor cells, while some adjuvant cells have also been engineered to enhance the therapeutic effect. On the other hand, diverse synthetic cellular components and molecules are added to engineered immune cells to regulate their functions, promoting cytotoxic activity and restricting side effects. Moreover, novel bioactive materials such as hydrogels facilitating the delivery of therapeutic immune cells have also been applied to improve the efficacy of cellular immunotherapy. This review summarizes the innovative strategies of synthetic cells and molecules currently available in cellular immunotherapies, discusses the limitations, and provides insights into the next generation of cellular immunotherapies.
Collapse
Affiliation(s)
- Haikun Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Chentao Li
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Wanying Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Boxiang Wu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Xia Li
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| |
Collapse
|
14
|
Sun W, Wu Y, Ying T. Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antiviral Res 2024; 225:105867. [PMID: 38521465 DOI: 10.1016/j.antiviral.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Monoclonal antibody-based therapeutics have achieved remarkable success in treating a wide range of human diseases. However, conventional systemic delivery methods have limitations in insufficient target tissue permeability, high costs, repeated administrations, etc. Novel technologies have been developed to address these limitations and further enhance antibody therapy. Local antibody delivery via respiratory tract, gastrointestinal tract, eye and blood-brain barrier have shown promising results in increasing local concentrations and overcoming barriers. Nucleic acid-encoded antibodies expressed from plasmid DNA, viral vectors or mRNA delivery platforms also offer advantages over recombinant proteins such as sustained expression, rapid onset, and lower costs. This review summarizes recent advances in antibody delivery methods and highlights innovative technologies that have potential to expand therapeutic applications of antibodies.
Collapse
Affiliation(s)
- Wenli Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| |
Collapse
|
15
|
Yin Y, Guo Y, Jiang Y, Quinlan B, Peng H, Crynen G, He W, Zhang L, Ou T, Bailey CC, Farzan M. In vivo affinity maturation of mouse B cells reprogrammed to express human antibodies. Nat Biomed Eng 2024; 8:361-379. [PMID: 38486104 DOI: 10.1038/s41551-024-01179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024]
Abstract
Mice adoptively transferred with mouse B cells edited via CRISPR to express human antibody variable chains could help evaluate candidate vaccines and develop better antibody therapies. However, current editing strategies disrupt the heavy-chain locus, resulting in inefficient somatic hypermutation without functional affinity maturation. Here we show that these key B-cell functions can be preserved by directly and simultaneously replacing recombined mouse heavy and kappa chains with those of human antibodies, using a single Cas12a-mediated cut at each locus and 5' homology arms complementary to distal V segments. Cells edited in this way to express the human immunodeficiency virus type 1 (HIV-1) broadly neutralizing antibody 10-1074 or VRC26.25-y robustly hypermutated and generated potent neutralizing plasma in vaccinated mice. The 10-1074 variants isolated from the mice neutralized a global panel of HIV-1 isolates more efficiently than wild-type 10-1074 while maintaining its low polyreactivity and long half-life. We also used the approach to improve the potency of anti-SARS-CoV-2 antibodies against recent Omicron strains. In vivo affinity maturation of B cells edited at their native loci may facilitate the development of broad, potent and bioavailable antibodies.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yan Guo
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Yuxuan Jiang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, People's Republic of China
| | - Brian Quinlan
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Gogce Crynen
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Wenhui He
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lizhou Zhang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianling Ou
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Farzan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Teixeira AP, Fussenegger M. Synthetic Gene Circuits for Regulation of Next-Generation Cell-Based Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309088. [PMID: 38126677 PMCID: PMC10885662 DOI: 10.1002/advs.202309088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Arming human cells with synthetic gene circuits enables to expand their capacity to execute superior sensing and response actions, offering tremendous potential for innovative cellular therapeutics. This can be achieved by assembling components from an ever-expanding molecular toolkit, incorporating switches based on transcriptional, translational, or post-translational control mechanisms. This review provides examples from the three classes of switches, and discusses their advantages and limitations to regulate the activity of therapeutic cells in vivo. Genetic switches designed to recognize internal disease-associated signals often encode intricate actuation programs that orchestrate a reduction in the sensed signal, establishing a closed-loop architecture. Conversely, switches engineered to detect external molecular or physical cues operate in an open-loop fashion, switching on or off upon signal exposure. The integration of such synthetic gene circuits into the next generation of chimeric antigen receptor T-cells is already enabling precise calibration of immune responses in terms of magnitude and timing, thereby improving the potency and safety of therapeutic cells. Furthermore, pre-clinical engineered cells targeting other chronic diseases are gathering increasing attention, and this review discusses the path forward for achieving clinical success. With synthetic biology at the forefront, cellular therapeutics holds great promise for groundbreaking treatments.
