1
|
Vuong T, Shetty P, Kurtoglu E, Schultz C, Schrader L, Then P, Petersen J, Westermann M, Rredhi A, Chowdhury S, Mukherji R, Schmitt M, Popp J, Stallforth P, Mittag M. Metamorphosis of a unicellular green alga in the presence of acetate and a spatially structured three-dimensional environment. THE NEW PHYTOLOGIST 2025; 245:1180-1196. [PMID: 39639794 PMCID: PMC11711948 DOI: 10.1111/nph.20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Photosynthetic protists, named microalgae, are key players in global primary production. The green microalga Chlamydomonas reinhardtii is a well-studied model organism. In nature, it dwells in acetate-rich paddy rice soil, which is not mimicked by standard liquid laboratory conditions. Here, we maintained the algae in a liquid environment with spatially structured 3-D components (S3-D) and acetate recreating natural conditions. We perform transcriptome sequencing, immunoblotting, fluorescence and electron microscopy, and Raman microspectroscopy to characterize the algae in S3-D vs homogeneous conditions. The algae undergo a metamorphosis-like process when transitioned from homogeneous aquatic to a lifestyle simulating acetate-rich rice soil. These conditions result in reduced cell size and cilia length, an enlarged eyespot and many cells with double-layered cell walls. RNA-Seq reveals alterations in c. 2400 transcripts. Four key photoreceptors including CRY-DASH1 and phototropin governing plastid metabolism along with its eyespot are altered in their protein expression. Consequently, photosynthetic pigments, lipids and starch levels vary as do starch distribution patterns. Fitness against antagonistic bacteria is enhanced concurrently with the downregulation of an involved Ca2+ channel transcript. This study highlights the profound impact of S3-D initiating processes inaccessible under homogeneous laboratory conditions. Thus, overexpression lines for certain photoreceptors and starch are naturally created.
Collapse
Affiliation(s)
- Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| | - Ece Kurtoglu
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Constanze Schultz
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Patrick Then
- Microverse Imaging Center, Balance of the Microverse Cluster of ExcellenceFriedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | | | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Ruchira Mukherji
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Pierre Stallforth
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
2
|
Catherall E, Musial S, Atkinson N, Walker CE, Mackinder LCM, McCormick AJ. From algae to plants: understanding pyrenoid-based CO 2-concentrating mechanisms. Trends Biochem Sci 2025; 50:33-45. [PMID: 39592300 DOI: 10.1016/j.tibs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Pyrenoids are the key component of one of the most abundant biological CO2 concentration mechanisms found in nature. Pyrenoid-based CO2-concentrating mechanisms (pCCMs) are estimated to account for one third of global photosynthetic CO2 capture. Our molecular understanding of how pyrenoids work is based largely on work in the green algae Chlamydomonas reinhardtii. Here, we review recent advances in our fundamental knowledge of the biogenesis, architecture, and function of pyrenoids in Chlamydomonas and ongoing engineering biology efforts to introduce a functional pCCM into chloroplasts of vascular plants, which, if successful, has the potential to enhance crop productivity and resilience to climate change.
Collapse
Affiliation(s)
- Ella Catherall
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sabina Musial
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
3
|
Correa Córdoba S, Burgos A, Cuadros-Inostroza Á, Xu K, Brotman Y, Nikoloski Z. A data-integrative modeling approach accurately characterizes the effects of mutations on Arabidopsis lipid metabolism. PLANT PHYSIOLOGY 2024:kiae615. [PMID: 39696931 DOI: 10.1093/plphys/kiae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 12/20/2024]
Abstract
Collections of insertional mutants have been instrumental for characterizing the functional relevance of genes in different model organisms, including Arabidopsis (Arabidopsis thaliana). However, mutations may often result in subtle phenotypes, rendering it difficult to pinpoint the function of a knocked-out gene. Here, we present a data-integrative modeling approach that enables predicting the effects of mutations on metabolic traits and plant growth. To test the approach, we gathered lipidomics data and physiological read-outs for a set of 64 Arabidopsis lines with mutations in lipid metabolism. Use of flux sums as a proxy for metabolite concentrations allowed us to integrate the relative abundance of lipids and facilitated accurate predictions of growth and biochemical phenotype in approximately 73% and 76% of the mutants, respectively, for which phenotypic data were available. Likewise, we showed that this approach can pinpoint alterations in metabolic pathways related to silent mutations. Therefore, our study paves the way for coupling model-driven characterization of mutant lines from different mutagenesis approaches with metabolomic technologies, as well as for validating knowledge structured in large-scale metabolic networks of plants and other species.
Collapse
Affiliation(s)
- Sandra Correa Córdoba
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Asdrúbal Burgos
- Genetics of Metabolic Traits, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Botany and Zoology, University Center for Biological and Agricultural Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Álvaro Cuadros-Inostroza
- Genetics of Metabolic Traits, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Metasysx GmbH, Potsdam 14476, Germany
| | - Ke Xu
- Genetics of Metabolic Traits, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Yariv Brotman
- Genetics of Metabolic Traits, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| |
Collapse
|
4
|
Ross IL, Le HP, Budiman S, Xiong D, Hemker F, Millen EA, Oey M, Hankamer B. A cyclical marker system enables indefinite series of oligonucleotide-directed gene editing in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 196:2330-2345. [PMID: 39179421 PMCID: PMC11637769 DOI: 10.1093/plphys/kiae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
CRISPR/Cas9 gene editing in the model green alga Chlamydomonas reinhardtii relies on the use of selective marker genes to enrich for nonselectable target mutations. This becomes challenging when many sequential modifications are required in a single-cell line, as useful markers are limited. Here, we demonstrate a cyclical selection process which only requires a single marker gene to identify an almost infinite sequential series of CRISPR-based target gene modifications. We used the NIA1 (Nit1, NR; nitrate reductase) gene as the selectable marker in this study. In the forward stage of the cycle, a stop codon was engineered into the NIA1 gene at the CRISPR target location. Cells retaining the wild-type NIA1 gene were killed by chlorate, while NIA1 knockout mutants survived. In the reverse phase of the cycle, the stop codon engineered into the NIA1 gene during the forward phase was edited back to the wild-type sequence. Using nitrate as the sole nitrogen source, only the reverted wild-type cells survived. By using CRISPR to specifically deactivate and reactivate the NIA1 gene, a marker system was established that flipped back and forth between chlorate- and auxotrophic (nitrate)-based selection. This provided a scarless cyclical marker system that enabled an indefinite series of CRISPR edits in other, nonselectable genes. We demonstrate that this "Sequential CRISPR via Recycling Endogenous Auxotrophic Markers (SCREAM)" technology enables an essentially limitless series of genetic modifications to be introduced into a single-cell lineage of C. reinhardtii in a fast and efficient manner to complete complex genetic engineering.
