1
|
Ding C, Chen G, Luan S, Gao R, Fan Y, Zhang Y, Wang X, Li G, Foda MF, Yan J, Li X. Simultaneous profiling of chromatin-associated RNA at targeted DNA loci and RNA-RNA Interactions through TaDRIM-seq. Nat Commun 2025; 16:1500. [PMID: 39929795 PMCID: PMC11811046 DOI: 10.1038/s41467-024-53534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/09/2024] [Indexed: 02/13/2025] Open
Abstract
Eukaryotic genomes are extensively transcribed into various types of RNAs, many of which are physically associated with chromatin in cis at their transcription sites or in trans to other genomic loci. Emerging roles have been uncovered for these chromatin-associated RNAs (caRNAs) in gene regulation and genome organization, yet they remain challenging to interrogate. Here, we present TaDRIM-seq, a technique employing Protein G (PG)-Tn5-targeted DNA elements and in situ proximity ligation to concurrently probe caRNAs across diverse genomic regions as well as global RNA-RNA interactions within intact nuclei. Notably, this approach diminishes required cell inputs, minimizes hands-on time compared to established methodologies, and is compatible in both mammalian cells and plants. Using this technique, we identify extensive caRNAs at DNA anchor regions associated with chromatin loops and reveal diurnal variation in RNA-DNA and RNA-RNA connectivity networks within rice.
Collapse
Affiliation(s)
- Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Shiping Luan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Runxin Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yudong Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Mohamed F Foda
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh13736, Egypt
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Li J, Xu S, Liu Z, Yang L, Ming Z, Zhang R, Zhao W, Peng H, Quinn JJ, Wu M, Geng Y, Zhang Y, He J, Chen M, Li N, Shao NY, Ma Q. A noncanonical role of roX RNAs in autosomal epigenetic repression. Nat Commun 2025; 16:155. [PMID: 39747148 PMCID: PMC11696496 DOI: 10.1038/s41467-024-55711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs). We observed that roX RNAs colocalize with MSL proteins on the X chromosome and PRC components on autosomes. Intriguingly, loss of roX function reduces X-chromosomal H4K16ac levels and autosomal H3K27me3 levels. Correspondingly, X-linked genes display reduced expression, whereas many autosomal genes exhibit elevated expression upon roX loss. Our findings propose a dual role for roX RNAs: activators of X-linked genes and repressors of autosomal genes, achieved through interactions with MSL and PRC complexes, respectively. This study uncovers the unconventional epigenetic repressive function of roX RNAs with PRC interaction.
Collapse
Affiliation(s)
- Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jeffrey J Quinn
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yushan Geng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuying Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiazhi He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minghai Chen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Shu X, Kato M, Takizawa S, Suzuki Y, Carninci P. RADIP technology comprehensively identifies H3K27me3-associated RNA-chromatin interactions. Nucleic Acids Res 2024; 52:e104. [PMID: 39558168 DOI: 10.1093/nar/gkae1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
Many RNAs associate with chromatin, either directly or indirectly. Several technologies for mapping regions where RNAs interact across the genome have been developed to investigate the function of these RNAs. Obtaining information on the proteins involved in these RNA-chromatin interactions is critical for further analysis. Here, we developed RADIP [RNA and DNA interacting complexes ligated and sequenced (RADICL-seq) with immunoprecipitation], a novel technology that combines RADICL-seq technology with chromatin immunoprecipitation to characterize RNA-chromatin interactions mediated by individual proteins. Building upon the foundational principles of RADICL-seq, RADIP extends its advantages by increasing genomic coverage and unique mapping rate efficiency compared to existing methods. To demonstrate its effectiveness, we applied an anti-H3K27me3 antibody to the RADIP technology and generated libraries from mouse embryonic stem cells (mESCs). We identified a multitude of RNAs, including RNAs from protein-coding genes and non-coding RNAs, that are associated with chromatin via H3K27me3 and that likely facilitate the spread of Polycomb repressive complexes over broad regions of the mammalian genome, thereby affecting gene expression, chromatin structures and pluripotency of mESCs. Our study demonstrates the applicability of RADIP to investigations of the functions of chromatin-associated RNAs.
