1
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2025; 33:447-464. [PMID: 39659016 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
2
|
Kang Z, Xu C, Lu S, Gong J, Yan R, Luo G, Wang Y, He Q, Wu Y, Yan Y, Qian B, Han S, Bu Z, Zhang J, Xia X, Chen L, Hu Z, Lin M, Sun Z, Gu Y, Ye L. NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit. Nat Commun 2025; 16:791. [PMID: 39824811 PMCID: PMC11742055 DOI: 10.1038/s41467-024-55579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes. NKAPL binds to promoter-associated nascent transcripts and co-localizes with DNA-RNA hybrid R-loop structures at GAA-rich loci to enhance R-loop formation and facilitate Pol II pause-release. NKAPL depletion prolongs Pol II pauses and stalls the SOX30/HDAC3 transcription initiation complex on the chromatin. Genetic variants in NKAPL are associated with azoospermia in humans, while mice carrying an NKAPL frameshift mutation (M349fs) show defective meiotic exit and transcriptomic changes similar to NKAPL depletion. These findings identify NKAPL as an R-loop-recognizing factor that regulates transcription elongation, which coordinates the meiotic-to-postmeiotic transcriptome switch in alliance with the SOX30/HDAC3-mediated transcription initiation.
Collapse
Affiliation(s)
- Zhenlong Kang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jie Gong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Gan Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qing He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zhiwen Bu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xian Xia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Suzhou, Jiangsu, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Wiechens E, Vigliotti F, Siniuk K, Schwarz R, Schwab K, Riege K, van Bömmel A, Görlich I, Bens M, Sahm A, Groth M, Sammons MA, Loewer A, Hoffmann S, Fischer M. Gene regulation by convergent promoters. Nat Genet 2025; 57:206-217. [PMID: 39779959 PMCID: PMC11735407 DOI: 10.1038/s41588-024-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated. Here we show that convergent transcription marks an unexpected positively co-regulated promoter constellation. By assessing transcriptional dynamic systems, we identified co-regulated constituent promoters connected through a distinct chromatin structure. Within these cis-regulatory domains, transcription factors can regulate both constituting promoters by binding to only one of them. Convergent promoters comprise about a quarter of all active transcript start sites and initiate 5'-overlapping antisense RNAs-an RNA class believed previously to be rare. Visualization of nascent RNA molecules reveals convergent cotranscription at these loci. Together, our results demonstrate that co-regulated convergent promoters substantially expand the cis-regulatory repertoire, reveal limitations of the transcription interference model and call for adjusting the promoter concept.
Collapse
Affiliation(s)
- Elina Wiechens
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Flavia Vigliotti
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Kanstantsin Siniuk
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Robert Schwarz
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katjana Schwab
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ivonne Görlich
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Arne Sahm
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- Computational Phenomics Group, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Computational Phenomics Group, Ruhr University Bochum, Bochum, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Morgan A Sammons
- Department of Biological Sciences, The RNA Institute, The State University of New York at Albany, Albany, NY, USA
| | - Alexander Loewer
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Martin Fischer
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
4
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
5
|
Su Z, Su Y, Shen X, Zhang J, Zeng T, Li J, Chen S, Shao K, Zhang S, Luo D, Hu L, Guo X, Li H. Analysis of differentially methylated sites and regions associated with intrauterine transmission of hepatitis B virus in infants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105705. [PMID: 39674522 DOI: 10.1016/j.meegid.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The goal is to identify methylation sites linked to transmission and their impact on host gene expression and HBV spread, aiming to uncover new molecular targets for preventing and treating intrauterine HBV infection. METHODS This study recruited 1205 infants born to HBsAg-positive mothers in Liuzhou City, China, between July 2023 and January 2024. Infants were followed up at 7-12 months of age and classified as HBsAg-positive (case, n = 5) or HBsAg-negative (control, n = 14) based on serological testing. Peripheral blood samples were collected for DNA extraction. DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip (850 K). Data were processed using the ChAMP package in R, including quality control, normalization, and identification of Differentially Methylated Positions (DMPs) and differentially methylated regions (DMRs). DMPs and DMRs were annotated using ANNOVAR 2018Apr16, and GO enrichment analysis was conducted using DAVID. The study was approved by the Guangxi University of Chinese Medicine Ethics Committee, and informed consent was obtained. RESULTS We identified 734,978 DMPs and 660 DMRs, with 1813 DMPs and 221 DMRs showing significant differences between groups. HBV-infected infants exhibited lower overall genomic methylation levels, with significant concentrations in gene body regions and CpG islands. GO enrichment analysis indicated that differentially methylated genes were enriched in processes related to cell adhesion and calcium ion binding. CONCLUSIONS Prenatal HBV exposure was associated with significant infant hypomethylation, particularly in regulatory regions like TSS1500, TSS200, and CpG islands, potentially impacting gene expression. Enrichment of immune-related pathways among differentially methylated genes suggests that HBV may alter infant immune development through epigenetic modifications.
Collapse
Affiliation(s)
- Zhengqin Su
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Yongjian Su
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, China
| | - Xiaozhen Shen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Jiawei Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Ting Zeng
- Liuzhou Maternal and Child Health Care Hospital, Guangxi, China
| | - Jialing Li
- Zhongshan Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Shiyi Chen
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Kai Shao
- School of Public Health and Management, Guangxi University of Chinese Medicine, China
| | - Shiyue Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Dan Luo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China
| | - Liping Hu
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, China; Key Laboratory for Prevention and Treatment of Viral Hepatitis, Guangxi, China.
| | - Xiaojing Guo
- School of Public Health and Management, Guangxi University of Chinese Medicine, China.
| | - Hai Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for High-incidence Infectious Diseases, Guangxi, China.
