1
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024. [PMID: 39418482 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Duan Z, Kong C, Fan S, Wu C. Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders. Nat Commun 2024; 15:7799. [PMID: 39242578 PMCID: PMC11379947 DOI: 10.1038/s41467-024-51723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Peptides are valuable for therapeutic development, with multicyclic peptides showing promise in mimicking antigen-binding potency of antibodies. However, our capability to engineer multicyclic peptide scaffolds, particularly for the construction of large combinatorial libraries, is still limited. Here, we study the interplay of disulfide pairing between three biscysteine motifs, and designed a range of triscysteine motifs with unique disulfide-directing capability for regulating the oxidative folding of multicyclic peptides. We demonstrate that incorporating these motifs into random sequences allows the design of disulfide-directed multicyclic peptide (DDMP) libraries with up to four disulfide bonds, which have been applied for the successful discovery of peptide binders with nanomolar affinity to several challenging targets. This study encourages the use of more diverse disulfide-directing motifs for creating multicyclic peptide libraries and opens an avenue for discovering functional peptides in sequence and structural space beyond existing peptide scaffolds, potentially advancing the field of peptide drug discovery.
Collapse
Affiliation(s)
- Zengping Duan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuilian Kong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China.
| |
Collapse
|
3
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
4
|
Liu XY, Mykhailenko O, Faraone A, Waser J. Hypervalent Iodine Amino Acid Building Blocks for Bioorthogonal Peptide Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202404747. [PMID: 38807563 DOI: 10.1002/anie.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Ethynylbenziodoxol(on)es (EB(X)xs) reagents have emerged as useful reagents for peptide/protein modification due to their versatile reactivity and high selectivity. Herein, we report the successful introduction of ethynylbenziodoxoles (EBxs) on different amino acid building blocks (Lys/Orn/Dap), and show their compatibility with both solid phase peptide synthesis (SPPS) and solution phase peptide synthesis (SPS). The selective incorporation of the EBx core into peptide sequences enable efficient macrocyclizations under mild conditions for the synthesis of topologically unique cyclic and bicyclic peptides.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Olha Mykhailenko
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Adriana Faraone
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Imai M, Colas K, Suga H. Protein Grafting Techniques: From Peptide Epitopes to Lasso-Grafted Neobiologics. Chempluschem 2024; 89:e202400152. [PMID: 38693599 DOI: 10.1002/cplu.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Protein engineering techniques have vastly expanded their domain of impact, notably following the success of antibodies. Likewise, smaller peptide therapeutics have carved an increasingly significant niche for themselves in the pharmaceutical landscape. The concept of grafting such peptides onto larger protein scaffolds, thus harvesting the advantages of both, has given rise to a variety of protein engineering strategies that are reviewed herein. We also describe our own "Lasso-Grafting" approach, which combines traditional grafting concepts with mRNA display to streamline the production of multiple grafted drug candidates for virtually any target.
Collapse
Affiliation(s)
- Mikio Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kilian Colas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Jiang Z, Huang YH, Kaas Q, Craik DJ, Wang CK. Structure and Activity of Reconstructed Pseudo-Ancestral Cyclotides. ChemMedChem 2024; 19:e202400124. [PMID: 38632079 DOI: 10.1002/cmdc.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.
Collapse
Affiliation(s)
- Zhihao Jiang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
7
|
Koehbach J, Muratspahić E, Ahmed ZM, White AM, Tomašević N, Durek T, Clark RJ, Gruber CW, Craik DJ. Chemical synthesis of grafted cyclotides using a "plug and play" approach. RSC Chem Biol 2024; 5:567-571. [PMID: 38846076 PMCID: PMC11151825 DOI: 10.1039/d4cb00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
Cyclotides are a diverse class of plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology. Their remarkable structural stability and resistance to proteolytic degradation can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. Thus, cyclotides have emerged as powerful scaffold molecules for designing peptide-based therapeutics. The chemical engineering of cyclotides has generated novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. However key challenges potentially limit the widespread use of cyclotides in molecular grafting applications. Folding of cyclotides containing bioactive epitopes remains a major bottleneck in cyclotide synthesis. Here we present a modular 'plug and play' approach that effectively bypasses problems associated with the oxidative folding of cyclotides. By grafting onto a pre-formed acyclic cyclotide-like scaffold we show that difficult-to-graft sequences can be easily obtained and can target GPCRs with nanomolar affinities and potencies. We further show the suitability of this new method to graft other complex epitopes including structures with additional disulfide bonds that are not readily available via currently employed chemical methods, thus fully unlocking cyclotides to be used in drug design applications.
Collapse
Affiliation(s)
- Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences, The University of Queensland Brisbane Queensland Australia
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Vienna Austria
| | - Zakaria M Ahmed
- School of Biomedical Sciences, The University of Queensland Brisbane Queensland Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland Australia
- Research School of Chemistry, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Australia
| | - Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Vienna Austria
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland Brisbane Queensland Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Vienna Austria
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
8
|
Chen FJ, Pinnette N, Gao J. Strategies for the Construction of Multicyclic Phage Display Libraries. Chembiochem 2024; 25:e202400072. [PMID: 38466139 PMCID: PMC11437370 DOI: 10.1002/cbic.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Peptide therapeutics have gained great interest due to their multiple advantages over small molecule and antibody-based drugs. Peptide drugs are easier to synthesize, have the potential for oral bioavailability, and are large enough to target protein-protein interactions that are undruggable by small molecules. However, two major limitations have made it difficult to develop novel peptide therapeutics not derived from natural products, including the metabolic instability of peptides and the difficulty of reaching antibody-like potencies and specificities. Compared to linear and disulfide-monocyclized peptides, multicyclic peptides can provide increased conformational rigidity, enhanced metabolic stability, and higher potency in inhibiting protein-protein interactions. The identification of novel multicyclic peptide binders can be difficult, however, recent advancements in the construction of multicyclic phage libraries have greatly advanced the process of identifying novel multicyclic peptide binders for therapeutically relevant protein targets. This review will describe the current approaches used to create multicyclic peptide libraries, highlighting the novel chemistries developed and the proof-of-concept work done on validating these libraries against different protein targets.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Nicole Pinnette
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| |
Collapse
|
9
|
Lian Y, Tang X, Hu G, Miao C, Cui Y, Zhangsun D, Wu Y, Luo S. Characterization and evaluation of cytotoxic and antimicrobial activities of cyclotides from Viola japonica. Sci Rep 2024; 14:9733. [PMID: 38679643 PMCID: PMC11056381 DOI: 10.1038/s41598-024-60246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Cyclotides are a type of defense peptide most commonly found in the Violaceae family of plants, exhibiting various biological activities. In this study, we focused on the Viola japonica as our research subject and conducted transcriptome sequencing and analysis using high-throughput transcriptomics techniques. During this process, we identified 61 cyclotides, among which 25 were previously documented, while the remaining 36 were designated as vija 1 to vija 36. Mass spectrometry detection showed that 21 putative cyclotides were found in the extract of V. japonica. Through isolation, purification and tandem mass spectrometry, we characterized and investigated the activities of five cyclotides. Our results demonstrated inhibitory effects of these cyclotides on the growth of Acinetobacter baumannii and Bacillus subtilis, with minimum inhibitory concentrations (MICs) of 4.2 μM and 2.1 μM, respectively. Furthermore, time killing kinetic assays revealed that cyclotides at concentration of 4 MICs achieved completely bactericidal effects within 2 h. Additionally, fluorescence staining experiments confirmed that cyclotides disrupt microbial membranes. Moreover, cytotoxicity studies showed that cyclotides possess cytotoxic effects, with IC50 values ranging from 0.1 to 3.5 μM. In summary, the discovery of new cyclotide sequences enhances our understanding of peptide diversity and the exploration of their activity lays the foundation for a deeper investigation into the mechanisms of action of cyclotides.