Collapse
Affiliation(s)
- Xufeng Shu
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaki Kato
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Takizawa
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Human Technopole, Milan 20157, Italy
| |
Collapse
|
4
|
Gao L, Li S, Chang HS, Kim YJ. Sequencing CURLY LEAF-associated RNAs in Arabidopsis revealed prevalent intergenic RNAs from the nuclear mitochondrial sequence. Mol Cells 2024; 47:100131. [PMID: 39427743 PMCID: PMC11605418 DOI: 10.1016/j.mocell.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Polycomb group (PcG) proteins play key roles in development by repressing thousands of targets through histone modifications. However, how PcG is recruited to specific targets is poorly understood. In Arabidopsis, certain noncoding RNAs are necessary for recruiting the PcG protein CURLY LEAF (CLF) to its target sites. However, RNAs associated with CLF have not been analyzed on a genomic scale; thus, it is unknown whether long noncoding RNA (lncRNA)-mediated PcG recruitment is a widespread mechanism. Here, we systematically searched for CLF-associated RNAs by RNA immunoprecipitation followed by deep sequencing. We identified 1,299 genic and 138 intergenic regions that produced CLF-associated mRNAs and putative lncRNAs, respectively. The genes producing CLF-associated RNAs are depleted in PcG targets, carry active chromatin marks, and are highly expressed, suggesting that CLF may have a nonspecific or promiscuous RNA-binding affinity, similar to animal PcG proteins. Notably, a significant portion of the CLF-associated lncRNAs is derived from the nuclear mitochondrial sequence, which is extensively marked by H3K27me3. These findings indicate that, while CLF-RNA interactions are widespread, they may not always correlate with PcG target sites, highlighting the complexity of PcG recruitment mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shengben Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hyun Suh Chang
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Fosseprez O, Cuvier O. Uncovering the functions and mechanisms of regulatory elements-associated non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195059. [PMID: 39226990 DOI: 10.1016/j.bbagrm.2024.195059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Over the past decade, regulatory non-coding RNAs (ncRNAs) produced by RNA Pol II have been revealed as meaningful players in various essential cellular functions. In particular, thousands of ncRNAs are produced at transcriptional regulatory elements such as enhancers and promoters, where they may exert multiple functions to regulate proper development, cellular programming, transcription or genomic stability. Here, we review the mechanisms involving these regulatory element-associated ncRNAs, and particularly enhancer RNAs (eRNAs) and PROMoter uPstream Transcripts (PROMPTs). We contextualize the mechanisms described to the processing and degradation of these short lived RNAs. We summarize recent findings explaining how ncRNAs operate locally at promoters and enhancers, or further away, either shortly after their production by RNA Pol II, or through post-transcriptional stabilization. Such discoveries lead to a converging model accounting for how ncRNAs influence cellular fate, by acting on transcription and chromatin structure, which may further involve factors participating to 3D nuclear organization.
Collapse
Affiliation(s)
- Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| |
Collapse
|
6
|
Soota D, Saravanan B, Mann R, Kharbanda T, Notani D. RNA fine-tunes estrogen receptor-alpha binding on low-affinity DNA motifs for transcriptional regulation. EMBO J 2024; 43:5186-5210. [PMID: 39284910 PMCID: PMC11535219 DOI: 10.1038/s44318-024-00225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding with varying strengths to DNA via their DNA-binding domain. Additionally, some TFs also interact with RNA, which modulates transcription factor binding to chromatin. However, whether RNA-mediated TF binding results in differential transcriptional outcomes remains unknown. In this study, we demonstrate that estrogen receptor α (ERα), a ligand-activated TF, interacts with RNA in a ligand-dependent manner. Defects in RNA binding lead to genome-wide loss of ERα recruitment, particularly at weaker ERα-motifs. Furthermore, ERα mobility in the nucleus increases in the absence of its RNA-binding capacity. Unexpectedly, this increased mobility coincides with robust polymerase loading and transcription of ERα-regulated genes that harbor low-strength motifs. However, highly stable binding of ERα on chromatin negatively impacts ligand-dependent transcription. Collectively, our results suggest that RNA interactions spatially confine ERα on low-affinity sites to fine-tune gene transcription.
Collapse
Affiliation(s)
- Deepanshu Soota
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Bharath Saravanan
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
- SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Rajat Mann
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Tripti Kharbanda
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Dimple Notani
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
7
|
Lee Y, Lee JT. PRC2-RNA interactions: Viewpoint from YongWoo Lee and Jeannie T. Lee. Mol Cell 2024; 84:3586-3592. [PMID: 39366347 DOI: 10.1016/j.molcel.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Here, we expound on the view that Xist RNA directly controls Polycomb repressive complex 2 (PRC2) recruitment, off-loading to chromatin, catalytic activity, and eviction from chromatin. RNA-PRC2 interactions also control RNA polymerase II transcription pausing. Dynamic RNA folding determines PRC2 activity. Disparate studies and interpretations abound but can be reconciled.
Collapse
Affiliation(s)
- YongWoo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Anastasakis DG, Apostolidi M, Garman KA, Polash AH, Umar MI, Meng Q, Scutenaire J, Jarvis JE, Wang X, Haase AD, Brownell I, Rinehart J, Hafner M. Nuclear PKM2 binds pre-mRNA at folded G-quadruplexes and reveals their gene regulatory role. Mol Cell 2024; 84:3775-3789.e6. [PMID: 39153475 PMCID: PMC11455610 DOI: 10.1016/j.molcel.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Nuclear localization of the metabolic enzyme PKM2 is widely observed in various cancer types. We identify nuclear PKM2 as a non-canonical RNA-binding protein (RBP) that specifically interacts with folded RNA G-quadruplex (rG4) structures in precursor mRNAs (pre-mRNAs). PKM2 occupancy at rG4s prevents the binding of repressive RBPs, such as HNRNPF, and promotes the expression of rG4-containing pre-mRNAs (the "rG4ome"). We observe an upregulation of the rG4ome during epithelial-to-mesenchymal transition and a negative correlation of rG4 abundance with patient survival in different cancer types. By preventing the nuclear accumulation of PKM2, we could repress the rG4ome in triple-negative breast cancer cells and reduce migration and invasion of cancer cells in vitro and in xenograft mouse models. Our data suggest that the balance of folded and unfolded rG4s controlled by RBPs impacts gene expression during tumor progression.
