1
|
Wang Y, Di B, Sun Z, Sonali, Donovan-Mak M, Chen ZH, Wang MQ. Multi-Omics and Physiological Analysis Reveal Crosstalk Between Aphid Resistance and Nitrogen Fertilization in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:2024-2039. [PMID: 39545337 DOI: 10.1111/pce.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The availability of nitrogen (N) can dramatically influence crops resistance to herbivorous insects. However, the interaction between N fertilization and crop resistance to insects is not well understood. In this study, the effects of N fertilization on the grain aphid (Sitobion miscanthi) were investigated using three wheat (Triticum aestivum) cultivars with different aphid resistances. We measured aphid life cycle parameters, fecundity, survival rate, weight and feeding behavior, in conjunction with wheat metabolomics, transcriptomics and alien introgression analysis. Our results demonstrated that higher N application benefits aphid feeding across all three wheat cultivars. We also reveal that the highly resistant cultivar (ZM9) can only exert its resistance-advantage under low N fertilization, losing its advantage compared to moderately resistant cultivar YN19 and susceptible cultivar YN23 under higher N fertilization. The effects of N fertilization on wheat-aphid interactions were due to changes in the regulation of carbon and nitrogen metabolism. Integration of multi-omics highlighted specific aphid-induced differentially expressed genes (DEGs, e.g., TUB6, Tubulin 6; ENODL20, Early nodulin-like protein 20; ACT7 Actin 7; Prx47, Peroxidase 47) and significantly different metabolites (SDMs, e.g., crotonoside, guanine, 2'-O-methyladenosine, ferulic acid) in ZM9. Additionally, we report the unique SDMs-DEGs interactions, associated with introgression during wheat domestication, may help infer aphid resistance. In summary, this study provides new insights into the relationships between N fertilization practices, defense responses and integrated pest management for sustainable wheat production.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Bin Di
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sonali
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Spychała J, Noweiska A, Tomkowiak A, Bobrowska R, Szewczyk K, Kwiatek MT. Unraveling Effects of miRNAs Associated with APR Leaf Rust Resistance Genes in Hybrid Forms of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2025; 26:665. [PMID: 39859380 PMCID: PMC11766205 DOI: 10.3390/ijms26020665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The fungus Puccinia triticina Eriks (Pt) is the cause of leaf rust, one of the most damaging diseases, which significantly reduces common wheat yields. In Pt-resistant adult plants, an APR-type resistance is observed, which protects the plant against multiple pathogen races and is distinguished by its persistence under production conditions. With a more complete understanding of the molecular mechanisms underlying the function of APR genes, it will be possible to develop new strategies for resistance breeding in wheat. Currently, mainly APR genes, such as Lr34, Lr46, and Lr67, are principally involved in resistance breeding as they confer durable resistance to multiple fungal races occurring under different climatic and environmental conditions. However, the mechanisms underlying the defence against pathogens mediated by APR genes remain largely unknown. Our research aimed to shed light on the molecular mechanisms related to resistance genes and miRNAs expression, underlying APR resistance to leaf rust caused by Pt. Furthermore, the present study aimed to identify and functionally characterize the investigated miRNAs and their target genes in wheat in response to leaf rust inoculation. The plant material included hybrid forms of wheat from the F2 and BC1F1 generations, obtained by crossing the resistance cultivar Glenlea (CItr 17272) with agriculturally important Polish wheat cultivars. Biotic stress was induced in adult plants via inoculation with Pt fungal spores under controlled conditions. The RT-qPCR method was used to analyze the expression profiles of selected APR genes at five time points (0, 6, 12, 24, and 48 hpi). The results presented here demonstrate the differential expression of APR genes and miRNAs at stages of leaf rust development at selected timepoints after inoculation. We analyzed the expression of three leaf rust resistance genes, using different genetic backgrounds in F2 and BC1F1 segregation materials, in leaf tissues after Pt infection. Our goal was to investigate potential differences resulting from the genetic background found in different generations of hybrid forms of the same parental forms. Gene ontology analysis predicted 190 target genes for tae-miR5384-3p and 167 target genes for tae-miR9653b. Our findings revealed distinct expression profiles for genes, with the highest expression levels observed mainly at 6, 24, and 48 hpi. The candidate gene Lr46-Glu2 displayed an upregulation, suggesting its potential involvement in the immune response against Pt infection.
Collapse
Affiliation(s)
- Julia Spychała
- Plant Breeding and Acclimatization Institute–National Research Institute in Radzików, 05-870 Błonie, Poland;
| | - Aleksandra Noweiska
- Plant Breeding and Acclimatization Institute–National Research Institute in Radzików, 05-870 Błonie, Poland;
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.T.); (R.B.); (K.S.)
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.T.); (R.B.); (K.S.)
| | - Katarzyna Szewczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.T.); (R.B.); (K.S.)
| | - Michał Tomasz Kwiatek
- Plant Breeding and Acclimatization Institute–National Research Institute in Radzików, 05-870 Błonie, Poland;
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.T.); (R.B.); (K.S.)
| |
Collapse
|
4
|
Wang H, Liu Y, Wu L, Xia C, Chen Y, Kong X, Shi F, Li H, Yang X, Ma L, Sun J, Zhang L, Xie Z. TaNPF6.2 improves agronomic traits via enhancing nitrogen uptake efficiency in wheat. J Genet Genomics 2025; 52:120-123. [PMID: 39547548 DOI: 10.1016/j.jgg.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lifen Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaoyu Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Shi
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050000, China
| | - Huili Li
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050000, China
| | - Xifang Yang
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050000, China
| | - Liang Ma
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050000, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Jiao C, Xie X, Hao C, Chen L, Xie Y, Garg V, Zhao L, Wang Z, Zhang Y, Li T, Fu J, Chitikineni A, Hou J, Liu H, Dwivedi G, Liu X, Jia J, Mao L, Wang X, Appels R, Varshney RK, Guo W, Zhang X. Pan-genome bridges wheat structural variations with habitat and breeding. Nature 2025; 637:384-393. [PMID: 39604736 DOI: 10.1038/s41586-024-08277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts1,2. Here we report chromosome-level genome assemblies of 17 wheat cultivars that chronicle the breeding history of China. Comparative genomic analysis uncovered a wealth of structural rearrangements, identifying 249,976 structural variations with 49.03% (122,567) longer than 5 kb. Cultivars developed in 1980s displayed significant accumulations of structural variations, a pattern linked to the extensive incorporation of European and American varieties into breeding programmes of that era. We further proved that structural variations in the centromere-proximal regions are associated with a reduction of crossover events. We showed that common wheat evolved from spring to winter types via mutations and duplications of the VRN-A1 gene as an adaptation strategy to a changing environment. We confirmed shifts in wheat cultivars linked to dietary preferences, migration and cultural integration in Northwest China. We identified large presence or absence variations of pSc200 tandem repeats on the 1RS terminal, suggesting its own rapid evolution in the wheat genome. The high-quality genome assemblies of 17 representatives developed and their good complementarity to the 10+ pan-genomes offer a robust platform for future genomics-assisted breeding in wheat.
Collapse
Affiliation(s)
- Chengzhi Jiao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Yuxin Xie
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vanika Garg
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Li Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yuqi Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Annapurna Chitikineni
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research, the University of Western Australia, Murdoch, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rudi Appels
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, La Trobe University, Bundoora, Victoria, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Zhang Y, Xu Y, Mao Y, Tan X, Tian Y, Ma X, Ji H, Zhang D. Genome-Wide Identification and Expression Analysis of NF-YA Gene Family in the Filling Stage of Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 26:133. [PMID: 39795991 PMCID: PMC11719562 DOI: 10.3390/ijms26010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The NF-YA gene family is a highly conserved transcription factor that plays a crucial role in regulating plant growth, development, and responses to various stresses. Despite extensive studies in multiple plants, there has been a dearth of focused and systematic analysis on NF-YA genes in wheat grains. In this study, we carried out a comprehensive bioinformatics analysis of the NF-YA gene family in wheat, using the latest genomic data from the Chinese Spring. A total of 19 TaNF-YA genes were identified. An analysis of conserved domains, phylogenetic relationships, and gene structure indicated a significant degree of conservation among TaNF-YAs. A gene collinearity analysis demonstrated that fragment duplication was the predominant mechanism driving the amplification of TaNF-YAs. Furthermore, cis-acting elements within the promoters of TaNF-YAs were found to be implicated in grain development. Subsequently, SNP analysis revealed the genetic variation in the NF-YA gene family in different wheat. Moreover, published RNA-seq data were used and RNA-seqs of Pinyu8155, Yaomai30, Yaomai36, and Pinyu8175 were performed to identify TaNF-YAs influencing grain development. Finally, it was found that NF-YAs had no self-activating activity in wheat. This study provides key candidate genes for the exploration of grain development in the wheat filling stage and also lays a foundation for further research on the regulation of starch and protein synthesis and accumulation.