Collapse
Affiliation(s)
- Yuanyuan Lian
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Xue Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Gehui Hu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Chenfang Miao
- Department of Pharmacy, The 900Th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yunfei Cui
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Yong Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China.
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China.
| |
Collapse
|
10
|
Baquero F, Beis K, Craik DJ, Li Y, Link AJ, Rebuffat S, Salomón R, Severinov K, Zirah S, Hegemann JD. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep 2024; 41:469-511. [PMID: 38164764 DOI: 10.1039/d3np00046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Network Center for Research in Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Yanyan Li
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - A James Link
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Raúl Salomón
- Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
12
|
Philippe GJB, Huang YH, Mittermeier A, Brown CJ, Kaas Q, Ramlan SR, Wang CK, Lane D, Loewer A, Troeira Henriques S, Craik DJ. Delivery to, and Reactivation of, the p53 Pathway in Cancer Cells Using a Grafted Cyclotide Conjugated with a Cell-Penetrating Peptide. J Med Chem 2024; 67:1197-1208. [PMID: 38174919 DOI: 10.1021/acs.jmedchem.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.
Collapse
Affiliation(s)
- Grégoire Jean-Baptiste Philippe
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Mittermeier
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Christopher J Brown
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siti Radhiah Ramlan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lane
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Alexander Loewer
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Li J, Liu H, Xiao S, Fan S, Cheng X, Wu C. De Novo Discovery of Cysteine Frameworks for Developing Multicyclic Peptide Libraries for Ligand Discovery. J Am Chem Soc 2023; 145:28264-28275. [PMID: 38092662 DOI: 10.1021/jacs.3c11856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Conserved cysteine frameworks are essential components of disulfide-rich peptides (DRPs), which dominantly define the structural diversity of both naturally occurring and de novo-designed DRPs. However, there are only very limited numbers of conserved cysteine frameworks, and general methods enabling de novo discovery of cysteine frameworks with robust foldability are still not available. Here, we devised a "touchstone"-based strategy that relies on chasing oxidative foldability between two individual disulfide-rich folds on the phage surface to discover new cysteine frameworks from random sequences. Unique cysteine frameworks with a high degree of compatibility with phage display systems and broad sequence tolerance were successfully identified, which were subsequently exploited for the development of multicyclic DRP libraries, enabling the rapid discovery of new peptide ligands with low-nanomolar and picomolar binding affinity. This study provides an unprecedented method for exploring and exploiting the sequence and structure space of DRPs that is not readily accessible by existing strategies, holding the potential to revolutionize the study of DRPs and significantly advance the design and discovery of multicyclic peptide ligands and drugs.
Collapse
Affiliation(s)
- Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xueting Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
14
|
Karami Y, Murail S, Giribaldi J, Lefranc B, Defontaine F, Lesouhaitier O, Leprince J, de Vries S, Tufféry P. Exploring a Structural Data Mining Approach to Design Linkers for Head-to-Tail Peptide Cyclization. J Chem Inf Model 2023; 63:6436-6450. [PMID: 37827517 PMCID: PMC10599322 DOI: 10.1021/acs.jcim.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 10/14/2023]
Abstract
Peptides have recently regained interest as therapeutic candidates, but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond linking the last amino acid with the first one, is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity, and preventing enzymatic degradation. Starting from an active peptide, it usually requires the design of a linker of a few amino acids to make it possible to cyclize the peptide, possibly preserving the conformation of the initial peptide and not affecting its activity. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based drug design.
Collapse
Affiliation(s)
- Yasaman Karami
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Samuel Murail
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Julien Giribaldi
- Institut
des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34293 Montpellier, France
| | - Benjamin Lefranc
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Florian Defontaine
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Jérôme Leprince
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Sjoerd de Vries
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Pierre Tufféry
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| |
Collapse
|
15
|
Mourenza A, Ganesan R, Camarero JA. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. RSC Chem Biol 2023; 4:722-735. [PMID: 37799576 PMCID: PMC10549238 DOI: 10.1039/d3cb00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 10/07/2023] Open
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs. Many of these novel peptide scaffolds have been shown to have a high tolerance to sequence variability in those residues not involved in disulfide bonds, able to cross biological membranes, and efficiently target complex biomolecular interactions. Hence, these unique properties make the use of these scaffolds ideal for many biotechnological applications, including the design of novel peptide antibiotics. This article provides an overview of the new developments in the use of several disulfide-rich cyclic polypeptides, including cyclotides, θ-defensins, and sunflower trypsin inhibitor peptides, among others, in the development of novel antimicrobial peptides against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alvaro Mourenza
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Los Angeles CA90033 USA
| |
Collapse
|
16
|
Manicardi A, Theppawong A, Van Troys M, Madder A. Proximity-Induced Ligation and One-Pot Macrocyclization of 1,4-Diketone-Tagged Peptides Derived from 2,5-Disubstituted Furans upon Release from the Solid Support. Org Lett 2023; 25:6618-6622. [PMID: 37656900 PMCID: PMC10510716 DOI: 10.1021/acs.orglett.3c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 09/03/2023]
Abstract
1,4-Dione-containing peptides are generated during the cleavage of 2,5-disubstituted furan-containing systems. The generated electrophilic systems then react with α-effect nucleophiles, following a Paal-Knorr-like mechanism, for the generation of macrocyclic peptides, occurring after simple resuspension of the crude peptide in water. Conveniently, the in situ generation of the electrophile from a stable furan ring avoids the complications associated with the synthesis of carbonyl-containing peptides. Detailed investigation of the reaction characteristics was first performed on supramolecular coiled-coil systems.