Collapse
Affiliation(s)
| | - Maria Apostolidi
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Systems Biology Institute, Yale University, West Haven, CT, USA
| | | | - Ahsan H Polash
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA
| | - Mubarak I Umar
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA
| | - Qingcai Meng
- Laboratory of Cellular and Molecular Biology, NIDDK/NIH, Bethesda, MD, USA
| | | | | | - Xiantao Wang
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA
| | - Astrid D Haase
- Laboratory of Cellular and Molecular Biology, NIDDK/NIH, Bethesda, MD, USA
| | | | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Systems Biology Institute, Yale University, West Haven, CT, USA.
| | - Markus Hafner
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
10
|
Lee Y, Blum R, Rosenberg M, Lee JT. Re-analysis of CLAP data affirms PRC2 as an RNA binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613009. [PMID: 39345380 PMCID: PMC11429800 DOI: 10.1101/2024.09.19.613009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Using halo-tagged PRC2 and "CLAP" methodology, Guo et al. recently came to the conclusion that PRC2 is not an RNA binding protein (RBP). They suggested that previous findings are CLIP artifacts and argue that RNA cannot play a direct role in PRC2 regulation. Here, we perform a re-analysis of the authors' raw datasets and come to contrary conclusions. First, CLAP demonstrates significant PRC2 enrichment throughout the transcriptome, including in XIST's Repeat A (RepA) motif. Second, our re-analysis of the authors' CLAP and CLIP datasets demonstrates that the two methods yield similar outcomes, with both showing PRC2 enrichment in the transcriptome. Furthermore, PRC2 demonstrates more RNA binding peaks than SAF-A and PTBP1. Additionally, re-analysis of CLAP contradicts the authors' conclusion that CTCF and YY1 are not RBP. The discrepancies may be attributable to the authors' unconventional data normalization, methods of determining significance, and lack of minus-tag and input controls in some experiments.
Collapse
Affiliation(s)
- YongWoo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
12
|
Jiang L, Huang L, Jiang W. H3K27me3-mediated epigenetic regulation in pluripotency maintenance and lineage differentiation. CELL INSIGHT 2024; 3:100180. [PMID: 39072246 PMCID: PMC11278802 DOI: 10.1016/j.cellin.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Cell fate determination is an intricate process which is orchestrated by multiple regulatory layers including signal pathways, transcriptional factors, epigenetic modifications, and metabolic rewiring. Among the sophisticated epigenetic modulations, the repressive mark H3K27me3, deposited by PRC2 (polycomb repressive complex 2) and removed by demethylase KDM6, plays a pivotal role in mediating the cellular identity transition through its dynamic and precise alterations. Herein, we overview and discuss how H3K27me3 and its modifiers regulate pluripotency maintenance and early lineage differentiation. We primarily highlight the following four aspects: 1) the two subcomplexes PRC2.1 and PRC2.2 and the distribution of genomic H3K27 methylation; 2) PRC2 as a critical regulator in pluripotency maintenance and exit; 3) the emerging role of the eraser KDM6 in early differentiation; 4) newly identified additional factors influencing H3K27me3. We present a comprehensive insight into the molecular principles of the dynamic regulation of H3K27me3, as well as how this epigenetic mark participates in pluripotent stem cell-centered cell fate determination.
Collapse
Affiliation(s)
- Liwen Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Linfeng Huang
- Wang-Cai Biochemistry Lab, Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| |
Collapse
|
13
|
Davis WJH, Drummond CJ, Diermeier S, Reid G. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma. Genes (Basel) 2024; 15:906. [PMID: 39062685 PMCID: PMC11276205 DOI: 10.3390/genes15070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- William J. H. Davis
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Catherine J. Drummond
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Sarah Diermeier
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Amaroq Therapeutics, Auckland 1010, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| |
Collapse
|
14
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
15
|
Liebner T, Kilic S, Walter J, Aibara H, Narita T, Choudhary C. Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription. Nat Commun 2024; 15:4962. [PMID: 38862536 PMCID: PMC11166988 DOI: 10.1038/s41467-024-49370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.
Collapse
Affiliation(s)
- Tim Liebner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Sinan Kilic
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jonas Walter
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hitoshi Aibara
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
Gail EH, Healy E, Flanigan SF, Jones N, Ng XH, Uckelmann M, Levina V, Zhang Q, Davidovich C. Inseparable RNA binding and chromatin modification activities of a nucleosome-interacting surface in EZH2. Nat Genet 2024; 56:1193-1202. [PMID: 38744974 PMCID: PMC11176075 DOI: 10.1038/s41588-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
Polycomb repressive complex 2 (PRC2) interacts with RNA in cells, but there is no consensus on how RNA regulates PRC2 canonical functions, including chromatin modification and the maintenance of transcription programs in lineage-committed cells. We assayed two separation-of-function mutants of the PRC2 catalytic subunit EZH2, defective in RNA binding but functional in methyltransferase activity. We find that part of the RNA-binding surface of EZH2 is required for chromatin modification, yet this activity is independent of RNA. Mechanistically, the RNA-binding surface within EZH2 is required for chromatin modification in vitro and in cells, through interactions with nucleosomal DNA. Contrarily, an RNA-binding-defective mutant exhibited normal chromatin modification activity in vitro and in lineage-committed cells, accompanied by normal gene repression activity. Collectively, we show that part of the RNA-binding surface of EZH2, rather than the RNA-binding activity per se, is required for the histone methylation in vitro and in cells, through interactions with the substrate nucleosome.
Collapse
Affiliation(s)
- Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Evan Healy
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarena F Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Natasha Jones
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Xiao Han Ng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vitalina Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
- EMBL-Australia at SAiGENCI, Adelaide, South Australia, Australia.