Collapse
Affiliation(s)
- Ian L Ross
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong Phuong Le
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabar Budiman
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dake Xiong
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fritz Hemker
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Millen
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melanie Oey
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Adler L, Lau CS, Shaikh KM, van Maldegem KA, Payne-Dwyer AL, Lefoulon C, Girr P, Atkinson N, Barrett J, Emrich-Mills TZ, Dukic E, Blatt MR, Leake MC, Peltier G, Spetea C, Burlacot A, McCormick AJ, Mackinder LCM, Walker CE. Bestrophin-like protein 4 is involved in photosynthetic acclimation to light fluctuations in Chlamydomonas. PLANT PHYSIOLOGY 2024; 196:2374-2394. [PMID: 39240724 PMCID: PMC11638005 DOI: 10.1093/plphys/kiae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 09/08/2024]
Abstract
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid membranes called pyrenoid tubules, which are proposed to deliver CO2. In the model alga Chlamydomonas (Chlamydomonas reinhardtii), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules, and heterologous expression of BST4 in Arabidopsis (Arabidopsis thaliana) did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutants did not show impaired growth under continuous light at air level CO2 but were impaired in their growth under fluctuating light. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we propose that bst4 has a transiently lower thylakoid lumenal pH during dark-to-light transition compared to control strains. We conclude that BST4 is not a tethering protein but is most likely a pyrenoid tubule ion channel involved in the ion homeostasis of the lumen with particular importance during light fluctuations.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Department of Plant Biology, Division of Biosphere Science and Engineering, Carnegie Science, Stanford, CA 94305, USA
| | - Chun Sing Lau
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Kashif M Shaikh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kim A van Maldegem
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alex L Payne-Dwyer
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philipp Girr
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - James Barrett
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Tom Z Emrich-Mills
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mark C Leake
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Adrien Burlacot
- Department of Plant Biology, Division of Biosphere Science and Engineering, Carnegie Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
Dong J, Hou J, Yao Q, Wang B, Wang J, Shen X, Lai K, Ge H, Wang Y, Xu M, Fu A, Wang F. The thylakoid phosphatase TEF8 is involved in state transition and high light stress resistance in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2138-2150. [PMID: 39453967 DOI: 10.1111/tpj.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/27/2024]
Abstract
The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas.
Collapse
Affiliation(s)
- Jie Dong
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Baoxiang Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Xuan Shen
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Ke Lai
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Min Xu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| |
Collapse
|
7
|
Hennacy JH, Atkinson N, Kayser-Browne A, Ergun SL, Franklin E, Wang L, Eicke S, Kazachkova Y, Kafri M, Fauser F, Vilarrasa-Blasi J, Jinkerson RE, Zeeman SC, McCormick AJ, Jonikas MC. SAGA1 and MITH1 produce matrix-traversing membranes in the CO 2-fixing pyrenoid. NATURE PLANTS 2024; 10:2038-2051. [PMID: 39548241 DOI: 10.1038/s41477-024-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii. Mutants deficient in SAGA1 or MITH1 lack matrix-traversing membranes and exhibit growth defects under CO2-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant Arabidopsis thaliana, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields.
Collapse
Affiliation(s)
- Jessica H Hennacy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Eric Franklin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Simona Eicke
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yana Kazachkova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Friedrich Fauser
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Robert E Jinkerson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | | | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Wolfram M, Greif A, Baidukova O, Voll H, Tauber S, Lindacher J, Hegemann P, Kreimer G. Insights into degradation and targeting of the photoreceptor channelrhodopsin-1. PLANT, CELL & ENVIRONMENT 2024; 47:4188-4211. [PMID: 38935876 DOI: 10.1111/pce.15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.
Collapse
Affiliation(s)
- Michaela Wolfram
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Arne Greif
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Olga Baidukova
- Institute of Biology, Experimental Biophysics, Humboldt Universität, Berlin, Germany
| | - Hildegard Voll
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Sandra Tauber
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Jana Lindacher
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt Universität, Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| |
Collapse
|
9
|
Hwang J, Yanagisawa H, Davis KC, Hunter EL, Fox LA, Jimenez AR, Goodwin RE, Gordon SA, Stuart CDE, Bower R, Porter ME, Dutcher SK, Sale WS, Lechtreck KF, Alford LM. Assembly of FAP93 at the proximal axoneme in Chlamydomonas cilia. Cytoskeleton (Hoboken) 2024; 81:539-555. [PMID: 38224153 DOI: 10.1002/cm.21818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of Chlamydomonas. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in the axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | | | - Keira C Davis
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
- College of Arts & Sciences, Clayton State University, Morrow, Georgia, USA
| | - Emily L Hunter
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
- Science Communication Group, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laura A Fox
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Ariana R Jimenez
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | - Reagan E Goodwin
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | - Sarah A Gordon
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | | | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University St. Louis, St. Louis, Missouri, USA
| | - Winfield S Sale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Lea M Alford
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Franklin E, Wang L, Cruz ER, Duggal K, Ergun SL, Garde A, Jonikas MC. Proteomic analysis of the pyrenoid-traversing membranes of Chlamydomonas reinhardtii reveals novel components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620638. [PMID: 39553959 PMCID: PMC11565738 DOI: 10.1101/2024.10.28.620638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pyrenoids are algal CO2-fixing organelles that mediate approximately one-third of global carbon fixation and hold the potential to enhance crop growth if engineered into land plants. Most pyrenoids are traversed by membranes that are thought to supply them with concentrated CO2. Despite the critical nature of these membranes for pyrenoid function, they are poorly understood, with few protein components known in any species.• Here we identify protein components of the pyrenoid-traversing membranes from the leading model alga Chlamydomonas reinhardtii by affinity purification and mass spectrometry of membrane fragments. Our proteome includes previously-known proteins as well as novel candidates.• We further characterize two of the novel pyrenoid-traversing membrane-resident proteins, Cre10.g452250, which we name Pyrenoid Membrane Enriched 1 (PME1), and LCI16. We confirm their localization, observe that they physically interact, and find that neither protein is required for normal membrane morphology.• Taken together, our study identifies the proteome of pyrenoid-traversing membranes and initiates the characterization of a novel pyrenoid-traversing membrane complex, building toward a mechanistic understanding of the pyrenoid.
Collapse
Affiliation(s)
- Eric Franklin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edward Renne Cruz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Keenan Duggal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Boucher MJ, Banerjee S, Joshi MB, Wei AL, Huang MY, Lei S, Ciranni M, Condon A, Langen A, Goddard TD, Caradonna I, Goranov AI, Homer CM, Mortensen Y, Petnic S, Reilly MC, Xiong Y, Susa KJ, Pastore VP, Zaro BW, Madhani HD. Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619677. [PMID: 39484549 PMCID: PMC11526942 DOI: 10.1101/2024.10.22.619677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis and the top-ranked W.H.O. priority fungal pathogen. Only distantly related to model fungi, C. neoformans is also a powerful experimental system for exploring conserved eukaryotic mechanisms lost from specialist model yeast lineages. To decipher its biology globally, we constructed 4328 gene deletions and measured-with exceptional precision--the fitness of each mutant under 141 diverse growth-limiting in vitro conditions and during murine infection. We defined functional modules by clustering genes based on their phenotypic signatures. In-depth studies leveraged these data in two ways. First, we defined and investigated new components of key signaling pathways, which revealed animal-like pathways/components not predicted from studies of model yeasts. Second, we identified environmental adaptation mechanisms repurposed to promote mammalian virulence by C. neoformans, which lacks a known animal reservoir. Our work provides an unprecedented resource for deciphering a deadly human pathogen.