Collapse
Affiliation(s)
- Alex Manicardi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Atiruj Theppawong
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Dahal A, Subramanian V, Shrestha P, Liu D, Gauthier T, Jois S. Conformationally constrained cyclic grafted peptidomimetics targeting protein-protein interactions. Pept Sci (Hoboken) 2023; 115:e24328. [PMID: 38188985 PMCID: PMC10769001 DOI: 10.1002/pep2.24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/03/2023] [Indexed: 01/09/2024]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) structure is used for designing grafted peptides as a possible therapeutic agent. The grafted peptide exhibits multiple conformations in solution due to the presence of proline in the structure of the peptide. To lock the grafted peptide into a major conformation in solution, a dibenzofuran moiety (DBF) was incorporated in the peptide backbone structure, replacing the Pro-Pro sequence. NMR studies indicated a major conformation of the grafted peptide in solution. Detailed structural studies suggested that SFTI-DBF adopts a twisted beta-strand structure in solution. The surface plasmon resonance analysis showed that SFTI-DBF binds to CD58 protein. A model for the protein-SFTI-DBF complex was proposed based on docking studies. These studies suggested that SFTI-1 grafted peptide can be used to design stable peptides for therapeutic purposes by grafting organic functional groups and amino acids. However, when a similar strategy was used with another grafted peptide, the resulting peptide did not produce a single major conformation, and its biological activity was lost. Thus, conformational constraints depend on the sequence of amino acids used for SFTI-1 grafting.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
| | - Vivekanandan Subramanian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| | - Dong Liu
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Ted Gauthier
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| |
Collapse
|
18
|
Wang CK, Huang YH, Shabbir F, Pham HT, Lawrence N, Benfield AH, van der Donk W, Henriques ST, Turner MS, Craik DJ. The Circular Bacteriocin enterocin NKR-5-3B has an Improved Stability Profile over Nisin. Peptides 2023:171049. [PMID: 37390898 DOI: 10.1016/j.peptides.2023.171049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Bacteriocins are a large family of bacterial peptides that have antimicrobial activity and potential applications as clinical antibiotics or food preservatives. Circular bacteriocins are a unique class of these biomolecules distinguished by a seamless circular topology, and are widely assumed to be ultra-stable based on this constraining structural feature. However, without quantitative studies of their susceptibility to defined thermal, chemical, and enzymatic conditions, their stability characteristics remain poorly understood, limiting their translational development. Here, we produced the circular bacteriocin enterocin NKR-5-3B (Ent53B) in mg/L quantities using a heterologous Lactococcus expression system, and characterized its thermal stability by NMR, chemical stability by circular dichroism and analytical HPLC, and enzymatic stability by analytical HPLC. We demonstrate that Ent53B is ultra-stable, resistant to temperatures approaching boiling, acidic (pH 2.6) and alkaline (pH 9.0) conditions, the chaotropic agent 6M urea, and following incubation with a range of proteases (i.e., trypsin, chymotrypsin, pepsin, and papain), conditions under which most peptides and proteins degrade. Ent53B is stable across a broader range of pH conditions and proteases than nisin, the most widely used bacteriocin in food manufacturing. Antimicrobial assays showed that differences in stability correlated with differences in bactericidal activity. Overall, this study provides quantitative support for circular bacteriocins being an ultra-stable class of peptide molecules, suggesting easier handling and distribution options available to them in practical applications as antimicrobial agents.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science,.
| | - Yen-Hua Huang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Fatima Shabbir
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Huong T Pham
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Wilfred van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| |
Collapse
|
19
|
Karabulut S, Wijerathne DV, Gauld JW. Computational Insights into the Formation and Structure of S-N Containing Cyclic Peptides. ACS OMEGA 2023; 8:18234-18244. [PMID: 37251184 PMCID: PMC10210182 DOI: 10.1021/acsomega.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Cyclic peptides are known to have biologically important roles and may also be applicable to the pharmaceutical and other industries. Furthermore, thiols and amines, which are found throughout biological systems, can react to form S-N bonds and to date, ∼100 biomolecules containing such a bond have been identified. However, while there are in principle numerous S-N containing peptide-derived rings possible, only a few are presently known to occur in biochemical systems. Density functional theory-based calculations have been used to consider the formation and structure of S-N containing cyclic peptides from systematic series of linear peptides in which a cysteinyl has first been oxidized to a sulfenic or sulfonic acid. In addition, the possible effect of the cysteine's vicinal residue on the free energy of formation has also been considered. In general, when the cysteine is first oxidized to a sulfenic acid, only the formation of smaller S-N containing rings is calculated to be exergonic in aqueous solution. In contrast, when the cysteine is first oxidized to a sulfonic acid, the formation of all rings considered (with one exception) is calculated to be endergonic in aqueous solution. The nature of vicinal residue can influence ring formation through stabilizing or destabilizing intramolecular interactions.
Collapse
|
20
|
Ho TNT, Turner A, Pham SH, Nguyen HT, Nguyen LTT, Nguyen LT, Dang TT. Cysteine-rich peptides: From bioactivity to bioinsecticide applications. Toxicon 2023; 230:107173. [PMID: 37211058 DOI: 10.1016/j.toxicon.2023.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Greater levels of insect resistance and constraints on the use of current pesticides have recently led to increased crop losses in agricultural production. Further, the health and environmental impacts of pesticides now restrict their application. Biologics based on peptides are gaining popularity as efficient crop protection agents with low environmental toxicity. Cysteine-rich peptides (whether originated from venoms or plant defense substances) are chemically stable and effective as insecticides in agricultural applications. Cysteine-rich peptides fulfill the stability and efficacy requirements for commercial uses and provide an environmentally benign alternative to small-molecule insecticides. In this article, cysteine-rich insecticidal peptide classes identified from plants and venoms will be highlighted, focusing on their structural stability, bioactivity and production.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - A Turner
- Molecular Biology Department, University of Texas, 100 E 24th St. Austin, USA
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Ouellet S, Ferguson L, Lau AZ, Lim TKY. CysPresso: a classification model utilizing deep learning protein representations to predict recombinant expression of cysteine-dense peptides. BMC Bioinformatics 2023; 24:200. [PMID: 37193950 PMCID: PMC10189939 DOI: 10.1186/s12859-023-05327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaffold that display extreme biochemical properties, low immunogenicity, and the ability to bind targets with high affinity and selectivity. While many CDPs have potential and confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have made the recombinant expression of CDPs a viable alternative to chemical synthesis. Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in predicting their compatibility with gene therapy and mRNA therapy. Currently, we lack the ability to identify CDPs that will express recombinantly in mammalian cells without labour intensive experimentation. To address this, we developed CysPresso, a novel machine learning model that predicts recombinant expression of CDPs based on primary sequence. RESULTS We tested various protein representations generated by deep learning algorithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression and found that AlphaFold2 representations possessed the best predictive features. We then optimized the model by concatenation of AlphaFold2 representations, time series transformation with random convolutional kernels, and dataset partitioning. CONCLUSION Our novel model, CysPresso, is the first to successfully predict recombinant CDP expression in mammalian cells and is particularly well suited for predicting recombinant expression of knottin peptides. When preprocessing the deep learning protein representation for supervised machine learning, we found that random convolutional kernel transformation preserves more pertinent information relevant for predicting expressibility than embedding averaging. Our study showcases the applicability of deep learning-based protein representations, such as those provided by AlphaFold2, in tasks beyond structure prediction.
