1
|
Zhao J, Qian H, An Y, Chu L, Tan D, Qin C, Sun Q, Wang Y, Qi W. PPARγ and C/EBPα enable adipocyte differentiation upon inhibition of histone methyltransferase PRC2 in malignant tumors. J Biol Chem 2024; 300:107765. [PMID: 39276936 PMCID: PMC11533084 DOI: 10.1016/j.jbc.2024.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
Loss of terminal differentiation is a hallmark of cancer and offers a potential mechanism for differentiation therapy. Polycomb repressive complex 2 (PRC2) serves as the methyltransferase for K27 of histone H3 that is crucial in development. While PRC2 inhibitors show promise in treating various cancers, the underlying mechanisms remain incompletely understood. Here, we demonstrated that the inhibition or depletion of PRC2 enhanced adipocyte differentiation in malignant rhabdoid tumors and mesenchymal stem cells, through upregulation of peroxisome proliferator-activated receptor gamma (PPARG) and CEBPA. Mechanistically, PRC2 directly represses their transcription through H3K27 methylation, as both genes exhibit a bivalent state in mesenchymal stem cells. KO of PPARG compromised C/EBPα expression and impeded the PRC2 inhibitor-induced differentiation into adipocytes. Furthermore, the combination of the PPARγ agonist rosiglitazone and the PRC2 inhibitor MAK683 exhibited a higher inhibition on Ki67 positivity in tumor xenograft compared to MAK683 alone. High CEBPA, PLIN1, and FABP4 levels positively correlated with favorable prognosis in sarcoma patients in The Cancer Genome Atlas cohort. Together, these findings unveil an epigenetic regulatory mechanism for PPARG and highlight the essential role of PPARγ and C/EBPα in the adipocyte differentiation of malignant rhabdoid tumors and sarcomas with a potential clinical implication.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hui Qian
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - Yang An
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liping Chu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dongxia Tan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenyang Qin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qianying Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunpeng Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Condemi L, Mocavini I, Aranda S, Di Croce L. Polycomb function in early mouse development. Cell Death Differ 2024:10.1038/s41418-024-01340-3. [PMID: 38997437 DOI: 10.1038/s41418-024-01340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Epigenetic factors are crucial for ensuring proper chromatin dynamics during the initial stages of embryo development. Among these factors, the Polycomb group (PcG) of proteins plays a key role in establishing correct transcriptional programmes during mouse embryogenesis. PcG proteins are classified into two complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Both complexes decorate histone proteins with distinct post-translational modifications (PTMs) that are predictive of a silent transcriptional chromatin state. In recent years, a critical adaptation of the classical techniques to analyse chromatin profiles and to study biochemical interactions at low-input resolution has allowed us to deeply explore PcG molecular mechanisms in the very early stages of mouse embryo development- from fertilisation to gastrulation, and from zygotic genome activation (ZGA) to specific lineages differentiation. These advancements provide a foundation for a deeper understanding of the fundamental role Polycomb complexes play in early development and have elucidated the mechanistic dynamics of PRC1 and PRC2. In this review, we discuss the functions and molecular mechanisms of both PRC1 and PRC2 during early mouse embryo development, integrating new studies with existing knowledge. Furthermore, we highlight the molecular functionality of Polycomb complexes from ZGA through gastrulation, with a particular focus on non-canonical imprinted and bivalent genes, and Hox cluster regulation.
Collapse
Affiliation(s)
- Livia Condemi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
4
|
Valsakumar D, Voigt P. Nucleosomal asymmetry: a novel mechanism to regulate nucleosome function. Biochem Soc Trans 2024; 52:1219-1232. [PMID: 38778762 PMCID: PMC11346421 DOI: 10.1042/bst20230877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Nucleosomes constitute the fundamental building blocks of chromatin. They are comprised of DNA wrapped around a histone octamer formed of two copies each of the four core histones H2A, H2B, H3, and H4. Nucleosomal histones undergo a plethora of posttranslational modifications that regulate gene expression and other chromatin-templated processes by altering chromatin structure or by recruiting effector proteins. Given their symmetric arrangement, the sister histones within a nucleosome have commonly been considered to be equivalent and to carry the same modifications. However, it is now clear that nucleosomes can exhibit asymmetry, combining differentially modified sister histones or different variants of the same histone within a single nucleosome. Enabled by the development of novel tools that allow generating asymmetrically modified nucleosomes, recent biochemical and cell-based studies have begun to shed light on the origins and functional consequences of nucleosomal asymmetry. These studies indicate that nucleosomal asymmetry represents a novel regulatory mechanism in the establishment and functional readout of chromatin states. Asymmetry expands the combinatorial space available for setting up complex sets of histone marks at individual nucleosomes, regulating multivalent interactions with histone modifiers and readers. The resulting functional consequences of asymmetry regulate transcription, poising of developmental gene expression by bivalent chromatin, and the mechanisms by which oncohistones deregulate chromatin states in cancer. Here, we review recent progress and current challenges in uncovering the mechanisms and biological functions of nucleosomal asymmetry.
Collapse
Affiliation(s)
- Devisree Valsakumar
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, U.K
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| |
Collapse
|
5
|
Gahan JM, Helfrich LW, Wetzel LA, Bhanu NV, Yuan ZF, Garcia BA, Klose R, Booth DS. Chromatin profiling identifies putative dual roles for H3K27me3 in regulating transposons and cell type-specific genes in choanoflagellates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596151. [PMID: 38854040 PMCID: PMC11160669 DOI: 10.1101/2024.05.28.596151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Gene expression is tightly controlled during animal development to allow the formation of specialized cell types. Our understanding of how animals evolved this exquisite regulatory control remains elusive, but evidence suggests that changes in chromatin-based mechanisms may have contributed. To investigate this possibility, here we examine chromatin-based gene regulatory features in the closest relatives of animals, choanoflagellates. Using Salpingoeca rosetta as a model system, we examined chromatin accessibility and histone modifications at the genome scale and compared these features to gene expression. We first observed that accessible regions of chromatin are primarily associated with gene promoters and found no evidence of distal gene regulatory elements resembling the enhancers that animals deploy to regulate developmental gene expression. Remarkably, a histone modification deposited by polycomb repressive complex 2, histone H3 lysine 27 trimethylation (H3K27me3), appeared to function similarly in S. rosetta to its role in animals, because this modification decorated genes with cell type-specific expression. Additionally, H3K27me3 marked transposons, retaining what appears to be an ancestral role in regulating these elements. We further uncovered a putative new bivalent chromatin state at cell type-specific genes that consists of H3K27me3 and histone H3 lysine 4 mono-methylation (H3K4me1). Together, our discoveries support the scenario that gene-associated histone modification states that underpin development emerged before the evolution of animal multicellularity.