Collapse
Affiliation(s)
- Yang Zhang
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| | - Yanmin Xu
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Yulu Mao
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Xiaodi Tan
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Yuan Tian
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
- Agricultural College, Shanxi Agricultural University, Jinzhong 030810, China
| | - Xiaofei Ma
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| | - Hutai Ji
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| | - Dingyi Zhang
- Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China; (Y.Z.); (Y.X.); (Y.M.); (X.T.); (Y.T.); (D.Z.)
| |
Collapse
|
7
|
Mazumder AK, Budhlakoti N, Kumar M, Pradhan AK, Kumar S, Babu P, Yadav R, Gaikwad KB. Exploring the genetic diversity and population structure of an ancient hexaploid wheat species Triticum sphaerococcum using SNP markers. BMC PLANT BIOLOGY 2024; 24:1188. [PMID: 39695987 DOI: 10.1186/s12870-024-05968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Understanding genetic diversity and population structure is crucial for strategizing and enhancing breeding efficiency. Wheat, a globally cultivated crop, is a significant source of daily calories for humans. To overcome challenges such as extreme climatic fluctuations, stagnant yields, and diminishing genetic variation, it is essential to develop diverse germplasms with new alleles. Triticum sphaerococcum, an underutilized ancient hexaploid wheat species, shows promise for contributing beneficial alleles. However, the genetic diversity of its germplasms remains unstudied. This is the first report where we have examined the genetic diversity and population structure of 116 T. sphaerococcum accessions using a 35 K SNP Array. The objective of this study is to apply these findings to improve wheat breeding programs. RESULTS Analysis of the population's genetic structure identified four potential subpopulations, which was supported by principal coordinate analysis. Allele neutrality tests showed an abundance of intermediate genotypes, suggesting that many beneficial alleles are maintained through balancing selection. Among the three subgenomes, subgenome B exhibited the highest genetic diversity. AMOVA (Analysis of Molecular Variance) revealed significant variation both among (35%) and within (65%) the four subpopulations. The high genetic differentiation between subpopulations was corroborated by a moderate level of haploid migrant numbers (Nm = 1.286), indicating sufficient gene flow. SP4 emerged as the most diverse subpopulation, showing the highest values for allelic pattern indices due to its larger size and higher percentage of polymorphic loci. The D subgenome displayed a faster linkage disequilibrium (LD) decay rate compared to the A and B subgenomes. Haplotype block analysis identified 260 haplotype blocks of varying sizes distributed across the genome. CONCLUSIONS This research demonstrates that Indian dwarf wheat accessions, sourced from three distinct gene banks and local collections, possess considerable genetic diversity. These germplasm collections offer valuable opportunities to investigate their unexplored genetic potential. They can be utilized in wheat improvement initiatives to tackle both present and future breeding challenges. Furthermore, these accessions can introduce new alleles to broaden the genetic base of modern wheat varieties, enhancing their overall diversity.
Collapse
Affiliation(s)
- Amit Kumar Mazumder
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Manjeet Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anjan Kumar Pradhan
- School of Plant, Environmental and Soil Science, LSU AgCenter, Louisiana State University, Baton Rouge, USA
| | - Sundeep Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Prashanth Babu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kiran B Gaikwad
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
8
|
Liu Y, Yu R, Shen L, Sun M, Peng Y, Zeng Q, Shen K, Yu X, Wu H, Ye B, Wang Z, Sun Z, Liu D, Sun X, Zhang Z, Dong J, Dong J, Han D, He Z, Hao Y, Wu J, Guo Z. Genomic insights into the modifications of spike morphology traits during wheat breeding. PLANT, CELL & ENVIRONMENT 2024; 47:5470-5482. [PMID: 39205629 DOI: 10.1111/pce.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Over the past century, environmental changes have significantly impacted wheat spike morphology, crucial for adaptation and grain yield. However, the changes in wheat spike modifications during this period remain largely unknown. This study examines 16 spike morphology traits in 830 accessions released from 1900 to 2020. It finds that spike weight, grain number per spike (GN), and thousand kernel weight have significantly increased, while spike length has no significant change. The increase in fertile spikelets is due to fewer degenerated spikelets, resulting in a higher GN. Genome-wide association studies identified 49,994 significant SNPs, grouped into 293 genomic regions. The accumulation of favorable alleles in these genomic regions indicates the genetic basis for modification in spike morphology traits. Genetic network analysis of these genomic regions reveals the genetic basis for phenotypic correlations among spike morphology traits. The haplotypes of the identified genomic regions display obvious geographical differentiation in global accessions and environmental adaptation over the past 120 years. In summary, we reveal the genetic basis of adaptive evolution and the interactions of spike morphology, offering valuable resources for the genetic improvement of spike morphology to enhance environmental adaptation.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rui Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanchun Peng
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiweng Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Danning Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Sun
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Dong
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Du L, Yu M, Wang Q, Ma Z, Li S, Ding L, Li F, Zheng W, Wang X, Mao H. The ABF transcription factor TaABF2 interacts with TaSnRK2s to ameliorate drought tolerance in wheat. J Genet Genomics 2024; 51:1521-1524. [PMID: 39396743 DOI: 10.1016/j.jgg.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Linying Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiannan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenbing Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shumin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangfang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojing Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Guan Y, Wang K, Zhao J, Miao X, Li X, Song P, Hu H, Zhang S, Li C. Genome-wide identification of TaeGRASs responsive to biotic stresses and functional analysis of TaeSCL6 in wheat resistance to powdery mildew. BMC Genomics 2024; 25:1149. [PMID: 39604842 PMCID: PMC11603631 DOI: 10.1186/s12864-024-11041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Powdery mildew is a devastating fungal disease that poses a significant threat to wheat yield and quality worldwide. Identifying resistance genes is highly advantageous for the molecular breeding of resistant cultivars. GRAS proteins are important transcription factors that regulate plant development and stress responses. Nonetheless, their roles in wheat-pathogen interactions remain poorly understood. RESULTS In this study, we used bioinformatics tools to identify and analyze wheat GRAS family genes responsive to biotic stresses and elucidated the function of TaeSCL6 within this family. A total of 179 GRAS genes in wheat were unevenly distributed on 7 chromosomes, and classified into 12 subfamilies based on phylogenetic relationship analysis. Gene duplication analysis revealed 13 pairs of tandem repeats and 142 pairs of segmental duplications, which may account for the rapid expansion of the wheat GRAS family. Expression pattern analysis revealed that 75% of the expressed TaeGRAS genes are responsive to biotic stresses. Few studies have focused on the roles of HAM subfamily genes. Consequently, we concentrated our analysis on the members of the HAM subfamily. Fourteen motifs were identified in the HAM family proteins from both Triticeae species and Arabidopsis, indicating that these motifs were highly conserved during evolution. Promoter analysis indicated that the promoters of HAM genes contain several cis-regulatory elements associated with hormone response, stress response, light response, and growth and development. Both qRT-PCR and RNA-seq data analyses demonstrated that TaeSCL6 responds to Blumeria graminis infection. Therefore, we investigated the role of TaeSCL6 in regulating wheat resistance via RNA interference and barley stripe mosaic virus induced gene silencing. Wheat plants with silenced TaeSCL6 exhibited increased susceptibility to powdery mildew. CONCLUSIONS In summary, this study not only validates the positive role of TaeSCL6 in wheat resistance to powdery mildew, but also provides candidate gene resources for future breeding of disease-resistance wheat cultivars.
Collapse
Affiliation(s)
- Yuanyuan Guan
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Kaige Wang
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangyang Miao
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangyang Li
- Budweiser (Henan) Beer Co., Ltd, Xinxiang, China
| | - Puwen Song
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Shengli Zhang
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Chengwei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
11
|
Wu H, Yu H, Zhang Y, Yang B, Sun W, Ren L, Li Y, Li Q, Liu B, Ding Y, Zhang H. Unveiling RNA structure-mediated regulations of RNA stability in wheat. Nat Commun 2024; 15:10042. [PMID: 39567481 PMCID: PMC11579497 DOI: 10.1038/s41467-024-54172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Despite the critical role of mRNA stability in post-transcriptional gene regulation, research on this topic in wheat, a vital agricultural crop, remains unclear. Our study investigated the mRNA decay landscape of durum wheat (Triticum turgidum L. ssp. durum, BBAA), revealing subgenomic asymmetry in mRNA stability and its impact on steady-state mRNA abundance. Our findings indicate that the 3' UTR structure and homoeolog preference for RNA structural motifs can influence mRNA stability, leading to subgenomic RNA decay imbalance. Furthermore, single-nucleotide variations (SNVs) selected for RNA structural motifs during domestication can cause variations in subgenomic mRNA stability and subsequent changes in steady-state expression levels. Our research on the transcriptome stability of polyploid wheat highlights the regulatory role of non-coding region structures in mRNA stability, and how domestication shaped RNA structure, altering subgenomic mRNA stability. These results illustrate the importance of RNA structure-mediated post-transcriptional gene regulation in wheat and pave the way for its potential use in crop improvement.
