1
|
Wei J, Luo J, Yang F, Dai W, Huang Z, Yan Y, Luo M. Comparative genomic and metabolomic analysis reveals the potential of a newly isolated Enterococcus faecium B6 involved in lipogenic effects. Gene 2024; 927:148668. [PMID: 38852695 DOI: 10.1016/j.gene.2024.148668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Evidence has indicated that Enterococcus plays a vital role in non-alcoholic fatty liver disease (NAFLD) development. However, the microbial genetic basis and metabolic potential in the disease are yet unknown. We previously isolated a bacteria Enterococcus faecium B6 (E. faecium B6) from children with NAFLD for the first time. Here, we aim to systematically investigate the potential of strain B6 in lipogenic effects. The lipogenic effects of strain B6 were explored in vitro and in vivo. The genomic and functional characterizations were investigated by whole-genome sequencing and comparative genomic analysis. Moreover, the metabolite profiles were unraveled by an untargeted metabolomic analysis. We demonstrated that strain B6 could effectively induce lipogenic effects in the liver of mice. Strain B6 contained a circular chromosome and two circular plasmids and posed various functions. Compared to the other two probiotic strains of E. faecium, strain B6 exhibited unique functions in pathways of ABC transporters, phosphotransferase system, and amino sugar and nucleotide sugar metabolism. Moreover, strain B6 produced several metabolites, mainly enriched in the protein digestion and absorption pathway. The unique potential of strain B6 in lipogenic effects was probably associated with glycolysis, fatty acid synthesis, and glutamine and choline transport. This study pioneeringly revealed the metabolic characteristics and specific detrimental traits of strain B6. The findings provided new insights into the underlying mechanisms of E. faecium in lipogenic effects, and laid essential foundations for further understanding of E. faecium-related disease.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Zhihang Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Yulin Yan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
2
|
Li Z, Zhu X, Li C, Tang R, Zou Y, Liu S. Integrated serum metabolomics, 16S rRNA sequencing and bile acid profiling to reveal the potential mechanism of gentiopicroside against nonalcoholic steatohepatitis in lean mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118526. [PMID: 38972531 DOI: 10.1016/j.jep.2024.118526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lean nonalcoholic steatohepatitis (NASH) poses a serious threat to public health worldwide. Herbs of the genus Gentiana have been used for centuries to treat hepatic disease or have been consumed for hepatic protection efficiency. Gentiopicroside (GPS), the main bioactive component of Gentiana herbs, has been shown to be beneficial for protecting the liver, improving intestinal disorders, modulating bile acid profiles, ameliorating alcoholic hepatosteatosis, and so on. It is plausible to speculate that GPS may hold potential as a therapeutic strategy for lean NASH. However, no related studies have been conducted thus far. AIM OF THE STUDY The present work aimed to investigate the benefit of GPS on NASH in a lean mouse model. MATERIALS AND METHODS NASH in a lean mouse model was successfully established via a published method. GPS of 50 and 100 mg/kg were orally administered to verify the effect. Untargeted metabolomics, 16S rDNA sequencing and bile acid (BA) profiling, as well as qPCR and Western blotting analysis were employed to investigate the mechanism underlying the alleviating effect. RESULTS GPS significantly reduced the increase in serum biochemicals and liver index, and attenuated the accumulation of fat in the livers of lean mice with NASH. Forty-two potential biomarkers were identified by metabolomics analysis, leading to abnormal metabolic pathways of primary bile acid biosynthesis and fatty acid biosynthesis, which were subsequently rebalanced by GPS. A decreased Firmicutes/Bacteroidetes (F/B) ratio and disturbed BA related GM profiles were revealed in lean mice with NASH but were partially recovered by GPS. Furthermore, serum profiling of 23 BAs confirmed that serum BA levels were elevated in the lean model but downregulated by GPS treatment. Pearson correlation analysis validated associations between BA profiles, serum biochemical indices and related GM. qPCR and Western blotting analysis further elucidated the regulation of genes associated with liver lipid synthesis and bile acid metabolism. CONCLUSIONS GPS may ameliorate steatosis in lean mice with NASH, regulating the metabolomic profile, BA metabolism, fatty acid biosynthesis, and BA-related GM. All these factors may contribute to its beneficial effect.