Collapse
Affiliation(s)
| | - Larissa Ferguson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Angus Z Lau
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tony K Y Lim
- , Vancouver, Canada.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Gattringer J, Gruber CW, Hellinger R. Peptide modulators of cell migration: Overview, applications and future development. Drug Discov Today 2023; 28:103554. [PMID: 36921670 PMCID: PMC7615922 DOI: 10.1016/j.drudis.2023.103554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Cell migration is a key physiological process in the development and homeostasis of multicellular organisms; errors in this complex system can trigger the development of cancer or inflammatory disorders. Therefore, modulating cell migration provides opportunities for drug discovery. Peptides are gaining importance on the global therapeutics market, given their unique properties compared with established small-molecule drugs or biologics. In this review, we identified over 470 peptides modulating cell migration and analyzed their characteristics. Over 95% of these peptides are in the discovery or preclinical stage, because the transition of peptide hits into drug leads often results in a bottleneck in the development process. We summarize chemical strategies in (pre-)clinical development to enhance drug-like properties of bioactive peptides.
Collapse
Affiliation(s)
- Jasmin Gattringer
- Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Christian W Gruber
- Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Roland Hellinger
- Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
23
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Xing Y, Wang Y, Ma D, Shen S, Song C, Zhang N, Bo T, Shi T, Huo S. N-Halosuccinimides mediated deprotection of cysteine-S protecting groups for one-pot regioselective synthesis of disulfide bonds in peptides under mild aqueous conditions. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
25
|
Enhancing the Stability of Tumor Homing LyP-1 Peptide Using Cyclization and Retro Grafting Strategies. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
26
|
Morais KLP, Ciccone L, Stura E, Alvarez-Flores MP, Mourier G, Driessche MV, Sciani JM, Iqbal A, Kalil SP, Pereira GJ, Marques-Porto R, Cunegundes P, Juliano L, Servent D, Chudzinski-Tavassi AM. Structural and functional properties of the Kunitz-type and C-terminal domains of Amblyomin-X supporting its antitumor activity. Front Mol Biosci 2023; 10:1072751. [PMID: 36845546 PMCID: PMC9948614 DOI: 10.3389/fmolb.2023.1072751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Amblyomin-X is a Kunitz-type FXa inhibitor identified through the transcriptome analysis of the salivary gland from Amblyomma sculptum tick. This protein consists of two domains of equivalent size, triggers apoptosis in different tumor cell lines, and promotes regression of tumor growth, and reduction of metastasis. To study the structural properties and functional roles of the N-terminal (N-ter) and C-terminal (C-ter) domains of Amblyomin-X, we synthesized them by solid-phase peptide synthesis, solved the X-Ray crystallographic structure of the N-ter domain, confirming its Kunitz-type signature, and studied their biological properties. We show here that the C-ter domain is responsible for the uptake of Amblyomin-X by tumor cells and highlight the ability of this domain to deliver intracellular cargo by the strong enhancement of the intracellular detection of molecules with low cellular-uptake efficiency (p15) after their coupling with the C-ter domain. In contrast, the N-ter Kunitz domain of Amblyomin-X is not capable of crossing through the cell membrane but is associated with tumor cell cytotoxicity when it is microinjected into the cells or fused to TAT cell-penetrating peptide. Additionally, we identify the minimum length C-terminal domain named F2C able to enter in the SK-MEL-28 cells and induces dynein chains gene expression modulation, a molecular motor that plays a role in the uptake and intracellular trafficking of Amblyomin-X.
Collapse
Affiliation(s)
- K. L. P. Morais
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Ciccone
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E. Stura
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. P. Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. Vanden Driessche
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - J. M. Sciani
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - A. Iqbal
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - S. P. Kalil
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. J. Pereira
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - R. Marques-Porto
- Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - P. Cunegundes
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - D. Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| | - A. M. Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| |
Collapse
|
27
|
Lasso-grafted designer cytokines. Nat Biomed Eng 2023; 7:89-91. [PMID: 36424466 DOI: 10.1038/s41551-022-00974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Sakai K, Sugano-Nakamura N, Mihara E, Rojas-Chaverra NM, Watanabe S, Sato H, Imamura R, Voon DCC, Sakai I, Yamasaki C, Tateno C, Shibata M, Suga H, Takagi J, Matsumoto K. Designing receptor agonists with enhanced pharmacokinetics by grafting macrocyclic peptides into fragment crystallizable regions. Nat Biomed Eng 2023; 7:164-176. [PMID: 36344661 PMCID: PMC9991925 DOI: 10.1038/s41551-022-00955-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Short half-lives in circulation and poor transport across the blood-brain barrier limit the utility of cytokines and growth factors acting as receptor agonists. Here we show that surrogate receptor agonists with longer half-lives in circulation and enhanced transport rates across the blood-brain barrier can be generated by genetically inserting macrocyclic peptide pharmacophores into the structural loops of the fragment crystallizable (Fc) region of a human immunoglobulin. We used such 'lasso-grafting' approach, which preserves the expression levels of the Fc region and its affinity for the neonatal Fc receptor, to generate Fc-based protein scaffolds with macrocyclic peptides binding to the receptor tyrosine protein kinase Met. The Met agonists dimerized Met, inducing biological responses that were similar to those induced by its natural ligand. Moreover, lasso-grafting of the Fc region of the mouse anti-transferrin-receptor antibody with Met-binding macrocyclic peptides enhanced the accumulation of the resulting Met agonists in brain parenchyma in mice. Lasso-grafting may allow for designer protein therapeutics with enhanced stability and pharmacokinetics.
Collapse
Affiliation(s)
- Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Nozomi Sugano-Nakamura
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan
| | - Emiko Mihara
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan
| | | | - Sayako Watanabe
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan
| | - Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Dominic Chih-Cheng Voon
- Inflammation and Epithelial Plasticity Unit, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Cancer Model Research Innovative Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Itsuki Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chihiro Yamasaki
- Research and Development Department, PhoenixBio Co. Ltd, Higashihiroshima, Japan
| | - Chise Tateno
- Research and Development Department, PhoenixBio Co. Ltd, Higashihiroshima, Japan
| | - Mikihiro Shibata
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Japan.