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
- EMBL-Australia, Clayton, Victoria, Australia.
| |
Collapse
|
17
|
Lee YW, Weissbein U, Blum R, Lee JT. G-quadruplex folding in Xist RNA antagonizes PRC2 activity for stepwise regulation of X chromosome inactivation. Mol Cell 2024; 84:1870-1885.e9. [PMID: 38759625 PMCID: PMC11505738 DOI: 10.1016/j.molcel.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/25/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Nguyen K, Karn J. The sounds of silencing: dynamic epigenetic control of HIV latency. Curr Opin HIV AIDS 2024; 19:102-109. [PMID: 38547337 PMCID: PMC10990033 DOI: 10.1097/coh.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW This review highlights advances in understanding the epigenetic control mechanisms that regulate HIV-1 latency mechanisms in T-cells and microglial cells and describes the potential of current therapeutic approaches targeting the epigenetic machinery to eliminate or block the HIV-1 latent reservoir. RECENT FINDINGS Large-scale unbiased CRISPR-Cas9 library-based screenings, coupled with biochemical studies, have comprehensively identified the epigenetic factors pivotal in regulating HIV-1 latency, paving the way for potential novel targets in therapeutic development. These studies also highlight how the bivalency observed at the HIV-1 5'LTR primes latent proviruses for rapid reactivation. SUMMARY The HIV-1 latent is established very early during infection, and its persistence is the major obstacle to achieving an HIV-1 cure. Here, we present a succinct summary of the latest research findings, shedding light on the pivotal roles played by host epigenetic machinery in the control of HIV-1 latency. Newly uncovered mechanisms permitting rapid reversal of epigenetic restrictions upon viral reactivation highlight the formidable challenges of achieving enduring and irreversible epigenetic silencing of HIV-1.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
20
|
Nielsen M, Ulitksy I. The links are still missing: Revisiting the role of RNA as a guide for chromatin-associated proteins. Mol Cell 2024; 84:1178-1179. [PMID: 38579673 DOI: 10.1016/j.molcel.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
A new study in Molecular Cell by Guo et al.1 and two studies in Cell Reports by Healy et al.2 and by Hall Hickman and Jenner3 show how PRC2 and other chromatin regulators do not appear to bind RNA in vivo, challenging the importance of RNA for their function.
Collapse
Affiliation(s)
- Mathias Nielsen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitksy
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Guo JK, Blanco MR, Walkup WG, Bonesteele G, Urbinati CR, Banerjee AK, Chow A, Ettlin O, Strehle M, Peyda P, Amaya E, Trinh V, Guttman M. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol Cell 2024; 84:1271-1289.e12. [PMID: 38387462 PMCID: PMC10997485 DOI: 10.1016/j.molcel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo. Using denaturing purification of in vivo crosslinked RNA-protein complexes in human and mouse cell lines, we observe a loss of detectable RNA binding to PRC2 and chromatin-associated proteins previously reported to bind RNA (CTCF, YY1, and others), despite accurately mapping bona fide RNA-binding sites across others (SPEN, TET2, and others). Taken together, these results argue for a critical re-evaluation of the broad role of RNA binding to orchestrate various chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jimmy K Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant Bonesteele
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carl R Urbinati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Olivia Ettlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Parham Peyda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Enrique Amaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vickie Trinh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
Valyaeva AA, Sheval EV. Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:688-700. [PMID: 38831505 DOI: 10.1134/s0006297924040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 06/05/2024]
Abstract
Eukaryotic cells are characterized by a high degree of compartmentalization of their internal contents, which ensures precise and controlled regulation of intracellular processes. During many processes, including different stages of transcription, dynamic membraneless compartments termed biomolecular condensates are formed. Transcription condensates contain various transcription factors and RNA polymerase and are formed by high- and low-specificity interactions between the proteins, DNA, and nearby RNA. This review discusses recent data demonstrating important role of nonspecific multivalent protein-protein and RNA-protein interactions in organization and regulation of transcription.
Collapse
Affiliation(s)
- Anna A Valyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
23
|
Healy E, Zhang Q, Gail EH, Agius SC, Sun G, Bullen M, Pandey V, Das PP, Polo JM, Davidovich C. The apparent loss of PRC2 chromatin occupancy as an artifact of RNA depletion. Cell Rep 2024; 43:113858. [PMID: 38416645 DOI: 10.1016/j.celrep.2024.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
RNA has been implicated in the recruitment of chromatin modifiers, and previous studies have provided evidence in favor and against this idea. RNase treatment of chromatin is commonly used to study RNA-mediated regulation of chromatin modifiers, but the limitations of this approach remain unclear. RNase A treatment during chromatin immunoprecipitation (ChIP) reduces chromatin occupancy of the H3K27me3 methyltransferase Polycomb repressive complex 2 (PRC2). This led to suggestions of an "RNA bridge" between PRC2 and chromatin. Here, we show that RNase A treatment during ChIP causes the apparent loss of all facultative heterochromatin, including both PRC2 and H3K27me3 genome-wide. We track this observation to a gain of DNA from non-targeted chromatin, sequenced at the expense of DNA from facultative heterochromatin, which reduces ChIP signals. Our results emphasize substantial limitations in using RNase A treatment for mapping RNA-dependent chromatin occupancy and invalidate conclusions that were previously established for PRC2 based on this assay.