Collapse
Affiliation(s)
- Ana P. Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
17
|
Tang D, Yan Y, Li Y, Li Y, Tian J, Yang L, Ding H, Bashir G, Zhou H, Ding Q, Tao R, Zhang S, Wang Z, Wu S. Targeting DAD1 gene with CRISPR-Cas9 system transmucosally delivered by fluorinated polylysine nanoparticles for bladder cancer intravesical gene therapy. Theranostics 2024; 14:203-219. [PMID: 38164146 PMCID: PMC10750211 DOI: 10.7150/thno.88550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Intravesical chemotherapy is highly recommended after transurethral resection of bladder tumor for patients with bladder cancer (BCa). However, this localized adjuvant therapy has drawbacks of causing indiscriminate damage and inability to penetrate bladder mucosal. Methods: Fluorinated polylysine micelles (PLLF) were synthesized by reacting polylysine (PLL) with heptafluorobutyrate anhydride. Anti-apoptotic gene defender against cell death 1 (DAD1) was selected by different gene expression analysis between BCa patients and healthy individuals and identified by several biological function assays. The gene transfection ability of PLLF was verified by multiple in vitro and in vivo assays. The therapeutic efficiency of PLLF nanoparticles (NPs) targeting DAD1 were confirmed by intravesical administration using an orthotopic BCa mouse model. Results: Decorated with fluorinated chains, PLL can self-assemble to form NPs and condense plasmids with excellent gene transfection efficiency in vitro. Loading with the CRISPR-Cas9 system designed to target DAD1 (Cas9-sgDAD1), PLLF/Cas9-sgDAD1 NPs strongly inhibited the expression of DAD1 in BCa cells and induced BCa cell apoptosis through the MAPK signaling pathway. Furthermore, intravesical administration of PLLF/Cas9-sgDAD1 NPs resulted in significant therapeutic outcomes without systemic toxicity in vivo. Conclusion: The synthetized PLLF can transmucosally deliver the CRISPR-Cas9 system into orthotopic BCa tissues to improve intravesical instillation therapy for BCa. This work presents a new strategy for targeting DAD1 gene in the intravesical therapy for BCa with high potential for clinical applications.
Collapse
Affiliation(s)
- Dongdong Tang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Yan
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Yangyang Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
| | - Yuqing Li
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Hui Ding
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Ghassan Bashir
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Houhong Zhou
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Qiuxia Ding
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
| | - Ran Tao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Song Wu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
18
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
19
|
Ornelas MY, Cournoyer JE, Bram S, Mehta AP. Evolution and synthetic biology. Curr Opin Microbiol 2023; 76:102394. [PMID: 37801925 PMCID: PMC10842511 DOI: 10.1016/j.mib.2023.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Evolutionary observations have often served as an inspiration for biological design. Decoding of the central dogma of life at a molecular level and understanding of the cellular biochemistry have been elegantly used to engineer various synthetic biology applications, including building genetic circuits in vitro and in cells, building synthetic translational systems, and metabolic engineering in cells to biosynthesize and even bioproduce complex high-value molecules. Here, we review three broad areas of synthetic biology that are inspired by evolutionary observations: (i) combinatorial approaches toward cell-based biomolecular evolution, (ii) engineering interdependencies to establish microbial consortia, and (iii) synthetic immunology. In each of the areas, we will highlight the evolutionary premise that was central toward designing these platforms. These are only a subset of the examples where evolution and natural phenomena directly or indirectly serve as a powerful source of inspiration in shaping synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Jason E Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana, Champaign, United States; Cancer Center at Illinois, University of Illinois at Urbana, Champaign, United States.