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
29
|
Lu S, Fan S, Xiao S, Li J, Zhang S, Wu Y, Kong C, Zhuang J, Liu H, Zhao Y, Wu C. Disulfide-Directed Multicyclic Peptide Libraries for the Discovery of Peptide Ligands and Drugs. J Am Chem Soc 2023; 145:1964-1972. [PMID: 36633218 DOI: 10.1021/jacs.2c12462] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multicyclic peptides with stable 3D structures are a kind of novel and promising peptide formats for drug design and discovery as they have the potential to combine the best characteristics of small molecules and proteins. However, the development of multicyclic peptides is largely limited to naturally occurring products. It remains a big challenge to develop multicyclic peptides with new structures and functions without recourse to the existing natural scaffolds. Here, we report a general and robust method relying on the utility of new disulfide-directing motifs for designing and discovering diverse multicyclic peptides with potent protein-binding capability. These peptides, referred to as disulfide-directed multicyclic peptides (DDMPs), are tolerant to extensive sequence manipulations and variations of disulfide-pairing frameworks, enabling the development of de novo DDMP libraries useful for ligand and drug discovery. This study opens a new avenue for creating a new generation of multicyclic peptides in sequence and structure space inaccessible by natural scaffolds, thus would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shilong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuilian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
30
|
Meng X, Xu C, Fan S, Dong M, Zhuang J, Duan Z, Zhao Y, Wu C. Selection and evolution of disulfide-rich peptides via cellular protein quality control. Chem Sci 2023; 14:3668-3675. [PMID: 37006698 PMCID: PMC10055976 DOI: 10.1039/d2sc05343h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A selection system leveraging cellular protein quality control (termed PQC-select) has been designed to select DRPs with robust foldability from random sequences, providing valuable scaffolds for developing peptide-based probes or therapeutics.
Collapse
Affiliation(s)
- Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaoying Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Meng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Zengping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
31
|
Abstract
Background Ribosomally-synthesized cyclic peptides are widely found in plants and exhibit useful bioactivities for humans. The identification of cyclic peptide sequences and their precursor proteins is facilitated by the growing number of sequenced genomes. While previous research largely focused on the chemical diversity of these peptides across various species, there is little attention to a broader range of potential peptides that are not chemically identified. Results A pioneering study was initiated to explore the genetic diversity of linusorbs, a group of cyclic peptides uniquely occurring in cultivated flax (Linum usitatissimum). Phylogenetic analysis clustered the 5 known linusorb precursor proteins into two clades and one singleton. Preliminary tBLASTn search of the published flax genome using the whole protein sequence as query could only retrieve its homologues within the same clade. This limitation was overcome using a profile-based mining strategy. After genome reannotation, a hidden Markov Model (HMM)-based approach identified 58 repeats homologous to the linusorb-embedded repeats in 8 novel proteins, implying that they share common ancestry with the linusorb-embedded repeats. Subsequently, we developed a customized profile composed of a random linusorb-like domain (LLD) flanked by 5 conserved sites and used it for string search of the proteome, which extracted 281 LLD-containing repeats (LLDRs) in 25 proteins. Comparative analysis of different repeat categories suggested that the 5 conserved flanking sites among the non-homologous repeats have undergone convergent evolution driven by functional selection. Conclusions The profile-based mining approach is suitable for analyzing repetitive sequences. The 25 LLDR proteins identified herein represent the potential diversity of cyclic peptides within the flax genome and lay a foundation for further studies on the functions and evolution of these protein tandem repeats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08735-x.
Collapse
|
32
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
33
|
Jackson MA, Chan LY, Harding MD, Craik DJ, Gilding EK. Rational domestication of a plant-based recombinant expression system expands its biosynthetic range. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6103-6114. [PMID: 35724659 PMCID: PMC9578353 DOI: 10.1093/jxb/erac273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/20/2022] [Indexed: 05/22/2023]
Abstract
Plant molecular farming aims to provide a green, flexible, and rapid alternative to conventional recombinant expression systems, capable of producing complex biologics such as enzymes, vaccines, and antibodies. Historically, the recombinant expression of therapeutic peptides in plants has proven difficult, largely due to their small size and instability. However, some plant species harbour the capacity for peptide backbone cyclization, a feature inherent in stable therapeutic peptides. One obstacle to realizing the potential of plant-based therapeutic peptide production is the proteolysis of the precursor before it is matured into its final stabilized form. Here we demonstrate the rational domestication of Nicotiana benthamiana within two generations to endow this plant molecular farming host with an expanded repertoire of peptide sequence space. The in planta production of molecules including an insecticidal peptide, a prostate cancer therapeutic lead, and an orally active analgesic is demonstrated.
Collapse
Affiliation(s)
- Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Maxim D Harding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Dang TT, Huang YH, Ott S, Harvey PJ, Gilding EK, Tombling BJ, Chan LY, Kaas Q, Claridge-Chang A, Craik DJ. The acyclotide ribe 31 from Rinorea bengalensis has selective cytotoxicity and potent insecticidal properties in Drosophila. J Biol Chem 2022; 298:102413. [PMID: 36007611 PMCID: PMC9513267 DOI: 10.1016/j.jbc.2022.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclotides and acyclic versions of cyclotides (acyclotides) are peptides involved in plant defense. These peptides contain a cystine knot motif formed by three interlocked disulfide bonds, with the main difference between the two classes being the presence or absence of a cyclic backbone, respectively. The insecticidal activity of cyclotides is well documented, but no study to date explores the insecticidal activity of acyclotides. Here, we present the first in vivo evaluation of the insecticidal activity of acyclotides from Rinorea bengalensis on the vinegar fly Drosophila melanogaster. Of a group of structurally comparable acyclotides, ribe 31 showed the most potent toxicity when fed to D. melanogaster. We screened a range of acyclotides and cyclotides and found their toxicity toward human red blood cells was substantially lower than toward insect cells, highlighting their selectivity and potential for use as bioinsecticides. Our confocal microscopy experiments indicated their cytotoxicity is likely mediated via membrane disruption. Furthermore, our surface plasmon resonance studies suggested ribe 31 preferentially binds to membranes containing phospholipids with phosphatidyl-ethanolamine headgroups. Despite having an acyclic backbone, we determined the three-dimensional NMR solution structure of ribe 31 is similar to that of cyclotides. In summary, our results suggest that, with further optimization, ribe 31 could have applications as an insecticide due to its potent in vivo activity against D. melanogaster. More broadly, this work advances the field by demonstrating that acyclotides are more common than previously thought, have potent insecticidal activity, and have the advantage of potentially being more easily manufactured than cyclotides.