Collapse
Affiliation(s)
- Evan Healy
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; EMBL-Australia at SAiGENCI, Adelaide, SA, Australia
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Samuel C Agius
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Bullen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Varun Pandey
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Partha Pratim Das
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Adelaide Centre for Epigenetics and South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; EMBL-Australia, Clayton, VIC, Australia.
| |
Collapse
|
24
|
Hall Hickman A, Jenner RG. Apparent RNA bridging between PRC2 and chromatin is an artifact of non-specific chromatin precipitation upon RNA degradation. Cell Rep 2024; 43:113856. [PMID: 38416641 DOI: 10.1016/j.celrep.2024.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain repression of genes specific for other cell lineages. In vitro, RNA inhibits PRC2 activity, but the effect of RNA on PRC2 in cells is less clear, with studies concluding that RNA either antagonizes or promotes PRC2 chromatin association. The addition of RNase A to chromatin immunoprecipitation reactions has been reported to reduce detection of PRC2 target sites, suggesting the existence of RNA bridges connecting PRC2 to chromatin. Here, we show that the apparent loss of PRC2 chromatin association after RNase A treatment is due to non-specific chromatin precipitation. RNA degradation precipitates chromatin out of solution, thereby masking enrichment of specific DNA sequences in chromatin immunoprecipitation reactions. Maintaining chromatin solubility by the addition of poly-L-glutamic acid rescues detection of PRC2 chromatin occupancy upon RNA degradation. These findings undermine support for the model that RNA bridges PRC2 and chromatin in cells.
Collapse
Affiliation(s)
- Alexander Hall Hickman
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; CRUK City of London Centre, University College London, London WC1E 6BT, UK
| | - Richard G Jenner
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; CRUK City of London Centre, University College London, London WC1E 6BT, UK.
| |
Collapse
|
25
|
Avila-Lopez P, Lauberth SM. Exploring new roles for RNA-binding proteins in epigenetic and gene regulation. Curr Opin Genet Dev 2024; 84:102136. [PMID: 38128453 PMCID: PMC11245729 DOI: 10.1016/j.gde.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous biological processes. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
26
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
27
|
Wang L, Hu L, Wang X, Geng Z, Wan M, Hao J, Liu H, Fan Y, Xu T, Li Z. Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function. Mol Metab 2024; 80:101878. [PMID: 38218537 PMCID: PMC10832480 DOI: 10.1016/j.molmet.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown. METHODS RNA-seq and 3' rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic β cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors. RESULTS We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. CONCLUSIONS Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.
Collapse
Affiliation(s)
- Linlin Wang
- Guangzhou National Laboratory, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liqiao Hu
- Guangzhou National Laboratory, Guangzhou, China
| | - Xingyue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoxu Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Huisheng Liu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Yuying Fan
- School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zonghong Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
28
|
Zhang J, Wang T, Shi R, Zhao Y, Zhang Y, Zhang C, Xing Q, Zhou T, Shan Y, Yao H, Zhang X, Pan G. YTHDF1 facilitates PRC1-mediated H2AK119ub in human ES cells. J Cell Physiol 2024; 239:152-165. [PMID: 37991435 DOI: 10.1002/jcp.31152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6 A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.
Collapse
Affiliation(s)
- Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yuan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Han MH, Issagulova D, Park M. Interplay between epigenome and 3D chromatin structure. BMB Rep 2023; 56:633-644. [PMID: 38052424 PMCID: PMC10761748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Epigenetic mechanisms, primarily mediated through histone and DNA modifications, play a pivotal role in orchestrating the functional identity of a cell and its response to environmental cues. Similarly, the spatial arrangement of chromatin within the threedimensional (3D) nucleus has been recognized as a significant factor influencing genomic function. Investigating the relationship between epigenetic regulation and 3D chromatin structure has revealed correlation and causality between these processes, from the global alignment of average chromatin structure with chromatin marks to the nuanced correlations at smaller scales. This review aims to dissect the biological significance and the interplay between the epigenome and 3D chromatin structure, while also exploring the underlying molecular mechanisms. By synthesizing insights from both experimental and modeling perspectives, we seek to provide a comprehensive understanding of cellular functions. [BMB Reports 2023; 56(12): 633-644].