Collapse
Affiliation(s)
- Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Haopeng Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yueying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lanying Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yuchen Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Qianqian Li
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
12
|
Chen J, Chen Y, Watson-Lazowski A, Hawkins E, Barclay JE, Fahy B, Denley Bowers R, Corbin K, Warren FJ, Blennow A, Uauy C, Seung D. Wheat MYOSIN-RESEMBLING CHLOROPLAST PROTEIN controls B-type starch granule initiation timing during endosperm development. PLANT PHYSIOLOGY 2024; 196:1980-1996. [PMID: 39158075 PMCID: PMC11531834 DOI: 10.1093/plphys/kiae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Molecular factors that contribute to the diverse spatial and temporal patterns of starch granule initiation between species and organs are poorly understood. Wheat (Triticum sp.) endosperm contains both large A-type granules initiated during early grain development and small B-type granules that initiate about 10 to 15 days later. Here, we identify that the MYOSIN-RESEMBLING CHLOROPLAST PROTEIN (MRC) is required for the correct timing of B-type granule initiation in wheat endosperm during grain development. MRC is expressed in the endosperm exclusively in early grain development, before B-type granule initiation. We isolated three independent TILLING mutants of tetraploid wheat (Triticum turgidum cv. 'Kronos') with premature stop or missense mutations in the A-genome homeolog, which we showed to be the only active homeolog in tetraploid wheat due to a disruption of the B-genome homeolog. The mrc mutants had significantly smaller A-type granules and a higher relative volume of B-type granules in the endosperm than the wild type. Whereas B-type granules initiated 15 to 20 days post-anthesis (dpa) in the wild type, they appeared as early as 10 dpa in the mrc-1 mutant. These results suggest a temporal role for MRC in repressing B-type granule initiation, providing insight into how the distinct biochemical mechanisms that control A- and B-type granule initiation are regulated. This role of MRC in the wheat endosperm is distinct from the previously described role of Arabidopsis (Arabidopsis thaliana) MRC in promoting granule initiation in leaves, providing an example of functional diversification among granule initiation proteins.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yi Chen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alexander Watson-Lazowski
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Harper Adams University, Newport TF10 8NB, UK
| | - Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Kendall Corbin
- Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | - Andreas Blennow
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 1871, Denmark
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
13
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024; 17:1672-1686. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Lv FH, Wang DF, Zhao SY, Lv XY, Sun W, Nielsen R, Li MH. Deep Ancestral Introgressions between Ovine Species Shape Sheep Genomes via Argali-Mediated Gene Flow. Mol Biol Evol 2024; 41:msae212. [PMID: 39404100 PMCID: PMC11542629 DOI: 10.1093/molbev/msae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Previous studies revealed extensive genetic introgression between Ovis species, which affects genetic adaptation and morphological traits. However, the exact evolutionary scenarios underlying the hybridization between sheep and allopatric wild relatives remain unknown. To address this problem, we here integrate the reference genomes of several ovine and caprine species: domestic sheep, argali, bighorn sheep, snow sheep, and domestic goats. Additionally, we use 856 whole genomes representing 169 domestic sheep populations and their six wild relatives: Asiatic mouflon, urial, argali, snow sheep, thinhorn sheep, and bighorn sheep. We implement a comprehensive set of analyses to test introgression among these species. We infer that the argali lineage originated ∼3.08 to 3.35 Mya and hybridized with the ancestor of Pachyceriforms (e.g. bighorn sheep and snow sheep) at ∼1.56 Mya. Previous studies showed apparent introgression from North American Pachyceriforms into the Bashibai sheep, a Chinese native sheep breed, despite of their wide geographic separation. We show here that, in fact, the apparent introgression from the Pachyceriforms into Bashibai can be explained by the old introgression from Pachyceriforms into argali and subsequent recent introgression from argali into Bashibai. Our results illustrate the challenges of estimating complex introgression histories and provide an example of how indirect and direct introgression can be distinguished.
Collapse
Affiliation(s)
- Feng-Hua Lv
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Si-Yi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiao-Yang Lv
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Wei Sun
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Statistics, UC Berkeley, Berkeley, CA 94707, USA
- Globe Institute, University of Copenhagen, Copenhagen 1350, Denmark
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Bartolić P, Morgan EJ, Padilla-García N, Kolář F. Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow. ANNALS OF BOTANY 2024; 134:537-550. [PMID: 38868992 PMCID: PMC11523636 DOI: 10.1093/aob/mcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
Collapse
Affiliation(s)
- Paolo Bartolić
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
16
|
Huang J, Jia Y, Pan Y, Lin H, Lv S, Nawaz M, Song B, Nie X. Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat. PLANT CELL REPORTS 2024; 43:254. [PMID: 39373738 DOI: 10.1007/s00299-024-03339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.
Collapse
Affiliation(s)
- Jiaqian Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Yanze Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuzuo Lv
- Luoyang Academy of Agriculture and Forestry Science, Luoyang Key Laboratory of Crop Molecular Biology and Germplasm Enhancement, Luoyang, 471000, Henan, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Zhang Z, Zhang J, Kang L, Qiu X, Xu S, Xu J, Guo Y, Niu Z, Niu B, Bi A, Zhao X, Xu D, Wang J, Yin C, Lu F. Structural variation discovery in wheat using PacBio high-fidelity sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:687-698. [PMID: 39239888 DOI: 10.1111/tpj.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Structural variations (SVs) pervade plant genomes and contribute substantially to the phenotypic diversity. However, most SVs were ineffectively assayed due to their complex nature and the limitations of early genomic technologies. By applying the PacBio high-fidelity (HiFi) sequencing for wheat genomes, we performed a comprehensive evaluation of mainstream long-read aligners and SV callers in SV detection. The results indicated that the accuracy of deletion discovery is markedly influenced by callers, accounting for 87.73% of the variance, whereas both aligners (38.25%) and callers (49.32%) contributed substantially to the accuracy variance for insertions. Among the aligners, Winnowmap2 and NGMLR excelled in detecting deletions and insertions, respectively. For SV callers, SVIM achieved the best performance. We demonstrated that combining the aligners and callers mentioned above is optimal for SV detection. Furthermore, we evaluated the effect of sequencing depth on the accuracy of SV detection, revealing that low-coverage HiFi sequencing is sufficiently robust for high-quality SV discovery. This study thoroughly evaluated SV discovery approaches and established optimal workflows for investigating structural variations using low-coverage HiFi sequencing in the wheat genome, which will advance SV discovery and decipher the biological functions of SVs in wheat and many other plants.
Collapse
Affiliation(s)
- Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelin Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beirui Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daxing Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Heuberger M, Bernasconi Z, Said M, Jung E, Herren G, Widrig V, Šimková H, Keller B, Sánchez-Martín J, Wicker T. Analysis of a global wheat panel reveals a highly diverse introgression landscape and provides evidence for inter-homoeologue chromosomal recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:236. [PMID: 39340575 PMCID: PMC11438656 DOI: 10.1007/s00122-024-04721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE This study highlights the agronomic potential of rare introgressions, as demonstrated by a major QTL for powdery mildew resistance on chromosome 7D. It further shows evidence for inter-homoeologue recombination in wheat. Agriculturally important genes are often introgressed into crops from closely related donor species or landraces. The gene pool of hexaploid bread wheat (Triticum aestivum) is known to contain numerous such "alien" introgressions. Recently established high-quality reference genome sequences allow prediction of the size, frequency and identity of introgressed chromosome regions. Here, we characterise chromosomal introgressions in bread wheat using exome capture data from the WHEALBI collection. We identified 24,981 putative introgression segments of at least 2 Mb across 434 wheat accessions. Detailed study of the most frequent introgressions identified T. timopheevii or its close relatives as a frequent donor species. Importantly, 118 introgressions of at least 10 Mb were exclusive to single wheat accessions, revealing that large populations need to be studied to assess the total diversity of the wheat pangenome. In one case, a 14 Mb introgression in chromosome 7D, exclusive to cultivar Pamukale, was shown by QTL mapping to harbour a recessive powdery mildew resistance gene. We identified multiple events where distal chromosomal segments of one subgenome were duplicated in the genome and replaced the homoeologous segment in another subgenome. We propose that these examples are the results of inter-homoeologue recombination. Our study produced an extensive catalogue of the wheat introgression landscape, providing a resource for wheat breeding. Of note, the finding that the wheat gene pool contains numerous rare, but potentially important introgressions and chromosomal rearrangements has implications for future breeding.
Collapse
Affiliation(s)
- Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, Giza, Egypt
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain
| | - Hana Šimková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain.