Collapse
Affiliation(s)
- Zeyun Li
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xueya Zhu
- Department of pharmacy, Zhumadian Central Hospital, Zhumadian, 463000, Henan, China.
| | - Chenhao Li
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ruiting Tang
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yuanyuan Zou
- Yichun University, Yichun, 336000, Jiangxi, China.
| | - Shuaibing Liu
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
4
|
Dai Y, Chen J, Fang J, Liang S, Zhang H, Li H, Chen W. Piperlongumine, a natural alkaloid from Piper longum L. ameliorates metabolic-associated fatty liver disease by antagonizing the thromboxane A 2 receptor. Biochem Pharmacol 2024; 229:116518. [PMID: 39236933 DOI: 10.1016/j.bcp.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, including hyperglycemia, hepatic steatosis, and insulin resistance. Piperlongumine (PL), a natural amide alkaloid extracted from the fruits of Piper longum L., exhibited hepatoprotective effects in zebrafish and liver injury mice. This study aimed to investigate the therapeutic potential of PL on MAFLD and its underlying mechanisms. The findings demonstrate that PL effectively combats MAFLD induced by a high-fat diet (HFD) and improves metabolic characteristics in mice. Additionally, our results suggest that the anti-MAFLD effect of PL is attributed to the suppression of excessive hepatic gluconeogenesis, inhibition of de novo lipogenesis, and alleviation of insulin resistance. Importantly, the results indicate that, on the one hand, the hypoglycemic effect of PL is closely associated with CREB-regulated transcriptional coactivators (CRTC2)-dependent cyclic AMP response element binding protein (CREB) phosphorylation; on the other hand, the lipid-lowering effect of PL is attributed to reducing the nuclear localization of sterol regulatory element-binding proteins 1c (Srebp-1c). Mechanistically, PL could alleviate insulin resistance induced by endoplasmic reticulum stress by antagonizing the thromboxane A2 receptor (TP)/Ca2+ signaling, and the TP receptor serves as the potential target for PL in the treatment of MAFLD. Therefore, our results suggested PL effectively improved the major hallmarks of MAFLD induced by HFD, highlighting a potential therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jialong Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Delzenne NM, Bindels LB, Neyrinck AM, Walter J. The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer. Nat Rev Microbiol 2024:10.1038/s41579-024-01108-z. [PMID: 39390291 DOI: 10.1038/s41579-024-01108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Pötgens SA, Havelange V, Lecop S, Li F, Neyrinck AM, Bindels F, Neveux N, Demoulin JB, Moors I, Kerre T, Maertens J, Walter J, Schoemans H, Delzenne NM, Bindels LB. Gut microbiome alterations at acute myeloid leukemia diagnosis are associated with muscle weakness and anorexia. Haematologica 2024; 109:3194-3208. [PMID: 38546675 PMCID: PMC11443375 DOI: 10.3324/haematol.2023.284138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/19/2024] [Indexed: 10/02/2024] Open
Abstract
The gut microbiota makes critical contributions to host homeostasis, and its role in the treatment of acute myeloid leukemia (AML) has attracted attention. We investigated whether the gut microbiome is affected by AML, and whether such changes are associated with hallmarks of cachexia. Biological samples and clinical data were collected from 30 antibiotic- free AML patients at diagnosis and matched volunteers (1:1) in a multicenter, cross-sectional, prospective study. The composition and functional potential of the fecal microbiota were analyzed using shotgun metagenomics. Fecal, blood, and urinary metabolomics analyses were performed. AML patients displayed muscle weakness, anorexia, signs of altered gut function, and glycemic disorders. The composition of the fecal microbiota differed between patients with AML and control subjects, with an increase in oral bacteria. Alterations in bacterial functions and fecal metabolome support an altered redox status in the gut microbiota, which may contribute to the altered redox status observed in patients with AML. Eubacterium eligens, reduced 3-fold in AML patients, was strongly correlated with muscle strength and citrulline, a marker of enterocyte mass and function. Blautia and Parabacteroides, increased in patients with AML, were correlated with anorexia. Several bacterial taxa and metabolites (e.g., Blautia, Prevotella, phenylacetate, and hippurate) previously associated with glycemic disorders were altered. Our work revealed important perturbations in the gut microbiome of AML patients at diagnosis, which are associated with muscle strength, altered redox status, and anorexia. These findings pave the way for future mechanistic work to explore the function and therapeutic potential of the bacteria identified in this study.
