1
|
Calebiro D, Miljus T, O'Brien S. Endomembrane GPCR signaling: 15 years on, the quest continues. Trends Biochem Sci 2025; 50:46-60. [PMID: 39532582 DOI: 10.1016/j.tibs.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell receptors. They mediate the effects of a multitude of endogenous and exogenous cues, are deeply involved in human physiology and disease, and are major pharmacological targets. Whereas GPCRs were long thought to signal exclusively at the plasma membrane, research over the past 15 years has revealed that they also signal via classical G-protein-mediated pathways on membranes of intracellular organelles such as endosomes and the Golgi complex. This review provides an overview of recent advances and emerging concepts related to endomembrane GPCR signaling, as well as ongoing research aimed at a better understanding of its mechanisms, physiological relevance, and potential therapeutic applications.
Collapse
Affiliation(s)
- Davide Calebiro
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK.
| | - Tamara Miljus
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Shannon O'Brien
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| |
Collapse
|
2
|
Zahm AM, Owens WS, Himes SR, Fallon BS, Rondem KE, Gormick AN, Bloom JS, Kosuri S, Chan H, English JG. A massively parallel reporter assay library to screen short synthetic promoters in mammalian cells. Nat Commun 2024; 15:10353. [PMID: 39609378 PMCID: PMC11604768 DOI: 10.1038/s41467-024-54502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Cellular responses to stimuli underpin discoveries in drug development, synthetic biology, and general life sciences. We introduce a library comprising 6144 synthetic promoters, each shorter than 250 bp, designed as transcriptional readouts of cellular stimulus responses in massively parallel reporter assay format. This library facilitates precise detection and amplification of transcriptional activity from our promoters, enabling the systematic development of tunable reporters with dynamic ranges of 50-100 fold. Our library proved functional in numerous cell lines and responsive to a variety of stimuli, including metabolites, mitogens, toxins, and pharmaceutical agents, generating robust and scalable reporters effective in screening assays, biomarkers, and synthetic circuits attuned to endogenous cellular activities. Particularly valuable in therapeutic development, our library excels in capturing candidate reporters to signals mediated by drug targets, a feature we illustrate across nine diverse G-protein coupled receptors (GPCRs), critical targets in drug development. We detail how this tool isolates and defines discrete signaling pathways associated with specific GPCRs, elucidating their transcriptional signatures. With its ease of implementation, broad utility, publicly available data, and comprehensive documentation, our library will be beneficial in synthetic biology, cellular engineering, ligand exploration, and drug development.
Collapse
Affiliation(s)
- Adam M Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Samuel R Himes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexa N Gormick
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua S Bloom
- Octant Inc., Emeryville, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | | | | | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Ripoll L, Li Y, Dessauer CW, von Zastrow M. Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons. Nat Commun 2024; 15:8297. [PMID: 39333071 PMCID: PMC11436756 DOI: 10.1038/s41467-024-52575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The cAMP cascade is increasingly recognized to transduce physiological effects locally through spatially limited cAMP gradients. However, little is known about how adenylyl cyclase enzymes that initiate cAMP gradients are localized. Here we address this question in physiologically relevant striatal neurons and investigate how AC localization impacts downstream signaling function. We show that the major striatal AC isoforms are differentially sorted between ciliary and extraciliary domains of the plasma membrane, and that one isoform, AC9, is uniquely concentrated in endosomes. We identify key sorting determinants in the N-terminal cytoplasmic domain responsible for isoform-specific localization. We further show that AC9-containing endosomes accumulate activated dopamine receptors and form an elaborately intertwined network with juxtanuclear PKA stores bound to Golgi membranes. Finally, we provide evidence that endosomal localization enables AC9 to selectively elevate PKA activity in the nucleus relative to the cytoplasm. Together, these results reveal a precise spatial landscape of the cAMP cascade in neurons and a key role of AC localization in directing downstream PKA signaling to the nucleus.