Collapse
Affiliation(s)
- James M. Gahan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry, University of Oxford, Oxford, UK
- Present Address: Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Lily W. Helfrich
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: Benchling
| | - Laura A. Wetzel
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: BioMarin Pharmaceutical Inc
| | - Natarajan V. Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Rob Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David S. Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Boddu PC, Gupta AK, Roy R, De La Peña Avalos B, Olazabal-Herrero A, Neuenkirchen N, Zimmer JT, Chandhok NS, King D, Nannya Y, Ogawa S, Lin H, Simon MD, Dray E, Kupfer GM, Verma A, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Mol Cell 2024; 84:1475-1495.e18. [PMID: 38521065 PMCID: PMC11061666 DOI: 10.1016/j.molcel.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
Collapse
Affiliation(s)
- Prajwal C Boddu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Rahul Roy
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Bárbara De La Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Anne Olazabal-Herrero
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Namrata S Chandhok
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Darren King
- Section of Hematology and Medical Oncology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Haifan Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Medicine and Department of Developmental and Molecular Biology, Albert Einstein-Montefiore Cancer Center, New York, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Van HT, Xie G, Dong P, Liu Z, Ge K. KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions. J Mol Biol 2024; 436:168453. [PMID: 38266981 PMCID: PMC10957308 DOI: 10.1016/j.jmb.2024.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases are critical for gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions. In this review, we discuss the current understanding of KMT2 family, with a focus on their enzymatic activity-dependent and -independent functions. Six mammalian KMT2 proteins of three subgroups, KMT2A/B (MLL1/2), KMT2C/D (MLL3/4), and KMT2F/G (SETD1A/B or SET1A/B), have shared and distinct protein domains, catalytic substrates, genomic localizations, and associated complex subunits. Recent studies have revealed the importance of KMT2C/D in enhancer regulation, differentiation, development, tumor suppression and highlighted KMT2C/D enzymatic activity-dependent and -independent roles in mouse embryonic development and cell differentiation. Catalytic dependent and independent functions for KMT2A/B and KMT2F/G in gene regulation, differentiation, and development are less understood. Finally, we provide our perspectives and lay out future research directions that may help advance the investigation on enzymatic activity-dependent and -independent biological roles and working mechanisms of KMT2 methyltransferases.
Collapse
Affiliation(s)
- Hieu T Van
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Guojia Xie
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Glancy E, Choy N, Eckersley-Maslin MA. Bivalent chromatin: a developmental balancing act tipped in cancer. Biochem Soc Trans 2024; 52:217-229. [PMID: 38385532 PMCID: PMC10903468 DOI: 10.1042/bst20230426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bivalent chromatin is defined by the co-occurrence of otherwise opposing H3K4me3 and H3K27me3 modifications and is typically located at unmethylated promoters of lowly transcribed genes. In embryonic stem cells, bivalent chromatin has been proposed to poise developmental genes for future activation, silencing or stable repression upon lineage commitment. Normally, bivalent chromatin is kept in tight balance in cells, in part through the activity of the MLL/COMPASS-like and Polycomb repressive complexes that deposit the H3K4me3 and H3K27me3 modifications, respectively, but also emerging novel regulators including DPPA2/4, QSER1, BEND3, TET1 and METTL14. In cancers, both the deregulation of existing domains and the creation of de novo bivalent states is associated with either the activation or silencing of transcriptional programmes. This may facilitate diverse aspects of cancer pathology including epithelial-to-mesenchymal plasticity, chemoresistance and immune evasion. Here, we review current methods for detecting bivalent chromatin and discuss the factors involved in the formation and fine-tuning of bivalent domains. Finally, we examine how the deregulation of chromatin bivalency in the context of cancer could facilitate and/or reflect cancer cell adaptation. We propose a model in which bivalent chromatin represents a dynamic balance between otherwise opposing states, where the underlying DNA sequence is primed for the future activation or repression. Shifting this balance in any direction disrupts the tight equilibrium and tips cells into an altered epigenetic and phenotypic space, facilitating both developmental and cancer processes.
Collapse
Affiliation(s)
- Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Natalie Choy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melanie A. Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Seneviratne JA, Ho WWH, Glancy E, Eckersley-Maslin MA. A low-input high resolution sequential chromatin immunoprecipitation method captures genome-wide dynamics of bivalent chromatin. Epigenetics Chromatin 2024; 17:3. [PMID: 38336688 PMCID: PMC10858499 DOI: 10.1186/s13072-024-00527-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on opposite tails of the same nucleosome occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells where it was first described. This is partly due to the technical challenges distinguishing bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only mononucleosomes. RESULTS Here, we present a robust and sensitive method to accurately map bivalent chromatin genome-wide, along with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome-wide maps with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predominantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, demonstrated the ability of our method to capture bivalent chromatin dynamics. CONCLUSIONS Our optimized sequential reChIP method enables high-resolution genome-wide assessment of bivalent chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.
Collapse
Affiliation(s)
- Janith A Seneviratne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - William W H Ho
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Melanie A Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia.
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
10
|
Bamgbose G, Tulin A. PARP-1 is a transcriptional rheostat of metabolic and bivalent genes during development. Life Sci Alliance 2024; 7:e202302369. [PMID: 38012002 PMCID: PMC10682175 DOI: 10.26508/lsa.202302369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
PARP-1 participates in various cellular processes, including gene regulation. In Drosophila, PARP-1 mutants undergo developmental arrest during larval-to-pupal transition. In this study, we investigated PARP-1 binding and its transcriptional regulatory role at this stage. Our findings revealed that PARP-1 binds and represses active metabolic genes, including glycolytic genes, whereas activating low-expression developmental genes, including a subset of "bivalent" genes in third-instar larvae. These bivalent promoters, characterized by dual enrichment of low H3K4me3 and high H3K27me3, a unimodal H3K4me1 enrichment at the transcription start site (conserved in C. elegans and zebrafish), H2Av depletion, and high accessibility, may persist throughout development. In PARP-1 mutant third-instar larvae, metabolic genes typically down-regulated during the larval-to-pupal transition in response to reduced energy needs were repressed by PARP-1. Simultaneously, developmental and bivalent genes typically active at this stage were activated by PARP-1. In addition, glucose and ATP levels were significantly reduced in PARP-1 mutants, suggesting an imbalance in metabolic regulation. We propose that PARP-1 is essential for maintaining the delicate balance between metabolic and developmental gene expression programs to ensure proper developmental progression.
Collapse
Affiliation(s)
- Gbolahan Bamgbose
- https://ror.org/04a5szx83 Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Alexei Tulin
- https://ror.org/04a5szx83 Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
11
|
Betti MJ, Aldrich MC, Gamazon ER. Minimum entropy framework identifies a novel class of genomic functional elements and reveals regulatory mechanisms at human disease loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544507. [PMID: 37398170 PMCID: PMC10312628 DOI: 10.1101/2023.06.11.544507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We introduce CoRE-BED, a framework trained using 19 epigenomic features in 33 major cell and tissue types to predict cell-type-specific regulatory function. CoRE-BED identifies nine functional classes de-novo, capturing both known and new regulatory categories. Notably, we describe a previously undercharacterized class that we term Development Associated Elements (DAEs), which are highly enriched in cell types with elevated regenerative potential and distinguished by the dual presence of either H3K4me2 and H3K9ac (an epigenetic signature associated with kinetochore assembly) or H3K79me3 and H4K20me1 (a signature associated with transcriptional pause release). Unlike bivalent promoters, which represent a transitory state between active and silenced promoters, DAEs transition directly to or from a non-functional state during stem cell differentiation and are proximal to highly expressed genes. CoRE-BED's interpretability facilitates causal inference and functional prioritization. Across 70 complex traits, distal insulators account for the largest mean proportion of SNP heritability (~49%) captured by the GWAS. Collectively, our results demonstrate the value of exploring non-conventional ways of regulatory classification that enrich for trait heritability, to complement existing approaches for cis-regulatory prediction.