Collapse
Affiliation(s)
- Michael J Boucher
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sanjita Banerjee
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Angela L Wei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Manning Y Huang
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Susan Lei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Massimiliano Ciranni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Andrew Condon
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Andreas Langen
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Thomas D Goddard
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ippolito Caradonna
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Alexi I Goranov
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Christina M Homer
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yassaman Mortensen
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sarah Petnic
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Morgann C Reilly
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Ying Xiong
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Katherine J Susa
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Vito Paolo Pastore
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Balyn W Zaro
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Findinier J, Joubert LM, Fakhimi N, Schmid MF, Malkovskiy AV, Chiu W, Burlacot A, Grossman AR. Dramatic changes in mitochondrial subcellular location and morphology accompany activation of the CO 2 concentrating mechanism. Proc Natl Acad Sci U S A 2024; 121:e2407548121. [PMID: 39405346 PMCID: PMC11513932 DOI: 10.1073/pnas.2407548121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024] Open
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase (Rubisco) into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization is a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limitation, although a role for this reorganization in CCM function remains unclear. We used the green microalga Chlamydomonas reinhardtii to monitor changes in mitochondrial position and ultrastructure as cells transition between high CO2 and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral cell location and orient in parallel tubular arrays that extend along the cell's apico-basal axis. We show that these ultrastructural changes correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membranes, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, with the latter involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial respiration in VLC-acclimated cells reduces the affinity of the cells for Ci. Overall, our results suggest that mitochondrial repositioning functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Neda Fakhimi
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Andrey V. Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
- Department of Bioengineering, Stanford University, Stanford, CA94305
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| |
Collapse
|
13
|
Kim M, Jorge GL, Aschern M, Cuiné S, Bertrand M, Mekhalfi M, Putaux JL, Yang JS, Thelen JJ, Beisson F, Peltier G, Li-Beisson Y. The DYRKP1 kinase regulates cell wall degradation in Chlamydomonas by inducing matrix metalloproteinase expression. THE PLANT CELL 2024:koae271. [PMID: 39401319 DOI: 10.1093/plcell/koae271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 10/02/2024] [Indexed: 01/01/2025]
Abstract
The cell wall of plants and algae is an important cell structure that protects cells from changes in the external physical and chemical environment. This extracellular matrix, composed of polysaccharides and glycoproteins, must be constantly remodeled throughout the life cycle. However, compared to matrix polysaccharides, little is known about the mechanisms regulating the formation and degradation of matrix glycoproteins. We report here that a plant kinase belonging to the DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE (DYRK) family present in all eukaryotes regulates cell wall degradation after mitosis of Chlamydomonas reinhardtii by inducing the expression of matrix metalloproteinases (MMPs). Without the plant DYRK kinase (DYRKP1), daughter cells cannot disassemble parental cell walls and remain trapped inside for more than 10 days. On the other hand, the DYRKP1 complementation line shows normal degradation of the parental cell wall. Transcriptomic and proteomic analyses indicate a marked down-regulation of MMP gene expression and accumulation, respectively, in the dyrkp1 mutants. The mutants deficient in MMPs retain palmelloid structures for a longer time than the background strain, like dyrkp1 mutants. Our findings show that DYRKP1, by ensuring timely MMP expression, enables the successful execution of the cell cycle. Altogether, this study provides insight into the life cycle regulation in plants and algae.
Collapse
Affiliation(s)
- Minjae Kim
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache; Saint-Paul-lez-Durance, 13108, France
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri; Columbia, Missouri, 65211, USA
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB; Cerdanyola, 08193, Spain
- Doctoral Program of Biotechnology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona; Barcelona, 08028, Spain
| | - Stéphan Cuiné
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache; Saint-Paul-lez-Durance, 13108, France
| | - Marie Bertrand
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache; Saint-Paul-lez-Durance, 13108, France
| | - Malika Mekhalfi
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache; Saint-Paul-lez-Durance, 13108, France
| | - Jean-Luc Putaux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB; Cerdanyola, 08193, Spain
| | - Jay J Thelen
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri; Columbia, Missouri, 65211, USA
| | - Fred Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache; Saint-Paul-lez-Durance, 13108, France
| | - Gilles Peltier
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache; Saint-Paul-lez-Durance, 13108, France
| | - Yonghua Li-Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache; Saint-Paul-lez-Durance, 13108, France
| |
Collapse
|
14
|
Ge T, Gui X, Xu JX, Xia W, Wang CH, Yang W, Huang K, Walsh C, Umen JG, Walter J, Du YR, Chen H, Shao Z, Xu GL. DNA cytosine methylation suppresses meiotic recombination at the sex-determining region. SCIENCE ADVANCES 2024; 10:eadr2345. [PMID: 39383224 PMCID: PMC11463267 DOI: 10.1126/sciadv.adr2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Meiotic recombination between homologous chromosomes is vital for maximizing genetic variation among offspring. However, sex-determining regions are often rearranged and blocked from recombination. It remains unclear whether rearrangements or other mechanisms might be responsible for recombination suppression. Here, we uncover that the deficiency of the DNA cytosine methyltransferase DNMT1 in the green alga Chlamydomonas reinhardtii causes anomalous meiotic recombination at the mating-type locus (MT), generating haploid progeny containing both plus and minus mating-type markers due to crossovers within MT. The deficiency of a histone methyltransferase for H3K9 methylation does not lead to anomalous recombination. These findings suggest that DNA methylation, rather than rearrangements or histone methylation, suppresses meiotic recombination, revealing an unappreciated biological function for DNA methylation in eukaryotes.
Collapse
Affiliation(s)
- Tong Ge
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuqi Gui
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Xi Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Xia
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao-Han Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Colum Walsh
- Department of Cell Biology, Institute for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - James G. Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO 63132, USA
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken 66123, Germany
| | - Ya-Rui Du
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Alvarez Viar G, Klena N, Martino F, Nievergelt AP, Bolognini D, Capasso P, Pigino G. Protofilament-specific nanopatterns of tubulin post-translational modifications regulate the mechanics of ciliary beating. Curr Biol 2024; 34:4464-4475.e9. [PMID: 39270640 PMCID: PMC11466076 DOI: 10.1016/j.cub.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Controlling ciliary beating is essential for motility and signaling in eukaryotes. This process relies on the regulation of various axonemal proteins that assemble in stereotyped patterns onto individual microtubules of the ciliary structure. Additionally, each axonemal protein interacts exclusively with determined tubulin protofilaments of the neighboring microtubule to carry out its function. While it is known that tubulin post-translational modifications (PTMs) are important for proper ciliary motility, the mode and extent to which they contribute to these interactions remain poorly understood. Currently, the prevailing understanding is that PTMs can confer functional specialization at the level of individual microtubules. However, this paradigm falls short of explaining how the tubulin code can manage the complexity of the axonemal structure where functional interactions happen in defined patterns at the sub-microtubular scale. Here, we combine immuno-cryo-electron tomography (cryo-ET), expansion microscopy, and mutant analysis to show that, in motile cilia, tubulin glycylation and polyglutamylation form mutually exclusive protofilament-specific nanopatterns at a sub-microtubular scale. These nanopatterns are consistent with the distributions of axonemal dyneins and nexin-dynein regulatory complexes, respectively, and are indispensable for their regulation during ciliary beating. Our findings offer a new paradigm for understanding how different tubulin PTMs, such as glycylation, glutamylation, acetylation, tyrosination, and detyrosination, can coexist within the ciliary structure and specialize individual protofilaments for the regulation of diverse protein complexes. The identification of a ciliary tubulin nanocode by cryo-ET suggests the need for high-resolution studies to better understand the molecular role of PTMs in other cellular compartments beyond the cilium.