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Sertse D, Fetene A, Leon J, You FM, Cloutier S, McCartney CA. Tracing post-domestication historical events and screening pre-breeding germplasm from large gene pools in wheat in the absence of phenotype data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:237. [PMID: 39340687 DOI: 10.1007/s00122-024-04738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Wheat, particularly common wheat (Triticum aestivum L.), is a major crop accounting for 25% of the world cereal production and thriving in diverse ecogeographic regions. Its adaptation to diverse environments arises from its three distinct genomes adapted to different environments and post-domestication anthropogenic interventions. In search of key genomic regions revealing historic events and breeding significance to common wheat, we performed genome scan and genome-environment association (GEA) analyses using high-marker density genotype datasets. Whole-genome scans revealed highly differentiated regions on chromosomes 2A, 3B, and 4A. In-depth analyses corroborated our previous prediction of the 4A differentiated region signifying the separation between Spelt/Macha and other wheat types. Individual chromosome scans captured key introgressions, including one from T. timopheevii and one from Thinopyrum ponticum on 2B and 3D, respectively, as well as known genes such as Vrn-A1 on 5A. GEA highlighted loci linked to latitude-induced environmental variations, influencing traits such as photoperiodism and responses to abiotic stress. Variation at the Vrn-A1 locus on 5A assigned accessions to two haplotypes (6% and 94%). Further analysis on Vrn-A1 coding gene revealed four subgroups of the major haplotype, while the minor haplotype remained undifferentiated. Analyses at differentiated loci mostly dichotomized the population, illustrating the possibility of isolating pre-breeding materials with desirable traits from large gene pools in the absence of phenotype data. Given the current availability of broad genetic data, the genome-scan-GEA hybrid can be an efficient and cost-effective approach for pinpointing environmentally resilient pre-breeding germplasm from vast gene pools, including gene banks regardless of trait characterization.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Aramde Fetene
- Department of Environmental Planning and Landscape Design, EiABC, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jen Leon
- Department of Plant Breeding, University of Bonn, Bonn, Germany
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
20
|
Brazier T, Glémin S. Diversity in Recombination Hotspot Characteristics and Gene Structure Shape Fine-Scale Recombination Patterns in Plant Genomes. Mol Biol Evol 2024; 41:msae183. [PMID: 39302634 DOI: 10.1093/molbev/msae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
During the meiosis of many eukaryote species, crossovers tend to occur within narrow regions called recombination hotspots. In plants, it is generally thought that gene regulatory sequences, especially promoters and 5' to 3' untranslated regions, are enriched in hotspots, but this has been characterized in a handful of species only. We also lack a clear description of fine-scale variation in recombination rates within genic regions and little is known about hotspot position and intensity in plants. To address this question, we constructed fine-scale recombination maps from genetic polymorphism data and inferred recombination hotspots in 11 plant species. We detected gradients of recombination in genic regions in most species, yet gradients varied in intensity and shape depending on specific hotspot locations and gene structure. To further characterize recombination gradients, we decomposed them according to gene structure by rank and number of exons. We generalized the previously observed pattern that recombination hotspots are organized around the boundaries of coding sequences, especially 5' promoters. However, our results also provided new insight into the relative importance of the 3' end of genes in some species and the possible location of hotspots away from genic regions in some species. Variation among species seemed driven more by hotspot location among and within genes than by differences in size or intensity among species. Our results shed light on the variation in recombination rates at a very fine scale, revealing the diversity and complexity of genic recombination gradients emerging from the interaction between hotspot location and gene structure.
Collapse
Affiliation(s)
- Thomas Brazier
- Unité Mixte de Recherche (UMR) 6553 - ECOBIO (Ecosystems, Biodiversity, Evolution), University of Rennes, CNRS, Rennes, France
| | - Sylvain Glémin
- Unité Mixte de Recherche (UMR) 6553 - ECOBIO (Ecosystems, Biodiversity, Evolution), University of Rennes, CNRS, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Yang B, Zhou X, Liu S. Tracing the genealogy origin of geographic populations based on genomic variation and deep learning. Mol Phylogenet Evol 2024; 198:108142. [PMID: 38964594 DOI: 10.1016/j.ympev.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Assigning a query individual animal or plant to its derived population is a prime task in diverse applications related to organismal genealogy. Such endeavors have conventionally relied on short DNA sequences under a phylogenetic framework. These methods naturally show constraints when the inferred population sources are ambiguously phylogenetically structured, a scenario demanding substantially more informative genetic signals. Recent advances in cost-effective production of whole-genome sequences and artificial intelligence have created an unprecedented opportunity to trace the population origin for essentially any given individual, as long as the genome reference data are comprehensive and standardized. Here, we developed a convolutional neural network method to identify population origins using genomic SNPs. Three empirical datasets (an Asian honeybee, a red fire ant, and a chicken datasets) and two simulated populations are used for the proof of concepts. The performance tests indicate that our method can accurately identify the genealogy origin of query individuals, with success rates ranging from 93 % to 100 %. We further showed that the accuracy of the model can be significantly increased by refining the informative sites through FST filtering. Our method is robust to configurations related to batch sizes and epochs, whereas model learning benefits from the setting of a proper preset learning rate. Moreover, we explained the importance score of key sites for algorithm interpretability and credibility, which has been largely ignored. We anticipate that by coupling genomics and deep learning, our method will see broad potential in conservation and management applications that involve natural resources, invasive pests and weeds, and illegal trades of wildlife products.
Collapse
Affiliation(s)
- Bing Yang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Cavalet-Giorsa E, González-Muñoz A, Athiyannan N, Holden S, Salhi A, Gardener C, Quiroz-Chávez J, Rustamova SM, Elkot AF, Patpour M, Rasheed A, Mao L, Lagudah ES, Periyannan SK, Sharon A, Himmelbach A, Reif JC, Knauft M, Mascher M, Stein N, Chayut N, Ghosh S, Perovic D, Putra A, Perera AB, Hu CY, Yu G, Ahmed HI, Laquai KD, Rivera LF, Chen R, Wang Y, Gao X, Liu S, Raupp WJ, Olson EL, Lee JY, Chhuneja P, Kaur S, Zhang P, Park RF, Ding Y, Liu DC, Li W, Nasyrova FY, Dvorak J, Abbasi M, Li M, Kumar N, Meyer WB, Boshoff WHP, Steffenson BJ, Matny O, Sharma PK, Tiwari VK, Grewal S, Pozniak CJ, Chawla HS, Ens J, Dunning LT, Kolmer JA, Lazo GR, Xu SS, Gu YQ, Xu X, Uauy C, Abrouk M, Bougouffa S, Brar GS, Wulff BBH, Krattinger SG. Origin and evolution of the bread wheat D genome. Nature 2024; 633:848-855. [PMID: 39143210 PMCID: PMC11424481 DOI: 10.1038/s41586-024-07808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.
Collapse
Affiliation(s)
- Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea González-Muñoz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samuel Holden
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Adil Salhi
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Catherine Gardener
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Samira M Rustamova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Ahmed Fawzy Elkot
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- International Maize and Wheat Improvement Centre (CIMMYT), c/o CAAS, Beijing, China
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
| | - Sambasivam K Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
- Centre for Crop Health School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Amir Sharon
- Institute for Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Noam Chayut
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Dragan Perovic
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Alexander Putra
- Bioscience Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ana B Perera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chia-Yi Hu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guotai Yu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre d'anthropobiologie et de génomique de Toulouse (CAGT), Laboratoire d'Anthropobiologie et d'Imagerie de Synthèse, CNRS UMR 5288, Faculté de Médecine de Purpan, Toulouse, France
| | - Konstanze D Laquai
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis F Rivera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Renjie Chen
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - W John Raupp
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Eric L Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Robert F Park
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Yi Ding
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Deng-Cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Firuza Y Nasyrova
- Institute of Botany, Plant Physiology and Genetics, Tajik National Academy of Sciences, Dushanbe, Tajikistan
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mehrdad Abbasi
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Meng Li
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Naveen Kumar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Wilku B Meyer
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Surbhi Grewal
- Nottingham Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Harmeet Singh Chawla
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Ens
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Steven S Xu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Xianyang Xu
- Peanut and Small Grains Research Unit, USDA-ARS, Stillwater, OK, USA
| | | | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
23
|
Zheng D, Lin K, Yang X, Zhang W, Cheng X. Functional Characterization of Accessible Chromatin in Common Wheat. Int J Mol Sci 2024; 25:9384. [PMID: 39273331 PMCID: PMC11395023 DOI: 10.3390/ijms25179384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Eukaryotic gene transcription is fine-tuned by precise spatiotemporal interactions between cis-regulatory elements (CREs) and trans-acting factors. However, how CREs individually or coordinated with epigenetic marks function in regulating homoeolog bias expression is still largely unknown in wheat. In this study, through comprehensively characterizing open chromatin coupled with DNA methylation in the seedling and spikelet of common wheat, we observed that differential chromatin openness occurred between the seedling and spikelet, which plays important roles in tissue development through regulating the expression of related genes or through the transcription factor (TF)-centered regulatory network. Moreover, we found that CHH methylation may act as a key determinant affecting the differential binding of TFs, thereby resulting in differential expression of target genes. In addition, we found that sequence variations in MNase hypersensitive sites (MHSs) result in the differential expression of key genes responsible for important agronomic traits. Thus, our study provides new insights into the roles of CREs in regulating tissue or homoeolog bias expression, and controlling important agronomic traits in common wheat. It also provides potential CREs for genetic and epigenetic manipulation toward improving desirable traits for wheat molecule breeding.