Collapse
Affiliation(s)
- Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yong Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Novy B, Dagunts A, Weishaar T, Holland EE, Adoff H, Hutchinson E, De Maria M, Kampmann M, Tsvetanova NG, Lobingier BT. An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation. Nat Chem Biol 2024:10.1038/s41589-024-01705-2. [PMID: 39223388 DOI: 10.1038/s41589-024-01705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) through the endosomal-lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR-APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal-lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.
Collapse
Affiliation(s)
- Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Tatum Weishaar
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily E Holland
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily Hutchinson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
| | | | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
6
|
Mukherjee S, Klarenbeek J, El Oualid F, van den Broek B, Jalink K. "Radical" differences between two FLIM microscopes affect interpretation of cell signaling dynamics. iScience 2024; 27:110268. [PMID: 39036041 PMCID: PMC11257777 DOI: 10.1016/j.isci.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
The outcome of cell signaling depends not only on signal strength but also on temporal progression. We use Fluorescence Lifetime Imaging of Resonance Energy Transfer (FLIM/FRET) biosensors to investigate intracellular signaling dynamics. We examined the β1 receptor-Gαs-cAMP signaling axis using both widefield frequency domain FLIM (fdFLIM) and fast confocal time-correlated single photon counting (TCSPC) setups. Unexpectedly, we observed that fdFLIM revealed transient cAMP responses in HeLa and Cos7 cells, contrasting with sustained responses as detected with TCSPC. Investigation revealed no light-induced effects on cAMP generation or breakdown. Rather, folic acid present in the imaging medium appeared to be the culprit, as its excitation with blue light sensitized degradation of β1 agonists. Our findings highlight the impact of subtle phototoxicity on experimental outcomes, advocating confocal TCSPC for reliable analysis of response kinetics and stressing the need for full disclosure of chemical formulations by scientific vendors.
Collapse
Affiliation(s)
- Sravasti Mukherjee
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Jeffrey Klarenbeek
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Farid El Oualid
- UbiQ Bio B.V., Science Park 301, Amsterdam 1098 XH, the Netherlands
| | - Bram van den Broek
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- BioImaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Kees Jalink
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
- Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
7
|
Hardy JC, Pool EH, Bruystens JGH, Zhou X, Li Q, Zhou DR, Palay M, Tan G, Chen L, Choi JLC, Lee HN, Strack S, Wang D, Taylor SS, Mehta S, Zhang J. Molecular determinants and signaling effects of PKA RIα phase separation. Mol Cell 2024; 84:1570-1584.e7. [PMID: 38537638 PMCID: PMC11031308 DOI: 10.1016/j.molcel.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.
Collapse
Affiliation(s)
- Julia C Hardy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily H Pool
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica G H Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qingrong Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daojia R Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Max Palay
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerald Tan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa Chen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jaclyn L C Choi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Dong Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Peña KA, Savransky S, Lewis B. Endosomal signaling via cAMP in parathyroid hormone (PTH) type 1 receptor biology. Mol Cell Endocrinol 2024; 581:112107. [PMID: 37981188 DOI: 10.1016/j.mce.2023.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Compartmentalization of GPCR signaling is an emerging topic that highlights the physiological relevance of spatial bias in signaling. The parathyroid hormone (PTH) type 1 receptor (PTH1R) was the first GPCR described to signal via heterotrimeric G-protein and cAMP from endosomes after β-arrestin mediated internalization, challenging the canonical GPCR signaling model which established that signaling is terminated by receptor internalization. More than a decade later, many other GPCRs have been shown to signal from endosomes via cAMP, and recent studies have proposed that location of cAMP generation impacts physiological outcomes of GPCR signaling. Here, we review the extensive literature regarding PTH1R endosomal signaling via cAMP, the mechanisms that regulate endosomal generation of cAMP, and the implications of spatial bias in PTH1R physiological functions.