Collapse
Affiliation(s)
| | - Nikolai Klena
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Fabrizio Martino
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Adrian Pascal Nievergelt
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Davide Bolognini
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Paola Capasso
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy
| | - Gaia Pigino
- Human Technopole, V.le Rita Levi-Montalcini 1, Milan 20157, Italy.
| |
Collapse
|
16
|
Tao L, Wang L, Liu L, Cheng X, Zhang Q. Phosphorous accumulation associated with mitochondrial PHT3-mediated enhanced arsenate tolerance in Chlamydomonas reinhardtii. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135460. [PMID: 39151356 DOI: 10.1016/j.jhazmat.2024.135460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Arsenate is a highly toxic element and excessive accumulation of arsenic in the aquatic environment easily triggers a problem threatening the ecological health. Phytoremediation has been widely explored as a method to alleviate As contamination. Here, the green algae, Chlamydomonas reinhardtii was investigated by profiling the accumulation of arsenate and phosphorus, which share the same uptake pathway, in response to arsenic stress. Both C. reinhardtii wild type C30 and the Crpht3 mutant were cultured under arsenic stress, and demonstrated a similar growth phenotype under limited phosphate supply. Sufficient phosphate obviously increased the uptake of polyphosphate and intercellular phosphate in the Crpht3 mutant, which increased the arsenic tolerance of the Crpht3 mutant under stress from 500 µmol L-1 As(V). Upregulation of the PHT3 gene in the Crpht3 mutant increased accumulation of phosphate in the cytoplasm under arsenate stress, which triggered a regulatory role for the differentially expressed genes that mediated improvement of the glutathione redox cycle, antioxidant activity and detoxification. While the wild type C30 showed weak arsenate tolerance because of little phosphate accumulation. These results suggest that the enhanced arsenic tolerance of the Crpht3 mutant is regulated by the PHT3 gene mediation. This study provides insight onto the responsive mechanisms of the PHT3 gene-mediated in alleviating arsenic toxicity in plants.
Collapse
Affiliation(s)
- Leyuan Tao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Laihua Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Xianguo Cheng
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
18
|
Rolo D, Sandoval-Ibáñez O, Thiele W, Schöttler MA, Gerlach I, Zoschke R, Schwartzmann J, Meyer EH, Bock R. CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1) is a photosystem I assembly factor in Arabidopsis. THE PLANT CELL 2024; 36:4179-4211. [PMID: 38382089 PMCID: PMC11449006 DOI: 10.1093/plcell/koae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Photosystem I (PSI) forms a large macromolecular complex of ∼580 kDa that resides in the thylakoid membrane and mediates photosynthetic electron transfer. PSI is composed of 18 protein subunits and nearly 200 co-factors. The assembly of the complex in thylakoid membranes requires high spatial and temporal coordination, and is critically dependent on a sophisticated assembly machinery. Here, we report and characterize CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1), a PSI assembly factor in Arabidopsis (Arabidopsis thaliana). The CEPA1 gene was identified bioinformatically as being co-expressed with known PSI assembly factors. Disruption of the CEPA1 gene leads to a pale phenotype and retarded plant development but does not entirely abolish photoautotrophy. Biophysical and biochemical analyses revealed that the phenotype is caused by a specific defect in PSI accumulation. We further show that CEPA1 acts at the post-translational level and co-localizes with PSI in nonappressed thylakoid membranes. In native gels, CEPA1 co-migrates with thylakoid protein complexes, including putative PSI assembly intermediates. Finally, protein-protein interaction assays suggest cooperation of CEPA1 with the PSI assembly factor PHOTOSYSTEM I ASSEMBLY3 (PSA3). Together, our data support an important but nonessential role of CEPA1 in PSI assembly.
Collapse
Affiliation(s)
- David Rolo
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joram Schwartzmann
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Liu S, Shi L, Luo H, Chen K, Song M, Wu Y, Liu F, Li M, Gao J, Wu Y. Processed microalgae: green gold for tissue regeneration and repair. Theranostics 2024; 14:5235-5261. [PMID: 39267781 PMCID: PMC11388063 DOI: 10.7150/thno.99181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
As novel biomedical materials, microalgae have garnered significant interest because of their ability to generate photosynthetic oxygen, their antioxidant activity, and their favorable biocompatibility. Many studies have concentrated on the hypoxia-alleviating effects of microalgae within tumor microenvironments. However, recent findings indicate that microalgae can significantly increase the regeneration of various tissues and organs. To augment microalgae's therapeutic efficacy and mitigate the limitations imposed by immune clearance, it is essential to process microalgae through various processing strategies. This review examines common microalgal species in biomedical applications, such as Chlorella, Chlamydomonas reinhardtii, diatoms, and Spirulina. This review outlines diverse processing methods, including microalgae extracts, microalgae‒nanodrug composite delivery systems, surface modifications, and living microalgae‒loaded hydrogels. It also discusses the latest developments in tissue repair using processed microalgae for skin, gastrointestinal, bone, cardiovascular, lung, nerve, and oral tissues. Furthermore, future directions are presented, and research gaps for processed microalgae are identified. Collectively, these insights may inform the innovation of processed microalgae for various uses and offer guidance for ongoing research in tissue repair.
Collapse
Affiliation(s)
- Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Hailong Luo
- Department of Neurology, the Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang 157011, China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Meichen Song
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Yingjun Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Fengzhi Liu
- Pathology Department of the Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
20
|
Hennacy JH, Atkinson N, Kayser-Browne A, Ergun SL, Franklin E, Wang L, Kafri M, Fauser F, Vilarrasa-Blasi J, Jinkerson RE, McCormick AJ, Jonikas MC. Biogenesis, engineering and function of membranes in the CO 2 -fixing pyrenoid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.603944. [PMID: 39211136 PMCID: PMC11361040 DOI: 10.1101/2024.08.08.603944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Approximately one-third of global CO 2 assimilation is performed by the pyrenoid 1 , a liquid-like organelle found in most algae and some plants 2 . Specialized membranes are hypothesized to drive CO 2 assimilation in the pyrenoid by delivering concentrated CO 2 3,4 , but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga Chlamydomonas reinhardtii and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant Arabidopsis thaliana . SAGA1 localizes to the regions where thylakoid membranes transition into tubules and is necessary to initiate tubule formation. MITH1 localizes to the tubules and is necessary for their extension through the pyrenoid. Tubule-deficient mutants exhibit growth defects under CO 2 -limiting conditions, providing evidence for the function of membrane tubules in CO 2 delivery to the pyrenoid. Furthermore, these mutants form multiple aberrant condensates of pyrenoid matrix, indicating that a normal tubule network promotes the coalescence of a single pyrenoid. The reconstitution of pyrenoid-traversing membranes in a plant represents a key milestone toward engineering a functional pyrenoid into crops for improving crop yields. More broadly, our study demonstrates the functional importance of pyrenoid membranes, identifies key biogenesis factors, and paves the way for the molecular characterization of pyrenoid membranes across the tree of life.
Collapse
|
21
|
Lambert L, Danon A. Detection and Quantification of Programmed Cell Death in Chlamydomonas reinhardtii: The Example of S-Nitrosoglutathione. Bio Protoc 2024; 14:e5043. [PMID: 39131189 PMCID: PMC11309956 DOI: 10.21769/bioprotoc.5043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Chlamydomonas (Chlamydomonas reinhardtii) is a unicellular model alga that has been shown to undergo programmed cell death (PCD) that can be triggered in response to different stresses. We have recently shown that Chlamydomonas is particularly well suited to the study and quantification of PCD. We have shown for the first time that S-nitrosoglutathione (GSNO), a nitric oxide (NO) donor, is able to induce PCD and can be used as a study system in Chlamydomonas. In this article, we provide a simple and robust protocol for quantifying GSNO-induced PCD, which can be adapted to any other treatment. We explain how to detect NO production in the cell following GSNO treatment. We show how PCD can be identified simply by analyzing the degradation profile of genomic DNA. We also provide an easy and reproducible cell death quantification protocol, which makes it possible to follow the course of PCD over time and highlight very fine differences in the number of affected cells between different samples. Key features • Use of S-nitrosoglutathione (GSNO) as a means to study programmed cell death (PCD) in Chlamydomonas. • Discrimination of PCD vs. necrosis. • In vivo determination of NO production in the cell. • A simple, robust protocol for PCD quantification.