| |
Collapse
|
6
|
Akiki RM, Cornbrooks RG, Magami K, Greige A, Snyder KK, Wood DJ, Herrington MC, Mace P, Blidy K, Koike N, Berto S, Cowan CW, Taniguchi M. A long noncoding eRNA forms R-loops to shape emotional experience-induced behavioral adaptation. Science 2024; 386:1282-1289. [PMID: 39666799 DOI: 10.1126/science.adp1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/09/2024] [Indexed: 12/14/2024]
Abstract
Emotional experiences often evoke neural plasticity that supports adaptive changes in behavior, including maladaptive plasticity associated with mood and substance use disorders. These adaptations are supported in part by experience-dependent activation of immediate-early response genes, such as Npas4 (neuronal PAS domain protein 4). Here we show that a conserved long noncoding enhancer RNA (lnc-eRNA), transcribed from an activity-sensitive enhancer, produces DNA:RNA hybrid R-loop structures that support three-dimensional chromatin looping between enhancer and proximal promoter and rapid Npas4 gene induction. Furthermore, in mouse models, Npas4 lnc-eRNA and its R-loop are required for the development of behavioral adaptations produced by chronic psychosocial stress or cocaine exposure, revealing a potential role for this regulatory mechanism in the transmission of emotional experiences.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adaptation, Psychological/drug effects
- Adaptation, Psychological/physiology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Behavior, Animal
- Chromatin/metabolism
- Cocaine/pharmacology
- Emotions/drug effects
- Emotions/physiology
- Enhancer Elements, Genetic
- Mice, Inbred C57BL
- Neuronal Plasticity
- Promoter Regions, Genetic
- R-Loop Structures
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Rose Marie Akiki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca G Cornbrooks
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kosuke Magami
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Alain Greige
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | | | - Philip Mace
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kyle Blidy
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Kono T, Ozawa H, Laimins L. The roles of DNA damage repair and innate immune surveillance pathways in HPV pathogenesis. Virology 2024; 600:110266. [PMID: 39433009 DOI: 10.1016/j.virol.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Human papillomaviruses (HPV) infect epithelial tissues and induce a variety of proliferative lesions. A subset of HPV types are also the causative agents of many anogenital as well as oropharyngeal cancers. Following infection of basal epithelial cells, HPVs establish their genomes as episomes in undifferentiated cells and require differentiation for their productive life cycles. During HPV infections, viral oncoproteins alter cellular pathways such as those for DNA damage repair and innate immune surveillances to regulate their productive life cycles. These pathways provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Takeyuki Kono
- Dept of Otolaryngology-Head Neck Surgery, Keio University, School of Medicine, Tokyo, Japan; Dept of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
| | - Hiroyuki Ozawa
- Dept of Otolaryngology-Head Neck Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Laimonis Laimins
- Dept of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Zhang X, Liang SB, Yi Z, Qiao Z, Xu B, Geng H, Wang H, Yin X, Tang M, Ge W, Xu YZ, Liang K, Fan YJ, Chen L. Global coupling of R-loop dynamics with RNA polymerase II modulates gene expression and early development of Drosophila. Nucleic Acids Res 2024; 52:13110-13127. [PMID: 39470713 PMCID: PMC11602159 DOI: 10.1093/nar/gkae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
R-loops are involved in many biological processes in cells, yet the regulatory principles for R-loops in vivo and their impact on development remain to be explored. Here, we modified the CUT&Tag strategy to profile R-loops in Drosophila at multiple developmental stages. While high GC content promotes R-loop formation in mammalian cells, it is not required in Drosophila. In contrast, RNAPII abundance appears to be a universal inducing factor for R-loop formation, including active promoters and enhancers, and H3K27me3 decorated repressive regions and intergenic repeat sequences. Importantly, such a regulatory relationship is dynamically maintained throughout development, and development-related transcription factors may regulate RNAPII activation and R-loop dynamics. By ablating Spt6, we further showed the global R-loop induction coupled with RNAPII pausing. Importantly, depending on the gene length, genes underwent up- or down-regulation, both of which were largely reversed by rnh1 overexpression, suggesting that R-loops play a significant role in the divergent regulation of transcription by Spt6 ablation. DNA damage, defects in survival, and cuticle development were similarly alleviated by rnh1 overexpression. Altogether, our findings indicate that dynamic R-loop regulation is dictated by RNAPII pausing and transcription activity, and plays a feedback role in gene regulation, genome stability maintenance, and Drosophila development.
Collapse
Affiliation(s)
- Xianhong Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shao-Bo Liang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhuoyun Yi
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaohui Qiao
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Honghong Wang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinhua Yin
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingliang Tang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yong-Zhen Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kaiwei Liang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Jie Fan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Hujoel MLA, Handsaker RE, Kamitaki N, Mukamel RE, Rubinacci S, Palamara PF, McCarroll SA, Loh PR. Insights into the causes and consequences of DNA repeat expansions from 700,000 biobank participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625248. [PMID: 39651202 PMCID: PMC11623664 DOI: 10.1101/2024.11.25.625248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Expansions and contractions of tandem DNA repeats are a source of genetic variation in human populations and in human tissues: some expanded repeats cause inherited disorders, and some are also somatically unstable. We analyzed DNA sequence data, derived from the blood cells of >700,000 participants in UK Biobank and the All of Us Research Program, and developed new computational approaches to recognize, measure and learn from DNA-repeat instability at 15 highly polymorphic CAG-repeat loci. We found that expansion and contraction rates varied widely across these 15 loci, even for alleles of the same length; repeats at different loci also exhibited widely variable relative propensities to mutate in the germline versus the blood. The high somatic instability of TCF4 repeats enabled a genome-wide association analysis that identified seven loci at which inherited variants modulate TCF4 repeat instability in blood cells. Three of the implicated loci contained genes ( MSH3 , FAN1 , and PMS2 ) that also modulate Huntington's disease age-at-onset as well as somatic instability of the HTT repeat in blood; however, the specific genetic variants and their effects (instability-increasing or-decreasing) appeared to be tissue-specific and repeat-specific, suggesting that somatic mutation in different tissues-or of different repeats in the same tissue-proceeds independently and under the control of substantially different genetic variation. Additional modifier loci included DNA damage response genes ATAD5 and GADD45A . Analyzing DNA repeat expansions together with clinical data showed that inherited repeats in the 5' UTR of the glutaminase ( GLS) gene are associated with stage 5 chronic kidney disease (OR=14.0 [5.7-34.3]) and liver diseases (OR=3.0 [1.5-5.9]). These and other results point to the dynamics of DNA repeats in human populations and across the human lifespan.
Collapse
|
10
|
Zhou G, Nan N, Li N, Li M, Ma A, Ye Q, Wang J, Xu ZY. Active DNA Demethylation Mediated by OsGADD45a2 Regulates Growth, Development, and Blast ( Magnaporthe oryzea) Resistance in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24300-24310. [PMID: 39465494 DOI: 10.1021/acs.jafc.4c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OsGADD45a1, a member of the growth arrest and DNA damage-inducible 45 (GADD45) family in rice, has a newly identified homologue, OsGADD45a2, which differs from OsGADD45a1 in only three amino acids. The role and function of the OsGADD45a2 in DNA demethylation are not well-understood and were investigated in this study. Osgadd45a2 mutants exhibited reduced height, shorter panicle length, fewer grains per panicle, and a lower seed setting rate compared with wild-type plants. Moreover, the results showed that OsGADD45a2 negatively regulates rice blast fungus resistance and exhibited high expression in various tissues. Using the 3000 Rice Genomes Project database, we identified four major haplotypes (each with over 100 cultivars) based on single-nucleotide polymorphisms in the coding sequence of OsGADD45a2. Among these, Hap4 was associated with a significantly greater plant height than Hap1-3, possibly due to a functional alteration of OsGADD45a2 linked to the SNP at position 2614993. In OsGADD45a2 overexpression lines, significant decreases in CG and CHG methylation levels were observed in protein-coding genes, leading to their upregulation. Overall, our findings indicate that OsGADD45a2 acts as a methylation regulator, mediating the expression of genes essential for plant growth and development and blast resistance.