Collapse
Affiliation(s)
| | | | - Eric R Gamazon
- Vanderbilt University Medical Center, Nashville, TN
- Clare Hall, University of Cambridge, Cambridge, England
| |
Collapse
|
12
|
Kirtana R, Manna S, Patra SK. KDM5A noncanonically binds antagonists MLL1/2 to mediate gene regulation and promotes epithelial to mesenchymal transition. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194986. [PMID: 37722486 DOI: 10.1016/j.bbagrm.2023.194986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Differential expression of genes involved in certain processes is a collaborative outcome of crosstalk between signalling molecules and epigenetic modifiers. In response to environmental stimulus, interplay between transcription factors and epigenetic modifiers together dictates the regulation of genes. MLLs and KDM5A are functionally antagonistic proteins, as one acts as a writer and the other erases the active chromatin mark, i.e., H3K4me3. KDM5A influences the process of EMT by binding to both epithelial and mesenchymal gene promoters. Through this work, we show that when bound to E-cadherin promoter, KDM5A acts as a classical repressor by demethylating H3K4me3, but on mesenchymal markers, it acts as a transcriptional activator by inhibiting the activity of HDACs and increasing H3K18ac. Further, through our chromatin immunoprecipitation experiments, we observed a co-occupancy of KDM5A with MLLs, we tested whether KDM5A might physically interact with MLLs and WDR5, and here we provide experimental evidence that KDM5A indeed interacts with MLLs and WDR5.
Collapse
Affiliation(s)
- R Kirtana
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
13
|
Krug B, Hu B, Chen H, Ptack A, Chen X, Gretarsson KH, Deshmukh S, Kabir N, Andrade AF, Jabbour E, Harutyunyan AS, Lee JJY, Hulswit M, Faury D, Russo C, Xu X, Johnston MJ, Baguette A, Dahl NA, Weil AG, Ellezam B, Dali R, Blanchette M, Wilson K, Garcia BA, Soni RK, Gallo M, Taylor MD, Kleinman CL, Majewski J, Jabado N, Lu C. H3K27me3 spreading organizes canonical PRC1 chromatin architecture to regulate developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.567931. [PMID: 38116029 PMCID: PMC10729739 DOI: 10.1101/2023.11.28.567931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.
Collapse
|
14
|
Zhang W, Wang H, Ma Y, Gao B, Guan P, Huang X, Ouyang W, Guo M, Chen G, Li G, Li X. Domains Rearranged Methylase 2 maintains DNA methylation at large DNA hypomethylated shores and long-range chromatin interactions in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2333-2347. [PMID: 37539491 PMCID: PMC10579712 DOI: 10.1111/pbi.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023]
Abstract
DNA methylation plays an important role in gene regulation and genomic stability. However, large DNA hypomethylated regions known as DNA methylation valleys (DMVs) or canyons have also been suggested to serve unique regulatory functions, largely unknown in rice (Oryza sativa). Here, we describe the DMVs in rice seedlings, which were highly enriched with developmental and transcription regulatory genes. Further detailed analysis indicated that grand DMVs (gDMVs) might be derived from nuclear integrants of organelle DNA (NORGs). Furthermore, Domains Rearranged Methylase 2 (OsDRM2) maintained DNA methylation at short DMV (sDMV) shores. Epigenetic maps indicated that sDMVs were marked with H3K4me3 and/or H3K27me3, although the loss of DNA methylation had a negligible effect on histone modification within these regions. In addition, we constructed H3K27me3-associated interaction maps for homozygous T-DNA insertion mutant of the gene (osdrm2) and wild type (WT). From a global perspective, most (90%) compartments were stable between osdrm2 and WT plants. At a high resolution, we observed a dramatic loss of long-range chromatin loops in osdrm2, which suffered an extensive loss of non-CG (CHG and CHH, H = A, T, or C) methylation. From another viewpoint, the loss of non-CG methylation at sDMV shores in osdrm2 could disrupt H3K27me3-mediated chromatin interaction networks. Overall, our results demonstrated that DMVs are a key genomic feature in rice and are precisely regulated by epigenetic modifications, including DNA methylation and histone modifications. OsDRM2 maintained DNA methylation at sDMV shores, while OsDRM2 deficiency strongly affected three-dimensional (3D) genome architectures.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Huanhuan Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yuning Ma
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Baibai Gao
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Pengpeng Guan
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Xingyu Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Minrong Guo
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Guoting Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Guoliang Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xingwang Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
15
|
Yakhou L, Azogui A, Gupta N, Richard Albert J, Miura F, Ferry L, Yamaguchi K, Battault S, Therizols P, Bonhomme F, Bethuel E, Sarkar A, Greenberg MC, Arimondo P, Cristofari G, Kirsh O, Ito T, Defossez PA. A genetic screen identifies BEND3 as a regulator of bivalent gene expression and global DNA methylation. Nucleic Acids Res 2023; 51:10292-10308. [PMID: 37650637 PMCID: PMC10602864 DOI: 10.1093/nar/gkad719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.
Collapse
Affiliation(s)
- Lounis Yakhou
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anaelle Azogui
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Sarah Battault
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Pierre Therizols
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Elouan Bethuel
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Arpita Sarkar
- Université Côte d’Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | | | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
16
|
Ribarski-Chorev I, Schudy G, Strauss C, Schlesinger S. Short heat shock has a long-term effect on mesenchymal stem cells' transcriptome. iScience 2023; 26:107305. [PMID: 37529103 PMCID: PMC10387575 DOI: 10.1016/j.isci.2023.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
The adverse effects of heat stress (HS) on physiological systems are well documented, yet the underlying molecular mechanisms behind it remain poorly understood. To address this knowledge gap, we conducted a comprehensive investigation into the impact of HS on mesenchymal stem cells (MSCs), focusing on their morphology, phenotype, proliferative capacity, and fate determination. Our in-depth analysis of the MSCs' transcriptome revealed a significant influence of HS on the transcriptional landscape. Notably, even after a short period of stress, we observed a persistent alteration in cell identity, potentially mediated by the activation of bivalent genes. Furthermore, by comparing the differentially expressed genes following short HS with their transcriptional state after recovery, we identified the transient upregulation of MLL and other histone modifiers, providing a potential mechanistic explanation for the stable activation of bivalent genes. This could be used to predict and modify the long-term effect of HS on cell identity.
Collapse
Affiliation(s)
- Ivana Ribarski-Chorev
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gisele Schudy
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Carmit Strauss
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sharon Schlesinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Dunjić M, Jonas F, Yaakov G, More R, Mayshar Y, Rais Y, Orenbuch AH, Cheng S, Barkai N, Stelzer Y. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat Commun 2023; 14:3791. [PMID: 37365167 DOI: 10.1038/s41467-023-39477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.
Collapse
Affiliation(s)
- Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roye More
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
18
|
Sullivan AE. Epigenetic Control of Cell Potency and Fate Determination during Mammalian Gastrulation. Genes (Basel) 2023; 14:1143. [PMID: 37372324 DOI: 10.3390/genes14061143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Pluripotent embryonic stem cells have a unique and characteristic epigenetic profile, which is critical for differentiation to all embryonic germ lineages. When stem cells exit the pluripotent state and commit to lineage-specific identities during the process of gastrulation in early embryogenesis, extensive epigenetic remodelling mediates both the switch in cellular programme and the loss of potential to adopt alternative lineage programmes. However, it remains to be understood how the stem cell epigenetic profile encodes pluripotency, or how dynamic epigenetic regulation helps to direct cell fate specification. Recent advances in stem cell culture techniques, cellular reprogramming, and single-cell technologies that can quantitatively profile epigenetic marks have led to significant insights into these questions, which are important for understanding both embryonic development and cell fate engineering. This review provides an overview of key concepts and highlights exciting new advances in the field.