Collapse
Affiliation(s)
- Lou Lambert
- Institute de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris, France
| | - Antoine Danon
- Institute de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2103. [PMID: 39124221 PMCID: PMC11314055 DOI: 10.3390/plants13152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.
Collapse
Affiliation(s)
- Yuval Milrad
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
23
|
Jeffers TL, Purvine SO, Nicora CD, McCombs R, Upadhyaya S, Stroumza A, Whang K, Gallaher SD, Dohnalkova A, Merchant SS, Lipton M, Niyogi KK, Roth MS. Iron rescues glucose-mediated photosynthesis repression during lipid accumulation in the green alga Chromochloris zofingiensis. Nat Commun 2024; 15:6046. [PMID: 39025848 PMCID: PMC11258321 DOI: 10.1038/s41467-024-50170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Energy status and nutrients regulate photosynthetic protein expression. The unicellular green alga Chromochloris zofingiensis switches off photosynthesis in the presence of exogenous glucose (+Glc) in a process that depends on hexokinase (HXK1). Here, we show that this response requires that cells lack sufficient iron (-Fe). Cells grown in -Fe+Glc accumulate triacylglycerol (TAG) while losing photosynthesis and thylakoid membranes. However, cells with an iron supplement (+Fe+Glc) maintain photosynthesis and thylakoids while still accumulating TAG. Proteomic analysis shows that known photosynthetic proteins are most depleted in heterotrophy, alongside hundreds of uncharacterized, conserved proteins. Photosynthesis repression is associated with enzyme and transporter regulation that redirects iron resources to (a) respiratory instead of photosynthetic complexes and (b) a ferredoxin-dependent desaturase pathway supporting TAG accumulation rather than thylakoid lipid synthesis. Combining insights from diverse organisms from green algae to vascular plants, we show how iron and trophic constraints on metabolism aid gene discovery for photosynthesis and biofuel production.
Collapse
Affiliation(s)
- Tim L Jeffers
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ryan McCombs
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Shivani Upadhyaya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Adrien Stroumza
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ken Whang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Sean D Gallaher
- UCLA DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mary Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Melissa S Roth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Vilarrasa-Blasi J, Vellosillo T, Jinkerson RE, Fauser F, Xiang T, Minkoff BB, Wang L, Kniazev K, Guzman M, Osaki J, Barrett-Wilt GA, Sussman MR, Jonikas MC, Dinneny JR. Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments. Nat Commun 2024; 15:5988. [PMID: 39013881 PMCID: PMC11252407 DOI: 10.1038/s41467-024-49844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages. 76 genes, acting across diverse cellular compartments, were found to be important for osmotic-stress tolerance in Chlamydomonas through their functions in cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs for five of these genes have conserved functions in stress tolerance in Arabidopsis and reveal a novel PROFILIN-dependent stage of acclimation affecting the actin cytoskeleton that ensures tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants, and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway.
Collapse
Affiliation(s)
- Josep Vilarrasa-Blasi
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| | - Tamara Vellosillo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Robert E Jinkerson
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Friedrich Fauser
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Tingting Xiang
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Benjamin B Minkoff
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kiril Kniazev
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Guzman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Jacqueline Osaki
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | | - Michael R Sussman
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Martin C Jonikas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Lihanova Y, Nagel R, Jakob T, Sasso S. Characterization of activating cis-regulatory elements from the histone genes of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:525-539. [PMID: 38693717 DOI: 10.1111/tpj.16781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and β2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the β2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.
Collapse
Affiliation(s)
- Yuliia Lihanova
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Raimund Nagel
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Torsten Jakob
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Severin Sasso
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
26
|
Zhang HX, Huang D, Ren MN, Li WQ, Wei SP, Ji ZQ. Discovery of N-benzyl-6-methylpicolinamide as a potential scaffold for bleaching herbicides. PEST MANAGEMENT SCIENCE 2024; 80:3269-3277. [PMID: 38363171 DOI: 10.1002/ps.8030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND In pesticide research, bleaching herbicides have always been a hot topic. Our previous research showed that N-(4-fluorobenzyl)-2-methoxybenzamide is an innovative lead compound for bleaching herbicides. RESULTS A total of 40 derivatives of picolinamides were prepared and evaluated for their herbicidal activity by Petri dish tests and postemergence trials. The structure-activity relationship (SAR) revealed that introducing electron-withdrawing groups at the 3- or 4-positions of the benzyl significantly enhances herbicidal activity. Furthermore, ZI-04 induced similar symptoms such as bleaching effect in treated weeds and accumulation of biosynthetic precursors for carotenoids as observed with diflufenican. ZI-04 also exhibited significant cross-resistance to diflufenican and had a lower resistance risk than diflufenican. CONCLUSION N-benzyl-6-methylpicolinamides were discovered as a novel scaffold for bleaching herbicides. The accumulation of phytoene, phytofluene and ζ-Carotene in radish cotyledons, and cross-resistance observed with diflufenican, showed that title compounds can interfere with carotenoid biosynthesis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui-Xia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Di Huang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Meng-Nan Ren
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wen-Qi Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shao-Peng Wei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| | - Zhi-Qin Ji
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Li A, You T, Pang X, Wang Y, Tian L, Li X, Liu Z. Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii. Nat Commun 2024; 15:5211. [PMID: 38890314 PMCID: PMC11189392 DOI: 10.1038/s41467-024-49532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Anjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tingting You
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Xiaojie Pang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yidi Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lijin Tian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Zhenfeng Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
28
|
Caccamo A, Vega de Luna F, Misztak AE, Pyr dit Ruys S, Vertommen D, Cardol P, Messens J, Remacle C. APX2 Is an Ascorbate Peroxidase-Related Protein that Regulates the Levels of Plastocyanin in Chlamydomonas. PLANT & CELL PHYSIOLOGY 2024; 65:644-656. [PMID: 38591346 PMCID: PMC11094752 DOI: 10.1093/pcp/pcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
- VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels 1050, Belgium
- Brussels Center for Redox Biology, Pleinlaan 2, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Agnieszka E Misztak
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Sébastien Pyr dit Ruys
- de Duve Institute and MASSPROT platform, UCLouvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, UCLouvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Pierre Cardol
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels 1050, Belgium
- Brussels Center for Redox Biology, Pleinlaan 2, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| |
Collapse
|
29
|
Fu G, Augspurger K, Sakizadeh J, Reck J, Bower R, Tritschler D, Gui L, Nicastro D, Porter ME. The MBO2/FAP58 heterodimer stabilizes assembly of inner arm dynein b and reveals axoneme asymmetries involved in ciliary waveform. Mol Biol Cell 2024; 35:ar72. [PMID: 38568782 PMCID: PMC11151096 DOI: 10.1091/mbc.e23-11-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Cilia generate three-dimensional waveforms required for cell motility and transport of fluid, mucus, and particles over the cell surface. This movement is driven by multiple dynein motors attached to nine outer doublet microtubules that form the axoneme. The outer and inner arm dyneins are organized into 96-nm repeats tandemly arrayed along the length of the doublets. Motility is regulated in part by projections from the two central pair microtubules that contact radial spokes located near the base of the inner dynein arms in each repeat. Although much is known about the structures and protein complexes within the axoneme, many questions remain about the regulatory mechanisms that allow the cilia to modify their waveforms in response to internal or external stimuli. Here, we used Chlamydomonas mbo (move backwards only) mutants with altered waveforms to identify at least two conserved proteins, MBO2/CCDC146 and FAP58/CCDC147, that form part of a L-shaped structure that varies between doublet microtubules. Comparative proteomics identified additional missing proteins that are altered in other motility mutants, revealing overlapping protein defects. Cryo-electron tomography and epitope tagging revealed that the L-shaped, MBO2/FAP58 structure interconnects inner dynein arms with multiple regulatory complexes, consistent with its function in modifying the ciliary waveform.