Collapse
Affiliation(s)
- Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Qixin Ye
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Bellver-Sanchis A, Ávila-López PA, Tic I, Valle-García D, Ribalta-Vilella M, Labrador L, Banerjee DR, Guerrero A, Casadesus G, Poulard C, Pallàs M, Griñán-Ferré C. Neuroprotective effects of G9a inhibition through modulation of peroxisome-proliferator activator receptor gamma-dependent pathways by miR-128. Neural Regen Res 2024; 19:2532-2542. [PMID: 38526289 PMCID: PMC11090428 DOI: 10.4103/1673-5374.393102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00033/figure1/v/2024-03-08T184507Z/r/image-tiff Dysregulation of G9a, a histone-lysine N-methyltransferase, has been observed in Alzheimer's disease and has been correlated with increased levels of chronic inflammation and oxidative stress. Likewise, microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis, especially in multifactorial diseases such as Alzheimer's disease. Therefore, our aim has been to provide partial insights into the interconnection between G9a, microRNAs, oxidative stress, and neuroinflammation. To better understand the biology of G9a, we compared the global microRNA expression between senescence-accelerated mouse-prone 8 (SAMP8) control mice and SAMP8 treated with G9a inhibitor UNC0642. We found a downregulation of miR-128 after a G9a inhibition treatment, which interestingly binds to the 3' untranslated region (3'-UTR) of peroxisome-proliferator activator receptor γ (PPARG) mRNA. Accordingly, Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group. We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor. To confirm these antioxidant effects, we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult. In this setting, treatment with G9a inhibitor increases both cell survival and antioxidant enzymes. Moreover, up-regulation of PPARγ by G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis. In addition, we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression. Finally, PPARγ/GADD45α potentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition. Altogether, we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due, at least in part, by the modulation of PPARγ-dependent pathways by miR-128.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Iva Tic
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - David Valle-García
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Marta Ribalta-Vilella
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal, India
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, Lyon, France
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P. The hidden architects of the genome: a comprehensive review of R-loops. Mol Biol Rep 2024; 51:1095. [PMID: 39460836 DOI: 10.1007/s11033-024-10025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Three-stranded DNA: RNA hybrids known as R-loops form when the non-template DNA strand is displaced and the mRNA transcript anneals to its template strand. Although R-loop formation controls DNA damage response, mitochondrial and genomic transcription, and physiological R-loop formation, imbalanced formation of R-loop can jeopardize a cell's genomic integrity. Transcription regulation and immunoglobulin class switch recombination are two further specialized functions of genomic R-loops. R-loop formation has a dual role in the development of cancer and disturbed R-loop homeostasis as observed in several malignancies. R-loops transcribe at the telomeric and pericentromeric regions, develop in the space between long non-coding RNAs and telomeric repeats, and shield telomeres. In bacteria and archaea, R-loop development is a natural defence mechanism against viruses which also causes DNA degradation. Their emergence in the mammalian genome is controlled, suggesting that they were formed as an inevitable byproduct of RNA transcription but also co-opted for regulatory functions. R-loops may be engaged in cell physiology by regulating gene expression. R-loop biology is probably going to remain a fascinating field of study for a very long time as it offers many avenues for R-loop research.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Smiti Nanda
- Department of Gynaecology and Obstetrics, Pt. B.D. Sharma, University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
13
|
Peng Y, Zhao P, Li Z, Mu N, Tao S, Feng Y, Cheng X, Zhang W. Genome-wide characterization of single-stranded DNA in rice. PLANT PHYSIOLOGY 2024; 196:1268-1283. [PMID: 38917225 DOI: 10.1093/plphys/kiae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to nonplant systems. Here, we conducted in situ S1-sequencing, with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.). We found that ssDNA loci were substantially associated with a subset of non-B DNA structures and functional genomic loci. Subtypes of ssDNA loci had distinct epigenetic features. Importantly, ssDNA may act alone or partly coordinate with non-B DNA structures, functional genomic loci, or epigenetic marks to actively or repressively modulate gene transcription, which is genomic region dependent and associated with the distinct accumulation of RNA Pol II. Moreover, distinct types of ssDNA had differential impacts on the activities and evolution of transposable elements (TEs) (especially common or conserved TEs) in the rice genome. Our study showcases an antibody-independent technique for characterizing non-B DNA structures or functional genomic loci in plants. It lays the groundwork and fills a crucial gap for further exploration of ssDNA, non-B DNA structures, or functional genomic loci, thereby advancing our understanding of their biology in plants.
Collapse
Affiliation(s)
- Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Pengtao Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Zhaoguo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ning Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
14
|
Sun Q, Yang Z, Qiu M, Wang S, Zhao X, Pang W, Liu R, Wang Y, Wang H, Hao J, Gao M. Inflammatory factor TNFα-induced circDMD mediates R-loop formation to promote tumorigenesis. Int J Biol Macromol 2024; 280:135689. [PMID: 39288863 DOI: 10.1016/j.ijbiomac.2024.135689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Chronic inflammation has been associated with the development of cancer in various anatomical sites. However, the crosstalk between inflammatory factors and circular RNAs (circRNAs) in tumorigenesis is unclear. Here, we revealed that circDMD was upregulated in Tumor necrosis factor alpha-like (TNFα)-induced HeLa cells. circDMD promoted the expression and nuclear translocation of Nuclear factor kappa B subunit (NF-κB) to activate downstream factors. circDMD absorbed miR-4711-5p to increase Lysine demethylase 5 A (KDM5A) expression, which reduced Suppressor of cytokine signaling 1 (SOCS1) to decrease the ubiquitination of Rela proto-oncogene (P65). In addition, circDMD promoted Fms related receptor tyrosine kinase 4 (VEGFR3) expression through the formation of an R-loop in its promoter. circDMD promoted tumor proliferation, metastasis and autophagy by activating the NF-κB pathways in vitro and in tumors derived from HeLa cells in vivo. Taken together, our results indicated that the expression of circDMD is induced by TNFα and contributes to tumorigenesis in cervical cancer (CC), which might help elucidate the regulatory effects of circRNAs on tumorigenesis.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Zhen Yang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China.
| | - Minghan Qiu
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Shoujun Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Xingli Zhao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Hematology, Oncology Center, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Wenwen Pang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ruxue Liu
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Yayun Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Huaqing Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Jie Hao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China.
| | - Ming Gao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China.
| |
Collapse
|
15
|
Current JZ, Chaney HL, Zhang M, Dugan EM, Chimino GL, Yao J. Characterization of bovine long non-coding RNAs, OOSNCR1, OOSNCR2 and OOSNCR3, and their roles in oocyte maturation and early embryonic development. Reprod Biol 2024; 24:100915. [PMID: 38936296 DOI: 10.1016/j.repbio.2024.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In mammals, early embryogenesis relies heavily on the regulation of maternal transcripts including protein-coding and non-coding RNAs stored in oocytes. In this study, the expression of three bovine oocyte expressed long non-coding RNAs (lncRNAs), OOSNCR1, OOSNCR2, and OOSNCR3, was characterized in somatic tissues, the ovarian follicle, and throughout early embryonic development. Moreover, the functional requirement of each transcript during oocyte maturation and early embryonic development was investigated using a siRNA-mediated knockdown approach. Tissue distribution analysis revealed that OOSNCR1, OOSNCR2 and OOSNCR3 are predominantly expressed in fetal ovaries. Follicular cell expression analysis revealed that these lncRNAs are highly expressed in the oocytes, with minor expression detected in the cumulus cells (CCs) and mural granulosa cells (mGCs). The expression for all three genes was highest during oocyte maturation, decreased at fertilization, and ceased altogether by the 16-cell stage. Knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 in immature oocytes was achieved by microinjection of the cumulus-enclosed germinal vesicle (GV) oocytes with siRNAs targeting these lncRNAs. Knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 did not affect cumulus expansion, but oocyte survival at 12 h post-insemination was significantly reduced. In addition, knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 in immature oocytes resulted in a decreased rate of blastocyst development, and reduced expression of genes associated with oocyte competency such as nucleoplasmin 2 (NPM2), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and JY-1 in MII oocytes. The data herein suggest a functional requirement of OOSNCR1, OOSNCR2, and OOSNCR3 during bovine oocyte maturation and early embryogenesis.