Collapse
Affiliation(s)
- Sarah A Pötgens
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Violaine Havelange
- Department of Hematology, Cliniques Universitaires Saint-Luc, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Experimental Medicine Unit, De Duve Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Sophie Lecop
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | | | - Nathalie Neveux
- Clinical Chemistry Department, Cochin Hospital, Paris Centre University Hospitals, Paris
| | - Jean-Baptiste Demoulin
- Experimental Medicine Unit, De Duve Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Ine Moors
- Department of Hematology, Ghent University Hospital, Ghent University, Ghent
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent University, Ghent
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven
| | - Jens Walter
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork
| | - Hélène Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, ACCENT VV, KU Leuven, Leuven
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Welbio Department, WEL Research Institute, Wavre.
| |
Collapse
|
9
|
Gish R, Fan JG, Dossaji Z, Fichez J, Laeeq T, Chun M, Boursier J. Review of current and new drugs for the treatment of metabolic-associated fatty liver disease. Hepatol Int 2024; 18:977-989. [PMID: 38850496 DOI: 10.1007/s12072-024-10698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
In the past 3 decades, metabolic-associated fatty liver disease (MAFLD) has emerged as a widespread liver condition, with its global prevalence on the rise. It ranks as a leading contributor to hepatocellular carcinoma (HCC) and necessitates liver transplantation. Under the multiple parallel hits model, the pathogenesis of MAFLD stems from various liver stressors, notably nutrient overload and sedentary lifestyles. While medical management for MAFLD is well-established, encompassing non-pharmaceutical and pharmaceutical interventions, determining the most effective pharmaceutical therapy has remained elusive. This review discusses diabetic medications for MAFLD treatment, emphasizing recent studies and emerging drugs while reviewing other nondiabetic agents. Emerging evidence suggests that combination therapies hold promise for resolving MAFLD and metabolic steatohepatitis (MASH) while managing side effects. Ongoing trials play a pivotal role in elucidating the effects of mono, dual, and triple receptor agonists in individuals with MASH. With the rising burden of MAFLD/MASH and its severe consequences, the need for effective treatments is more pressing than ever. This review provides a comprehensive overview of the current landscape of pharmaceutical interventions for MAFLD and MASH, shedding light on the potential of newer drugs especially diabetic medications and the importance of ongoing research in this field.
Collapse
Affiliation(s)
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Zahra Dossaji
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, 1800 W Charleston Blvd, Las Vegas, NV, 89102, USA.
| | - Jeanne Fichez
- Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Tooba Laeeq
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, 1800 W Charleston Blvd, Las Vegas, NV, 89102, USA
| | - Magnus Chun
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, 1800 W Charleston Blvd, Las Vegas, NV, 89102, USA
| | - Jerome Boursier
- Department of Hepato-Gastroenterology and Digestive Oncology, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| |
Collapse
|
10
|
Yang C, Wu J, Yang L, Hu Q, Li L, Yang Y, Hu J, Pan D, Zhao Q. Altered gut microbial profile accompanied by abnormal short chain fatty acid metabolism exacerbates nonalcoholic fatty liver disease progression. Sci Rep 2024; 14:22385. [PMID: 39333290 PMCID: PMC11436816 DOI: 10.1038/s41598-024-72909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Dysregulation of the gut microbiome has associated with the occurrence and progression of non-alcoholic fatty liver disease (NAFLD). To determine the diagnostic capacity of this association, we compared fecal microbiomes across 104 participants including non-NAFLD controls and NAFLD subtypes patients that were distinguished by magnetic resonance imaging. We measured their blood biochemical parameters, 16 S rRNA-based gut microbiota and fecal short-chain fatty acids (SCFAs). Multi-omic analyses revealed that NAFLD patients exhibited specific changes in gut microbiota and fecal SCFAs as compared to non-NAFLD subjects. Four bacterial genera (Faecalibacterium, Subdoligranulum, Haemophilus, and Roseburia) and two fecal SCFAs profiles (acetic acid, and butyric acid) were closely related to NAFLD phenotypes and could accurately distinguish NAFLD patients from healthy non-NAFLD subjects. Twelve genera belonging to Faecalibacterium, Subdoligranulum, Haemophilus, Intestinibacter, Agathobacter, Lachnospiraceae_UCG-004, Roseburia, Butyricicoccus, Actinomycetales_unclassified, [Eubacterium]_ventriosum_group, Rothia, and Rhodococcus were effective to distinguish NAFLD subtypes. Of them, combination of five genera can distinguish effectively mild NAFLD from non-NAFLD with an area under curve (AUC) of 0.84. Seven genera distinguish moderate NAFLD with an AUC of 0.83. Eight genera distinguish severe NAFLD with an AUC of 0.90. In our study, butyric acid distinguished mild-NAFLD from non-NAFLD with AUC value of 0.83. And acetic acid distinguished moderate-NAFLD and severe-NAFLD from non-NAFLD with AUC value of 0.84 and 0.70. In summary, our study and further analysis showed that gut microbiota and fecal SCFAs maybe a method with convenient detection advantages and invasive manner that are not only a good prediction model for early warning of NAFLD occurrence, but also have a strong ability to distinguish NAFLD subtypes.