Collapse
Affiliation(s)
- Dongyang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Kande Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xueming Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| |
Collapse
|
24
|
Yang Y, Guo Y, Wang J, Cheng W, Lyu M, Wang Q, Wu J, Hua M, Zhang W, Sun D, Ge X, Yao X, Chen R. Genome-wide association study and selective sweep analysis uncover candidate genes controlling curd branch length in cauliflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:209. [PMID: 39196430 DOI: 10.1007/s00122-024-04719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Cauliflower is a distinct subspecies of the Brassica oleracea plants due to its specialized and edible floral organ. Cauliflower curd is composed of enlarged inflorescence meristems that developed by a series of precise molecular regulations. Based solely on the curd solidity, cauliflower is generally classified into two groups (compact-curd and loose-curd), where curd branch length acts as a crucial parameter to determine the curd morphological difference. Herein, to understand the genetic basis of curd branch development, we utilized a total of 298 inbred lines representing two groups of cauliflower to comprehensively investigate the causal genes and regulatory mechanisms. Phylogenetic and population structure analyses revealed that two subgroups could be further categorized into the compact-curd and the loose-curd groups, respectively. Integrating the genotype and phenotype data, we conducted a genome-wide association study for the length of the outermost branch (LOB) and secondary branch (LSB) of the curd. Sixty-four significant loci were identified that are highly associated with curd branch development. Evidence from genome-wide selective sweep analysis (FST and XP-EHH) narrowed down the major signal on chromosome 8 into an approximately 79 kb region which encodes eleven protein-coding genes. After further analysis of haplotypes, transcriptome profiling, and gene expression validation, we finally inferred that BOB08G028680, as a homologous counterpart of AtARR9, might be the causal gene for simultaneously regulating LOB and LSB traits in cauliflower. This result provides valuable information for improving curd solidity in future cauliflower breeding.
Collapse
Affiliation(s)
- Yingxia Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutong Guo
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Qian Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jianjin Wu
- Tianjin Agricultural Development Service Center, Tianjin, 300061, China
| | - Mingyan Hua
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Weihua Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
25
|
Guo Y, Kang L, Lu F. Genetic insights into adaptation of alfalfa. MOLECULAR PLANT 2024; 17:1170-1171. [PMID: 38944682 DOI: 10.1016/j.molp.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Affiliation(s)
- Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Tong J, Zhao C, Liu D, Jambuthenne DT, Sun M, Dinglasan E, Periyannan SK, Hickey LT, Hayes BJ. Genome-wide atlas of rust resistance loci in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:179. [PMID: 38980436 PMCID: PMC11233289 DOI: 10.1007/s00122-024-04689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.
Collapse
Affiliation(s)
- Jingyang Tong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Cong Zhao
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Liu
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mengjing Sun
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Agriculture and Environmental Science and Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
27
|
Chen J, Zhang Y, Wei J, Hu X, Yin H, Liu W, Li D, Tian W, Hao Y, He Z, Fernie AR, Chen W. Beyond pathways: Accelerated flavonoids candidate identification and novel exploration of enzymatic properties using combined mapping populations of wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2033-2050. [PMID: 38408119 PMCID: PMC11182594 DOI: 10.1111/pbi.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Although forward-genetics-metabolomics methods such as mGWAS and mQTL have proven effective in providing myriad loci affecting metabolite contents, they are somehow constrained by their respective constitutional flaws such as the hidden population structure for GWAS and insufficient recombinant rate for QTL. Here, the combination of mGWAS and mQTL was performed, conveying an improved statistical power to investigate the flavonoid pathways in common wheat. A total of 941 and 289 loci were, respectively, generated from mGWAS and mQTL, within which 13 of them were co-mapped using both approaches. Subsequently, the mGWAS or mQTL outputs alone and their combination were, respectively, utilized to delineate the metabolic routes. Using this approach, we identified two MYB transcription factor encoding genes and five structural genes, and the flavonoid pathway in wheat was accordingly updated. Moreover, we have discovered some rare-activity-exhibiting flavonoid glycosyl- and methyl-transferases, which may possess unique biological significance, and harnessing these novel catalytic capabilities provides potentially new breeding directions. Collectively, we propose our survey illustrates that the forward-genetics-metabolomics approaches including multiple populations with high density markers could be more frequently applied for delineating metabolic pathways in common wheat, which will ultimately contribute to metabolomics-assisted wheat crop improvement.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Yazhouwan National LaboratorySanyaChina
| | - Yueqi Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Jiaqi Wei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Wuhan Academy of Agricultural SciencesWuhanChina
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Wenfei Tian
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfeng Hao
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
28
|
Niu J, Wang W, Wang Z, Chen Z, Zhang X, Qin Z, Miao L, Yang Z, Xie C, Xin M, Peng H, Yao Y, Liu J, Ni Z, Sun Q, Guo W. Tagging large CNV blocks in wheat boosts digitalization of germplasm resources by ultra-low-coverage sequencing. Genome Biol 2024; 25:171. [PMID: 38951917 PMCID: PMC11218387 DOI: 10.1186/s13059-024-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.
Collapse
Affiliation(s)
- Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Zhang Z, Liu D, Li B, Wang W, Zhang J, Xin M, Hu Z, Liu J, Du J, Peng H, Hao C, Zhang X, Ni Z, Sun Q, Guo W, Yao Y. A k-mer-based pangenome approach for cataloging seed-storage-protein genes in wheat to facilitate genotype-to-phenotype prediction and improvement of end-use quality. MOLECULAR PLANT 2024; 17:1038-1053. [PMID: 38796709 DOI: 10.1016/j.molp.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Wheat is a staple food for more than 35% of the world's population, with wheat flour used to make hundreds of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-gene families and are repetitive, with gaps commonplace in several genome assemblies. To overcome these barriers and efficiently identify superior wheat SSP alleles, we developed "PanSK" (Pan-SSP k-mer) for genotype-to-phenotype prediction based on an SSP-based pangenome resource. PanSK uses 29-mer sequences that represent each SSP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars. Genome-wide association studies with k-mers identified 23 SSP genes associated with end-use quality that represent novel targets for improvement. We evaluated the effect of rye secalin genes on end-use quality and found that removal of ω-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality. Finally, using machine-learning-based prediction inspired by PanSK, we predicted the quality phenotypes with high accuracy from genotypes alone. This study provides an effective approach for genome design based on SSP genes, enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.
Collapse
Affiliation(s)
- Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Binyong Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jize Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Dong T, Su J, Li H, Du Y, Wang Y, Chen P, Duan H. Genome-Wide Identification of the WRKY Gene Family in Four Cotton Varieties and the Positive Role of GhWRKY31 in Response to Salt and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1814. [PMID: 38999654 PMCID: PMC11243856 DOI: 10.3390/plants13131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
The WRKY gene family is ubiquitously distributed in plants, serving crucial functions in stress responses. Nevertheless, the structural organization and evolutionary dynamics of WRKY genes in cotton have not been fully elucidated. In this study, a total of 112, 119, 217, and 222 WRKY genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. These 670 WRKY genes were categorized into seven distinct subgroups and unequally distributed across chromosomes. Examination of conserved motifs, domains, cis-acting elements, and gene architecture collectively highlighted the evolutionary conservation and divergence within the WRKY gene family in cotton. Analysis of synteny and collinearity further confirmed instances of expansion, duplication, and loss events among WRKY genes during cotton evolution. Furthermore, GhWRKY31 transgenic Arabidopsis exhibited heightened germination rates and longer root lengths under drought and salt stress. Silencing GhWRKY31 in cotton led to reduced levels of ABA, proline, POD, and SOD, along with downregulated expression of stress-responsive genes. Yeast one-hybrid and molecular docking assays confirmed the binding capacity of GhWRKY31 to the W box of GhABF1, GhDREB2, and GhRD29. The findings collectively offer a systematic and comprehensive insight into the evolutionary patterns of cotton WRKYs, proposing a suitable regulatory framework for developing cotton cultivars with enhanced resilience to drought and salinity stress.