Collapse
Affiliation(s)
- Tien T Dang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Stanislav Ott
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Adam Claridge-Chang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Molecular and Cell Biology, A∗STAR, Singapore; Department of Physiology, National University of Singapore, Singapore, Singapore
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
35
|
Jacob B, Vogelaar A, Cadenas E, Camarero JA. Using the Cyclotide Scaffold for Targeting Biomolecular Interactions in Drug Development. Molecules 2022; 27:molecules27196430. [PMID: 36234971 PMCID: PMC9570680 DOI: 10.3390/molecules27196430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.
Collapse
Affiliation(s)
- Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Alicia Vogelaar
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 9033, USA
- Correspondence:
| |
Collapse
|
36
|
White AM, Dellsén A, Larsson N, Kaas Q, Jansen F, Plowright AT, Knerr L, Durek T, Craik DJ. Late-Stage Functionalization with Cysteine Staples Generates Potent and Selective Melanocortin Receptor-1 Agonists. J Med Chem 2022; 65:12956-12969. [PMID: 36167503 DOI: 10.1021/acs.jmedchem.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, cysteine staples were used as a late-stage functionalization strategy to diversify peptides and build conjugates targeting the melanocortin G-protein-coupled receptors [melanocortin receptor-1 (MC1R) and MC3R-MC5R]. Monocyclic and bicyclic agonists based on sunflower trypsin inhibitor-1 were used to generate a selection of stapled peptides that were evaluated for binding (pKi) and functional activation (pEC50) of the melanocortin receptor subtypes. Stapled peptides generally had improved activity, with aromatic stapled peptides yielding selective MC1R agonists, including a xylene-stapled peptide (2) with an EC50 of 1.9 nM for MC1R and >150-fold selectivity for MC3R and MC4R. Selected stapled peptides were further functionalized with linkers and payloads, generating a series of conjugated peptides with potent MC1R activity, including one pyridazine-functionalized peptide (21) with picomolar activity at MC1R (Ki 58 pM; EC50 < 9 pM). This work demonstrates that staples can be used as modular synthetic tools to tune potency and selectivity in peptide-based drug design.
Collapse
Affiliation(s)
- Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frank Jansen
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Komarov IV, Tolstanova G, Kuznietsova H, Dziubenko N, Yanchuk PI, Shtanova LY, Veselsky SP, Garmanchuk LV, Khranovska N, Gorbach O, Dovbynchuk T, Borysko P, Babii O, Schober T, Ulrich AS, Afonin S. Towards in vivo photomediated delivery of anticancer peptides: Insights from pharmacokinetic and -dynamic data. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112479. [PMID: 35660309 DOI: 10.1016/j.jphotobiol.2022.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
An in vivo study of a photoswitchable cytotoxic peptide LMB040 has been undertaken on a chemically induced hepatocellular carcinoma model in immunocompetent rats. We analysed the pharmacokinetic profile of the less toxic photoform ("ring-closed" dithienylethene) of the compound in tumors, plasma, and healthy liver. Accordingly, the peptide can reach a tumor concentration sufficiently high to exert a cytotoxic effect upon photoconversion into the more active ("ring-open") photoform. Tissue morphology, histology, redox state of the liver, and hepatic biochemical parameters in blood serum were analysed upon treatment with (i) the less active photoform, (ii) the in vivo light-activated alternative photoform, and (iii) compared with a reference chemotherapeutic 5-fluorouracil. We found that application of the less toxic form followed by a delayed in vivo photoconversion into the more toxic ring-open form of LMB040 led to a higher overall survival of the animals, and signs of enhanced immune response were observed compared to the untreated animals.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Lumobiotics, Karlsruhe, Germany; Enamine, Kyiv, Ukraine.
| | | | - Halyna Kuznietsova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Enamine, Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | | - Oleg Babii
- Lumobiotics, Karlsruhe, Germany; Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tim Schober
- Lumobiotics, Karlsruhe, Germany; Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Organic Chemistry of Karlsruhe KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany..
| | - Sergii Afonin
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
38
|
Wang Y, Xing Y, Sun J, Song C, Shen S, Huo S. Polymer Supported Methionine Selenoxide as an Excellent Immobilized Oxidant for the Formation of Disulfide Bonds in Peptides. ChemistrySelect 2022. [DOI: 10.1002/slct.202201361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yafang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics Hebei University, Baoding Hebei Province P. R. China
| | - Yueyue Xing
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics Hebei University, Baoding Hebei Province P. R. China
| | - Jingjing Sun
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics Hebei University, Baoding Hebei Province P. R. China
| | - Changing Song
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics Hebei University, Baoding Hebei Province P. R. China
| | - Shigang Shen
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics Hebei University, Baoding Hebei Province P. R. China
| | - Shuying Huo
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics Hebei University, Baoding Hebei Province P. R. China
| |
Collapse
|
39
|
Hsueh SCC, Aina A, Roman AY, Cashman NR, Peng X, Plotkin SS. Optimizing Epitope Conformational Ensembles Using α-Synuclein Cyclic Peptide "Glycindel" Scaffolds: A Customized Immunogen Method for Generating Oligomer-Selective Antibodies for Parkinson's Disease. ACS Chem Neurosci 2022; 13:2261-2280. [PMID: 35840132 DOI: 10.1021/acschemneuro.1c00567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Effectively presenting epitopes on immunogens, in order to raise conformationally selective antibodies through active immunization, is a central problem in treating protein misfolding diseases, particularly neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. We seek to selectively target conformations enriched in toxic, oligomeric propagating species while sparing the healthy forms of the protein that are often more abundant. To this end, we computationally modeled scaffolded epitopes in cyclic peptides by inserting/deleting a variable number of flanking glycines ("glycindels") to best mimic a misfolding-specific conformation of an epitope of α-synuclein enriched in the oligomer ensemble, as characterized by a region most readily disordered and solvent-exposed in a stressed, partially denatured protofibril. We screen and rank the cyclic peptide scaffolds of α-synuclein in silico based on their ensemble overlap properties with the fibril, oligomer-model and isolated monomer ensembles. We present experimental data of seeded aggregation that support nucleation rates consistent with computationally predicted cyclic peptide conformational similarity. We also introduce a method for screening against structured off-pathway targets in the human proteome by selecting scaffolds with minimal conformational similarity between their epitope and the same solvent-exposed primary sequence in structured human proteins. Different cyclic peptide scaffolds with variable numbers of glycines are predicted computationally to have markedly different conformational ensembles. Ensemble comparison and overlap were quantified by the Jensen-Shannon divergence and a new measure introduced here, the embedding depth, which determines the extent to which a given ensemble is subsumed by another ensemble and which may be a more useful measure in developing immunogens that confer conformational selectivity to an antibody.