Collapse
Affiliation(s)
- Jaelyn Z Current
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Heather L Chaney
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Mingxiang Zhang
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Emily M Dugan
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Gianna L Chimino
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
16
|
Chiang HC, Qi L, Mitra P, Huang Y, Hu Y, Li R. R-loop functions in Brca1-associated mammary tumorigenesis. Proc Natl Acad Sci U S A 2024; 121:e2403600121. [PMID: 39116124 PMCID: PMC11331088 DOI: 10.1073/pnas.2403600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Deleterious accumulation of R-loops, a DNA-RNA hybrid structure, contributes to genome instability. They are associated with BRCA1 mutation-related breast cancer, an estrogen receptor α negative (ERα-) tumor type originating from luminal progenitor cells. However, a presumed causality of R-loops in tumorigenesis has not been established in vivo. Here, we overexpress mouse Rnaseh1 (Rh1-OE) in vivo to remove accumulated R-loops in Brca1-deficient mouse mammary epithelium (BKO). R-loop removal exacerbates DNA replication stress in proliferating BKO mammary epithelial cells, with little effect on homology-directed repair of double-strand breaks following ionizing radiation. Compared to their BKO counterparts, BKO-Rh1-OE mammary glands contain fewer luminal progenitor cells but more mature luminal cells. Despite a similar incidence of spontaneous mammary tumors in BKO and BKO-Rh1-OE mice, a significant percentage of BKO-Rh1-OE tumors express ERα and progesterone receptor. Our results suggest that rather than directly elevating the overall tumor incidence, R-loops influence the mammary tumor subtype by shaping the cell of origin for Brca1 tumors.
Collapse
Affiliation(s)
- Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Leilei Qi
- Department of Anatomy and Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Payal Mitra
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Yimeng Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Yanfen Hu
- Department of Anatomy and Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| |
Collapse
|
17
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
18
|
Mamontova V, Trifault B, Burger K. Nono induces Gadd45b to mediate DNA repair. Life Sci Alliance 2024; 7:e202302555. [PMID: 38843934 PMCID: PMC11157152 DOI: 10.26508/lsa.202302555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
RNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54nrb is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of Nono deletion in the murine KP (KRas G12D , Trp53 -/- ) cell-based lung cancer model. We show that the deletion of Nono impairs the response to DNA damage induced by the topoisomerase II inhibitor etoposide or the radiomimetic drug bleomycin. Nono-deficient KP (KPN) cells display hyperactivation of DSB signalling and high levels of DSBs. The defects in the DDR are accompanied by reduced RNA polymerase II promoter occupancy, impaired nascent RNA synthesis, and attenuated induction of the DDR factor growth arrest and DNA damage-inducible beta (Gadd45b). Our data characterise Gadd45b as a putative Nono-dependent effector of the DDR and suggest that Nono mediates a genome-protective crosstalk of the DDR with the RNA metabolism via induction of Gadd45b.
Collapse
Affiliation(s)
- Victoria Mamontova
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Würzburg, Germany
| | - Barbara Trifault
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Würzburg, Germany
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Tang H, Gupta A, Morrisroe SA, Bao C, Schwantes-An TH, Gupta G, Liang S, Sun Y, Chu A, Luo A, Elangovan VR, Sangam S, Shi Y, Naidu SR, Jheng JR, Ciftci-Yilmaz S, Warfel NA, Hecker L, Mitra S, Coleman AW, Lutz KA, Pauciulo MW, Lai YC, Javaheri A, Dharmakumar R, Wu WH, Flaherty DP, Karnes JH, Breuils-Bonnet S, Boucherat O, Bonnet S, Yuan JXJ, Jacobson JR, Duarte JD, Nichols WC, Garcia JGN, Desai AA. Deficiency of the Deubiquitinase UCHL1 Attenuates Pulmonary Arterial Hypertension. Circulation 2024; 150:302-316. [PMID: 38695173 PMCID: PMC11262989 DOI: 10.1161/circulationaha.123.065304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.
Collapse
Affiliation(s)
- Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Akash Gupta
- Department of Medicine and Arizona Health Sciences Center, Department of Cellular and Molecular Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Seth A. Morrisroe
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Tae-Hwi Schwantes-An
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN
| | - Geetanjali Gupta
- Department of Medicine and Arizona Health Sciences Center, Department of Cellular and Molecular Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanan Sun
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Aiai Chu
- Department of Echocardiography, Gansu Provincial Hospital, Lanzhou, China
| | - Ang Luo
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Shreya Sangam
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Yinan Shi
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Samisubbu R. Naidu
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Sultan Ciftci-Yilmaz
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Noel A. Warfel
- Department of Medicine and Arizona Health Sciences Center, Department of Cellular and Molecular Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Louise Hecker
- Department of Medicine, Emory University, and Atlanta VA Healthcare System, Atlanta, GA
| | - Sumegha Mitra
- Department of Obstetrics & Gynecology, Indiana University, Indianapolis, IN
| | - Anna W. Coleman
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Katie A. Lutz
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Ali Javaheri
- Department of Medicine, Washington University and John Cochran VA Hospital, St. Louis, MO
| | - Rohan Dharmakumar
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Wen-Hui Wu
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmcacology, Purdue University, Lafayette, IN
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, R Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ
| | - Sandra Breuils-Bonnet
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Olivier Boucherat
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Sebastien Bonnet
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joe GN Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL
| | - Ankit A. Desai
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
20
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
21
|
Impey S, Raber J. Irradiation and Alterations in Hippocampal DNA Methylation. EPIGENOMES 2024; 8:27. [PMID: 39051185 PMCID: PMC11270359 DOI: 10.3390/epigenomes8030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The response of the brain to radiation is important for cancer patients receiving whole or partial brain irradiation or total body irradiation, those exposed to irradiation as part of a nuclear accident or a nuclear war or terrorism event, and for astronauts during and following space missions. The mechanisms mediating the effects of irradiation on the hippocampus might be associated with alterations in hippocampal DNA methylation. Changes in cytosine methylation involving the addition of a methyl group to cytosine (5 mC) and especially those involving the addition of a hydroxy group to 5 mC (hydroxymethylcytosine or 5 hmC) play a key role in regulating the expression of genes required for hippocampal function. In this review article, we will discuss the effects of radiation on hippocampal DNA methylation and whether these effects are associated with hippocampus-dependent cognitive measures and molecular measures in the hippocampus involved in cognitive measures. We will also discuss whether the radiation-induced changes in hippocampal DNA methylation show an overlap across different doses of heavy ion irradiation and across irradiation with different ions. We will also discuss whether the DNA methylation changes show a tissue-dependent response.