Collapse
Affiliation(s)
- Karina A Peña
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Sofya Savransky
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Breanna Lewis
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Willette BKA, Zhang JF, Zhang J, Tsvetanova NG. Endosome positioning coordinates spatially selective GPCR signaling. Nat Chem Biol 2024; 20:151-161. [PMID: 37500769 PMCID: PMC11024801 DOI: 10.1038/s41589-023-01390-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
G-protein-coupled receptors (GPCRs) can initiate unique functional responses depending on the subcellular site of activation. Efforts to uncover the mechanistic basis of compartmentalized GPCR signaling have concentrated on the biochemical aspect of this regulation. Here we assess the biophysical positioning of receptor-containing endosomes as an alternative salient mechanism. We devise a strategy to rapidly and selectively redistribute receptor-containing endosomes 'on command' in intact cells without perturbing their biochemical composition. Next, we present two complementary optical readouts that enable robust measurements of bulk- and gene-specific GPCR/cyclic AMP (cAMP)-dependent transcriptional signaling with single-cell resolution. With these, we establish that disruption of native endosome positioning inhibits the initiation of the endosome-dependent transcriptional responses. Finally, we demonstrate a prominent mechanistic role of PDE-mediated cAMP hydrolysis and local protein kinase A activity in this process. Our study, therefore, illuminates a new mechanism regulating GPCR function by identifying endosome positioning as the principal mediator of spatially selective receptor signaling.
Collapse
Affiliation(s)
- Blair K A Willette
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jin-Fan Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
10
|
Lohse MJ, Bock A, Zaccolo M. G Protein-Coupled Receptor Signaling: New Insights Define Cellular Nanodomains. Annu Rev Pharmacol Toxicol 2024; 64:387-415. [PMID: 37683278 DOI: 10.1146/annurev-pharmtox-040623-115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Collapse
Affiliation(s)
- Martin J Lohse
- ISAR Bioscience Institute, Planegg/Munich, Germany;
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
11
|
Pizzoni A, Zhang X, Altschuler DL. From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J Biol Chem 2024; 300:105497. [PMID: 38016514 PMCID: PMC10788541 DOI: 10.1016/j.jbc.2023.105497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Hardy JC, Pool EH, Bruystens JGH, Zhou X, Li Q, Zhou DR, Palay M, Tan G, Chen L, Choi JLC, Lee HN, Strack S, Wang D, Taylor SS, Mehta S, Zhang J. Molecular Determinants and Signaling Effects of PKA RIα Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570836. [PMID: 38168176 PMCID: PMC10760030 DOI: 10.1101/2023.12.10.570836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures the specific execution of various cellular functions. Liquid-liquid phase separation (LLPS) of the ubiquitously expressed PKA regulatory subunit RIα was recently identified as a major driver of cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces combined with the cAMP-induced release of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence are required to drive RIα condensate formation in cytosol, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in the formation of a non-canonical R:C complex, which serves to maintain low basal PKA activity in the cytosol by enabling the recruitment of active PKA-C to RIα condensates. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.
Collapse
|
13
|
Ripoll L, von Zastrow M. Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570478. [PMID: 38106018 PMCID: PMC10723477 DOI: 10.1101/2023.12.06.570478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The cAMP cascade is widely recognized to transduce its physiological effects locally through spatially limited cAMP gradients. However, little is known about how the adenylyl cyclase enzymes, which initiate cAMP gradients, are localized. Here we answer this question in physiologically relevant striatal neurons and delineate how AC localization impacts downstream signaling functions. We show that the major striatal AC isoforms are differentially sorted between ciliary and extraciliary domains of the plasma membrane, and that AC9 is uniquely targeted to endosomes. We identify key sorting determinants in the N-terminal cytoplasmic domain responsible for isoform-specific localization. We also show that AC9-containing endosomes accumulate activated dopamine receptors and form an elaborately intertwined network with juxtanuclear PKA stores bound to Golgi membranes. Finally, we show that endosomal localization is critical for AC9 to selectively elevate PKA activity in the nucleus relative to the cytoplasm. These results reveal a precise spatial landscape of the cAMP cascade in neurons and a key role of AC localization in directing downstream signal transduction to the nucleus.