Collapse
Affiliation(s)
- Shawn C C Hsueh
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Adekunle Aina
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Andrei Yu Roman
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Xubiao Peng
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Genome Science and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
40
|
Wu Y, Fan S, Dong M, Li J, Kong C, Zhuang J, Meng X, Lu S, Zhao Y, Wu C. Structure-guided design of CPPC-paired disulfide-rich peptide libraries for ligand and drug discovery. Chem Sci 2022; 13:7780-7789. [PMID: 35865895 PMCID: PMC9258321 DOI: 10.1039/d2sc00924b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022] Open
Abstract
Peptides constrained through multiple disulfides (or disulfide-rich peptides, DRPs) have been an emerging frontier for ligand and drug discovery. Such peptides have the potential to combine the binding capability of biologics with the stability and bioavailability of smaller molecules. However, DRPs with stable three-dimensional (3D) structures are usually of natural origin or engineered from natural ones. Here, we report the discovery and identification of CPPC (cysteine-proline-proline-cysteine) motif-directed DRPs with stable 3D structures (i.e., CPPC-DRPs). A range of new CPPC-DRPs were designed or selected from either random or structure-convergent peptide libraries. Thus, for the first time we revealed that the CPPC-DRPs can maintain diverse 3D structures by taking advantage of constraints from unique dimeric CPPC mini-loops, including irregular structures and regular α-helix and β-sheet folds. New CPPC-DRPs that can specifically bind the receptors (CD28) on the cell surface were also successfully discovered and identified using our DRP-discovery platform. Overall, this study provides the basis for accessing an unconventional peptide structure space previously inaccessible by natural DRPs and computational designs, inspiring the development of new peptide ligands and therapeutics.
Collapse
Affiliation(s)
- Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Meng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuilian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen 361005 P.R. China
| |
Collapse
|
41
|
Taghizadeh MS, Retzl B, Muratspahić E, Trenk C, Casanova E, Moghadam A, Afsharifar A, Niazi A, Gruber CW. Discovery of the cyclotide caripe 11 as a ligand of the cholecystokinin-2 receptor. Sci Rep 2022; 12:9215. [PMID: 35654807 PMCID: PMC9163038 DOI: 10.1038/s41598-022-13142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
The cholecystokinin-2 receptor (CCK2R) is a G protein-coupled receptor (GPCR) that is expressed in peripheral tissues and the central nervous system and constitutes a promising target for drug development in several diseases, such as gastrointestinal cancer. The search for ligands of this receptor over the past years mainly resulted in the discovery of a set of distinct synthetic small molecule chemicals. Here, we carried out a pharmacological screening of cyclotide-containing plant extracts using HEK293 cells transiently-expressing mouse CCK2R, and inositol phosphate (IP1) production as a readout. Our data demonstrated that cyclotide-enriched plant extracts from Oldenlandia affinis, Viola tricolor and Carapichea ipecacuanha activate the CCK2R as measured by the production of IP1. These findings prompted the isolation of a representative cyclotide, namely caripe 11 from C. ipecacuanha for detailed pharmacological analysis. Caripe 11 is a partial agonist of the CCK2R (Emax = 71%) with a moderate potency of 8.5 µM, in comparison to the endogenous full agonist cholecystokinin-8 (CCK-8; EC50 = 11.5 nM). The partial agonism of caripe 11 is further characterized by an increase on basal activity (at low concentrations) and a dextral-shift of the potency of CCK-8 (at higher concentrations) following its co-incubation with the cyclotide. Therefore, cyclotides such as caripe 11 may be explored in the future for the design and development of cyclotide-based ligands or imaging probes targeting the CCK2R and related peptide GPCRs.
Collapse
Affiliation(s)
- Mohammad Sadegh Taghizadeh
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christoph Trenk
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Emilio Casanova
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
42
|
Guido-Patiño JC, Plisson F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022; 14:100119. [PMID: 35372826 PMCID: PMC8971319 DOI: 10.1016/j.toxcx.2022.100119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders. The hymenopteran toxin diversity includes 21 protein families from 81 species. Some toxins are shared across wasps, bees and ants, others are clade-specific. Their venoms contain membrane-active peptides, neurotoxins, allergens and enzymes. Hymenopteran toxins have been tested against a total of 119 biological targets. Hymenopteran toxins were predominantly evaluated as anti-infective agents.
Collapse
Affiliation(s)
- Juan Carlos Guido-Patiño
- Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
- Corresponding author.
| |
Collapse
|
43
|
Bell HJ, Malins LR. Peptide macrocyclisation via late-stage reductive amination. Org Biomol Chem 2022; 20:6250-6256. [PMID: 35621075 DOI: 10.1039/d2ob00782g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-component reductive amination approach to the synthesis of peptide macrocycles is reported which leverages the inherent reactivity of proteinogenic amine nucleophiles. Unprotected peptides bearing α-amine and side chain amine motifs undergo two-fold reductive amination reactions with 2,6-pyridinedialdehyde linkers in aqueous media to afford macrocyclic peptide products with backbone embedded pyridine motifs. Dialdehyde staples bearing valuable azide and alkyne handles also enable the post-cyclisation modification of peptides using copper-catalysed azide-alkyne cycloaddition (CuAAC) chemistry.
Collapse
Affiliation(s)
- Hayden J Bell
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv 2022; 59:107962. [PMID: 35452776 DOI: 10.1016/j.biotechadv.2022.107962] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Due to the alarming developing rate of multidrug-resistant bacterial pathogens, the development and modification of antimicrobial peptides (AMPs) are unprecedentedly active. Despite the fact that considerable efforts have been expended on the discovery and design strategies of AMPs, the clinical translation of peptide antibiotics remains inadequate. A large number of articles and reviews credited the limited success of AMPs to their poor stability in the biological environment, particularly their poor proteolytic stability. In the past forty years, various design strategies have been used to improve the proteolytic stability of AMPs, such as sequence modification, cyclization, peptidomimetics, and nanotechnology. Herein, we focus our discussion on the progress made in improving the proteolytic stability of AMPs and the principle, successes, and limitations of various anti-proteolytic design strategies. It is of prospective significance to extend current insights into the degradation-related inactivation of AMPs and also alleviate/overcome the problem.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yunhui Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
45
|
Gupta S, Azadvari N, Hosseinzadeh P. Design of Protein Segments and Peptides for Binding to Protein Targets. BIODESIGN RESEARCH 2022; 2022:9783197. [PMID: 37850124 PMCID: PMC10521657 DOI: 10.34133/2022/9783197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 10/19/2023] Open
Abstract
Recent years have witnessed a rise in methods for accurate prediction of structure and design of novel functional proteins. Design of functional protein fragments and peptides occupy a small, albeit unique, space within the general field of protein design. While the smaller size of these peptides allows for more exhaustive computational methods, flexibility in their structure and sparsity of data compared to proteins, as well as presence of noncanonical building blocks, add additional challenges to their design. This review summarizes the current advances in the design of protein fragments and peptides for binding to targets and discusses the challenges in the field, with an eye toward future directions.