Collapse
Affiliation(s)
- Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katherine Augspurger
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Jason Sakizadeh
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Jaimee Reck
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
30
|
Dai J, Ma M, Niu Q, Eisert RJ, Wang X, Das P, Lechtreck KF, Dutcher SK, Zhang R, Brown A. Mastigoneme structure reveals insights into the O-linked glycosylation code of native hydroxyproline-rich helices. Cell 2024; 187:1907-1921.e16. [PMID: 38552624 PMCID: PMC11015965 DOI: 10.1016/j.cell.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Qingwei Niu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Molecular Cell Biology (MCB) graduate program, Division of Biology & Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Robyn J Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St Louis, MO, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Kim RG, Huang W, Findinier J, Bunbury F, Redekop P, Shrestha R, Grismer TS, Vilarrasa-Blasi J, Jinkerson RE, Fakhimi N, Fauser F, Jonikas MC, Onishi M, Xu SL, Grossman AR. Chloroplast Methyltransferase Homolog RMT2 is Involved in Photosystem I Biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572672. [PMID: 38187728 PMCID: PMC10769443 DOI: 10.1101/2023.12.21.572672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Oxygen (O2), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii. This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid.
Collapse
Affiliation(s)
- Rick G. Kim
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Weichao Huang
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Justin Findinier
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Freddy Bunbury
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Petra Redekop
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Ruben Shrestha
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - TaraBryn S Grismer
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | - Robert E. Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Neda Fakhimi
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Friedrich Fauser
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Martin C. Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Lambert L, de Carpentier F, André P, Marchand CH, Danon A. Type II metacaspase mediates light-dependent programmed cell death in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 194:2648-2662. [PMID: 37971939 PMCID: PMC10980519 DOI: 10.1093/plphys/kiad618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Among the crucial processes that preside over the destiny of cells from any type of organism are those involving their self-destruction. This process is well characterized and conceptually logical to understand in multicellular organisms; however, the levels of knowledge and comprehension of its existence are still quite enigmatic in unicellular organisms. We use Chlamydomonas (Chlamydomonas reinhardtii) to lay the foundation for understanding the mechanisms of programmed cell death (PCD) in a unicellular photosynthetic organism. In this paper, we show that while PCD induces the death of a proportion of cells, it allows the survival of the remaining population. A quantitative proteomic analysis aiming at unveiling the proteome of PCD in Chlamydomonas allowed us to identify key proteins that led to the discovery of essential mechanisms. We show that in Chlamydomonas, PCD relies on the light dependence of a photosynthetic organism to generate reactive oxygen species and induce cell death. Finally, we obtained and characterized mutants for the 2 metacaspase genes in Chlamydomonas and showed that a type II metacaspase is essential for PCD execution.
Collapse
Affiliation(s)
- Lou Lambert
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Félix de Carpentier
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin 91190, France
| | - Phuc André
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Christophe H Marchand
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Paris F-75005, France
| | - Antoine Danon
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| |
Collapse
|
33
|
Findinier J, Joubert LM, Schmid MF, Malkovskiy A, Chiu W, Burlacot A, Grossman AR. Dramatic Changes in Mitochondrial Subcellular Location and Morphology Accompany Activation of the CO 2 Concentrating Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586705. [PMID: 38585955 PMCID: PMC10996633 DOI: 10.1101/2024.03.25.586705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization appears to be a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae Chlamydomonas reinhardtii to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO2 (HC) and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Andrey Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
35
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
36
|
Strenkert D, Schmollinger S, Paruthiyil S, Brown BC, Green S, Shafer CM, Salomé P, Nelson H, Blaby-Haas CE, Moseley JL, Merchant SS. Distinct function of Chlamydomonas CTRA-CTR transporters in Cu assimilation and intracellular mobilization. Metallomics 2024; 16:mfae013. [PMID: 38439674 PMCID: PMC10959442 DOI: 10.1093/mtomcs/mfae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1, but not CTR2, recapitulates the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high-affinity Cu(I) uptake. On the other hand, the overaccumulation of Cu(I) (20 times the quota) in zinc (Zn) deficiency depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and consistent with the lower substrate affinity of CTR2. ONE SENTENCE SUMMARY Regulation of Cu uptake and sequestration by members of the CTR family of proteins in Chlamydomonas.
Collapse
Affiliation(s)
- Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Srinand Paruthiyil
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Bonnie C Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Sydnee Green
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Catherine M Shafer
- Molecular Toxicology Inter-departmental Ph.D. program, University of California, Los Angeles, CA 90095, USA
| | - Patrice Salomé
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Hosea Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Crysten E Blaby-Haas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Jing X, Liu Y, Liu X, Zhang Y, Wang G, Yang F, Zhang Y, Chang D, Zhang ZL, You CX, Zhang S, Wang XF. Enhanced photosynthetic efficiency by nitrogen-doped carbon dots via plastoquinone-involved electron transfer in apple. HORTICULTURE RESEARCH 2024; 11:uhae016. [PMID: 38495032 PMCID: PMC10940122 DOI: 10.1093/hr/uhae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
Artificially enhancing photosynthesis is critical for improving crop yields and fruit qualities. Nanomaterials have demonstrated great potential to enhance photosynthetic efficiency; however, the mechanisms underlying their effects are poorly understood. This study revealed that the electron transfer pathway participated in nitrogen-doped carbon dots (N-CDs)-induced photosynthetic efficiency enhancement (24.29%), resulting in the improvements of apple fruit qualities (soluble sugar content: 11.43%) in the orchard. We also found that N-CDs alleviated mterf5 mutant-modulated photosystem II (PSII) defects, but not psa3 mutant-modulated photosystem I (PSI) defects, suggesting that the N-CDs-targeting sites were located between PSII and PSI. Measurements of chlorophyll fluorescence parameters suggested that plastoquinone (PQ), the mobile electron carrier in the photosynthesis electron transfer chain (PETC), was the photosynthesis component that N-CDs targeted. In vitro experiments demonstrated that plastoquinone-9 (PQ-9) could accept electrons from light-excited N-CDs to produce the reduced plastoquinone 9 (PQH2-9). These findings suggested that N-CDs, as electron donors, offer a PQ-9-involved complement of PETC to improve photosynthesis and thereby fruit quality. Our study uncovered a mechanism by which nanomaterials enhanced plant photosynthesis and provided some insights that will be useful in the design of efficient nanomaterials for agricultural/horticultural applications.