| |
Collapse
|
20
|
Fu ZH, He SZ, Wu Y, Zhao GR. Design and deep learning of synthetic B-cell-specific promoters. Nucleic Acids Res 2023; 51:11967-11979. [PMID: 37889080 PMCID: PMC10681721 DOI: 10.1093/nar/gkad930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Synthetic biology and deep learning synergistically revolutionize our ability for decoding and recoding DNA regulatory grammar. The B-cell-specific transcriptional regulation is intricate, and unlock the potential of B-cell-specific promoters as synthetic elements is important for B-cell engineering. Here, we designed and pooled synthesized 23 640 B-cell-specific promoters that exhibit larger sequence space, B-cell-specific expression, and enable diverse transcriptional patterns in B-cells. By MPRA (Massively parallel reporter assays), we deciphered the sequence features that regulate promoter transcriptional, including motifs and motif syntax (their combination and distance). Finally, we built and trained a deep learning model capable of predicting the transcriptional strength of the immunoglobulin V gene promoter directly from sequence. Prediction of thousands of promoter variants identified in the global human population shows that polymorphisms in promoters influence the transcription of immunoglobulin V genes, which may contribute to individual differences in adaptive humoral immune responses. Our work helps to decipher the transcription mechanism in immunoglobulin genes and offers thousands of non-similar promoters for B-cell engineering.
Collapse
Affiliation(s)
- Zong-Heng Fu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Si-Zhe He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Guang-Rong Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Guo L, Yang J, Wang H, Yi Y. Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy. Molecules 2023; 28:7750. [PMID: 38067480 PMCID: PMC10707962 DOI: 10.3390/molecules28237750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in nanotechnology have brought innovations to cancer therapy. Nanoparticle-based anticancer drugs have achieved great success from bench to bedside. However, insufficient therapy efficacy due to various physiological barriers in the body remains a key challenge. To overcome these biological barriers and improve the therapeutic efficacy of cancers, multistage self-assembled nanomaterials with advantages of stimuli-responsiveness, programmable delivery, and immune modulations provide great opportunities. In this review, we describe the typical biological barriers for nanomedicines, discuss the recent achievements of multistage self-assembled nanomaterials for stimuli-responsive drug delivery, highlighting the programmable delivery nanomaterials, in situ transformable self-assembled nanomaterials, and immune-reprogramming nanomaterials. Ultimately, we perspective the future opportunities and challenges of multistage self-assembled nanomaterials for cancer immunotherapy.
Collapse
Affiliation(s)
- Lamei Guo
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| |
Collapse
|
22
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
24
|
Cadinanos-Garai A, Abou-El-Enein M. Advancing in vivo genome editing: B cell engineering via adenoviral delivery systems. Mol Ther 2023; 31:2554-2556. [PMID: 37611582 PMCID: PMC10492014 DOI: 10.1016/j.ymthe.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Amaia Cadinanos-Garai
- USC/CHLA Cell Therapy Program, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Mohamed Abou-El-Enein
- USC/CHLA Cell Therapy Program, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, USA; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Rice-Boucher PJ, Mendonça SA, Alvarez AB, Sturtz AJ, Lorincz R, Dmitriev IP, Kashentseva EA, Lu ZH, Romano R, Selby M, Pingale K, Curiel DT. Adenoviral vectors infect B lymphocytes in vivo. Mol Ther 2023; 31:2600-2611. [PMID: 37452494 PMCID: PMC10492023 DOI: 10.1016/j.ymthe.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.