Collapse
|
14
|
Semesta KM, Garces A, Tsvetanova NG. The psychosis risk factor RBM12 encodes a novel repressor of GPCR/cAMP signal transduction. J Biol Chem 2023; 299:105133. [PMID: 37543364 PMCID: PMC10502367 DOI: 10.1016/j.jbc.2023.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
RBM12 is a high-penetrance risk factor for familial schizophrenia and psychosis, yet its precise cellular functions and the pathways to which it belongs are not known. We utilize two complementary models, HEK293 cells and human iPSC-derived neurons, and delineate RBM12 as a novel repressor of the G protein-coupled receptor/cAMP/PKA (GPCR/cAMP/PKA) signaling axis. We establish that loss of RBM12 leads to hyperactive cAMP production and increased PKA activity as well as altered neuronal transcriptional responses to GPCR stimulation. Notably, the cAMP and transcriptional signaling steps are subject to discrete RBM12-dependent regulation. We further demonstrate that the two RBM12 truncating variants linked to familial psychosis impact this interplay, as the mutants fail to rescue GPCR/cAMP signaling hyperactivity in cells depleted of RBM12. Lastly, we present a mechanism underlying the impaired signaling phenotypes. In agreement with its activity as an RNA-binding protein, loss of RBM12 leads to altered gene expression, including that of multiple effectors of established significance within the receptor pathway. Specifically, the abundance of adenylyl cyclases, phosphodiesterase isoforms, and PKA regulatory and catalytic subunits is impacted by RBM12 depletion. We note that these expression changes are fully consistent with the entire gamut of hyperactive signaling outputs. In summary, the current study identifies a previously unappreciated role for RBM12 in the context of the GPCR-cAMP pathway that could be explored further as a tentative molecular mechanism underlying the functions of this factor in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Khairunnisa M Semesta
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Angelica Garces
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Nikoleta G Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
15
|
Zahm AM, Owens WS, Himes SR, Rondem KE, Fallon BS, Gormick AN, Bloom JS, Kosuri S, Chan H, English JG. Discovery and Validation of Context-Dependent Synthetic Mammalian Promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.539703. [PMID: 37214829 PMCID: PMC10197685 DOI: 10.1101/2023.05.11.539703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cellular transcription enables cells to adapt to various stimuli and maintain homeostasis. Transcription factors bind to transcription response elements (TREs) in gene promoters, initiating transcription. Synthetic promoters, derived from natural TREs, can be engineered to control exogenous gene expression using endogenous transcription machinery. This technology has found extensive use in biological research for applications including reporter gene assays, biomarker development, and programming synthetic circuits in living cells. However, a reliable and precise method for selecting minimally-sized synthetic promoters with desired background, amplitude, and stimulation response profiles has been elusive. In this study, we introduce a massively parallel reporter assay library containing 6184 synthetic promoters, each less than 250 bp in length. This comprehensive library allows for rapid identification of promoters with optimal transcriptional output parameters across multiple cell lines and stimuli. We showcase this library's utility to identify promoters activated in unique cell types, and in response to metabolites, mitogens, cellular toxins, and agonism of both aminergic and non-aminergic GPCRs. We further show these promoters can be used in luciferase reporter assays, eliciting 50-100 fold dynamic ranges in response to stimuli. Our platform is effective, easily implemented, and provides a solution for selecting short-length promoters with precise performance for a multitude of applications.
Collapse
Affiliation(s)
- Adam M. Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Samuel R. Himes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathleen E. Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Braden S. Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexa N. Gormick
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | - Justin G. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Martinez JM, Shen A, Xu B, Jovanovic A, de Chabot J, Zhang J, Xiang YK. Arrestin-dependent nuclear export of phosphodiesterase 4D promotes GPCR-induced nuclear cAMP signaling required for learning and memory. Sci Signal 2023; 16:eade3380. [PMID: 36976866 PMCID: PMC10404024 DOI: 10.1126/scisignal.ade3380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
G protein-coupled receptors (GPCRs) promote the expression of immediate early genes required for learning and memory. Here, we showed that β2-adrenergic receptor (β2AR) stimulation induced the nuclear export of phosphodiesterase 4D5 (PDE4D5), an enzyme that degrades the second messenger cAMP, to enable memory consolidation. We demonstrated that the endocytosis of β2AR phosphorylated by GPCR kinases (GRKs) mediated arrestin3-dependent nuclear export of PDE4D5, which was critical for promoting nuclear cAMP signaling and gene expression in hippocampal neurons for memory consolidation. Inhibition of the arrestin3-PDE4D5 association prevented β2AR-induced nuclear cAMP signaling without affecting receptor endocytosis. Direct PDE4 inhibition rescued β2AR-induced nuclear cAMP signaling and ameliorated memory deficits in mice expressing a form of the β2AR that could not be phosphorylated by GRKs. These data reveal how β2AR phosphorylated by endosomal GRK promotes the nuclear export of PDE4D5, leading to nuclear cAMP signaling, changes in gene expression, and memory consolidation. This study also highlights the translocation of PDEs as a mechanism to promote cAMP signaling in specific subcellular locations downstream of GPCR activation.