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dariya Issagulova
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Minhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
30
|
Affiliation(s)
- Yuka W Iwasaki
- Laboratory of Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama 332-0012, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
31
|
Song J, Gooding AR, Hemphill WO, Love BD, Robertson A, Yao L, Zon LI, North TE, Kasinath V, Cech TR. Structural basis for inactivation of PRC2 by G-quadruplex RNA. Science 2023; 381:1331-1337. [PMID: 37733873 PMCID: PMC11191771 DOI: 10.1126/science.adh0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Polycomb repressive complex 2 (PRC2) silences genes through trimethylation of histone H3K27. PRC2 associates with numerous precursor messenger RNAs (pre-mRNAs) and long noncoding RNAs (lncRNAs) with a binding preference for G-quadruplex RNA. In this work, we present a 3.3-Å-resolution cryo-electron microscopy structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface composed of two copies of the catalytic subunit EZH2, thereby blocking nucleosome DNA interaction and histone H3 tail accessibility. Furthermore, an RNA-binding loop of EZH2 facilitates the handoff between RNA and DNA, another activity implicated in PRC2 regulation by RNA. We identified a gain-of-function mutation in this loop that activates PRC2 in zebrafish. Our results reveal mechanisms for RNA-mediated regulation of a chromatin-modifying enzyme.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Anne R. Gooding
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Wayne O. Hemphill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Brittney D. Love
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Anne Robertson
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liqi Yao
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leonard I. Zon
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas R. Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
32
|
Igarashi T, Mazevet M, Yasuhara T, Yano K, Mochizuki A, Nishino M, Yoshida T, Yoshida Y, Takamatsu N, Yoshimi A, Shiraishi K, Horinouchi H, Kohno T, Hamamoto R, Adachi J, Zou L, Shiotani B. An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress. Nat Commun 2023; 14:4991. [PMID: 37591859 PMCID: PMC10435487 DOI: 10.1038/s41467-023-40578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Marianne Mazevet
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaaki Yasuhara
- Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akifumi Mochizuki
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Nishino
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuhiko Takamatsu
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Akihide Yoshimi
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, 567-0085, Japan
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
33
|
Mangoni D, Simi A, Lau P, Armaos A, Ansaloni F, Codino A, Damiani D, Floreani L, Di Carlo V, Vozzi D, Persichetti F, Santoro C, Pandolfini L, Tartaglia GG, Sanges R, Gustincich S. LINE-1 regulates cortical development by acting as long non-coding RNAs. Nat Commun 2023; 14:4974. [PMID: 37591988 PMCID: PMC10435495 DOI: 10.1038/s41467-023-40743-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Long Interspersed Nuclear Elements-1s (L1s) are transposable elements that constitute most of the genome's transcriptional output yet have still largely unknown functions. Here we show that L1s are required for proper mouse brain corticogenesis operating as regulatory long non-coding RNAs. They contribute to the regulation of the balance between neuronal progenitors and differentiation, the migration of post-mitotic neurons and the proportions of different cell types. In cortical cultured neurons, L1 RNAs are mainly associated to chromatin and interact with the Polycomb Repressive Complex 2 (PRC2) protein subunits enhancer of Zeste homolog 2 (Ezh2) and suppressor of zeste 12 (Suz12). L1 RNA silencing influences PRC2's ability to bind a portion of its targets and the deposition of tri-methylated histone H3 (H3K27me3) marks. Our results position L1 RNAs as crucial signalling hubs for genome-wide chromatin remodelling, enabling the fine-tuning of gene expression during brain development and evolution.
Collapse
Affiliation(s)
- Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Alessandro Simi
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Pierre Lau
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Alexandros Armaos
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Federico Ansaloni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Azzurra Codino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Devid Damiani
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Lavinia Floreani
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Valerio Di Carlo
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Diego Vozzi
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca Persichetti
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Luca Pandolfini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | | | - Remo Sanges
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.
| |
Collapse
|
34
|
Gil N, Perry RBT, Mukamel Z, Tuck A, Bühler M, Ulitsky I. Complex regulation of Eomes levels mediated through distinct functional features of the Meteor long non-coding RNA locus. Cell Rep 2023; 42:112569. [PMID: 37256750 PMCID: PMC10320833 DOI: 10.1016/j.celrep.2023.112569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are implicated in a plethora of cellular processes, but an in-depth understanding of their functional features or their mechanisms of action is currently lacking. Here we study Meteor, a lncRNA transcribed near the gene encoding EOMES, a pleiotropic transcription factor implicated in various processes throughout development and in adult tissues. Using a wide array of perturbation techniques, we show that transcription elongation through the Meteor locus is required for Eomes activation in mouse embryonic stem cells, with Meteor repression linked to a change in the subpopulation primed to differentiate to the mesoderm lineage. We further demonstrate that a distinct functional feature of the locus-namely, the underlying DNA element-is required for suppressing Eomes expression following neuronal differentiation. Our results demonstrate the complex regulation that can be conferred by a single locus and emphasize the importance of careful selection of perturbation techniques when studying lncRNA loci.
Collapse
Affiliation(s)
- Noa Gil
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Mukamel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alex Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. Biol Open 2023; 12:bio059955. [PMID: 37283223 PMCID: PMC10259849 DOI: 10.1242/bio.059955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
Affiliation(s)
- Rachel E. Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Christine A. Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Aki K. Braceros
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - J. Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Hemphill W, Fenske R, Gooding A, Cech T. PRC2 direct transfer from G-quadruplex RNA to dsDNA has implications for RNA-binding chromatin modifiers. Proc Natl Acad Sci U S A 2023; 120:e2220528120. [PMID: 37252986 PMCID: PMC10266057 DOI: 10.1073/pnas.2220528120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Regan Fenske
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Anne R. Gooding
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Thomas R. Cech
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
37
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 766] [Impact Index Per Article: 383.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535391. [PMID: 37066147 PMCID: PMC10103960 DOI: 10.1101/2023.04.03.535391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
|
39
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
40
|
Jansson-Fritzberg LI, Sousa CI, Smallegan MJ, Song JJ, Gooding AR, Kasinath V, Rinn JL, Cech TR. DNMT1 inhibition by pUG-fold quadruplex RNA. RNA (NEW YORK, N.Y.) 2023; 29:346-360. [PMID: 36574982 PMCID: PMC9945446 DOI: 10.1261/rna.079479.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.