Collapse
Affiliation(s)
- Paul J Rice-Boucher
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Samir Andrade Mendonça
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Aluet Borrego Alvarez
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Reka Lorincz
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi Hong Lu
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rosa Romano
- Walking Fish Therapeutics, Inc., South San Francisco, CA, USA
| | - Mark Selby
- Walking Fish Therapeutics, Inc., South San Francisco, CA, USA
| | - Kunal Pingale
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David T Curiel
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
27
|
Bedi R, Bayless NL, Glanville J. Challenges and Progress in Designing Broad-Spectrum Vaccines Against Rapidly Mutating Viruses. Annu Rev Biomed Data Sci 2023; 6:419-441. [PMID: 37196356 DOI: 10.1146/annurev-biodatasci-020722-041304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Viruses evolve to evade prior immunity, causing significant disease burden. Vaccine effectiveness deteriorates as pathogens mutate, requiring redesign. This is a problem that has grown worse due to population increase, global travel, and farming practices. Thus, there is significant interest in developing broad-spectrum vaccines that mitigate disease severity and ideally inhibit disease transmission without requiring frequent updates. Even in cases where vaccines against rapidly mutating pathogens have been somewhat effective, such as seasonal influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), designing vaccines that provide broad-spectrum immunity against routinely observed viral variation remains a desirable but not yet achieved goal. This review highlights the key theoretical advances in understanding the interplay between polymorphism and vaccine efficacy, challenges in designing broad-spectrum vaccines, and technology advances and possible avenues forward. We also discuss data-driven approaches for monitoring vaccine efficacy and predicting viral escape from vaccine-induced protection. In each case, we consider illustrative examples in vaccine development from influenza, SARS-CoV-2, and HIV (human immunodeficiency virus)-three examples of highly prevalent rapidly mutating viruses with distinct phylogenetics and unique histories of vaccine technology development.
Collapse
Affiliation(s)
- Rishi Bedi
- Centivax Inc., South San Francisco, California, USA
| | | | | |
Collapse
|
28
|
Zhang D, Zhang J, Zhang J, Ji X, Qi Q, Xu J, Pan Y, Liu X, Sun F, Zeng R, Dong L. Identification of a novel role for TL1A/DR3 deficiency in acute respiratory distress syndrome that exacerbates alveolar epithelial disruption. Respir Res 2023; 24:182. [PMID: 37434162 DOI: 10.1186/s12931-023-02488-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Alveolar epithelial barrier is a potential therapeutic target for acute respiratory distress syndrome (ARDS). However, an effective intervention against alveolar epithelial barrier has not been developed. Here, based on single-cell RNA and mRNA sequencing results, death receptor 3 (DR3) and its only known ligand tumor necrosis factor ligand-associated molecule 1A (TL1A) were significantly reduced in epithelium from an ARDS mice and cell models. The apparent reduction in the TL1A/DR3 axis in lungs from septic-ARDS patients was correlated with the severity of the disease. The examination of knockout (KO) and alveolar epithelium conditional KO (CKO) mice showed that TL1A deficiency exacerbated alveolar inflammation and permeability in lipopolysaccharide (LPS)-induced ARDS. Mechanistically, TL1A deficiency decreased glycocalyx syndecan-1 and tight junction-associated zonula occludens 3 by increasing cathepsin E level for strengthening cell-to-cell permeability. Additionally, DR3 deletion aggravated barrier dysfunction and pulmonary edema in LPS-induced ARDS through the above mechanisms based on the analyses of DR3 CKO mice and DR3 overexpression cells. Therefore, the TL1A/DR3 axis has a potential value as a key therapeutic signaling for the protection of alveolar epithelial barrier.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jianning Zhang
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiang Ji
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Qian Qi
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jiawei Xu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaofei Liu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Fang Sun
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
29
|
Joshi LR, Gálvez NM, Ghosh S, Weiner DB, Balazs AB. Delivery platforms for broadly neutralizing antibodies. Curr Opin HIV AIDS 2023; 18:191-208. [PMID: 37265268 PMCID: PMC10247185 DOI: 10.1097/coh.0000000000000803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.