Collapse
Affiliation(s)
- Joseph M. Martinez
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Ao Shen
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, 95655, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Josephine de Chabot
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Jin Zhang
- Department of Pharmacology, University of California at San Diego, San Diego, CA, 92093, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, 95655, USA
| |
Collapse
|
17
|
Kovanich D, Low TY, Zaccolo M. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling. Int J Mol Sci 2023; 24:4667. [PMID: 36902098 PMCID: PMC10003371 DOI: 10.3390/ijms24054667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
18
|
Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2208749120. [PMID: 36656863 PMCID: PMC9942871 DOI: 10.1073/pnas.2208749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
19
|
Semesta KM, Garces A, Tsvetanova NG. The psychosis risk factor RBM12 encodes a novel repressor of GPCR/cAMP signal transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523776. [PMID: 36711667 PMCID: PMC9882185 DOI: 10.1101/2023.01.12.523776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RBM12 is a high-penetrance risk factor for familial schizophrenia and psychosis, yet its precise cellular functions and the pathways to which it belongs are not known. We utilize two complementary models, HEK293 cells and human iPSC-derived neurons, and delineate RBM12 as a novel repressor of the G protein-coupled receptor/cyclic AMP/protein kinase A (GPCR/cAMP/PKA) signaling axis. We establish that loss of RBM12 leads to hyperactive cAMP production and increased PKA activity as well as altered neuronal transcriptional responses to GPCR stimulation. Notably, the cAMP and transcriptional signaling steps are subject to discrete RBM12-dependent regulation. We further demonstrate that the two RBM12 truncating variants linked to familial psychosis impact this interplay, as the mutants fail to rescue GPCR/cAMP signaling hyperactivity in cells depleted of RBM12. Lastly, we present a mechanism underlying the impaired signaling phenotypes. In agreement with its activity as an RNA-binding protein, loss of RBM12 leads to altered gene expression, including that of multiple effectors of established significance within the receptor pathway. Specifically, the abundance of adenylyl cyclases, phosphodiesterase isoforms, and PKA regulatory and catalytic subunits is impacted by RBM12 depletion. We note that these expression changes are fully consistent with the entire gamut of hyperactive signaling outputs. In summary, the current study identifies a previously unappreciated role for RBM12 in the context of the GPCR/cAMP pathway that could be explored further as a tentative molecular mechanism underlying the functions of this factor in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Khairunnisa M Semesta
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Angelica Garces
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Nikoleta G Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
20
|
Kwon Y, Mehta S, Clark M, Walters G, Zhong Y, Lee HN, Sunahara RK, Zhang J. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 2022; 611:173-179. [PMID: 36289326 PMCID: PMC10031817 DOI: 10.1038/s41586-022-05343-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized β2-adrenergic receptor (β2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that β2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated β2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal β2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.
Collapse
Affiliation(s)
- Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mary Clark
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Geneva Walters
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Kirchner S, Hicks C, Choi I, Pham U, Zheng K, Warman A, Smith JS, Zhang JY, Rajagopal S. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat Commun 2022; 13:5846. [PMID: 36195635 PMCID: PMC9532441 DOI: 10.1038/s41467-022-33569-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023] Open
Abstract
Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.