Collapse
Affiliation(s)
- Adrienne E Sullivan
- Quantitative Stem Cell Biology Lab, Francis Crick Institute, London NW1 1AT, UK
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
19
|
Boileau RM, Chen KX, Blelloch R. Loss of MLL3/4 decouples enhancer H3K4 monomethylation, H3K27 acetylation, and gene activation during embryonic stem cell differentiation. Genome Biol 2023; 24:41. [PMID: 36869380 PMCID: PMC9983171 DOI: 10.1186/s13059-023-02883-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Enhancers are essential in defining cell fates through the control of cell-type-specific gene expression. Enhancer activation is a multi-step process involving chromatin remodelers and histone modifiers including the monomethylation of H3K4 (H3K4me1) by MLL3 (KMT2C) and MLL4 (KMT2D). MLL3/4 are thought to be critical for enhancer activation and cognate gene expression including through the recruitment of acetyltransferases for H3K27. RESULTS Here we test this model by evaluating the impact of MLL3/4 loss on chromatin and transcription during early differentiation of mouse embryonic stem cells. We find that MLL3/4 activity is required at most if not all sites that gain or lose H3K4me1 but is largely dispensable at sites that remain stably methylated during this transition. This requirement extends to H3K27 acetylation (H3K27ac) at most transitional sites. However, many sites gain H3K27ac independent of MLL3/4 or H3K4me1 including enhancers regulating key factors in early differentiation. Furthermore, despite the failure to gain active histone marks at thousands of enhancers, transcriptional activation of nearby genes is largely unaffected, thus uncoupling the regulation of these chromatin events from transcriptional changes during this transition. These data challenge current models of enhancer activation and imply distinct mechanisms between stable and dynamically changing enhancers. CONCLUSIONS Collectively, our study highlights gaps in knowledge about the steps and epistatic relationships of enzymes necessary for enhancer activation and cognate gene transcription.
Collapse
Affiliation(s)
- Ryan M. Boileau
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, USA
- Developmental and Stem Cell Biology Graduate Program , University of California San Francisco, San Francisco, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA USA
| | - Kevin X. Chen
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, USA
- Developmental and Stem Cell Biology Graduate Program , University of California San Francisco, San Francisco, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA USA
| |
Collapse
|
20
|
Boddu PC, Gupta A, Roy R, De La Pena Avalos B, Herrero AO, Neuenkirchen N, Zimmer J, Chandhok N, King D, Nannya Y, Ogawa S, Lin H, Simon M, Dray E, Kupfer G, Verma AK, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic splicing factor mutations to targetable alterations in chromatin landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530019. [PMID: 36891287 PMCID: PMC9994134 DOI: 10.1101/2023.02.25.530019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human disease remains unexplored. Here, we investigated the impact of non-synonymous mutations in SF3B1 and U2AF1, two commonly mutated splicing factors in cancer, on transcription. We find that the mutations impair RNA Polymerase II (RNAPII) transcription elongation along gene bodies leading to transcription-replication conflicts, replication stress and altered chromatin organization. This elongation defect is linked to disrupted pre-spliceosome assembly due to impaired association of HTATSF1 with mutant SF3B1. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC complex, which, when modulated, normalize transcription defects and their downstream effects. Our findings shed light on the mechanisms by which oncogenic mutant spliceosomes impact chromatin organization through their effects on RNAPII transcription elongation and present a rationale for targeting the Sin3/HDAC complex as a potential therapeutic strategy. GRAPHICAL ABSTRACT HIGHLIGHTS Oncogenic mutations of SF3B1 and U2AF1 cause a gene-body RNAPII elongation defectRNAPII transcription elongation defect leads to transcription replication conflicts, DNA damage response, and changes to chromatin organization and H3K4me3 marksThe transcription elongation defect is linked to disruption of the early spliceosome formation through impaired interaction of HTATSF1 with mutant SF3B1.Changes to chromatin organization reveal potential therapeutic strategies by targeting the Sin3/HDAC pathway.
Collapse
|
21
|
Hughes AL, Szczurek AT, Kelley JR, Lastuvkova A, Turberfield AH, Dimitrova E, Blackledge NP, Klose RJ. A CpG island-encoded mechanism protects genes from premature transcription termination. Nat Commun 2023; 14:726. [PMID: 36759609 PMCID: PMC9911701 DOI: 10.1038/s41467-023-36236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Transcription must be tightly controlled to regulate gene expression and development. However, our understanding of the molecular mechanisms that influence transcription and how these are coordinated in cells to ensure normal gene expression remains rudimentary. Here, by dissecting the function of the SET1 chromatin-modifying complexes that bind to CpG island-associated gene promoters, we discover that they play a specific and essential role in enabling the expression of low to moderately transcribed genes. Counterintuitively, this effect can occur independently of SET1 complex histone-modifying activity and instead relies on an interaction with the RNA Polymerase II-binding protein WDR82. Unexpectedly, we discover that SET1 complexes enable gene expression by antagonising premature transcription termination by the ZC3H4/WDR82 complex at CpG island-associated genes. In contrast, at extragenic sites of transcription, which typically lack CpG islands and SET1 complex occupancy, we show that the activity of ZC3H4/WDR82 is unopposed. Therefore, we reveal a gene regulatory mechanism whereby CpG islands are bound by a protein complex that specifically protects genic transcripts from premature termination, effectively distinguishing genic from extragenic transcription and enabling normal gene expression.
Collapse
Affiliation(s)
- Amy L Hughes
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Sparbier CE, Gillespie A, Gomez J, Kumari N, Motazedian A, Chan KL, Bell CC, Gilan O, Chan YC, Popp S, Gough DJ, Eckersley-Maslin MA, Dawson SJ, Lehner PJ, Sutherland KD, Ernst P, McGeehan GM, Lam EYN, Burr ML, Dawson MA. Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. Nat Cell Biol 2023; 25:258-272. [PMID: 36635503 PMCID: PMC7614190 DOI: 10.1038/s41556-022-01056-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2022] [Indexed: 01/14/2023]
Abstract
Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR-Cas9 screens, we identify specific roles for MTF2-PRC2.1, PCGF1-PRC1.1 and Menin-KMT2A/B complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating gene activation. This functional partitioning of Menin-KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin.
Collapse
Affiliation(s)
- Christina E Sparbier
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Juliana Gomez
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nishi Kumari
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ali Motazedian
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kah Lok Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Popp
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Melanie A Eckersley-Maslin
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia Ernst
- Section of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
- Department of Anatomical Pathology, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Zhang C, Lin H, Zhang Y, Xing Q, Zhang J, Zhang D, Liu Y, Chen Q, Zhou T, Wang J, Shan Y, Pan G. BRPF1 bridges H3K4me3 and H3K23ac in human embryonic stem cells and is essential to pluripotency. iScience 2023; 26:105939. [PMID: 36711238 PMCID: PMC9874078 DOI: 10.1016/j.isci.2023.105939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Post-translational modifications (PTMs) on histones play essential roles in cell fate decisions during development. However, how these PTMs are recognized and coordinated remains to be fully illuminated. Here, we show that BRPF1, a multi-histone binding module protein, is essential for pluripotency in human embryonic stem cells (ESCs). BRPF1, H3K4me3, and H3K23ac substantially co-occupy the open chromatin and stemness genes in hESCs. BRPF1 deletion impairs H3K23ac in hESCs and leads to closed chromatin accessibility on stemness genes and hESC differentiation as well. Deletion of the N terminal or PHD-zinc knuckle-PHD (PZP) module in BRPF1 completely impairs its functions in hESCs while PWWP module deletion partially impacts the function. In sum, we reveal BRPF1, the multi-histone binding module protein that bridges the crosstalk between different histone modifications in hESCs to maintain pluripotency.