Collapse
Affiliation(s)
- Linnea I Jansson-Fritzberg
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Camila I Sousa
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Jessica J Song
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Anne R Gooding
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
41
|
Tang J, Wang X, Xiao D, Liu S, Tao Y. The chromatin-associated RNAs in gene regulation and cancer. Mol Cancer 2023; 22:27. [PMID: 36750826 PMCID: PMC9903551 DOI: 10.1186/s12943-023-01724-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Eukaryotic genomes are prevalently transcribed into many types of RNAs that translate into proteins or execute gene regulatory functions. Many RNAs associate with chromatin directly or indirectly and are called chromatin-associated RNAs (caRNAs). To date, caRNAs have been found to be involved in gene and transcriptional regulation through multiple mechanisms and have important roles in different types of cancers. In this review, we first present different categories of caRNAs and the modes of interaction between caRNAs and chromatin. We then detail the mechanisms of chromatin-associated nascent RNAs, chromatin-associated noncoding RNAs and emerging m6A on caRNAs in transcription and gene regulation. Finally, we discuss the roles of caRNAs in cancer as well as epigenetic and epitranscriptomic mechanisms contributing to cancer, which could provide insights into the relationship between different caRNAs and cancer, as well as tumor treatment and intervention.
Collapse
Affiliation(s)
- Jun Tang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078 Hunan China
| | - Xiang Wang
- grid.216417.70000 0001 0379 7164Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China. .,Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
42
|
Song J, Gooding AR, Hemphill WO, Kasinath V, Cech TR. Structural basis for inactivation of PRC2 by G-quadruplex RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527314. [PMID: 36798278 PMCID: PMC9934548 DOI: 10.1101/2023.02.06.527314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The histone methyltransferase PRC2 (Polycomb Repressive Complex 2) silences genes via successively attaching three methyl groups to lysine 27 of histone H3. PRC2 associates with numerous pre-mRNA and lncRNA transcripts with a binding preference for G-quadruplex RNA. Here, we present a 3.3Ã…-resolution cryo-EM structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface comprised of two copies of the catalytic subunit EZH2, which limits nucleosome DNA interaction and occludes H3 tail accessibility to the active site. Our results reveal an unexpected mechanism for RNA-mediated inactivation of a chromatin-modifying enzyme. Furthermore, the flexible loop of EZH2 that helps stabilize RNA binding also facilitates the handoff between RNA and DNA, an activity implicated in PRC2 regulation by RNA. One-Sentence Summary Cryo-EM structure of RNA-bound PRC2 dimer elucidates an unexpected mechanism of PRC2 inhibition by RNA.
Collapse
|
43
|
Della Valle F, Liu P, Morelli G, Orlando V. Detecting Cell Compartment-Specific PRC2-RNA Interactions via UV-RIP. Methods Mol Biol 2023; 2655:31-39. [PMID: 37212986 DOI: 10.1007/978-1-0716-3143-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Upon cellular reprogramming, the activity of polycomb repressive complex 2 (PRC2), together with histone demethylases, is essential for the suppression of cell lineage-specific gene expression programs, for resetting of epigenetic memory and for the reacquisition of pluripotency.PRC2 requires interaction with RNAs for the correct protein complex assembly and recruitment on chromatin. Moreover, PRC2 components can be found in different cell compartments and their intracellular dynamics is part of their functional activity. Several loss-of-function studies revealed that many lncRNAs expressed upon reprogramming are essential for the silencing of lineage-specific genes and the function of chromatin modifiers. Compartment-specific UV-RIP technique is a method that will help understanding which is the nature of those interactions, with no interference from indirect interactions typical of methods involving the use of chemical cross-linkers or performed in native conditions with non-stringent buffers. This technique will shed lights on the specificity of lncRNA interaction and PRC2 stability/activity on chromatin and whether PRC2-lncRNA interaction occurs in specific cell compartments.
Collapse
Affiliation(s)
- Francesco Della Valle
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Research Program, Thuwal, Kingdom of Saudi Arabia.
| | - Peng Liu
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Research Program, Thuwal, Kingdom of Saudi Arabia
| | - Gabriele Morelli
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Research Program, Thuwal, Kingdom of Saudi Arabia
| | - Valerio Orlando
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Research Program, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
44
|
Iwai M, Kajino T, Nakatochi M, Yanagisawa K, Hosono Y, Isomura H, Shimada Y, Suzuki M, Taguchi A, Takahashi T. Long non-coding RNA TILR constitutively represses TP53 and apoptosis in lung cancer. Oncogene 2023; 42:364-373. [PMID: 36522487 DOI: 10.1038/s41388-022-02546-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs have an integral regulatory role in numerous functions related to lung cancer development. Here, we report identification of a novel lncRNA, termed TP53-inhibiting lncRNA (TILR), which was found to function as a constitutive negative regulator of p53 expression, including activation of downstream genes such as p21 and MDM2, and induction of apoptosis. A proteomic search for TILR-associated proteins revealed an association with PCBP2, while the mid-portion of TILR was found to be required for both PCBP2 and p53 mRNA binding. In addition, depletion of PCBP2 resulted in phenocopied effects of TILR silencing. TILR was also shown to suppress p53 expression in a post-transcriptional manner, as well as via a positive feedback loop involving p53 and Fanconi anemia pathway genes. Taken together, the present findings clearly demonstrate that TILR constitutively inhibits p53 expression in cooperation with PCBP2, thus maintaining p53 transcriptional activity at a level sufficiently low for avoidance of spurious apoptosis induction.