Collapse
Affiliation(s)
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Stephen Kirchner
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27707, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA, 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S Smith
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
22
|
Cajulao JMB, Hernandez E, von Zastrow ME, Sanchez EL. Glucagon receptor-mediated regulation of gluconeogenic gene transcription is endocytosis-dependent in primary hepatocytes. Mol Biol Cell 2022; 33:ar90. [PMID: 35767325 PMCID: PMC9582622 DOI: 10.1091/mbc.e21-09-0430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022] Open
Abstract
A number of G protein-coupled receptors (GPCRs) are now thought to use endocytosis to promote cellular cAMP signaling that drives downstream transcription of cAMP-dependent genes. We tested if this is true for the glucagon receptor (GCGR), which mediates physiological regulation of hepatic glucose metabolism via cAMP signaling. We show that epitope-tagged GCGRs undergo clathrin- and dynamin-dependent endocytosis in HEK293 and Huh-7-Lunet cells after activation by glucagon within 5 min and transit via EEA1-marked endosomes shown previously to be sites of GPCR/Gs-stimulated production of cAMP. We further show that endocytosis potentiates cytoplasmic cAMP elevation produced by GCGR activation and promotes expression of phosphoenolpyruvate carboxykinase 1 (PCK1), the enzyme catalyzing the rate-limiting step in gluconeogenesis. We verify endocytosis-dependent induction of PCK1 expression by endogenous GCGRs in primary hepatocytes and show similar control of two other gluconeogenic genes (PGC1α and G6PC). Together, these results implicate the endosomal signaling paradigm in metabolic regulation by glucagon.
Collapse
Affiliation(s)
- Jan Mikhale B. Cajulao
- San Francisco State University, Department of Biology, San Francisco State University, San Francisco CA 94132
| | - Eduardo Hernandez
- San Francisco State University, Department of Biology, San Francisco State University, San Francisco CA 94132
| | - Mark E. von Zastrow
- University of California San Francisco, Department of Psychiatry, University of California San Francisco, San Francisco CA 94122
| | - Erica L. Sanchez
- San Francisco State University, Department of Biology, San Francisco State University, San Francisco CA 94132
| |
Collapse
|
23
|
Stubbs T, Koemeter-Cox A, Bingman JI, Zhao F, Kalyanasundaram A, Rowland LA, Periasamy M, Carter CS, Sheffield VC, Askwith CC, Mykytyn K. Disruption of Dopamine Receptor 1 Localization to Primary Cilia Impairs Signaling in Striatal Neurons. J Neurosci 2022; 42:6692-6705. [PMID: 35882560 PMCID: PMC9436016 DOI: 10.1523/jneurosci.0497-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
A rod-shaped appendage called a primary cilium projects from the soma of most central neurons in the mammalian brain. The importance of cilia within the nervous system is highlighted by the fact that human syndromes linked to primary cilia dysfunction, collectively termed ciliopathies, are associated with numerous neuropathologies, including hyperphagia-induced obesity, neuropsychiatric disorders, and learning and memory deficits. Neuronal cilia are enriched with signaling molecules, including specific G-protein-coupled receptors (GPCRs) and their downstream effectors, suggesting that they act as sensory organelles that respond to neuromodulators in the extracellular space. We previously showed that GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome (BBS). Based on this finding, we hypothesized that mislocalization of ciliary GPCRs may impact receptor signaling and contribute to the BBS phenotypes. Here, we show that disrupting localization of the ciliary GPCR dopamine receptor 1 (D1) in male and female mice, either by loss of a BBS protein or loss of the cilium itself, specifically in D1-expressing neurons, results in obesity. Interestingly, the weight gain is associated with reduced locomotor activity, rather than increased food intake. Moreover, the loss of a BBS protein or cilia on D1-expressing neurons leads to a reduction in D1-mediated signaling. Together, these results indicate that cilia impact D1 activity in the nervous system and underscore the importance of neuronal cilia for proper GPCR signaling.SIGNIFICANCE STATEMENT Most mammalian neurons possess solitary appendages called primary cilia. These rod-shaped structures are enriched with signaling proteins, such as G-protein-coupled receptors (GPCRs), suggesting that they respond to neuromodulators. This study examines the consequences of disrupting ciliary localization of the GPCR dopamine receptor 1 (D1) in D1-expressing neurons. Remarkably, mice that have either an abnormal accumulation of D1 in cilia or a loss of D1 ciliary localization become obese. In both cases, the obesity is associated with lower locomotor activity rather than overeating. As D1 activation increases locomotor activity, these results are consistent with a reduction in D1 signaling. Indeed, we found that D1-mediated signaling is reduced in brain slices from both mouse models. Thus, cilia impact D1 signaling in the brain.