Collapse
Affiliation(s)
- Lok R. Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nicolás M.S. Gálvez
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Sukanya Ghosh
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - Alejandro B. Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy chain antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546944. [PMID: 37425794 PMCID: PMC10327003 DOI: 10.1101/2023.06.28.546944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We describe a genome editing strategy to reprogram the immunoglobulin heavy chain (IgH) locus of human B cells to express custom molecules that respond to immunization. These heavy chain antibodies (HCAbs) comprise a custom antigen-recognition domain linked to an Fc domain derived from the IgH locus and can be differentially spliced to express either B cell receptor (BCR) or secreted antibody isoforms. The HCAb editing platform is highly flexible, supporting antigen-binding domains based on both antibody and non-antibody components, and also allowing alterations in the Fc domain. Using HIV Env protein as a model antigen, we show that B cells edited to express anti-Env HCAbs support the regulated expression of both BCRs and antibodies, and respond to Env antigen in a tonsil organoid model of immunization. In this way, human B cells can be reprogrammed to produce customized therapeutic molecules with the potential for in vivo amplification.
Collapse
Affiliation(s)
- Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Eric J. Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Vamva E, Ozog S, Leaman DP, Yu-Hong Cheng R, Irons NJ, Ott A, Stoffers C, Khan I, Goebrecht GK, Gardner MR, Farzan M, Rawlings DJ, Zwick MB, James RG, Torbett BE. A lentiviral vector B cell gene therapy platform for the delivery of the anti-HIV-1 eCD4-Ig-knob-in-hole-reversed immunoadhesin. Mol Ther Methods Clin Dev 2023; 28:366-384. [PMID: 36879849 PMCID: PMC9984920 DOI: 10.1016/j.omtm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Barriers to effective gene therapy for many diseases include the number of modified target cells required to achieve therapeutic outcomes and host immune responses to expressed therapeutic proteins. As long-lived cells specialized for protein secretion, antibody-secreting B cells are an attractive target for foreign protein expression in blood and tissue. To neutralize HIV-1, we developed a lentiviral vector (LV) gene therapy platform for delivery of the anti-HIV-1 immunoadhesin, eCD4-Ig, to B cells. The EμB29 enhancer/promoter in the LV limited gene expression in non-B cell lineages. By engineering a knob-in-hole-reversed (KiHR) modification in the CH3-Fc eCD4-Ig domain, we reduced interactions between eCD4-Ig and endogenous B cell immunoglobulin G proteins, which improved HIV-1 neutralization potency. Unlike previous approaches in non-lymphoid cells, eCD4-Ig-KiHR produced in B cells promoted HIV-1 neutralizing protection without requiring exogenous TPST2, a tyrosine sulfation enzyme required for eCD4-Ig-KiHR function. This finding indicated that B cell machinery is well suited to produce therapeutic proteins. Lastly, to overcome the inefficient transduction efficiency associated with VSV-G LV delivery to primary B cells, an optimized measles pseudotyped LV packaging methodology achieved up to 75% transduction efficiency. Overall, our findings support the utility of B cell gene therapy platforms for therapeutic protein delivery.
Collapse
Affiliation(s)
- Eirini Vamva
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Stosh Ozog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel P. Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rene Yu-Hong Cheng
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nicholas J. Irons
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Andee Ott
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Claire Stoffers
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Iram Khan
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | | | - Matthew R. Gardner
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael Farzan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael B. Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard G. James
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bruce E. Torbett
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| |
Collapse
|
32
|
Hartweger H, Gautam R, Nishimura Y, Schmidt F, Yao KH, Escolano A, Jankovic M, Martin MA, Nussenzweig MC. Gene Editing of Primary Rhesus Macaque B Cells. J Vis Exp 2023:10.3791/64858. [PMID: 36847375 PMCID: PMC11099984 DOI: 10.3791/64858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
B cells and their progeny are the sources of highly expressed antibodies. Their high protein expression capabilities together with their abundance, easy accessibility via peripheral blood, and amenability to simple adoptive transfers have made them an attractive target for gene editing approaches to express recombinant antibodies or other therapeutic proteins. The gene editing of mouse and human primary B cells is efficient, and mouse models for in vivo studies have shown promise, but feasibility and scalability for larger animal models have so far not been demonstrated. We, therefore, developed a protocol to edit rhesus macaque primary B cells in vitro to enable such studies. We report conditions for in vitro culture and gene-editing of primary rhesus macaque B cells from peripheral blood mononuclear cells or splenocytes using CRISPR/Cas9. To achieve the targeted integration of large (<4.5 kb) cassettes, a fast and efficient protocol was included for preparing recombinant adeno-associated virus serotype 6 as a homology-directed repair template using a tetracycline-enabled self-silencing adenoviral helper vector. These protocols enable the study of prospective B cell therapeutics in rhesus macaques.