Collapse
Affiliation(s)
- Xiuli Jing
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yankai Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Guanzhu Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Fei Yang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yani Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Dayong Chang
- Yantai Goodly Biotechnology Co., Ltd, Yantai 264000, Shandong, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| |
Collapse
|
38
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
39
|
Guo J, Yao Q, Dong J, Hou J, Jia P, Chen X, Li G, Zhao Q, Wang J, Liu F, Wang Z, Shan Y, Zhang T, Fu A, Wang F. Immunophilin FKB20-2 participates in oligomerization of Photosystem I in Chlamydomonas. PLANT PHYSIOLOGY 2024; 194:1631-1645. [PMID: 38039102 DOI: 10.1093/plphys/kiad645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PSI is a sophisticated photosynthesis protein complex that fuels the light reaction of photosynthesis in algae and vascular plants. While the structure and function of PSI have been studied extensively, the dynamic regulation on PSI oligomerization and high light response is less understood. In this work, we characterized a high light-responsive immunophilin gene FKB20-2 (FK506-binding protein 20-2) required for PSI oligomerization and high light tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Biochemical assays and 77-K fluorescence measurement showed that loss of FKB20-2 led to the reduced accumulation of PSI core subunits and abnormal oligomerization of PSI complexes and, particularly, reduced PSI intermediate complexes in fkb20-2. It is noteworthy that the abnormal PSI oligomerization was observed in fkb20-2 even under dark and dim light growth conditions. Coimmunoprecipitation, MS, and yeast 2-hybrid assay revealed that FKB20-2 directly interacted with the low molecular weight PSI subunit PsaG, which might be involved in the dynamic regulation of PSI-light-harvesting complex I supercomplexes. Moreover, abnormal PSI oligomerization caused accelerated photodamage to PSII in fkb20-2 under high light stress. Together, we demonstrated that immunophilin FKB20-2 affects PSI oligomerization probably by interacting with PsaG and plays pivotal roles during Chlamydomonas tolerance to high light.
Collapse
Affiliation(s)
- Jia Guo
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jie Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Pulian Jia
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xueying Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Guoyang Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fang Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Ziyu Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Yuying Shan
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Tengyue Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| |
Collapse
|
40
|
Dennis G, Posewitz MC. Advances in light system engineering across the phototrophic spectrum. FRONTIERS IN PLANT SCIENCE 2024; 15:1332456. [PMID: 38410727 PMCID: PMC10895028 DOI: 10.3389/fpls.2024.1332456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Current work in photosynthetic engineering is progressing along the lines of cyanobacterial, microalgal, and plant research. These are interconnected through the fundamental mechanisms of photosynthesis and advances in one field can often be leveraged to improve another. It is worthwhile for researchers specializing in one or more of these systems to be aware of the work being done across the entire research space as parallel advances of techniques and experimental approaches can often be applied across the field of photosynthesis research. This review focuses on research published in recent years related to the light reactions of photosynthesis in cyanobacteria, eukaryotic algae, and plants. Highlighted are attempts to improve photosynthetic efficiency, and subsequent biomass production. Also discussed are studies on cross-field heterologous expression, and related work on augmented and novel light capture systems. This is reviewed in the context of translatability in research across diverse photosynthetic organisms.
Collapse
Affiliation(s)
- Galen Dennis
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
41
|
Zhang N, Venn B, Bailey CE, Xia M, Mattoon EM, Mühlhaus T, Zhang R. Moderate high temperature is beneficial or detrimental depending on carbon availability in the green alga Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:979-1003. [PMID: 37877811 DOI: 10.1093/jxb/erad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
42
|
Das P, Mekonnen B, Alkhofash R, Ingle AV, Workman EB, Feather A, Zhang G, Chasen N, Liu P, Lechtreck KF. The Small Interactor of PKD2 protein promotes the assembly and ciliary entry of the Chlamydomonas PKD2-mastigoneme complexes. J Cell Sci 2024; 137:jcs261497. [PMID: 38063216 PMCID: PMC10846610 DOI: 10.1242/jcs.261497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
In Chlamydomonas, the channel polycystin 2 (PKD2) is primarily present in the distal region of cilia, where it is attached to the axoneme and mastigonemes, extracellular polymers of MST1. In a smaller proximal ciliary region that lacks mastigonemes, PKD2 is more mobile. We show that the PKD2 regions are established early during ciliogenesis and increase proportionally in length as cilia elongate. In chimeric zygotes, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia, whereas the assembly of the distal region was hindered, suggesting that axonemal binding of PKD2 requires de novo assembly of cilia. We identified the protein Small Interactor of PKD2 (SIP), a PKD2-related, single-pass transmembrane protein, as part of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from the cilia. Like the pkd2 and mst1 mutants, sip mutant cells swam with reduced velocity. Cilia of the pkd2 mutant beat with an increased frequency but were less efficient in moving the cells, suggesting a structural role for the PKD2-SIP-mastigoneme complex in increasing the effective surface of Chlamydomonas cilia.
Collapse
Affiliation(s)
- Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rama Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Abha V. Ingle
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - E. Blair Workman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alec Feather
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gui Zhang
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Nathan Chasen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
43
|
Kafri M, Patena W, Martin L, Wang L, Gomer G, Ergun SL, Sirkejyan AK, Goh A, Wilson AT, Gavrilenko SE, Breker M, Roichman A, McWhite CD, Rabinowitz JD, Cross FR, Wühr M, Jonikas MC. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 2023; 186:5638-5655.e25. [PMID: 38065083 PMCID: PMC10760936 DOI: 10.1016/j.cell.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Collapse
Affiliation(s)
- Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lance Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gillian Gomer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Arthur K Sirkejyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia E Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Asael Roichman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
44
|
Adler L, Lau CS, Shaikh KM, van Maldegem KA, Payne-Dwyer AL, Lefoulon C, Girr P, Atkinson N, Barrett J, Emrich-Mills TZ, Dukic E, Blatt MR, Leake MC, Peltier G, Spetea C, Burlacot A, McCormick AJ, Mackinder LCM, Walker CE. The role of BST4 in the pyrenoid of Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545204. [PMID: 38014171 PMCID: PMC10680556 DOI: 10.1101/2023.06.15.545204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid-membranes called pyrenoid tubules, proposed to deliver CO2. In the model alga Chlamydomonas reinhardtii (Chlamydomonas), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules and heterologous expression of BST4 in Arabidopsis thaliana did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutant did not show impaired growth at air level CO2. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we show that bst4 displays a transiently lower thylakoid lumenal pH during dark to light transition compared to control strains. When acclimated to high light, bst4 had sustained higher NPQ and elevated levels of light-induced H2O2 production. We conclude that BST4 is not a tethering protein, but rather is an ion channel involved in lumenal pH regulation possibly by mediating bicarbonate transport across the pyrenoid tubules.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305 USA
| | - Chun Sing Lau
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Kashif M Shaikh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kim A van Maldegem
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alex L Payne-Dwyer
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Girr
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
| | - James Barrett
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Tom Z Emrich-Mills
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Leake
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Adrien Burlacot
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305 USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
45
|
Caccamo A, Vega de Luna F, Wahni K, Volkov AN, Przybyla-Toscano J, Amelii A, Kriznik A, Rouhier N, Messens J, Remacle C. Ascorbate Peroxidase 2 (APX2) of Chlamydomonas Binds Copper and Modulates the Copper Insertion into Plastocyanin. Antioxidants (Basel) 2023; 12:1946. [PMID: 38001799 PMCID: PMC10669542 DOI: 10.3390/antiox12111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Recent phylogenetic studies have unveiled a novel class of ascorbate peroxidases called "ascorbate peroxidase-related" (APX-R). These enzymes, found in green photosynthetic eukaryotes, lack the amino acids necessary for ascorbate binding. This study focuses on the sole APX-R from Chlamydomonas reinhardtii referred to as ascorbate peroxidase 2 (APX2). We used immunoblotting to locate APX2 within the chloroplasts and in silico analysis to identify key structural motifs, such as the twin-arginine transport (TAT) motif for lumen translocation and the metal-binding MxxM motif. We also successfully expressed recombinant APX2 in Escherichia coli. Our in vitro results showed that the peroxidase activity of APX2 was detected with guaiacol but not with ascorbate as an electron donor. Furthermore, APX2 can bind both copper and heme, as evidenced by spectroscopic, and fluorescence experiments. These findings suggest a potential interaction between APX2 and plastocyanin, the primary copper-containing enzyme within the thylakoid lumen of the chloroplasts. Predictions from structural models and evidence from 1H-NMR experiments suggest a potential interaction between APX2 and plastocyanin, emphasizing the influence of APX2 on the copper-binding abilities of plastocyanin. In summary, our results propose a significant role for APX2 as a regulator in copper transfer to plastocyanin. This study sheds light on the unique properties of APX-R enzymes and their potential contributions to the complex processes of photosynthesis in green algae.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Jonathan Przybyla-Toscano
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Antonello Amelii
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Alexandre Kriznik
- CNRS, IMoPA and IBSLor, Université de Lorraine, F-54000 Nancy, France;
| | | | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| |
Collapse
|
46
|
Strenkert D, Schmollinger S, Paruthiyil S, Brown BC, Green S, Shafer CM, Salomé P, Nelson H, Blaby-Haas CE, Moseley JL, Merchant SS. Distinct function of Chlamydomonas CTRA-CTR transporters in Cu assimilation and intracellular mobilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563170. [PMID: 37905083 PMCID: PMC10614975 DOI: 10.1101/2023.10.19.563170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the unicellular green alga Chlamydomonas reinhardtii , Cu import is dependent on C opper R esponse R egulator 1 (CRR1), the master regulator of Cu homeostasis. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family ( CTR1 and CTR2 ) and a related soluble cysteine-rich protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1 , but not CTR2 , recapitulate the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high affinity Cu(I) uptake. Notably, the over-accumulation of Cu(I) in Zinc (Zn)-deficiency (20 times the quota) depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and is consistent with the lower substrate affinity of CTR2.