Collapse
Affiliation(s)
- Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Haoyuan Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yajie Du
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Peilei Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
31
|
Ziv A, Kashkush K. Transcriptome variations in hybrids of wild emmer wheat (Triticum turgidum ssp. dicoccoides). BMC PLANT BIOLOGY 2024; 24:571. [PMID: 38886665 PMCID: PMC11184805 DOI: 10.1186/s12870-024-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wild emmer wheat is a great candidate to revitalize domesticated wheat genetic diversity. Recent years have seen intensive investigation into the evolution and domestication of wild emmer wheat, including whole-genome DNA and transcriptome sequencing. However, the impact of intraspecific hybridization on the transcriptome of wild emmer wheat has been poorly studied. In this study, we assessed changes in methylation patterns and transcriptomic variations in two accessions of wild emmer wheat collected from two marginal populations, Mt. Hermon and Mt. Amasa, and in their stable F4 hybrid. RESULTS Methylation-Sensitive Amplified Polymorphism (MSAP) detected significant cytosine demethylation in F4 hybrids vs. parental lines, suggesting potential transcriptome variation. After a detailed analysis, we examined nine RNA-Seq samples, which included three biological replicates from the F4 hybrid and its parental lines. RNA-Seq databases contained approximately 200 million reads, with each library consisting of 15 to 25 million reads. There are a total of 62,490 well-annotated genes in these databases, with 6,602 genes showing differential expression between F4 hybrid and parental lines Mt. Hermon and Mt. Amasa. The differentially expressed genes were classified into four main categories based on their expression patterns. Gene ontology (GO) analysis revealed that differentially expressed genes are associated with DNA/RNA metabolism, photosynthesis, stress response, phosphorylation and developmental processes. CONCLUSION This study highlights the significant transcriptomic changes resulting from intraspecific hybridization within natural plant populations, which might aid the nascent hybrid in adapting to various environmental conditions.
Collapse
Affiliation(s)
- Alon Ziv
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| |
Collapse
|
32
|
Wang M, Cheng J, Wu J, Chen J, Liu D, Wang C, Ma S, Guo W, Li G, Di D, Zhang Y, Han D, Kronzucker HJ, Xia G, Shi W. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits. Nat Genet 2024; 56:1257-1269. [PMID: 38802564 DOI: 10.1038/s41588-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Jie Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jiefei Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Chenyang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Weiwei Guo
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Yumei Zhang
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Herbert J Kronzucker
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P. R. China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, P. R. China
| |
Collapse
|
33
|
Lang J, Jiang H, Cheng M, Wang M, Gu J, Dong H, Li M, Guo X, Chen Q, Wang J. Variation of TaMyb10 and their function on grain color and pre-harvest sprouting resistance of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1388-1399. [PMID: 38407913 DOI: 10.1111/tpj.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Pre-harvest sprouting (PHS) is a significant threat to global food security due to its association with losses in both yield and quality. Among the genes involved in PHS resistance in wheat, PHS-3D (TaMyb10-D) plays a crucial role. Here, we characterized the sequence variations of TaMyb10 genes in 416 bread wheat and 302 Aegilops tauschii accessions. Within TaMyb10-A sequences, we identified a deletion ranging from 214 to 305 bp in the signal and amino acid coding region, present in 61.3% of the accessions. Similarly, 79.3% of the TaMyb10-B sequences within the third exon region exhibited a 19 bp deletion. Additionally, 40.8% of the accessions lacked the 2.4 Mb fragment (in/del mutations) on Chr3D, where TaMyb10-D/PHS-3D was located. Interestingly, the geographical distribution of accessions showed little correlation with the divergence of TaMyb10. TaMyb10-A-IIIDele, TaMyb10-B-IVDele, and TaMyb10-D-VDele genotypes were prevalent in wheat populations across continents. Despite their structural variations, the five distinct protein types exhibited comparable ability to bind the promoters of downstream genes in the flavonoid and ABA pathways, such as CHS, DFR, and NCED. Furthermore, the combination of TaMyb10 homologs was significantly associated with grain color and germination percentages. Accessions exclusively harboring TaMyb10-D displayed red seed color and reduced germination percentages, indicating the predominant role of TaMyb10-D compared to TaMyb10-A and TaMyb10-B. This comprehensive investigation enhances our understanding of the structural variations and functional divergence of TaMyb10, providing valuable insights and resources for improving PHS resistance in wheat.
Collapse
Affiliation(s)
- Jing Lang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huayu Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwei Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - XiaoJiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
34
|
Hu X, Yasir M, Zhuo Y, Cai Y, Ren X, Rong J. Genomic insights into glume pubescence in durum wheat: GWAS and haplotype analysis implicates TdELD1-1A as a candidate gene. Gene 2024; 909:148309. [PMID: 38417687 DOI: 10.1016/j.gene.2024.148309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Glume pubescence is an important morphological trait for the characterization of wheat cultivars. It shows tolerance to biotic and abiotic stresses to some extent. Hg1 (formerly named Hg) locus on chromosome 1AS controls glume pubescence in wheat. Its genetic analysis, fine-mapping and candidate gene analysis have been widely studied recently, however, the cloning of Hg1 has not yet been reported. Here, we conducted a GWAS between a dense panel of 171,103 SNPs and glume pubescence (Gp) in a durum wheat population of 145 lines, and further analyzed the candidate genes of Hg1 combined with the gene expression, functional annotation, and haplotype analysis. As a results, TRITD0Uv1G104670 (TdELD1-1A), encoding glycosyltransferase-like ELD1/KOBITO 1, was detected as the most promising candidate gene of Hg1 for glume pubescence in durum wheat. Our findings not only contribute to a deeper understanding of its cloning and functional validation but also underscore the significance of accurate genome sequences and annotations. Additionally, our study highlights the relevance of unanchored sequences in chrUn and the application of bioinformatics analysis for gene discovery in durum wheat.
Collapse
Affiliation(s)
- Xin Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Yujie Zhuo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Yijing Cai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
35
|
Xu X, Li G, Bai G, Bian R, Bernardo A, Wolabu TW, Carver BF, Wu Y, Elliott N. Characterization of a new greenbug resistance gene Gb9 in a synthetic hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:140. [PMID: 38780770 DOI: 10.1007/s00122-024-04650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Greenbug [Schizaphis graminum (Rondani)] is a serious insect pest that not only damages cereal crops, but also transmits several destructive viruses. The emergence of new greenbug biotypes in the field makes it urgent to identify novel greenbug resistance genes in wheat. CWI 76364 (PI 703397), a synthetic hexaploid wheat (SHW) line, exhibits greenbug resistance. Evaluation of an F2:3 population from cross OK 14319 × CWI 76364 indicated that a dominant gene, designated Gb9, conditions greenbug resistance in CWI 76364. Selective genotyping of a subset of F2 plants with contrasting phenotypes by genotyping-by-sequencing identified 25 SNPs closely linked to Gb9 on chromosome arm 7DL. Ten of these SNPs were converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers for genotyping the entire F2 population. Genetic analysis delimited Gb9 to a 0.6-Mb interval flanked by KASP markers located at 599,835,668 bp (Stars-KASP872) and 600,471,081 bp (Stars-KASP881) on 7DL. Gb9 was 0.5 cM distal to Stars-KASP872 and 0.5 cM proximal to Stars-KASP881. Allelism tests indicated that Gb9 is a new greenbug resistance gene which confers resistance to greenbug biotypes C, E, H, I, and TX1. TX1 is one of the most widely virulent biotypes and has overcome most known wheat greenbug resistance genes. The introgression of Gb9 into locally adapted wheat cultivars is of economic importance, and the KASP markers developed in this study can be used to tag Gb9 in cultivar development.
Collapse
Affiliation(s)
- Xiangyang Xu
- Peanut and Small Grains Research Unit, USDA-ARS, Stillwater, OK, 74075, USA.
| | - Genqiao Li
- Peanut and Small Grains Research Unit, USDA-ARS, Stillwater, OK, 74075, USA
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| | - Ruolin Bian
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| | - Tezera W Wolabu
- Plant and Soil Science Department, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Brett F Carver
- Plant and Soil Science Department, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Yanqi Wu
- Plant and Soil Science Department, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Norman Elliott
- Peanut and Small Grains Research Unit, USDA-ARS, Stillwater, OK, 74075, USA
| |
Collapse
|
36
|
Wang Y, Wang Z, Chen Y, Lan T, Wang X, Liu G, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Guo W, Peng H. Genomic insights into the origin and evolution of spelt (Triticum spelta L.) as a valuable gene pool for modern wheat breeding. PLANT COMMUNICATIONS 2024; 5:100883. [PMID: 38491771 PMCID: PMC11121738 DOI: 10.1016/j.xplc.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Spelt (Triticum aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource. However, relatively little is known about the origins and maintenance of spelt populations. Here, using resequencing data from 416 worldwide wheat accessions, including representative spelt wheat, we demonstrate that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We propose a haplotype-based "spelt index" to identify spelt-type wheat varieties and to quantify utilization of the spelt gene pool in modern wheat cultivars. This study reveals the genetic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.