Collapse
Affiliation(s)
- Soren Impey
- Dow Neurobiology Laboratories, Legacy Research Institute Legacy Health Systems, 1225 NE 2nd Ave, Portland, OR 97232, USA
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
22
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Wulfridge P, Sarma K. Intertwining roles of R-loops and G-quadruplexes in DNA repair, transcription and genome organization. Nat Cell Biol 2024; 26:1025-1036. [PMID: 38914786 DOI: 10.1038/s41556-024-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024]
Abstract
R-loops are three-stranded nucleic acid structures that are abundant and widespread across the genome and that have important physiological roles in many nuclear processes. Their accumulation is observed in cancers and neurodegenerative disorders. Recent studies have implicated a function for R-loops and G-quadruplex (G4) structures, which can form on the displaced single strand of R-loops, in three-dimensional genome organization in both physiological and pathological contexts. Here we discuss the interconnected functions of DNA:RNA hybrids and G4s within R-loops, their impact on DNA repair and gene regulatory networks, and their emerging roles in genome organization during development and disease.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavitha Sarma
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
25
|
Székvölgyi L. Chromosomal R-loops: who R they? Biol Futur 2024; 75:177-182. [PMID: 38457033 DOI: 10.1007/s42977-024-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
R-loops, composed of DNA-RNA hybrids and displaced single-stranded DNA, are known to pose a severe threat to genome integrity. Therefore, extensive research has focused on identifying regulatory proteins involved in controlling R-loop levels. These proteins play critical roles in preventing R-loop accumulation and associated genome instability. Herein I summarize recent knowledge on R-loop regulators affecting R-loop homeostasis, involving a wide array of R-loop screening methods that have enabled their characterization, from forward genetic and siRNA-based screens to proximity labeling and machine learning. These approaches not only deepen our understanding on R-loop formation processes, but also hold promise to find new targets in R-loop dysregulation associated with human pathologies.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
26
|
Gilbert G, Renaud Y, Teste C, Anglaret N, Bertrand R, Hoehn S, Jurkowski TP, Schuettengruber B, Cavalli G, Waltzer L, Vandel L. Drosophila TET acts with PRC1 to activate gene expression independently of its catalytic activity. SCIENCE ADVANCES 2024; 10:eadn5861. [PMID: 38701218 PMCID: PMC11068012 DOI: 10.1126/sciadv.adn5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.
Collapse
Affiliation(s)
- Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Camille Teste
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Nadège Anglaret
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Romane Bertrand
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Sven Hoehn
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | - Tomasz P. Jurkowski
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | - Bernd Schuettengruber
- Institute of Human Genetics, UMR9002, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002, CNRS and University of Montpellier, Montpellier, France
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Laurence Vandel
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Liu H, Jiang Y, Shi R, Hao Y, Li M, Bai J, Wang H, Guan X, Song X, Ma C, Zhang L, Zhao X, Zheng X, Zhu D. Super enhancer-associated circRNA-circLrch3 regulates hypoxia-induced pulmonary arterial smooth muscle cells pyroptosis by formation of R-loop with host gene. Int J Biol Macromol 2024; 268:130853. [PMID: 38570000 DOI: 10.1016/j.ijbiomac.2024.130853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a complex vascular disorder, characterized by pulmonary vessel remodeling and perivascular inflammation. Pulmonary arterial smooth muscle cells (PASMCs) pyroptosis is a novel pathological mechanism implicated of pulmonary vessel remodeling. However, the involvement of circRNAs in the process of pyroptosis and the underlying regulatory mechanisms remain inadequately understood. METHODS Western blotting, PI staining and LDH release were used to explore the role of circLrch3 in PASMCs pyroptosis. Moreover, S9.6 dot blot and DRIP-PCR were used to assess the formation of R-loop between circLrch3 and its host gene Lrch3. Chip-qPCR were used to evaluate the mechanism of super enhancer-associated circLrh3, which is transcriptionally activated by the transcription factor Tbx2. RESULTS CircLrch3 was markedly upregulated in hypoxic PASMCs. CircLrch3 knockdown inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circLrch3 can form R-loop with host gene to upregulate the protein and mRNA expression of Lrch3. Furthermore, super enhancer interacted with the Tbx2 at the Lrch3 promoter locus, mediating the augmented transcription of circLrch3. CONCLUSION Our findings clarify the role of a super enhancer-associated circLrch3 in the formation of R-loop with the host gene Lrch3 to modulate pyroptosis in PASMCs, ultimately promoting the development of PH.
Collapse
Affiliation(s)
- Huiyu Liu
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Yuan Jiang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Ruimin Shi
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Yingying Hao
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Mengnan Li
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Hongdan Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiaoyu Guan
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xinyue Song
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, PR China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, PR China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, PR China
| | - Xiaodong Zheng
- Department of Genetic And Cell Biology, Harbin Medical University (Daqing), Daqing 163319, PR China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
28
|
Ying Y, Wu Y, Zhang F, Tang Y, Yi J, Ma X, Li J, Chen D, Wang X, Liu X, Liu B, Luo J, Zheng X, Xie L. Co-transcriptional R-loops-mediated epigenetic regulation drives growth retardation and docetaxel chemosensitivity enhancement in advanced prostate cancer. Mol Cancer 2024; 23:79. [PMID: 38658974 PMCID: PMC11041046 DOI: 10.1186/s12943-024-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
R-loops are prevalent three-stranded nucleic acid structures, comprising a DNA-RNA hybrid and a displaced single-stranded DNA, that frequently form during transcription and may be attributed to genomic stability and gene expression regulation. It was recently discovered that RNA modification contributes to maintain the stability of R-loops such as N6-methyladenosine (m6A). Yet, m6A-modified R-loops in regulating gene transcription remains poorly understood. Here, we demonstrated that insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) recognize R-loops in an m6A-dependent way. Consequently, IGF2BPs overexpression leads to increased overall R-loop levels, cell migration inhibition, and cell growth retardation in prostate cancer (PCa) via precluding the binding of DNA methyltransferase 1(DNMT1) to semaphorin 3 F (SEMA3F) promoters. Moreover, the K homology (KH) domains of IGF2BPs are required for their recognition of m6A-containing R-loops and are required for tumor suppressor functions. Overexpression of SEMA3F markedly enhanced docetaxel chemosensitivity in prostate cancer via regulating Hippo pathway. Our findings point to a distinct R-loop resolution pathway mediated by IGF2BPs, emphasizing the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology.The manuscript summarizes the new role of N6-methyladenosine in epigenetic regulation, we introduce the distinct R-loop resolution mediated by IGF2BP proteins in an m6A-dependent way, which probably lead to the growth retardation and docetaxel chemotherapy resistance in prostate cancer. Moreover, our findings first emphasized the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology. In addition, our research provides a novel RBM15/IGF2BPs/DNMT1 trans-omics regulation m6A axis, indicating the new crosstalk between RNA m6A methylation and DNA methylation in prostate cancer.
Collapse
Affiliation(s)
- Yufan Ying
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Yuqing Wu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Fenghao Zhang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Yijie Tang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Jiahe Yi
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Xueyou Ma
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Jiangfeng Li
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Danni Chen
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| | - Xiaoyan Liu
- Department of Pathology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ben Liu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China.