Collapse
Affiliation(s)
- Toneisha Stubbs
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Andrew Koemeter-Cox
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - James I Bingman
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Leslie A Rowland
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Calvin S Carter
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Candice C Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
24
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
25
|
Deo N, Redpath G. Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Front Cell Neurosci 2022; 15:804592. [PMID: 35280519 PMCID: PMC8912961 DOI: 10.3389/fncel.2021.804592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and anxiety are common, debilitating psychiatric conditions affecting millions of people throughout the world. Current treatments revolve around selective serotonin reuptake inhibitors (SSRIs), yet these drugs are only moderately effective at relieving depression. Moreover, up to 30% of sufferers are SSRI non-responders. Endocytosis, the process by which plasma membrane and extracellular constituents are internalized into the cell, plays a central role in the regulation of serotonin (5-hydroxytryptophan, 5-HT) signaling, SSRI function and depression and anxiety pathogenesis. Despite their therapeutic potential, surprisingly little is known about the endocytosis of the serotonin receptors (5-HT receptors) or the serotonin transporter (SERT). A subset of 5-HT receptors are endocytosed by clathrin-mediated endocytosis following serotonin binding, while for the majority of 5-HT receptors the endocytic regulation is not known. SERT internalizes serotonin from the extracellular space into the cell to limit the availability of serotonin for receptor binding and signaling. Endocytosis of SERT reduces serotonin uptake, facilitating serotonin signaling. SSRIs predominantly inhibit SERT, preventing serotonin uptake to enhance 5-HT receptor signaling, while hallucinogenic compounds directly activate specific 5-HT receptors, altering their interaction with endocytic adaptor proteins to induce alternate signaling outcomes. Further, multiple polymorphisms and transcriptional/proteomic alterations have been linked to depression, anxiety, and SSRI non-response. In this review, we detail the endocytic regulation of 5-HT receptors and SERT and outline how SSRIs and hallucinogenic compounds modulate serotonin signaling through endocytosis. Finally, we will examine the deregulated proteomes in depression and anxiety and link these with 5-HT receptor and SERT endocytosis. Ultimately, in attempting to integrate the current studies on the cellular biology of depression and anxiety, we propose that endocytosis is an important factor in the cellular basis of depression and anxiety. We will highlight how a thorough understanding 5-HT receptor and SERT endocytosis is integral to understanding the biological basis of depression and anxiety, and to facilitate the development of a next generation of specific, efficacious antidepressant treatments.
Collapse
Affiliation(s)
- Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory Redpath
- European Molecular Biology Lab (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences and the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Gregory Redpath
| |
Collapse
|
26
|
De Logu F, Nassini R, Hegron A, Landini L, Jensen DD, Latorre R, Ding J, Marini M, Souza Monteiro de Araujo D, Ramírez-Garcia P, Whittaker M, Retamal J, Titiz M, Innocenti A, Davis TP, Veldhuis N, Schmidt BL, Bunnett NW, Geppetti P. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun 2022; 13:646. [PMID: 35115501 PMCID: PMC8813987 DOI: 10.1038/s41467-022-28204-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
- Headache Center, Careggi University Hospital, Florence, 50139, Italy
| | - Alan Hegron
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Dane D Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Julia Ding
- Department of Anesthesiology, Columbia University, New York, NY, 10010, USA
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Paulina Ramírez-Garcia
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Michael Whittaker
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jeffri Retamal
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Thomas P Davis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Veldhuis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA.
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA.