Collapse
Affiliation(s)
- Suchetana Gupta
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Noora Azadvari
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
46
|
Kremsmayr T, Aljnabi A, Blanco-Canosa JB, Tran HNT, Emidio NB, Muttenthaler M. On the Utility of Chemical Strategies to Improve Peptide Gut Stability. J Med Chem 2022; 65:6191-6206. [PMID: 35420805 PMCID: PMC9059125 DOI: 10.1021/acs.jmedchem.2c00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Inherent susceptibility
of peptides to enzymatic degradation in
the gastrointestinal tract is a key bottleneck in oral peptide drug
development. Here, we present a systematic analysis of (i) the gut
stability of disulfide-rich peptide scaffolds, orally administered
peptide therapeutics, and well-known neuropeptides and (ii) medicinal
chemistry strategies to improve peptide gut stability. Among a broad
range of studied peptides, cyclotides were the only scaffold class
to resist gastrointestinal degradation, even when grafted with non-native
sequences. Backbone cyclization, a frequently applied strategy, failed
to improve stability in intestinal fluid, but several site-specific
alterations proved efficient. This work furthermore highlights the
importance of standardized gut stability test conditions and suggests
defined protocols to facilitate cross-study comparison. Together,
our results provide a comparative overview and framework for the chemical
engineering of gut-stable peptides, which should be valuable for the
development of orally administered peptide therapeutics and molecular
probes targeting receptors within the gastrointestinal tract.
Collapse
Affiliation(s)
- Thomas Kremsmayr
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Aws Aljnabi
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
47
|
Dong H, Li J, Liu H, Lu S, Wu J, Zhang Y, Yin Y, Zhao Y, Wu C. Design and Ribosomal Incorporation of Noncanonical Disulfide-Directing Motifs for the Development of Multicyclic Peptide Libraries. J Am Chem Soc 2022; 144:5116-5125. [PMID: 35289603 DOI: 10.1021/jacs.2c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The engineering of naturally occurring disulfide-rich peptides (DRPs) has been significantly hampered by the difficulty of manipulating disulfide pairing. New DRPs that take advantage of fold-directing motifs and noncanonical thiol-bearing amino acids are easy-to-fold with expected disulfide connectivities, representing a new class of scaffolds for the development of peptide ligands and therapeutics. However, the limited diversity of the scaffolds and particularly the use of noncanonical amino acids [e.g., penicillamine (Pen)] that are difficult to be translated by ribosomes greatly hamper the further development and application of these DRPs. Here, we designed and synthesized noncanonical bisthiol motifs bearing sterically obstructed thiol groups analogous to the Pen thiol to direct the folding of peptides into specific bicyclic and tricyclic structures. These bisthiol motifs can be ribosomally incorporated into peptides through a commercially available PURE system integrated with genetic code reprograming, which enables, for the first time, the in vitro expression of bicyclic peptides with two noncanonical and orthogonal disulfide bonds. We further constructed a bicyclic peptide library encoded by mRNA, with which new bicyclic peptide ligands with nanomolar affinity to proteins were successfully selected. Therefore, this study provides a new, general, and robust method for discovering de novo DRPs with new structures and functions not derived from natural peptides, which would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Huilei Dong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Shuaimin Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
48
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
49
|
Doffek B, Huang Y, Huang YH, Chan LY, Gilding EK, Jackson MA, Craik DJ. Comparative analysis of cyclotide-producing plant cell suspensions presents opportunities for cyclotide plant molecular farming. PHYTOCHEMISTRY 2022; 195:113053. [PMID: 34923360 DOI: 10.1016/j.phytochem.2021.113053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Cyclotides are a class of ribosomally-synthesized plant peptides that function in plants as a defense against insects and fungal pathogens. Their unique structure comprises a cyclized peptide backbone threaded by three disulfide bonds, that imparts structural stability, a desirable quality for peptide-based therapeutics or insecticides. Producing these peptides synthetically is challenging due to the amount of chemical waste produced and inefficiency of folding certain cyclotides. Thus, it is desirable to develop a means to access cyclotide biosynthesis in their native hosts, cultured in defined conditions, at both laboratory and commercial scale. Here we developed suspension cell cultures from two species previously unexplored for cyclotide production in suspension cells, Clitoria ternatea L., Hybanthus enneaspermus F. Muell., as well as with Oldenlandia affinis (Roem. & Schult.) DC., a species reported previously to accumulate cyclotides in cell suspensions. We assessed the growth rate, cyclotide production and gene expression for the various species. We found that while many cyclotides had reduced expression in Oldenlandia affinis suspension cells when compared to plant organs, those in Clitoria ternatea and Hybanthus enneaspermus maintained or increased expression levels. The cyclotides that continued to be expressed in suspension cultures shared similar sequence and biophysical properties as a group, regardless of phylogenetic origin of the host. Of particular interest was the discovery of inducibility by NaCl of cyclotide expression in O. affinis, cycloviolacin O2 expression in O. affinis, and the scale up of cycloviolacin O2 production in H. enneaspermus. Together the results presented here highlight the utility of plant cell suspensions as modalities to produce macrocyclic peptides.
Collapse
Affiliation(s)
- Benjamin Doffek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yvonne Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
50
|
Protocols for measuring the stability and cytotoxicity of cyclotides. Methods Enzymol 2022; 663:19-40. [PMID: 35168789 DOI: 10.1016/bs.mie.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cyclotides are plant host-defense peptides that have a wide range of biological activities and have diverse potential applications in medicine and agriculture. These 27-37 amino acid peptides have a head-to-tail cyclic backbone and are built around a cystine knot core, which makes them exceptionally stable. This stability and their amenability to sequence modifications has made cyclotides attractive scaffolds in drug design, and many synthetic cyclotides have now been designed and synthesized to test their efficacy as leads for a wide range of diseases, including infectious disease, cancer, pain and multiple sclerosis. Additionally, some natural cyclotides are selectively toxic to certain cancer cell lines, opening their potential as anticancer agents, and others have insecticidal activity, with applications in crop protection. With these applications in mind, there is a need to be able to measure cyclotides in pharmaceutical or agrichemical formulations and in biological media such as blood serum, as well as to assess their potential persistence in the environment when used as agrichemical agents. This chapter describes protocols for quantifying cyclotides in biological fluids, measuring their stability, and assessing their relative cytotoxicity on various types of cells.
Collapse
|