Collapse
Affiliation(s)
- Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yancai Liu
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Corresponding author
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Key Lab for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong 250117, China,Corresponding author
| |
Collapse
|
24
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
25
|
Byers C, Spruce C, Fortin HJ, Hartig EI, Czechanski A, Munger SC, Reinholdt LG, Skelly DA, Baker CL. Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells. EMBO J 2022; 41:e109445. [PMID: 34931323 PMCID: PMC8762565 DOI: 10.15252/embj.2021109445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.
Collapse
Affiliation(s)
- Candice Byers
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Haley J Fortin
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | - Ellen I Hartig
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Steven C Munger
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | | | - Christopher L Baker
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
26
|
Gaspar AD, Cuddapah S. Nickel-induced alterations to chromatin structure and function. Toxicol Appl Pharmacol 2022; 457:116317. [PMID: 36400264 PMCID: PMC9722551 DOI: 10.1016/j.taap.2022.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Nickel (Ni), a heavy metal is prevalent in the atmosphere due to both natural and anthropogenic activities. Ni is a carcinogen implicated in the development of lung and nasal cancers in humans. Furthermore, Ni exposure is associated with a number of chronic lung diseases in humans including asthma, chronic bronchitis, emphysema, pulmonary fibrosis, pulmonary edema and chronic obstructive pulmonary disease (COPD). While Ni compounds are weak mutagens, a number of studies have demonstrated the potential of Ni to alter the epigenome, suggesting epigenomic dysregulation as an important underlying cause for its pathogenicity. In the eukaryotic nucleus, the DNA is organized in a three-dimensional (3D) space through assembly of higher order chromatin structures. Such an organization is critically important for transcription and other biological activities. Accumulating evidence suggests that by negatively affecting various cellular regulatory processes, Ni could potentially affect chromatin organization. In this review, we discuss the role of Ni in altering the chromatin architecture, which potentially plays a major role in Ni pathogenicity.
Collapse
Affiliation(s)
- Adrian Domnic Gaspar
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
27
|
Guo Y, Wang GG. Modulation of the high-order chromatin structure by Polycomb complexes. Front Cell Dev Biol 2022; 10:1021658. [PMID: 36274840 PMCID: PMC9579376 DOI: 10.3389/fcell.2022.1021658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either independently or synergistically, to maintain and enforce a repressive state of the target chromatin, thereby regulating the processes of cell lineage specification and organismal development. In recent years, deep sequencing-based and imaging-based technologies, especially those tailored for mapping three-dimensional (3D) chromatin organization and structure, have allowed a better understanding of the PRC complex-mediated long-range chromatin contacts and DNA looping. In this review, we review current advances as for how Polycomb complexes function to modulate and help define the high-order chromatin structure and topology, highlighting the multi-faceted roles of Polycomb proteins in gene and genome regulation.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| |
Collapse
|
28
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
29
|
Wu Z, Wang L, Fan L, Tang H, Zuo X, Gu D, Lu X, Li Y, Wu J, Qin S, Xia Y, Zhu H, Wang L, Xu W, Li J, Jin H. Exploring the significance of PAK1 through chromosome conformation signatures in ibrutinib-resistant chronic lymphocytic leukaemia. Mol Oncol 2022; 16:2920-2935. [PMID: 35811334 PMCID: PMC9394240 DOI: 10.1002/1878-0261.13281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Ibrutinib exerts promising anticancer effects in chronic lymphocytic leukaemia (CLL). However, acquired resistance occurs during treatment, necessitating the exploration of underlying mechanisms. Although three‐dimensional genome organization has been identified as a major player in the development and progression of cancer, including drug resistance, little is known regarding its role in CLL. Therefore, we investigated the molecular mechanisms underlying ibrutinib resistance through multi‐omics analysis, including high‐throughput chromosome conformation capture (Hi‐C) technology. We demonstrated that the therapeutic response to ibrutinib is associated with the expression of p21‐activated kinase 1 (PAK1). PAK1, which was up‐regulated in CLL and associated with patients' survival, was involved in cell proliferation, glycolysis and oxidative phosphorylation. Furthermore, the PAK1 inhibitor IPA‐3 exerted an anti‐tumour effect and its combination with ibrutinib exhibited a synergistic effect in ibrutinib‐sensitive and ‐resistant cells. These findings suggest the oncogenic role of PAK1 in CLL progression and drug resistance, highlighting PAK1 as a potential diagnostic marker and therapeutic target in CLL including ibrutinib‐resistant CLL.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Luqiao Wang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Lei Fan
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Hanning Tang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Xiaoling Zuo
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Danling Gu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Xueying Lu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Yue Li
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Jiazhu Wu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Shuchao Qin
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Yi Xia
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Huayuan Zhu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Li Wang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Wei Xu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Jianyong Li
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Jin
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Huang X, Bashkenova N, Hong Y, Lyu C, Guallar D, Hu Z, Malik V, Li D, Wang H, Shen X, Zhou H, Wang J. A TET1-PSPC1-Neat1 molecular axis modulates PRC2 functions in controlling stem cell bivalency. Cell Rep 2022; 39:110928. [PMID: 35675764 PMCID: PMC9214724 DOI: 10.1016/j.celrep.2022.110928] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent genes is not well understood. Using a proteomics approach, we map the TET1 interactome in ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene transcripts in controlling stem cell bivalency.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nazym Bashkenova
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Zhe Hu
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
31
|
Chrysanthou S, Tang Q, Lee J, Taylor SJ, Zhao Y, Steidl U, Zheng D, Dawlaty M. The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. Nucleic Acids Res 2022; 50:3169-3189. [PMID: 35150568 PMCID: PMC8989540 DOI: 10.1093/nar/gkac089] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1-/-) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1-/-, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.
Collapse
Affiliation(s)
- Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Samuel J Taylor
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
32
|
Mas G, Santoro F, Blanco E, Gamarra Figueroa GP, Le Dily F, Frigè G, Vidal E, Mugianesi F, Ballaré C, Gutierrez A, Sparavier A, Marti-Renom MA, Minucci S, Di Croce L. In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of Klf4 in suppressing early leukemic transformation. Genes Dev 2022; 36:451-467. [PMID: 35450883 PMCID: PMC9067408 DOI: 10.1101/gad.349115.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
In this study, Mas et al. used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. Their multiomics-integrated analysis identified Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis, and they characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.