Collapse
Affiliation(s)
- Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Tianyu Lan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Institute for Plant Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Gang Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Lu Q, Zhao H, Zhang Z, Bai Y, Zhao H, Liu G, Liu M, Zheng Y, Zhao H, Gong H, Chen L, Deng X, Hong X, Liu T, Li B, Lu P, Wen F, Wang L, Li Z, Li H, Li H, Zhang L, Ma W, Liu C, Bai Y, Xin B, Chen J, E L, Lai J, Song W. Genomic variation in weedy and cultivated broomcorn millet accessions uncovers the genetic architecture of agronomic traits. Nat Genet 2024; 56:1006-1017. [PMID: 38658793 DOI: 10.1038/s41588-024-01718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.
Collapse
Affiliation(s)
- Qiong Lu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Hainan Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China
| | - Zhengquan Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Yuhe Bai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China
| | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yunxiao Zheng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Haiyue Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Huihui Gong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Lingwei Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Xizhen Deng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Xiangde Hong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Tianxiang Liu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Baichuan Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Ping Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Feng Wen
- Tongliao Agricultural and Animal Husbandry Research Institute, Tongliao, People's Republic of China
| | - Lun Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Zhijiang Li
- Institute of Crop Resources Research, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hai Li
- High Latitude Crops Institute, Shanxi Agricultural University, Datong, People's Republic of China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China
| | - Like Zhang
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Wenhui Ma
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Chunqing Liu
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Yan Bai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Lizhu E
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China.
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China.
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
38
|
Gao W, Zhang L, Zhang Y, Zhang P, Shahinnia F, Chen T, Yang D. Genome‑wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:341. [PMID: 38671351 PMCID: PMC11047035 DOI: 10.1186/s12870-024-05042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.
Collapse
Affiliation(s)
- Weidong Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Long Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fahimeh Shahinnia
- Bioanalytics Gatersleben, Am Schwabenplan 1b, Seeland, 06466, Germany
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
39
|
Du H, Liu Z, Lu SY, Jiang L, Zhou L, Liu JF. Genomic evidence for human-mediated introgressive hybridization and selection in the developed breed. BMC Genomics 2024; 25:331. [PMID: 38565992 PMCID: PMC10986048 DOI: 10.1186/s12864-024-10259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Shi-Yu Lu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China.
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
40
|
Cao J, Qin Z, Cui G, Chen Z, Cheng X, Peng H, Yao Y, Hu Z, Guo W, Ni Z, Sun Q, Xin M. Natural variation of STKc_GSK3 kinase TaSG-D1 contributes to heat stress tolerance in Indian dwarf wheat. Nat Commun 2024; 15:2097. [PMID: 38453935 PMCID: PMC10920922 DOI: 10.1038/s41467-024-46419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.
Collapse
Affiliation(s)
- Jie Cao
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Guangxian Cui
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhaoyan Chen
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Xuejiao Cheng
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
41
|
Coombes B, Lux T, Akhunov E, Hall A. Introgressions lead to reference bias in wheat RNA-seq analysis. BMC Biol 2024; 22:56. [PMID: 38454464 PMCID: PMC10921782 DOI: 10.1186/s12915-024-01853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND RNA-seq is a fundamental technique in genomics, yet reference bias, where transcripts derived from non-reference alleles are quantified less accurately, can undermine the accuracy of RNA-seq quantification and thus the conclusions made downstream. Reference bias in RNA-seq analysis has yet to be explored in complex polyploid genomes despite evidence that they are often a complex mosaic of wild relative introgressions, which introduce blocks of highly divergent genes. RESULTS Here we use hexaploid wheat as a model complex polyploid, using both simulated and experimental data to show that RNA-seq alignment in wheat suffers from widespread reference bias which is largely driven by divergent introgressed genes. This leads to underestimation of gene expression and incorrect assessment of homoeologue expression balance. By incorporating gene models from ten wheat genome assemblies into a pantranscriptome reference, we present a novel method to reduce reference bias, which can be readily scaled to capture more variation as new genome and transcriptome data becomes available. CONCLUSIONS This study shows that the presence of introgressions can lead to reference bias in wheat RNA-seq analysis. Caution should be exercised by researchers using non-sample reference genomes for RNA-seq alignment and novel methods, such as the one presented here, should be considered.
Collapse
Affiliation(s)
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Anthony Hall
- Earlham Institute, Norwich, Norfolk, NR4 7UZ, UK.
| |
Collapse
|
42
|
Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. MOLECULAR PLANT 2024; 17:438-459. [PMID: 38310351 DOI: 10.1016/j.molp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.
Collapse
Affiliation(s)
- Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoyu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Lu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
43
|
Chen Y, Wang W, Yang Z, Peng H, Ni Z, Sun Q, Guo W. Innovative computational tools provide new insights into the polyploid wheat genome. ABIOTECH 2024; 5:52-70. [PMID: 38576428 PMCID: PMC10987449 DOI: 10.1007/s42994-023-00131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 04/06/2024]
Abstract
Bread wheat (Triticum aestivum) is an important crop and serves as a significant source of protein and calories for humans, worldwide. Nevertheless, its large and allopolyploid genome poses constraints on genetic improvement. The complex reticulate evolutionary history and the intricacy of genomic resources make the deciphering of the functional genome considerably more challenging. Recently, we have developed a comprehensive list of versatile computational tools with the integration of statistical models for dissecting the polyploid wheat genome. Here, we summarize the methodological innovations and applications of these tools and databases. A series of step-by-step examples illustrates how these tools can be utilized for dissecting wheat germplasm resources and unveiling functional genes associated with important agronomic traits. Furthermore, we outline future perspectives on new advanced tools and databases, taking into consideration the unique features of bread wheat, to accelerate genomic-assisted wheat breeding.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
44
|
Yan M, Li M, Wang Y, Wang X, Moeinzadeh MH, Quispe-Huamanquispe DG, Fan W, Fang Y, Wang Y, Nie H, Wang Z, Tanaka A, Heider B, Kreuze JF, Gheysen G, Wang H, Vingron M, Bock R, Yang J. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. MOLECULAR PLANT 2024; 17:277-296. [PMID: 38155570 DOI: 10.1016/j.molp.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/10/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The hexaploid sweetpotato (Ipomoea batatas) is one of the most important root crops worldwide. However, its genetic origin remains controversial, and its domestication history remains unknown. In this study, we used a range of genetic evidence and a newly developed haplotype-based phylogenetic analysis to identify two probable progenitors of sweetpotato. The diploid progenitor was likely closely related to Ipomoea aequatoriensis and contributed the B1 subgenome, IbT-DNA2, and the lineage 1 type of chloroplast genome to sweetpotato. The tetraploid progenitor of sweetpotato was most likely I. batatas 4x, which donated the B2 subgenome, IbT-DNA1, and the lineage 2 type of chloroplast genome. Sweetpotato most likely originated from reciprocal crosses between the diploid and tetraploid progenitors, followed by a subsequent whole-genome duplication. In addition, we detected biased gene exchanges between the subgenomes; the rate of B1 to B2 subgenome conversions was nearly three times higher than that of B2 to B1 subgenome conversions. Our analyses revealed that genes involved in storage root formation, maintenance of genome stability, biotic resistance, sugar transport, and potassium uptake were selected during the speciation and domestication of sweetpotato. This study sheds light on the evolution of sweetpotato and paves the way for improvement of this crop.
Collapse
Affiliation(s)
- Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ming Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Yunze Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyi Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - M-Hossein Moeinzadeh
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | | | - Weijuan Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yijie Fang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuqin Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haozhen Nie
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | - Hongxia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
45
|
Bi C, Wei C, Li J, Wen S, Zhao H, Yu J, Shi X, Zhang Y, Liu Q, Zhang Y, Li B, You M. A novel variation of TaGW2-6B increases grain weight without penalty in grain protein content in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:15. [PMID: 38362529 PMCID: PMC10864231 DOI: 10.1007/s11032-024-01455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Yield and quality are two crucial breeding objects of wheat therein grain weight and grain protein content (GPC) are two key relevant factors correspondingly. Investigations of their genetic mechanisms represent special significance for breeding. In this study, 199 F2 plants and corresponding F2:3 families derived from Nongda3753 (ND3753) and its EMS-generated mutant 564 (M564) were used to investigate the genetic basis of larger grain and higher GPC of M564. QTL analysis identified a total of 33 environmentally stable QTLs related to thousand grain weight (TGW), grain area (GA), grain circle (GC), grain length (GL), grain width (GW), and GPC on chromosomes 1B, 2A, 2B, 4D, 6B, and 7D, respectively, among which QGw.cau-6B.1, QTgw.cau-6B.1, QGa.cau-6B.1, and QGc.cau-6B.1 shared overlap confidence interval on chromosome 6B. This interval contained the TaGW2 gene playing the same role as the QTLs, so TaGW2-6B was cloned and sequenced. Sequence alignment revealed two G/A SNPs between two parents, among which the SNP in the seventh exon led to a premature termination in M564. A KASP marker was developed based on the SNP, and single-marker analysis on biparental populations showed that the mutant allele could significantly increase GW and TGW, but had no effect on GPC. Distribution detection of the mutant allele through KASP marker genotyping and sequence alignment against databases ascertained that no materials harbored this allele within natural populations. This allele was subsequently introduced into three different varieties through molecular marker-assisted backcrossing, and it was revealed that the allele had a significant effect on simultaneously increasing GW, TGW, and even GPC in all of three backgrounds. Summing up the above, it could be concluded that a novel elite allele of TaGW2-6B was artificially created and might play an important role in wheat breeding for high yield and quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01455-y.