Collapse
Affiliation(s)
- Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China.
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qiaosheng Hu
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 223400, Jiangsu, China
| | - Lihua Li
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 223400, Jiangsu, China
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Jing Hu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Zhao
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 223400, Jiangsu, China
| |
Collapse
|
11
|
Lu J, Shataer D, Yan H, Dong X, Zhang M, Qin Y, Cui J, Wang L. Probiotics and Non-Alcoholic Fatty Liver Disease: Unveiling the Mechanisms of Lactobacillus plantarum and Bifidobacterium bifidum in Modulating Lipid Metabolism, Inflammation, and Intestinal Barrier Integrity. Foods 2024; 13:2992. [PMID: 39335920 PMCID: PMC11431124 DOI: 10.3390/foods13182992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, the prevalence of non-alcoholic fatty liver disease (NAFLD) has risen annually, yet due to the intricacies of its pathogenesis and therapeutic challenges, there remains no definitive medication for this condition. This review explores the intricate relationship between the intestinal microbiome and the pathogenesis of NAFLD, emphasizing the substantial roles played by Lactobacillus plantarum and Bifidobacterium bifidum. These probiotics manipulate lipid synthesis genes and phosphorylated proteins through pathways such as the AMPK/Nrf2, LPS-TLR4-NF-κB, AMPKα/PGC-1α, SREBP-1/FAS, and SREBP-1/ACC signaling pathways to reduce hepatic lipid accumulation and oxidative stress, key components of NAFLD progression. By modifying the intestinal microbial composition and abundance, they combat the overgrowth of harmful bacteria, alleviating the inflammatory response precipitated by dysbiosis and bolstering the intestinal mucosal barrier. Furthermore, they participate in cellular immune regulation, including CD4+ T cells and Treg cells, to suppress systemic inflammation. L. plantarum and B. bifidum also modulate lipid metabolism and immune reactions by adjusting gut metabolites, including propionic and butyric acids, which inhibit liver inflammation and fat deposition. The capacity of probiotics to modulate lipid metabolism, immune responses, and gut microbiota presents an innovative therapeutic strategy. With a global increase in NAFLD prevalence, these insights propose a promising natural method to decelerate disease progression, avert liver damage, and tackle associated metabolic issues, significantly advancing microbiome-focused treatments for NAFLD.
Collapse
Affiliation(s)
- Jing Lu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Dilireba Shataer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Huizhen Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Xiaoxiao Dong
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.L.); (D.S.); (H.Y.); (M.Z.); (Y.Q.)