- Cancer Center, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China.
| | - Jindan Luo
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China.
- Cancer Center, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China.
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China.
- Cancer Center, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China.
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
- Cancer Center, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, Zhejiang, China
| |
Collapse
|
29
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Wang J, Li M, Nan N, Ma A, Ao M, Yu J, Wang X, Han K, Yun DJ, Liu B, Li N, Xu ZY. OsGADD45a1: a multifaceted regulator of rice architecture, grain yield, and blast resistance. PLANT CELL REPORTS 2024; 43:88. [PMID: 38461436 DOI: 10.1007/s00299-024-03191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
KEY MESSAGE The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaohang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Kangshun Han
- Rice Institute, Tonghua Academy of Agricultural Science, Tonghua, 135007, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
31
|
Chai X, Wang X, Rong L, Luo M, Yuan L, Li Q, He B, Jiang J, Ji D, Ouyang M, Lu Q, Zhang L, Rochaix JD, Chi W. The translocon protein FtsHi1 is an ATP-dependent DNA/RNA helicase that prevents R-loop accumulation in chloroplasts. THE NEW PHYTOLOGIST 2024; 241:2209-2226. [PMID: 38084045 DOI: 10.1111/nph.19470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.
Collapse
Affiliation(s)
- Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiushun Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yuan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun St., Kaifeng, 475001, China
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
32
|
Huang X, Balmer S, Lyu C, Xiang Y, Malik V, Wang H, Zhang Y, Cai B, Xie W, Hadjantonakis AK, Zhou H, Wang J. ZFP281 controls transcriptional and epigenetic changes promoting mouse pluripotent state transitions via DNMT3 and TET1. Dev Cell 2024; 59:465-481.e6. [PMID: 38237590 PMCID: PMC10923053 DOI: 10.1016/j.devcel.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/04/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunlong Xiang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200082, China
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Xie
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
33
|
Pandey A, Hoover M, Singla M, Bedi Y, Storaci H, Goodman SB, Chan C, Bhutani N. TET1 Regulates Skeletal Stem-Cell Mediated Cartilage Regeneration. Arthritis Rheumatol 2024; 76:216-230. [PMID: 37610277 DOI: 10.1002/art.42678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Adult skeletal stem cells (SSCs) that give rise to chondrocytes, osteocytes, and stromal cells as progeny have been shown to contribute to cartilage regeneration in osteoarthritis (OA). Understanding extrinsic and intrinsic regulators of SSC fate and function can therefore identify putative candidate factors to enhance cartilage regeneration. This study explores how the DNA hydroxymethylase Tet1 regulates SSC function in OA. METHODS We investigated the differences in the SSC lineage tree and differentiation potential in neonatal and adult Tet1+/+ and Tet1-/- mice with and without injury and upon OA induction and progression. Using RNA sequencing, the transcriptomic differences between SSCs and bone cartilage stroma progenitor cells (BCSPs) were identified in Tet1+/+ mice and Tet1-/- mice. RESULTS Loss of Tet1 skewed the SSC lineage tree by expanding the SSC pool and enhanced the chondrogenic potential of SSCs and BCSPs. Tet1 inhibition led to enhanced chondrogenesis in human SSCs and chondroprogenitors isolated from human cartilage. Importantly, TET1 inhibition in vivo in late stages of a mouse model of OA led to increased cartilage regeneration. Transcriptomic analyses of SSCs and BCSPs lacking Tet1 revealed pathway alterations in transforming growth factor β signaling, melatonin degradation, and cartilage development-associated genes. Lastly, we report that use of the hormone melatonin can dampen inflammation and improve cartilage health. CONCLUSION Although Tet1 is a broad epigenetic regulator, melatonin can mimic the inhibition ability of TET1 to enhance the chondrogenic ability of SSCs. Melatonin administration has the potential to be an attractive stem cell-based therapy for cartilage regeneration.
Collapse
|
34
|
Hou Y, Li Y, Xiang JF, Tilahun K, Jiang J, Corces VG, Yao B. TDP-43 chronic deficiency leads to dysregulation of transposable elements and gene expression by affecting R-loop and 5hmC crosstalk. Cell Rep 2024; 43:113662. [PMID: 38184854 PMCID: PMC10857847 DOI: 10.1016/j.celrep.2023.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
TDP-43 is an RNA/DNA-binding protein that forms aggregates in various brain disorders. TDP-43 engages in many aspects of RNA metabolism, but its molecular roles in regulating genes and transposable elements (TEs) have not been extensively explored. Chronic TDP-43 knockdown impairs cell proliferation and cellular responses to DNA damage. At the molecular level, TDP-43 chronic deficiency affects gene expression either locally or distally by concomitantly altering the crosstalk between R-loops and 5-hydroxymethylcytosine (5hmC) in gene bodies and long-range enhancer/promoter interactions. Furthermore, TDP-43 knockdown induces substantial disease-relevant TE activation by influencing their R-loop and 5hmC homeostasis in a locus-specific manner. Together, our findings highlight the genomic roles of TDP-43 in modulating R-loop-5hmC coordination in coding genes, distal regulatory elements, and TEs, presenting a general and broad molecular mechanism underlying the contributions of proteinopathies to the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kedamawit Tilahun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
36
|
He Z, Li M, Pan X, Peng Y, Shi Y, Han Q, Shi M, She L, Borovskii G, Chen X, Gu X, Cheng X, Zhang W. R-loops act as regulatory switches modulating transcription of COLD-responsive genes in rice. THE NEW PHYTOLOGIST 2024; 241:267-282. [PMID: 37849024 DOI: 10.1111/nph.19315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
COLD is a major naturally occurring stress that usually causes complex symptoms and severe yield loss in crops. R-loops function in various cellular processes, including development and stress responses, in plants. However, how R-loops function in COLD responses is largely unknown in COLD susceptible crops like rice (Oryza sativa L.). We conducted DRIP-Seq along with other omics data (RNA-Seq, DNase-Seq and ChIP-Seq) in rice with or without COLD treatment. COLD treatment caused R-loop reprogramming across the genome. COLD-biased R-loops had higher GC content and novel motifs for the binding of distinct transcription factors (TFs). Moreover, R-loops can directly/indirectly modulate the transcription of a subset of COLD-responsive genes, which can be mediated by R-loop overlapping TF-centered or cis-regulatory element-related regulatory networks and lncRNAs, accounting for c. 60% of COLD-induced expression of differential genes in rice, which is different from the findings in Arabidopsis. We validated two R-loop loci with contrasting (negative/positive) roles in the regulation of two individual COLD-responsive gene expression, as potential targets for enhanced COLD resistance. Our study provides detailed evidence showing functions of R-loop reprogramming during COLD responses and provides some potential R-loop loci for genetic and epigenetic manipulation toward breeding of rice varieties with enhanced COLD tolerance.