Collapse
Affiliation(s)
- Chan Bi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Chaoxiong Wei
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jinghui Li
- Wheat Center, Henan Institute of Science and Technology, Henan Provincial Key Laboratory of Hybrid Wheat, Xinxiang, 453003 China
| | - Shaozhe Wen
- Department of Landscape and Garden, Yangzhou Polytechnic College, Yangzhou, 225009 China
| | - Huanhuan Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jiazheng Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xintian Shi
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yuan Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Qiaofeng Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yufeng Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Baoyun Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
46
|
Zhang Z, Zhao J, Li J, Yao J, Wang B, Ma Y, Li N, Wang H, Wang T, Liu B, Gong L. Evolutionary trajectory of organelle-derived nuclear DNAs in the Triticum/Aegilops complex species. PLANT PHYSIOLOGY 2024; 194:918-935. [PMID: 37847157 PMCID: PMC10828211 DOI: 10.1093/plphys/kiad552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Organelle-derived nuclear DNAs, nuclear plastid DNAs (NUPTs), and nuclear mitochondrial DNAs (NUMTs) have been identified in plants. Most, if not all, genes residing in NUPTs/NUMTs (NUPGs/NUMGs) are known to be inactivated and pseudogenized. However, the role of epigenetic control in silencing NUPGs/NUMGs and the dynamic evolution of NUPTs/NUMTs with respect to organismal phylogeny remain barely explored. Based on the available nuclear and organellar genomic resources of wheat (genus Triticum) and goat grass (genus Aegilops) within Triticum/Aegilops complex species, we investigated the evolutionary fates of NUPTs/NUMTs in terms of their epigenetic silencing and their dynamic occurrence rates in the nuclear diploid genomes and allopolyploid subgenomes. NUPTs and NUMTs possessed similar genomic atlas, including (i) predominantly located in intergenic regions and preferential integration to gene regulation regions and (ii) generating sequence variations in the nuclear genome. Unlike nuclear indigenous genes, the alien NUPGs/NUMGs were associated with repressive epigenetic signals, namely high levels of DNA methylation and low levels of active histone modifications. Phylogenomic analyses suggested that the species-specific and gradual accumulation of NUPTs/NUMTs accompanied the speciation processes. Moreover, based on further pan-genomic analyses, we found significant subgenomic asymmetry in the NUPT/NUMT occurrence, which accumulated during allopolyploid wheat evolution. Our findings provide insight into the dynamic evolutionary fates of organelle-derived nuclear DNA in plants.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun 130033, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
47
|
Zhang L, Sun W, Gao W, Zhang Y, Zhang P, Liu Y, Chen T, Yang D. Genome-wide identification and analysis of the GGCT gene family in wheat. BMC Genomics 2024; 25:32. [PMID: 38177998 PMCID: PMC10768367 DOI: 10.1186/s12864-023-09934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND γ-glutamylcyclotransferase (GGCT), an enzyme to maintain glutathione homeostasis, plays a vital role in the response to plant growth and development as well as the adaptation to various stresses. Although the GGCT gene family analysis has been conducted in Arabidopsis and rice, the family genes have not yet been well identified and analyzed at the genome-wide level in wheat (Triticum aestivum L.). RESULTS In the present study, 20 TaGGCT genes were identified in the wheat genome and widely distributed on chromosomes 2A, 2B, 2D, 3A, 4A, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D. Phylogenetic and structural analyses showed that these TaGGCT genes could be classified into three subfamilies: ChaC, GGGACT, and GGCT-PS. They exhibited similar motif compositions and distribution patterns in the same subgroup. Gene duplication analysis suggested that the expansion of TaGGCT family genes was facilitated by segmental duplications and tandem repeats in the wheat evolutionary events. Identification of diverse cis-acting response elements in TaGGCT promoters indicated their potential fundamental roles in response to plant development and abiotic stresses. The analysis of transcriptome data combined with RT-qPCR results revealed that the TaGGCTs genes exhibited ubiquitous expression across plant organs, with highly expressed in roots, stems, and developing grains. Most TaGGCT genes were up-regulated after 6 h under 20% PEG6000 and ABA treatments. Association analysis revealed that two haplotypes of TaGGCT20 gene displayed significantly different Thousand-kernel weight (TKW), Kernel length (KL), and Kernel width (KW) in wheat. The geographical and annual distribution of the two haplotypes of TaGGCT20 gene further revealed that the frequency of the favorable haplotype TaGGCT20-Hap-I was positively selected in the historical breeding process of wheat. CONCLUSION This study investigated the genome-wide identification, structure, evolution, and expression analysis of TaGGCT genes in wheat. The motifs of TaGGCTs were highly conserved throughout the evolutionary history of wheat. Most TaGGCT genes were highly expressed in roots, stems, and developing grains, and involved in the response to drought stresses. Two haplotypes were developed in the TaGGCT20 gene, where TaGGCT20-Hap-I, as a favorable haplotype, was significantly associated with higher TKW, KL, and KW in wheat, suggesting that the haplotype is used as a function marker for the selection in grain yield in wheat breeding.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Wanting Sun
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Weidong Gao
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
| | - Yuan Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
48
|
Zhang J, Zhang Z, Zhang R, Yang C, Zhang X, Chang S, Chen Q, Rossi V, Zhao L, Xiao J, Xin M, Du J, Guo W, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:200-215. [PMID: 37752705 PMCID: PMC10754016 DOI: 10.1111/pbi.14180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.
Collapse
Affiliation(s)
- Jianing Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Ruijie Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiaobang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Siyuan Chang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
49
|
Zaman Z, Iqbal R, Jabbar A, Zahra N, Saleem B, Kiran A, Maqbool S, Rasheed A, Naeem MK, Khan MR. Genetic Signature Controlling Root System Architecture in Diverse Spring Wheat Germplasm. PHYSIOLOGIA PLANTARUM 2024; 176:e14183. [PMID: 38343301 DOI: 10.1111/ppl.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024]
Abstract
Roots are the main sensing organ, initiating multiple signaling pathways in response to abiotic factors, including nutrients, drought, and salt stress. A focus on improving the root system architecture is a key strategy to mitigate these stresses in wheat crop. In the present study, a diversity panel comprising indigenous landraces and historical cultivars from Pakistan was characterized for the root system architecture (RSA) and important loci were identified using a genome-wide association study (GWAS). RSA of the diversity panel was characterized 30 days after sowing in brunch tubes, and root images were taken. A high-throughput root imaging analysis using Rhizovision software was performed by setting the scale to extract the eight RSA traits and four plant biomass-related traits. GWAS identified 323 association signals for 12 root and biomass traits present on all wheat chromosomes, while the most important and reliable genetic loci (based on pleotropic loci and candidate genes) were identified on chromosomes 2A, 2B, 5A, 5D, 6A, 7B, and 7D for RSA. SNP annotation and transcriptome profiling identified nine candidate genes regulating the RSA and plant biomass traits, including ROOTLESS WITH UNDETECTABLE MERISTEM1, MYB TRANSCRIPTION FACTOR4, BRASSINOSTEROID INSENSITIVE1, SLENDER RICE1, AUXIN-RESPONSIVE FACTOR25, SCARECROW, NARROW LEAF2, PIN-FORMED1 AND PHOSPHATE TRANSCRIPTION FACTOR1. This study provided pre-breeding information for deep-rooting genotypes and associated markers that will accelerate the incorporation of such traits in breeding.
Collapse
Affiliation(s)
- Zahra Zaman
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Rubab Iqbal
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Botany, University of Agriculture, Faisalabad
| | - Abdul Jabbar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Pakistan
| | - Nageen Zahra
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Bilal Saleem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Aysha Kiran
- Department of Botany, University of Agriculture, Faisalabad
| | - Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
50
|
Zhang H, Jin Z, Cui F, Zhao L, Zhang X, Chen J, Zhang J, Li Y, Li Y, Niu Y, Zhang W, Gao C, Fu X, Tong Y, Wang L, Ling HQ, Li J, Xiao J. Epigenetic modifications regulate cultivar-specific root development and metabolic adaptation to nitrogen availability in wheat. Nat Commun 2023; 14:8238. [PMID: 38086830 PMCID: PMC10716289 DOI: 10.1038/s41467-023-44003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Jin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CICMCP, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China.
| | - Junming Li
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China.
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, China.
| |
Collapse
|