Collapse
Affiliation(s)
- Mika Iwai
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Taisuke Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Kiyoshi Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Department of Molecular and Cancer Medicine, Faculty of Pharmacy, Meijo University, Nagoya, 468-8502, Japan
| | - Yasuyuki Hosono
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.,Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hisanori Isomura
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Yukako Shimada
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, 464-8681, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan. .,Aichi Cancer Center, Nagoya, 464-8681, Japan.
| |
Collapse
|
45
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
46
|
Wang G, Ye H, Wang X, Liu B. Polycomb repressive complex 2 controls cardiac cell fate decision via interacting with RNA: Promiscuously or well-ordered. Front Genet 2022; 13:1011228. [PMID: 36313464 PMCID: PMC9614146 DOI: 10.3389/fgene.2022.1011228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The epigenetic landscape determines cell fate during heart development. Polycomb repressive complex 2 (PRC2) mediates histone methyltransferase activity during cardiac cell differentiation. The PRC2 complex contains the proteins embryonic ectoderm development (EED), suppressor of zeste (SUZ12), the chromatin assembly factor 1 (CAF1) histone-binding proteins RBBP4 and RBBP7, and the histone methyltransferase called enhancer of zeste (EZH2 or EZH1), which incorporates the Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain. Cardiac PRC2-deficient mice display lethal congenital heart malformations. The dynamic process of cardiac cell fate decisions is controlled by PRC2 and the PRC2-mediated epigenetic landscape. Although specific individual long noncoding RNAs (lncRNAs) including Braveheart were widely reported to regulate the recruitments of PRC2 to their specific targets, a promiscuous RNA binding profile by PRC2 was also identified to play an essential role in cardiac cell fate decision. In this review, we focus on RNA-mediated PRC2 recruitment machinery in the process of cardiac cell fate decisions. The roles of individual lncRNAs which recruit PRC2, as well as promiscuous RNA binding by PRC2 in heart development are summarized. Since the binding priority of RNAs with different primary and secondary structures differs in its affinity to PRC2, the competitive relationship between individual lncRNAs binding and promiscuous RNA binding by PRC2 may be important for understanding the machinery by which biding of individual lncRNA and promiscuous RNA by PRC2 coordinately control the well-ordered dynamic cardiac cell lineage differentiation process.
Collapse
Affiliation(s)
- Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
p300/CBP sustains Polycomb silencing by non-enzymatic functions. Mol Cell 2022; 82:3580-3597.e9. [DOI: 10.1016/j.molcel.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022]
|
48
|
Li Z, Qiao J, Ma W, Zhou J, Gu L, Deng D, Zhang B. P14AS upregulates gene expression in the CDKN2A/2B locus through competitive binding to PcG protein CBX7. Front Cell Dev Biol 2022; 10:993525. [PMID: 36176277 PMCID: PMC9513069 DOI: 10.3389/fcell.2022.993525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 12/27/2022] Open
Abstract
Background: It is well known that P16 INK4A , P14 ARF , P15 INK4B mRNAs, and ANRIL lncRNA are transcribed from the CDKN2A/2B locus. LncRNA P14AS is a lncRNA transcribed from antisense strand of P14 ARF promoter to intron-1. Our previous study showed that P14AS could upregulate the expression level of ANRIL and P16 INK4A and promote the proliferation of cancer cells. Because polycomb group protein CBX7 could repress P16 INK4A expression and bind ANRIL, we wonder whether the P14AS-upregulated ANRIL and P16 INK4A expression is mediated with CBX7. Results: In this study, we found that the upregulation of P16 INK4A , P14 ARF , P15 INK4B and ANRIL expression was induced by P14AS overexpression only in HEK293T and HCT116 cells with active endogenous CBX7 expression, but not in MGC803 and HepG2 cells with weak CBX7 expression. Further studies showed that the stable shRNA-knockdown of CBX7 expression abolished the P14AS-induced upregulation of these P14AS target genes in HEK293T and HCT116 cells whereas enforced CBX7 overexpression enabled P14AS to upregulate expression of these target genes in MGC803 and HepG2 cells. Moreover, a significant association between the expression levels of P14AS and its target genes were observed only in human colon cancer tissue samples with high level of CBX7 expression (n = 38, p < 0.05), but not in samples (n = 37) with low level of CBX7 expression, nor in paired surgical margin tissues. In addition, the results of RNA immunoprecipitation (RIP)- and chromatin immunoprecipitation (ChIP)-PCR analyses revealed that lncRNA P14AS could competitively bind to CBX7 protein which prevented the bindings of CBX7 to both lncRNA ANRIL and the promoters of P16 INK4A , P14 ARF and P15 INK4B genes. The amounts of repressive histone modification H3K9m3 was also significantly decreased at the promoters of these genes by P14AS in CBX7 actively expressing cells. Conclusions: CBX7 expression is essential for P14AS to upregulate the expression of P16 INK4A , P14 ARF , P15 INK4B and ANRIL genes in the CDKN2A/2Blocus. P14AS may upregulate these genes' expression through competitively blocking CBX7-binding to ANRIL lncRNA and target gene promoters.
Collapse
Affiliation(s)
| | | | | | | | | | - Dajun Deng
- *Correspondence: Dajun Deng, ; Baozhen Zhang,
| | | |
Collapse
|
49
|
Doyle EJ, Morey L, Conway E. Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation. Front Cell Dev Biol 2022; 10:986319. [PMID: 36105358 PMCID: PMC9464936 DOI: 10.3389/fcell.2022.986319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.
Collapse
Affiliation(s)
- Emma J. Doyle
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Centre, Miami, FL, United States
- Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric Conway
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|