Collapse
Affiliation(s)
- Zexue He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiucai Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, China
| | - Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yining Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Qi Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Manli Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Linwei She
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences (SB RAS) Irkutsk, Lermontova, 664033, Russia
| | - Xiaojun Chen
- Key Lab of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry Sciences, YinChuan, 750002, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
37
|
Bruedigam C, Porter AH, Song A, Vroeg In de Wei G, Stoll T, Straube J, Cooper L, Cheng G, Kahl VFS, Sobinoff AP, Ling VY, Jebaraj BMC, Janardhanan Y, Haldar R, Bray LJ, Bullinger L, Heidel FH, Kennedy GA, Hill MM, Pickett HA, Abdel-Wahab O, Hartel G, Lane SW. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. NATURE CANCER 2024; 5:47-65. [PMID: 37904045 PMCID: PMC10824665 DOI: 10.1038/s43018-023-00653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/14/2023] [Indexed: 11/01/2023]
Abstract
Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.
Collapse
Affiliation(s)
- Claudia Bruedigam
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Amy H Porter
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Axia Song
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Thomas Stoll
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jasmin Straube
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Leanne Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Guidan Cheng
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vivian F S Kahl
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Victoria Y Ling
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Yashaswini Janardhanan
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rohit Haldar
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Laura J Bray
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Florian H Heidel
- Hematology, Oncology, Stem Cell Transplantation and Palliative Care, University Medicine Greifswald, Greifswald, Germany
- Leibniz Institute on Aging, Jena, Germany
| | - Glen A Kennedy
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Michelle M Hill
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
38
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
39
|
Krasilnikova MM, Humphries CL, Shinsky EM. Friedreich's ataxia: new insights. Emerg Top Life Sci 2023; 7:313-323. [PMID: 37698160 DOI: 10.1042/etls20230017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Friedreich ataxia (FRDA) is an inherited disease that is typically caused by GAA repeat expansion within the first intron of the FXN gene coding for frataxin. This results in the frataxin deficiency that affects mostly muscle, nervous, and cardiovascular systems with progressive worsening of the symptoms over the years. This review summarizes recent progress that was achieved in understanding of molecular mechanism of the disease over the last few years and latest treatment strategies focused on overcoming the frataxin deficiency.
Collapse
Affiliation(s)
- Maria M Krasilnikova
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Casey L Humphries
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Emily M Shinsky
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| |
Collapse
|
40
|
Zhang Z, Zhang H, Hu B, Luan Y, Zhu K, Ma B, Zhang Z, Zheng X. R-Loop Defines Neural Stem/Progenitor Cells During Mouse Neurodevelopment. Stem Cells Dev 2023; 32:719-730. [PMID: 37823735 DOI: 10.1089/scd.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) are present in the mammalian brain throughout life and are involved in neurodevelopment and central nervous system repair. Although typical epigenetic signatures, including DNA methylation, histone modifications, and microRNAs, play a pivotal role in regulation of NSPCs, several of the epigenetic regulatory mechanisms of NSPCs remain unclear. Thus, defining a novel epigenetic feature of NSPCs is crucial for developing stem cell therapy to address neurologic disorders caused by injury. In this study, we aimed to define the R-loop, a three-stranded nucleic acid structure, as an epigenetic characteristic of NSPCs during neurodevelopment. Our results demonstrated that R-loop levels change dynamically throughout neurodevelopment. Cells with high levels of R-loops consistently decreased and were enriched in the area of neurogenesis. Additionally, these cells costained with SOX2 during neurodevelopment. Furthermore, these cells with high R-loop levels expressed Ki-67 and exhibited a high degree of overlap with the transcriptional activation markers, H3K4me3, ser5, and H3K27ac. These findings suggest that R-loops may serve as an epigenetic feature for transcriptional activation in NSPCs, indicating their role in gene expression regulation and neurogenesis.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baoqi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kun Zhu
- Department of Neurology, and The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
42
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
43
|
Li M, Li W, Zhao M, Li Z, Wang GL, Liu W, Liang C. Transcriptome analysis reveals a lncRNA-miRNA-mRNA regulatory network in OsRpp30-mediated disease resistance in rice. BMC Genomics 2023; 24:643. [PMID: 37884868 PMCID: PMC10604448 DOI: 10.1186/s12864-023-09748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play critical roles in various biological processes in plants. Extensive studies utilizing high-throughput RNA sequencing have revealed that many lncRNAs are involved in plant disease resistance. Oryza sativa RNase P protein 30 (OsRpp30) has been identified as a positive regulator of rice immunity against fungal and bacterial pathogens. Nevertheless, the specific functions of lncRNAs in relation to OsRpp30-mediated disease resistance in rice remain elusive. RESULTS We conducted a comprehensive analysis of lncRNAs, miRNAs, and mRNAs expression patterns in wild type (WT), OsRpp30 overexpression (OsRpp30-OE), and OsRpp30 knockout (OsRpp30-KO) rice plants. In total, we identified 91 differentially expressed lncRNAs (DElncRNAs), 1671 differentially expressed mRNAs (DEmRNAs), and 41 differentially expressed miRNAs (DEmiRNAs) across the different rice lines. To gain further insights, we investigated the interaction between DElncRNAs and DEmRNAs, leading to the discovery of 10 trans- and 27 cis-targeting pairs specific to the OsRpp30-OE and OsRpp30-KO samples. In addition, we constructed a competing endogenous RNA (ceRNA) network comprising differentially expressed lncRNAs, miRNAs, and mRNAs to elucidate their intricate interplay in rice disease resistance. The ceRNA network analysis uncovered a set of gene targets regulated by lncRNAs and miRNAs, which were found to be involved in pathogen recognition, hormone pathways, transcription factor activation, and other biological processes related to plant immunity. CONCLUSIONS Our study provides a comprehensive expression profiling of lncRNAs, miRNAs, and mRNAs in a collection of defense mutants in rice. To decipher the putative functional significance of lncRNAs, we constructed trans- and cis-targeting networks involving differentially expressed lncRNAs and mRNAs, as well as a ceRNA network incorporating differentially expressed lncRNAs, miRNAs, and mRNAs. Together, the findings from this study provide compelling evidence supporting the pivotal roles of lncRNAs in OsRpp30-mediated disease resistance in rice.
Collapse
Affiliation(s)
- Minghua Li
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Wei Li
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
44
|
Tang X, Li Q, Feng X, Yang B, Zhong X, Zhou Y, Wang Q, Mao Y, Xie W, Liu T, Tang Q, Guo W, Wu F, Feng X, Wang Q, Lu Y, Xu J. Identification and Functional Analysis of Drought-Responsive Long Noncoding RNAs in Maize Roots. Int J Mol Sci 2023; 24:15039. [PMID: 37894720 PMCID: PMC10606207 DOI: 10.3390/ijms242015039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts with lengths of more than 200 nt and limited protein-coding potential. They were found to play important roles in plant stress responses. In this study, the maize drought-tolerant inbred line AC7643 and drought-sensitive inbred line AC7729/TZSRW, as well as their recombinant inbred lines (RILs) were selected to identify drought-responsive lncRNAs in roots. Compared with non-responsive lncRNAs, drought-responsive lncRNAs had different sequence characteristics in length of genes and number of exons. The ratio of down-regulated lncRNAs induced by drought was significantly higher than that of coding genes; and lncRNAs were more widespread expressed in recombination sites in the RILs. Additionally, by integration of the modifications of DNA 5-methylcytidine (5mC), histones, and RNA N6-methyladenosine (m6A), it was found that the enrichment of histone modifications associated with transcriptional activation in the genes generated lncRNAs was lower that coding genes. The lncRNAs-mRNAs co-expression network, containing 15,340 coding genes and 953 lncRNAs, was constructed to investigate the molecular functions of lncRNAs. There are 13 modules found to be associated with survival rate under drought. We found nine SNPs located in lncRNAs among the modules associated with plant survival under drought. In conclusion, we revealed the characteristics of lncRNAs responding to drought in maize roots based on multiomics studies. These findings enrich our understanding of lncRNAs under drought and shed light on the complex regulatory networks that are orchestrated by the noncoding RNAs in response to drought stress.