Collapse
Affiliation(s)
- Glòria Mas
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Fabio Santoro
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | | | - François Le Dily
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Gianmaria Frigè
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Vidal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Francesca Mugianesi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Arantxa Gutierrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Aleksandra Sparavier
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
33
|
Gordeev MN, Bakhmet EI, Tomilin AN. Pluripotency Dynamics during Embryogenesis and in Cell Culture. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Kumar D, Cinghu S, Oldfield AJ, Yang P, Jothi R. Decoding the function of bivalent chromatin in development and cancer. Genome Res 2021; 31:2170-2184. [PMID: 34667120 PMCID: PMC8647824 DOI: 10.1101/gr.275736.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Bivalent chromatin is characterized by the simultaneous presence of H3K4me3 and H3K27me3, histone modifications generally associated with transcriptionally active and repressed chromatin, respectively. Prevalent in embryonic stem cells (ESCs), bivalency is postulated to poise/prime lineage-controlling developmental genes for rapid activation during embryogenesis while maintaining a transcriptionally repressed state in the absence of activation cues; however, this hypothesis remains to be directly tested. Most gene promoters DNA hypermethylated in adult human cancers are bivalently marked in ESCs, and it was speculated that bivalency predisposes them for aberrant de novo DNA methylation and irreversible silencing in cancer, but evidence supporting this model is largely lacking. Here, we show that bivalent chromatin does not poise genes for rapid activation but protects promoters from de novo DNA methylation. Genome-wide studies in differentiating ESCs reveal that activation of bivalent genes is no more rapid than that of other transcriptionally silent genes, challenging the premise that H3K4me3 is instructive for transcription. H3K4me3 at bivalent promoters-a product of the underlying DNA sequence-persists in nearly all cell types irrespective of gene expression and confers protection from de novo DNA methylation. Bivalent genes in ESCs that are frequent targets of aberrant hypermethylation in cancer are particularly strongly associated with loss of H3K4me3/bivalency in cancer. Altogether, our findings suggest that bivalency protects reversibly repressed genes from irreversible silencing and that loss of H3K4me3 may make them more susceptible to aberrant DNA methylation in diseases such as cancer. Bivalency may thus represent a distinct regulatory mechanism for maintaining epigenetic plasticity.
Collapse
Affiliation(s)
- Dhirendra Kumar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Senthilkumar Cinghu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Andrew J Oldfield
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Pengyi Yang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Raja Jothi
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
35
|
Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol 2021; 22:815-833. [PMID: 34400841 PMCID: PMC7612013 DOI: 10.1038/s41580-021-00398-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.
Collapse
Affiliation(s)
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Sun Z, Tang Y, Zhang Y, Fang Y, Jia J, Zeng W, Fang D. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. Nat Commun 2021; 12:5941. [PMID: 34642323 PMCID: PMC8511096 DOI: 10.1038/s41467-021-26203-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling usually functions through a spatial gradient. Localized Wnt3a signaling can induce the asymmetric division of mouse embryonic stem cells, where proximal daughter cells maintain self-renewal and distal daughter cells acquire hallmarks of differentiation. Here, we develop an approach, same cell epigenome and transcriptome sequencing, to jointly profile the epigenome and transcriptome in the same single cell. Utilizing this method, we profiled H3K27me3 and H3K4me3 levels along with gene expression in mouse embryonic stem cells with localized Wnt3a signaling, revealing the cell type-specific maps of the epigenome and transcriptome in divided daughter cells. H3K27me3, but not H3K4me3, is correlated with gene expression changes during asymmetric cell division. Furthermore, cell clusters identified by H3K27me3 recapitulate the corresponding clusters defined by gene expression. Our study provides a convenient method to jointly profile the epigenome and transcriptome in the same cell and reveals mechanistic insights into the gene regulatory programs that maintain and reset stem cell fate during differentiation. A localized Wnt3a signal has been shown to induce asymmetric division of mouse embryonic stem cells. Here the authors develop SET-seq, an approach to jointly profile epigenome and transcriptome in the same single cell and use it to provide mechanistic insights into the gene regulatory programs for maintaining and resetting stem cell fate during differentiation.
Collapse
Affiliation(s)
- Zhongxing Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiwu Zeng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
37
|
Blanco E, González-Ramírez M, Di Croce L. Productive visualization of high-throughput sequencing data using the SeqCode open portable platform. Sci Rep 2021; 11:19545. [PMID: 34599234 PMCID: PMC8486768 DOI: 10.1038/s41598-021-98889-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Large-scale sequencing techniques to chart genomes are entirely consolidated. Stable computational methods to perform primary tasks such as quality control, read mapping, peak calling, and counting are likewise available. However, there is a lack of uniform standards for graphical data mining, which is also of central importance. To fill this gap, we developed SeqCode, an open suite of applications that analyzes sequencing data in an elegant but efficient manner. Our software is a portable resource written in ANSI C that can be expected to work for almost all genomes in any computational configuration. Furthermore, we offer a user-friendly front-end web server that integrates SeqCode functions with other graphical analysis tools. Our analysis and visualization toolkit represents a significant improvement in terms of performance and usability as compare to other existing programs. Thus, SeqCode has the potential to become a key multipurpose instrument for high-throughput professional analysis; further, it provides an extremely useful open educational platform for the world-wide scientific community. SeqCode website is hosted at http://ldicrocelab.crg.eu, and the source code is freely distributed at https://github.com/eblancoga/seqcode.
Collapse
Affiliation(s)
- Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
38
|
González-Ramírez M, Ballaré C, Mugianesi F, Beringer M, Santanach A, Blanco E, Di Croce L. Differential contribution to gene expression prediction of histone modifications at enhancers or promoters. PLoS Comput Biol 2021; 17:e1009368. [PMID: 34473698 PMCID: PMC8443064 DOI: 10.1371/journal.pcbi.1009368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 08/21/2021] [Indexed: 12/31/2022] Open
Abstract
The ChIP-seq signal of histone modifications at promoters is a good predictor of gene expression in different cellular contexts, but whether this is also true at enhancers is not clear. To address this issue, we develop quantitative models to characterize the relationship of gene expression with histone modifications at enhancers or promoters. We use embryonic stem cells (ESCs), which contain a full spectrum of active and repressed (poised) enhancers, to train predictive models. As many poised enhancers in ESCs switch towards an active state during differentiation, predictive models can also be trained on poised enhancers throughout differentiation and in development. Remarkably, we determine that histone modifications at enhancers, as well as promoters, are predictive of gene expression in ESCs and throughout differentiation and development. Importantly, we demonstrate that their contribution to the predictive models varies depending on their location in enhancers or promoters. Moreover, we use a local regression (LOESS) to normalize sequencing data from different sources, which allows us to apply predictive models trained in a specific cellular context to a different one. We conclude that the relationship between gene expression and histone modifications at enhancers is universal and different from promoters. Our study provides new insight into how histone modifications relate to gene expression based on their location in enhancers or promoters. Gene expression can be properly predicted by the ChIP-seq signal of histone modifications at promoters, but whether this is also true at enhancers is unclear. In this study we develop predictive models of gene expression that demonstrate the predictive power of histone modifications at enhancers in the context of mouse embryonic stem cells, during differentiation, and in animal development. Moreover, by assessing the contribution of each histone modification, we found that enhancer predictive models and promoter predictive models have different histone modification requirement. Therefore, different histone modifications relate better to enhancer or promoter function(s). Finally, by applying predictive models trained in a specific cellular context to a different one, we concluded that the relationship between gene expression and histone modifications at enhancers is universal.
Collapse
Affiliation(s)
- Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesca Mugianesi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Malte Beringer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandra Santanach
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Barcelona, Spain
- * E-mail:
| |
Collapse
|
39
|
Liu X, Jiang S, Ma L, Qu J, Zhao L, Zhu X, Ding J. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol 2021; 22:230. [PMID: 34404453 PMCID: PMC8369800 DOI: 10.1186/s13059-021-02455-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Biomolecular condensates have been implicated in multiple cellular processes. However, the global role played by condensates in 3D chromatin organization remains unclear. At present, 1,6-hexanediol (1,6-HD) is the only available tool to globally disrupt condensates, yet the conditions of 1,6-HD vary considerably between studies and may even trigger apoptosis. RESULTS In this study, we first analyzed the effects of different concentrations and treatment durations of 1,6-HD and found that short-term exposure to 1.5% 1,6-HD dissolved biomolecular condensates whereas long-term exposure caused aberrant aggregation without affecting cell viability. Based on this condition, we drew a time-resolved map of 3D chromatin organization and found that short-term treatment with 1.5% 1,6-HD resulted in reduced long-range interactions, strengthened compartmentalization, homogenized A-A interactions, B-to-A compartment switch and TAD reorganization, whereas longer exposure had the opposite effects. Furthermore, the long-range interactions between condensate-component-enriched regions were markedly weakened following 1,6-HD treatment. CONCLUSIONS In conclusion, our study finds a proper 1,6-HD condition and provides a resource for exploring the role of biomolecular condensates in 3D chromatin organization.