| |
Collapse
|
12
|
Zhao Y, Ma S, Liang L, Cao S, Fan Z, He D, Shi X, Zhang Y, Liu B, Zhai M, Wu S, Kuang F, Zhang H. Gut Microbiota-Metabolite-Brain Axis Reconstitution Reverses Sevoflurane-Induced Social and Synaptic Deficits in Neonatal Mice. RESEARCH (WASHINGTON, D.C.) 2024; 7:0482. [PMID: 39301264 PMCID: PMC11411162 DOI: 10.34133/research.0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Background: The mechanisms underlying social dysfunction caused by repeated sevoflurane in early life remain unclear. Whether the gut microbiota-metabolite-brain axis is involved in the mechanism of sevoflurane developmental neurotoxicity still lacks report. Methods: Mice received 3% sevoflurane at postnatal day (PND) 6, 7, and 8 for 2 h per day. Metagenomic sequencing and untargeted metabolomic analysis were applied to investigate the effects of sevoflurane on gut microbiota and metabolism. The animal social behavior and the synaptic development were analyzed during PND 35. Subsequently, fecal microbiota transplantation (FMT) from the control group and bile acid administration were performed to see the expected rescuing effect on socially related behaviors that were impaired by repeated sevoflurane exposure in the mice. Results: In the 3-chamber test, sevoflurane-exposed mice spent less time with stranger mice compared with the control group. The density of both the apical and basal spine decreased in mice exposed to sevoflurane. In addition, repeated sevoflurane exposure led to a notable alteration in the gut microbiota and metabolite synthesis, particularly bile acid. FMT reduced the production of intestinal bile acid and attenuated the effect of sevoflurane exposure on social function and synaptic development. Cholestyramine treatment mimics the protective effects of FMT. Conclusions: The gut microbiota-metabolite-brain axis underlies social dysfunction caused by sevoflurane exposure in early age, and bile acid regulation may be a promising intervention to this impairment.
Collapse
Affiliation(s)
- Youyi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Sanxing Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Lirong Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Shuhui Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Ze Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Danyi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Xiaotong Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Meiting Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Fang Kuang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
13
|
Fu L, Huang L, Gao Y, Zhu W, Cui Y, Wang S, Yan M, Li J, Duan J, Pan J, Li M. Investigating the efficacy of acupuncture in treating patients with metabolic-associated fatty liver disease: a protocol for a randomised controlled clinical trial. BMJ Open 2024; 14:e081293. [PMID: 39277205 DOI: 10.1136/bmjopen-2023-081293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
INTRODUCTION Acupuncture is widely used for metabolic-associated fatty liver disease (MAFLD) treatment; however, the clinical efficacy has not been confirmed due to the lack of high-level evidence-based clinical practice. The purpose of this study is to design a research protocol that will be used to determine the efficacy of acupuncture versus sham acupuncture (SHA) for MAFLD treatment. METHODS AND ANALYSIS This will be a multicentre, randomised and sham-controlled trial. Ninety-eight participants with MAFLD will be enrolled in this trial. Participants will be randomly assigned in a 1:1 ratio to receive acupuncture or SHA for 12 weeks. The primary outcome is the rate of patients with a 30% relative decline in liver fat after 12 weeks of treatment in MRI-proton density fat fraction (MRI-PDFF), which will be obtained by quantitative chemical shift imaging such as the multipoint Dixon method at 0, 12 and 24 weeks. Secondary outcomes include the changes in the relative liver fat content measured by MRI-PDFF, magnetic resonance elastography, liver function, lipid metabolism, homeostatic model assessment for insulin resistance (HOMA-IR) and serum high sensitivity C reactive protein, which will be obtained at 0, 6, 12 and 24 weeks. Body measurement indicators (body mass index, waist circumference, hip circumference and waist-to-hip ratio) will be obtained at 0, 3, 6, 9, 12 and 24 weeks. The alteration in the gut microbiota composition and its metabolism will be assessed by 16S ribosomal RNA sequencing and liquid chromatography-mass spectrometry at 0 and 12 weeks. ETHICS AND DISSEMINATION This study protocol has been approved by the ethics committee of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (2023-1347-114-01). The results of this study will be published in a peer-reviewed journal and presented at academic conferences. TRIAL REGISTRATION NUMBER ChiCTR2300075701.