Collapse
Affiliation(s)
- Xin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qimeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoju Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiu Zhong
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Mao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wubin Xie
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingjun Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Q.L.); (X.F.); (B.Y.); (X.Z.); (Y.Z.); (Q.W.); (Y.M.); (W.X.); (T.L.); (Q.T.); (W.G.); (F.W.); (X.F.); (Q.W.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
45
|
You W, Liu S, Li J, Tu Y, Shan T. GADD45A regulates subcutaneous fat deposition and lipid metabolism by interacting with Stat1. BMC Biol 2023; 21:212. [PMID: 37807064 PMCID: PMC10561432 DOI: 10.1186/s12915-023-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Obesity, characterized by excessive white adipose tissue expansion, is associated with several metabolic complications. Identifying new adipogenesis regulators may lead to effective therapies for obesity-induced metabolic disorders. RESULTS Here, we identified the growth arrest and DNA damage-inducible A (GADD45A), a stress-inducible histone-folding protein, as a novel regulator of subcutaneous adipose metabolism. We found that GADD45A expression was positively correlated with subcutaneous fat deposition and obesity in humans and fatty animals. In vitro, the gain or loss function of GADD45A promoted or inhibited subcutaneous adipogenic differentiation and lipid accumulation, respectively. Using a Gadd45a-/- mouse model, we showed that compared to wild-type (WT) mice, knockout (KO) mice exhibited subcutaneous fat browning and resistance to high-fat diet (HFD)-induced obesity. GADD45A deletion also upregulated the expression of mitochondria-related genes. Importantly, we further revealed that the interaction of GADD45A with Stat1 prevented phosphorylation of Stat1, resulting in the impaired expression of Lkb1, thereby regulating subcutaneous adipogenesis and lipid metabolism. CONCLUSIONS Overall, our results reveal the critical regulatory roles of GADD45A in subcutaneous fat deposition and lipid metabolism. We demonstrate that GADD45A deficiency induces the inguinal white adipose tissue (iWAT) browning and protects mice against HFD-induced obesity. Our findings provide new potential targets for combating obesity-related metabolic diseases and improving human health.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
46
|
Roy L, Chatterjee O, Bose D, Roy A, Chatterjee S. Noncoding RNA as an influential epigenetic modulator with promising roles in cancer therapeutics. Drug Discov Today 2023; 28:103690. [PMID: 37379906 DOI: 10.1016/j.drudis.2023.103690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The epigenetic landscape has an important role in cellular homeostasis and its deregulation leads to cancer. Noncoding (nc)RNA networks function as major regulators of cellular epigenetic hallmarks via regulation of vital processes, such as histone modification and DNA methylation. They are integral intracellular components affecting multiple oncogenic pathways. Thus, it is important to elucidate the effects of ncRNA networks on epigenetic programming that lead to the initiation and progression of cancer. In this review, we summarize the effects of epigenetic modification influenced by ncRNA networks and crosstalk between diverse classes of ncRNA, which could aid the development of patient-specific cancer therapeutics targeting ncRNAs, thereby altering cellular epigenetics.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | | - Debopriya Bose
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | |
Collapse
|
47
|
Templeton CW, Laimins LA. p53-dependent R-loop formation and HPV pathogenesis. Proc Natl Acad Sci U S A 2023; 120:e2305907120. [PMID: 37611058 PMCID: PMC10467572 DOI: 10.1073/pnas.2305907120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
R-loops are trimeric RNA: DNA hybrids that are important physiological regulators of transcription; however, their aberrant formation or turnover leads to genomic instability and DNA breaks. High-risk human papillomaviruses (HPV) are the causative agents of genital as well as oropharyngeal cancers and exhibit enhanced amounts of DNA breaks. The levels of R-loops were found to be increased up to 50-fold in cells that maintain high-risk HPV genomes and were readily detected in squamous cell cervical carcinomas in vivo but not in normal cells. The high levels of R-loops in HPV-positive cells were present on both viral and cellular sites together with RNase H1, an enzyme that controls their resolution. Depletion of RNase H1 in HPV-positive cells further increased R-loop levels, resulting in impaired viral transcription and replication along with reduced expression of the DNA repair genes such as FANCD2 and ATR, both of which are necessary for viral functions. Overexpression of RNase H1 decreased total R-loop levels, resulting in a reduction of DNA breaks by over 50%. Furthermore, increased RNase H1 expression blocked viral transcription and replication while enhancing the expression of factors in the innate immune regulatory pathway. This suggests that maintaining elevated R-loop levels is important for the HPV life cycle. The E6 viral oncoprotein was found to be responsible for inducing high levels of R-loops by inhibiting p53's transcriptional activity. Our studies indicate that high R-loop levels are critical for HPV pathogenesis and that this depends on suppressing the p53 pathway.
Collapse
Affiliation(s)
- Conor Winslow Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
48
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
49
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
50
|
Han X, Guo J, Wang M, Zhang N, Ren J, Yang Y, Chi X, Chen Y, Yao H, Zhao YL, Yang YG, Sun Y, Xu J. Dynamic DNA 5-hydroxylmethylcytosine and RNA 5-methycytosine Reprogramming During Early Human Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:805-822. [PMID: 35644351 PMCID: PMC10787118 DOI: 10.1016/j.gpb.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
After implantation, complex and highly specialized molecular events render functionally distinct organ formation, whereas how the epigenome shapes organ-specific development remains to be fully elucidated. Here, nano-hmC-Seal, RNA bisulfite sequencing (RNA-BisSeq), and RNA sequencing (RNA-Seq) were performed, and the first multilayer landscapes of DNA 5-hydroxymethylcytosine (5hmC) and RNA 5-methylcytosine (m5C) epigenomes were obtained in the heart, kidney, liver, and lung of the human foetuses at 13-28 weeks with 123 samples in total. We identified 70,091 and 503 organ- and stage-specific differentially hydroxymethylated regions (DhMRs) and m5C-modified mRNAs, respectively. The key transcription factors (TFs), T-box transcription factor 20 (TBX20), paired box 8 (PAX8), krueppel-like factor 1 (KLF1), transcription factor 21 (TCF21), and CCAAT enhancer binding protein beta (CEBPB), specifically contribute to the formation of distinct organs at different stages. Additionally, 5hmC-enriched Alu elements may participate in the regulation of expression of TF-targeted genes. Our integrated studies reveal a putative essential link between DNA modification and RNA methylation, and illustrate the epigenetic maps during human foetal organogenesis, which provide a foundation for for an in-depth understanding of the epigenetic mechanisms underlying early development and birth defects.
Collapse
Affiliation(s)
- Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengke Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Chi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|