Collapse
Affiliation(s)
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University; Laboratory of Applied Virology and Precision Medicine, King Abdullah University of Science and Technology (KAUST)
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University; Vaccine and Immunotherapy Center, Wistar Institute
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University; Howard Hughes Medical Institute, The Rockefeller University
| |
Collapse
|
33
|
Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas Cure for HIV/AIDS. Int J Mol Sci 2023; 24:1563. [PMID: 36675077 PMCID: PMC9863116 DOI: 10.3390/ijms24021563] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections and HIV-induced acquired immunodeficiency syndrome (AIDS) continue to represent a global health burden. There is currently no effective vaccine, nor any cure, for HIV infections; existing antiretroviral therapy can suppress viral replication, but only as long as antiviral drugs are taken. HIV infects cells of the host immune system, and it can establish a long-lived viral reservoir, which can be targeted and edited through gene therapy. Gene editing platforms based on the clustered regularly interspaced palindromic repeat-Cas system (CRISPR-Cas) have been recognized as promising tools in the development of gene therapies for HIV infections. In this review, we evaluate the current landscape of CRISPR-Cas-based therapies against HIV, with an emphasis on the infection biology of the virus as well as the activity of host restriction factors. We discuss the potential of a combined CRISPR-Cas approach that targets host and viral genes to activate antiviral host factors and inhibit viral replication simultaneously. Lastly, we focus on the challenges and potential solutions of CRISPR-Cas gene editing approaches in achieving an HIV cure.
Collapse
Affiliation(s)
| | | | | | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
34
|
Mohammadian Gol T, Ureña-Bailén G, Hou Y, Sinn R, Antony JS, Handgretinger R, Mezger M. CRISPR medicine for blood disorders: Progress and challenges in delivery. Front Genome Ed 2023; 4:1037290. [PMID: 36687779 PMCID: PMC9853164 DOI: 10.3389/fgeed.2022.1037290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Yujuan Hou
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Ralph Sinn
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Justin S. Antony
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Markus Mezger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,*Correspondence: Markus Mezger,
| |
Collapse
|
35
|
Sun C, Zuo T, Wen Z. B cell engineering in vivo: Accelerating induction of broadly neutralizing antibodies against HIV-1 infection. Signal Transduct Target Ther 2023; 8:13. [PMID: 36604417 PMCID: PMC9816152 DOI: 10.1038/s41392-022-01269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, 511400, Guangzhou, China.
| | - Teng Zuo
- grid.9227.e0000000119573309Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031 Hefei, China
| | - Ziyu Wen
- grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, 518107 Shenzhen, China
| |
Collapse
|
36
|
Long-term control of HIV. Nat Rev Microbiol 2022; 20:446. [PMID: 35705741 DOI: 10.1038/s41579-022-00759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Hartweger H, Nussenzweig MC. CRISPR comes a-knock-in to reprogram antibodies in vivo. Nat Biotechnol 2022; 40:1183-1184. [PMID: 35681058 DOI: 10.1038/s41587-022-01299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harald Hartweger
- Laboratory for Molecular Immunology, Rockefeller University, New York, NY, USA.
| | - Michel C Nussenzweig
- Laboratory for Molecular Immunology, Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| |
Collapse
|