Collapse
Affiliation(s)
- Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Ma
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiale Qu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Longying Zhao
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xing Zhu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
40
|
Crispatzu G, Rehimi R, Pachano T, Bleckwehl T, Cruz-Molina S, Xiao C, Mahabir E, Bazzi H, Rada-Iglesias A. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat Commun 2021; 12:4344. [PMID: 34272393 PMCID: PMC8285398 DOI: 10.1038/s41467-021-24641-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.
Collapse
Affiliation(s)
- Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Internal Medicine II, University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cally Xiao
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain.
| |
Collapse
|
41
|
Alarcón T, Sardanyés J, Guillamon A, Menendez JA. Bivalent chromatin as a therapeutic target in cancer: An in silico predictive approach for combining epigenetic drugs. PLoS Comput Biol 2021; 17:e1008408. [PMID: 34153035 PMCID: PMC8248646 DOI: 10.1371/journal.pcbi.1008408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 07/01/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Tumour cell heterogeneity is a major barrier for efficient design of targeted anti-cancer therapies. A diverse distribution of phenotypically distinct tumour-cell subpopulations prior to drug treatment predisposes to non-uniform responses, leading to the elimination of sensitive cancer cells whilst leaving resistant subpopulations unharmed. Few strategies have been proposed for quantifying the variability associated to individual cancer-cell heterogeneity and minimizing its undesirable impact on clinical outcomes. Here, we report a computational approach that allows the rational design of combinatorial therapies involving epigenetic drugs against chromatin modifiers. We have formulated a stochastic model of a bivalent transcription factor that allows us to characterise three different qualitative behaviours, namely: bistable, high- and low-gene expression. Comparison between analytical results and experimental data determined that the so-called bistable and high-gene expression behaviours can be identified with undifferentiated and differentiated cell types, respectively. Since undifferentiated cells with an aberrant self-renewing potential might exhibit a cancer/metastasis-initiating phenotype, we analysed the efficiency of combining epigenetic drugs against the background of heterogeneity within the bistable sub-ensemble. Whereas single-targeted approaches mostly failed to circumvent the therapeutic problems represented by tumour heterogeneity, combinatorial strategies fared much better. Specifically, the more successful combinations were predicted to involve modulators of the histone H3K4 and H3K27 demethylases KDM5 and KDM6A/UTX. Those strategies involving the H3K4 and H3K27 methyltransferases MLL2 and EZH2, however, were predicted to be less effective. Our theoretical framework provides a coherent basis for the development of an in silico platform capable of identifying the epigenetic drugs combinations best-suited to therapeutically manage non-uniform responses of heterogenous cancer cell populations.
Collapse
Affiliation(s)
- Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Antoni Guillamon
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
- Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute, Salt, Girona, Spain
| |
Collapse
|
42
|
Not just a writer: PRC2 as a chromatin reader. Biochem Soc Trans 2021; 49:1159-1170. [PMID: 34060617 PMCID: PMC8286813 DOI: 10.1042/bst20200728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
PRC2 deposits the H3K27me3 repressive mark, which facilitates transcription repression of developmental genes. The decision of whether a particular gene is silenced at a given point during development is heavily dependent on the chromatin context. More than just a simple epigenetic writer, PRC2 employs several distinct chromatin reading capabilities to sense the local chromatin environment and modulate the H3K27me3 writer activity in a context-dependent manner. Here we discuss the complex interplay of PRC2 with the hallmarks of active and repressive chromatin, how it affects H3K27me3 deposition and how it guides transcriptional activity.
Collapse
|
43
|
Guo Y, Zhao S, Wang GG. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 'Readout', and Phase Separation-Based Compaction. Trends Genet 2021; 37:547-565. [PMID: 33494958 PMCID: PMC8119337 DOI: 10.1016/j.tig.2020.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
Modulation of chromatin structure and/or modification by Polycomb repressive complexes (PRCs) provides an important means to partition the genome into functionally distinct subdomains and to regulate the activity of the underlying genes. Both the enzymatic activity of PRC2 and its chromatin recruitment, spreading, and eviction are exquisitely regulated via interactions with cofactors and DNA elements (such as unmethylated CpG islands), histones, RNA (nascent mRNA and long noncoding RNA), and R-loops. PRC2-catalyzed histone H3 lysine 27 trimethylation (H3K27me3) is recognized by distinct classes of effectors such as canonical PRC1 and BAH module-containing proteins (notably BAHCC1 in human). These effectors mediate gene silencing by different mechanisms including phase separation-related chromatin compaction and histone deacetylation. We discuss recent advances in understanding the structural architecture of PRC2, the regulation of its activity and chromatin recruitment, and the molecular mechanisms underlying Polycomb-mediated gene silencing. Because PRC deregulation is intimately associated with the development of diseases, a better appreciation of Polycomb-based (epi)genomic regulation will have far-reaching implications in biology and medicine.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Mylonas C, Lee C, Auld AL, Cisse II, Boyer LA. A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nat Struct Mol Biol 2021; 28:435-442. [PMID: 33972784 DOI: 10.1038/s41594-021-00589-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
RNA polymerase II (RNAPII) pausing immediately downstream of the transcription start site is a critical rate-limiting step for the expression of most metazoan genes. During pause release, RNAPII encounters a highly conserved +1 H2A.Z nucleosome, yet how this histone variant contributes to transcription is poorly understood. Here, using an inducible protein degron system combined with genomic approaches and live cell super-resolution microscopy, we show that H2A.Z.1 modulates RNAPII dynamics across most genes in murine embryonic stem cells. Our quantitative analysis shows that H2A.Z.1 slows the rate of RNAPII pause release and consequently impacts negative elongation factor dynamics as well as nascent transcription. Consequently, H2A.Z.1 also impacts re-loading of the pre-initiation complex components TFIIB and TBP. Altogether, this work provides a critical mechanistic link between H2A.Z.1 and the proper induction of mammalian gene expression programs through the regulation of RNAPII dynamics and pause release.
Collapse
Affiliation(s)
- Constantine Mylonas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Choongman Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander L Auld
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Histone Epigenetic Signatures in Embryonic Limb Interdigital Cells Fated to Die. Cells 2021; 10:cells10040911. [PMID: 33921015 PMCID: PMC8071442 DOI: 10.3390/cells10040911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022] Open
Abstract
During limb formation in vertebrates with free digits, the interdigital mesoderm is eliminated by a massive degeneration process that involves apoptosis and cell senescence. The degradation process is preceded by intense DNA damage in zones located close to methylated DNA, accompanied by the activation of the DNA repair response. In this study, we show that trimethylated histone 3 (H3K4me3, H3K9me3, and H3K27me3) overlaps with zones positive for 5mC in the nuclei of interdigital cells. This pattern contrasts with the widespread distribution of acetylated histones (H3K9ac and H4ac) and the histone variant H3.3 throughout the nucleoplasm. Consistent with the intense labeling of acetylated histones, the histone deacetylase genes Hdac1, Hdac2, Hdac3, and Hdac8, and at a more reduced level, Hdac10, are expressed in the interdigits. Furthermore, local treatments with the histone deacetylase inhibitor trichostatin A, which promotes an open chromatin state, induces massive cell death and transcriptional changes reminiscent of, but preceding, the physiological process of interdigit remodeling. Together, these findings suggest that the epigenetic profile of the interdigital mesoderm contributes to the sensitivity to DNA damage that precedes apoptosis during tissue regression.