Collapse
|
47
|
Das A, Subrahmanian N, Gabilly ST, Andrianova EP, Zhulin IB, Motohashi K, Hamel PP. Two disulfide-reducing pathways are required for the maturation of plastid c-type cytochromes in Chlamydomonas reinhardtii. Genetics 2023; 225:iyad155. [PMID: 37595062 PMCID: PMC10550313 DOI: 10.1093/genetics/iyad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 08/20/2023] Open
Abstract
In plastids, conversion of light energy into ATP relies on cytochrome f, a key electron carrier with a heme covalently attached to a CXXCH motif. Covalent heme attachment requires reduction of the disulfide-bonded CXXCH by CCS5 and CCS4. CCS5 receives electrons from the oxidoreductase CCDA, while CCS4 is a protein of unknown function. In Chlamydomonas reinhardtii, loss of CCS4 or CCS5 yields a partial cytochrome f assembly defect. Here, we report that the ccs4ccs5 double mutant displays a synthetic photosynthetic defect characterized by a complete loss of holocytochrome f assembly. This defect is chemically corrected by reducing agents, confirming the placement of CCS4 and CCS5 in a reducing pathway. CCS4-like proteins occur in the green lineage, and we show that HCF153, a distant ortholog from Arabidopsis thaliana, can substitute for Chlamydomonas CCS4. Dominant suppressor mutations mapping to the CCS4 gene were identified in photosynthetic revertants of the ccs4ccs5 mutants. The suppressor mutations yield changes in the stroma-facing domain of CCS4 that restore holocytochrome f assembly above the residual levels detected in ccs5. Because the CCDA protein accumulation is decreased specifically in the ccs4 mutant, we hypothesize the suppressor mutations enhance the supply of reducing power through CCDA in the absence of CCS5. We discuss the operation of a CCS5-dependent and a CCS5-independent pathway controlling the redox status of the heme-binding cysteines of apocytochrome f.
Collapse
Affiliation(s)
- Ankita Das
- Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
- Molecular Genetics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nitya Subrahmanian
- Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Stéphane T Gabilly
- Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ekaterina P Andrianova
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ken Motohashi
- Department of Frontier Life Sciences, Kyoto Sangyo University, Karigamo Motoyama, Kita-ku, Kyoto 603-8047, Japan
| | - Patrice Paul Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Dupuis S, Merchant SS. Chlamydomonas reinhardtii: a model for photosynthesis and so much more. Nat Methods 2023; 20:1441-1442. [PMID: 37803226 DOI: 10.1038/s41592-023-02023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Affiliation(s)
- Sunnyjoy Dupuis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
49
|
He S, Crans VL, Jonikas MC. The pyrenoid: the eukaryotic CO2-concentrating organelle. THE PLANT CELL 2023; 35:3236-3259. [PMID: 37279536 PMCID: PMC10473226 DOI: 10.1093/plcell/koad157] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The pyrenoid is a phase-separated organelle that enhances photosynthetic carbon assimilation in most eukaryotic algae and the land plant hornwort lineage. Pyrenoids mediate approximately one-third of global CO2 fixation, and engineering a pyrenoid into C3 crops is predicted to boost CO2 uptake and increase yields. Pyrenoids enhance the activity of the CO2-fixing enzyme Rubisco by supplying it with concentrated CO2. All pyrenoids have a dense matrix of Rubisco associated with photosynthetic thylakoid membranes that are thought to supply concentrated CO2. Many pyrenoids are also surrounded by polysaccharide structures that may slow CO2 leakage. Phylogenetic analysis and pyrenoid morphological diversity support a convergent evolutionary origin for pyrenoids. Most of the molecular understanding of pyrenoids comes from the model green alga Chlamydomonas (Chlamydomonas reinhardtii). The Chlamydomonas pyrenoid exhibits multiple liquid-like behaviors, including internal mixing, division by fission, and dissolution and condensation in response to environmental cues and during the cell cycle. Pyrenoid assembly and function are induced by CO2 availability and light, and although transcriptional regulators have been identified, posttranslational regulation remains to be characterized. Here, we summarize the current knowledge of pyrenoid function, structure, components, and dynamic regulation in Chlamydomonas and extrapolate to pyrenoids in other species.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| | - Victoria L Crans
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
50
|
Lau CS, Dowle A, Thomas GH, Girr P, Mackinder LCM. A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii. THE PLANT CELL 2023; 35:3260-3279. [PMID: 37195994 PMCID: PMC10473203 DOI: 10.1093/plcell/koad131] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023]
Abstract
Phase separation underpins many biologically important cellular events such as RNA metabolism, signaling, and CO2 fixation. However, determining the composition of a phase-separated organelle is often challenging due to its sensitivity to environmental conditions, which limits the application of traditional proteomic techniques like organellar purification or affinity purification mass spectrometry to understand their composition. In Chlamydomonas reinhardtii, Rubisco is condensed into a crucial phase-separated organelle called the pyrenoid that improves photosynthetic performance by supplying Rubisco with elevated concentrations of CO2. Here, we developed a TurboID-based proximity labeling technique in which proximal proteins in Chlamydomonas chloroplasts are labeled by biotin radicals generated from the TurboID-tagged protein. By fusing 2 core pyrenoid components with the TurboID tag, we generated a high-confidence pyrenoid proxiome that contains most known pyrenoid proteins, in addition to new pyrenoid candidates. Fluorescence protein tagging of 7 previously uncharacterized TurboID-identified proteins showed that 6 localized to a range of subpyrenoid regions. The resulting proxiome also suggests new secondary functions for the pyrenoid in RNA-associated processes and redox-sensitive iron-sulfur cluster metabolism. This developed pipeline can be used to investigate a broad range of biological processes in Chlamydomonas, especially at a temporally resolved suborganellar resolution.
Collapse
Affiliation(s)
- Chun Sing Lau
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam Dowle
- Department of Biology, University of York, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|