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
- Headache Center, Careggi University Hospital, Florence, 50139, Italy.
| |
Collapse
|
27
|
Martin TJ. PTH1R Actions on Bone Using the cAMP/Protein Kinase A Pathway. Front Endocrinol (Lausanne) 2022; 12:833221. [PMID: 35126319 PMCID: PMC8807523 DOI: 10.3389/fendo.2021.833221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
After the initial signaling action of parathyroid hormone (PTH) on bone was shown to be activation of adenylyl cyclase, its target was found to be cells of the osteoblast lineage, to the exclusion of osteoclasts and their precursors. This led to the view that the osteoblast lineage regulated osteoclast formation, a proposal that was established when the molecular mechanisms of osteoclast formation were discovered. This is in addition to the effect of PTH1Rv signaling throughout the osteoblast differentiation process to favour the formation of bone-forming osteoblasts. Initial signaling in the PTH target cells through cAMP and protein kinase A (PKA) activation is extremely rapid, and marked by an amplification process in which the later event, PKA activation, precedes cAMP accumulation in time and is achieved at lower concentrations. All of this is consistent with the existence of "spare receptors", as is the case with several other peptide hormones. PTH-related protein (PTHrP), that was discovered as a cancer product, shares structural similarity with PTH in the amino-terminal domain that allows the hormone, PTH, and the autocrine/paracrine agent, PTHrP, to share actions upon a common G protein coupled receptor, PTH1R, through which they activate adenylyl cyclase with equivalent potencies. Studies of ligand-receptor kinetics have revealed that the PTH/PTH1R ligand-receptor complex, after initial binding and adenylyl cyclase activation at the plasma membrane, is translocated to the endosome, where adenylyl cyclase activation persists for a further short period. This behavior of the PTH1R resembles that of a number of hormones and other agonists that undergo such endosomal translocation. It remains to be determined whether and to what extent the cellular effects through the PTH1R might be influenced when endosomal is added to plasma membrane activation.
Collapse
Affiliation(s)
- T. John Martin
- Department of Medicine, St Vincent’s Institute of Medical Research, St Vincent’s Health, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
28
|
Peng GE, von Zastrow M. A Live-Cell Imaging Assay for Nuclear Entry of cAMP-Dependent Protein Kinase Catalytic Subunits Stimulated by Endogenous GPCR Activation. Methods Mol Biol 2022; 2483:339-349. [PMID: 35286686 DOI: 10.1007/978-1-0716-2245-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear entry of cAMP-dependent protein kinase catalytic subunits is typically inferred from changes in net protein amount or kinase activity in the nucleus. Previous methods to directly assess nuclear entry require kinase subunit overexpression and/or supraphysiological cAMP elevation. We describe a method to detect nuclear entry of catalytic subunits expressed at an endogenous level in living cells, stimulated by cAMP in a physiological range, and in real time.
Collapse
Affiliation(s)
- Grace E Peng
- Program in Cell Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Endosomal cAMP production broadly impacts the cellular phosphoproteome. J Biol Chem 2021; 297:100907. [PMID: 34166681 PMCID: PMC8294583 DOI: 10.1016/j.jbc.2021.100907] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Endosomal signaling downstream of G-protein-coupled receptors (GPCRs) has emerged as a novel paradigm with important pharmacological and physiological implications. However, our knowledge of the functional consequences of intracellular signaling is incomplete. To begin to address this gap, we combined an optogenetic approach for site-specific generation of the prototypical second messenger generated by active GPCRs, cyclic AMP (cAMP), with unbiased mass-spectrometry-based analysis of the phosphoproteome. We identified 218 unique, high-confidence sites whose phosphorylation is either increased or decreased in response to cAMP elevation. We next determined that the same amount of cAMP produced from the endosomal membrane led to more robust changes in phosphorylation than the plasma membrane. Remarkably, this was true for the entire repertoire of 218 identified targets and irrespective of their annotated subcellular localizations (endosome, cell surface, nucleus, cytosol). Furthermore, we identified a particularly strong endosome bias for a subset of proteins that are dephosphorylated in response to cAMP. Through bioinformatics analysis, we established these targets as putative substrates for protein phosphatase 2A (PP2A), and we propose compartmentalized activation of PP2A by cAMP-responsive kinases as the likely underlying mechanism. Altogether, our study extends the concept that endosomal signaling is a significant functional contributor to cellular responsiveness to cAMP by establishing a unique role for localized cAMP production in defining categorically distinct phosphoresponses.
Collapse
|