Collapse
|
46
|
Gong H, Yang Y, Zhang S, Li M, Zhang X. Application of Hi-C and other omics data analysis in human cancer and cell differentiation research. Comput Struct Biotechnol J 2021; 19:2070-2083. [PMID: 33995903 PMCID: PMC8086027 DOI: 10.1016/j.csbj.2021.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
With the development of 3C (chromosome conformation capture) and its derivative technology Hi-C (High-throughput chromosome conformation capture) research, the study of the spatial structure of the genomic sequence in the nucleus helps researchers understand the functions of biological processes such as gene transcription, replication, repair, and regulation. In this paper, we first introduce the research background and purpose of Hi-C data visualization analysis. After that, we discuss the Hi-C data analysis methods from genome 3D structure, A/B compartment, TADs (topologically associated domain), and loop detection. We also discuss how to apply genome visualization technologies to the identification of chromosome feature structures. We continue with a review of correlation analysis differences among multi-omics data, and how to apply Hi-C and other omics data analysis into cancer and cell differentiation research. Finally, we summarize the various problems in joint analyses based on Hi-C and other multi-omics data. We believe this review can help researchers better understand the progress and applications of 3D genome technology.
Collapse
Affiliation(s)
- Haiyan Gong
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan 528000, China
| | - Yi Yang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sichen Zhang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Minghong Li
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaotong Zhang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan 528000, China
| |
Collapse
|
47
|
Chovanec P, Collier AJ, Krueger C, Várnai C, Semprich CI, Schoenfelder S, Corcoran AE, Rugg-Gunn PJ. Widespread reorganisation of pluripotent factor binding and gene regulatory interactions between human pluripotent states. Nat Commun 2021; 12:2098. [PMID: 33828098 PMCID: PMC8026613 DOI: 10.1038/s41467-021-22201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
The transition from naive to primed pluripotency is accompanied by an extensive reorganisation of transcriptional and epigenetic programmes. However, the role of transcriptional enhancers and three-dimensional chromatin organisation in coordinating these developmental programmes remains incompletely understood. Here, we generate a high-resolution atlas of gene regulatory interactions, chromatin profiles and transcription factor occupancy in naive and primed human pluripotent stem cells, and develop a network-graph approach to examine the atlas at multiple spatial scales. We uncover highly connected promoter hubs that change substantially in interaction frequency and in transcriptional co-regulation between pluripotent states. Small hubs frequently merge to form larger networks in primed cells, often linked by newly-formed Polycomb-associated interactions. We identify widespread state-specific differences in enhancer activity and interactivity that correspond with an extensive reconfiguration of OCT4, SOX2 and NANOG binding and target gene expression. These findings provide multilayered insights into the chromatin-based gene regulatory control of human pluripotent states.
Collapse
Affiliation(s)
- Peter Chovanec
- Lymphocyte Signalling and Development Programme, Babraham Institute, Cambridge, UK
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | | | - Stefan Schoenfelder
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Anne E Corcoran
- Lymphocyte Signalling and Development Programme, Babraham Institute, Cambridge, UK
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
48
|
Terzi Cizmecioglu N, Huang J, Keskin EG, Wang X, Esen I, Chen F, Orkin SH. ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit. J Biol Chem 2021; 295:17738-17751. [PMID: 33454011 DOI: 10.1074/jbc.ra120.015534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies have focused on epigenetic factors that affect embryonic stem cells (ESC) self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been as extensively studied. Using a pooled epigenetic shRNA screen strategy, we identified chromatin-related factors critical for differentiation toward mesodermal and endodermal lineages. Here we reveal a critical role for the chromatin protein, ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in the expression of pluripotency factors and their self-renewal. However, ARID4B loss results in defects in up-regulation of the meso/endodermal gene expression program. It was previously shown that Arid4b resides in a complex with SIN3A and HDACS 1 and 2. We identified a physical and functional interaction of ARID4B with HDAC1 rather than HDAC2, suggesting functionally distinct Sin3a subcomplexes might regulate cell fate decisions Finally, we observed that ARID4B deficiency leads to increased H3K27me3 and a reduced H3K27Ac level in key developmental gene loci, whereas a subset of genomic regions gain H3K27Ac marks. Our results demonstrate that epigenetic control through ARID4B plays a key role in the execution of lineage-specific gene expression programs at pluripotency exit.
Collapse
Affiliation(s)
- Nihal Terzi Cizmecioglu
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey.
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Ezgi G Keskin
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Xiaofeng Wang
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire USA
| | - Idil Esen
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA
| | - Fei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA.
| |
Collapse
|
49
|
Wang S, Guo N, Li S, He Y, Zheng D, Li L, Wang Z. EZH2 Dynamically Associates With Non-coding RNAs in Mouse Hearts After Acute Angiotensin II Treatment. Front Cardiovasc Med 2021; 8:585691. [PMID: 33732733 PMCID: PMC7959742 DOI: 10.3389/fcvm.2021.585691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer of zeste 2 (EZH2) governs gene reprogramming during cardiac hypertrophy through epigenetic remodeling, a process regulated by numerous non-coding RNAs (ncRNAs). However, the dynamic interaction between EZH2 and ncRNAs upon hypertrophic stimulation remains elusive. Here we performed an unbiased profiling for EZH2-associated ncRNAs in mouse hearts treated with Angiotensin II (AngII) at different time points (0, 4, and 24 h). The interactions between EZH2 and long ncRNAs (lncRNAs), Chaer, Mirt1, Hotair, and H19, were validated by PCR. RIP-seq analysis identified a total of 126 ncRNAs to be significantly associated with EZH2. These ncRNAs covers all five categories including intergenic, antisense, intron-related, promoter-related and both antisense and promoter-related. According to their changing patterns after AngII treatment, these ncRNAs were clustered into four groups, constantly enhanced, transiently enhanced, constantly suppressed and transiently suppressed. Structural prediction showed that EZH2 bound to hairpin motifs in ncRNAs including snoRNAs. Interaction strength prediction and RNA pull-down assay confirmed the direct interaction between EZH2 and Snora33. Interestingly, two antisense lncRNAs of Malat1, Gm20417, and Gm37376, displayed different binding patterns from their host gene after AngII treatment, suggesting a crucial role of this genomic locus in modulating EZH2 behavior. Our findings reveal the profile of EZH2-associated ncRNAs upon hypertrophic stimulation, and imply a dynamic regulation of EZH2 function in cardiac hypertrophy.
Collapse
Affiliation(s)
- Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuangling Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Chromatin Regulation in Development: Current Understanding and Approaches. Stem Cells Int 2021; 2021:8817581. [PMID: 33603792 PMCID: PMC7872760 DOI: 10.1155/2021/8817581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the networks unique to different cell fates and initiate waves of distinctive transcription events. Due to the technical challenges posed by previous methods, it was difficult to decipher the mechanism of cell fate determination at early embryogenesis through chromatin regulation. Recently, single-cell approaches have revolutionised the field of developmental biology, allowing unprecedented insights into chromatin structure and interactions in early lineage segregation events during differentiation. Here, we review the recent technological advancements and how they have furthered our understanding of chromatin regulation during early differentiation events.
Collapse
|