Collapse
Affiliation(s)
- Lihong Fu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingying Huang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanchun Zhu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cui
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihao Wang
- Shi's Traumatology Medical Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meihua Yan
- Clinical Research Unit, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junyi Duan
- Department of Acupuncture and Moxibustion, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielu Pan
- Department of Digestive, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Li
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Kirtipal N, Seo Y, Son J, Lee S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab J 2024; 48:821-836. [PMID: 39313228 PMCID: PMC11449821 DOI: 10.4093/dmj.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Youngchang Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jangwon Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
15
|
Dyńka D, Rodzeń Ł, Rodzeń M, Łojko D, Kraszewski S, Ibrahim A, Hussey M, Deptuła A, Grzywacz Ż, Ternianov A, Unwin D. Beneficial Effects of the Ketogenic Diet on Nonalcoholic Fatty Liver Disease (NAFLD/MAFLD). J Clin Med 2024; 13:4857. [PMID: 39200999 PMCID: PMC11355934 DOI: 10.3390/jcm13164857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is likely to be approaching 38% of the world's population. It is predicted to become worse and is the main cause of morbidity and mortality due to hepatic pathologies. It is particularly worrying that NAFLD is increasingly diagnosed in children and is closely related, among other conditions, to insulin resistance and metabolic syndrome. Against this background is the concern that the awareness of patients with NAFLD is low; in one study, almost 96% of adult patients with NAFLD in the USA were not aware of their disease. Thus, studies on the therapeutic tools used to treat NAFLD are extremely important. One promising treatment is a well-formulated ketogenic diet (KD). The aim of this paper is to present a review of the available publications and the current state of knowledge of the effect of the KD on NAFLD. This paper includes characteristics of the key factors (from the point of view of NAFLD regression), on which ketogenic diet exerts its effects, i.e., reduction in insulin resistance and body weight, elimination of fructose and monosaccharides, limitation of the total carbohydrate intake, anti-inflammatory ketosis state, or modulation of gut microbiome and metabolome. In the context of the evidence for the effectiveness of the KD in the regression of NAFLD, this paper also suggests the important role of taking responsibility for one's own health through increasing self-monitoring and self-education.
Collapse
Affiliation(s)
- Damian Dyńka
- Rodzen Brothers Foundation, 64-234 Wieleń, Poland
| | | | | | - Dorota Łojko
- Department of Psychiatry, Poznan University of Medical Science, 60-572 Poznan, Poland
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ali Ibrahim
- Schoen Inpatient Children’s Eating Disorders Service, 147 Chester Rd, Streetly, Sutton Coldfield B74 3NE, UK
| | - Maria Hussey
- Private General Medical Practice Maria Hussey, Ojcowa Wola 5, 14-420 Mlynary, Poland
| | - Adam Deptuła
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Żaneta Grzywacz
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Alexandre Ternianov
- Primary Care Centre Vila Olimpica, Parc Sanitary Pere Virgili, c. Joan Miró 17, 08005 Barcelona, Spain
| | - David Unwin
- Faculty of Health Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| |
Collapse
|
16
|
Zhang Y, Wang X, Lin J, Liu J, Wang K, Nie Q, Ye C, Sun L, Ma Y, Qu R, Mao Y, Zhang X, Lu H, Xia P, Zhao D, Wang G, Zhang Z, Fu W, Jiang C, Pang Y. A microbial metabolite inhibits the HIF-2α-ceramide pathway to mediate the beneficial effects of time-restricted feeding on MASH. Cell Metab 2024; 36:1823-1838.e6. [PMID: 39079531 DOI: 10.1016/j.cmet.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/24/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Time-restricted feeding (TRF) is a potent dietary intervention for improving metabolic diseases, including metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH). However, the mechanism of this efficacy has remained elusive. Here, we show that TRF improves MASLD, which is associated with a significant enrichment of Ruminococcus torques (R. torques). Mechanistically, R. torques suppresses the intestinal HIF-2α-ceramide pathway via the production of 2-hydroxy-4-methylpentanoic acid (HMP). We identify rtMor as a 4-methyl-2-oxopentanoate reductase that synthesizes HMP in R. torques. Finally, we show that either the colonization of R. torques or oral HMP supplementation can ameliorate inflammation and fibrosis in a MASH mouse model. These findings identify R. torques and HMP as potential TRF mimetics for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China; Department of Endocrinology, Capital Medical University Chaoyang Hospital, Beijing, China
| | - Jia Liu
- Department of Endocrinology, Capital Medical University Chaoyang Hospital, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lulu Sun
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; State Key Laboratory of Female Fertility Preservation, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yanpeng Ma
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| | - Yuejian Mao
- Mengniu Institute of Nutrition Science, Shanghai, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Shanghai, China; Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Hua Lu
- National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dongyu Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Capital Medical University Chaoyang Hospital, Beijing, China.
| | - Zhipeng Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.
| | - Wei Fu
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Preservation, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
17
|
Qu B, Li Z. Exploring non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2024; 30:3447-3451. [PMID: 39091712 PMCID: PMC11290396 DOI: 10.3748/wjg.v30.i28.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
The population with metabolic dysfunction-associated fatty liver disease (MAFLD) is increasingly common worldwide. Identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care. Liver biopsy is currently considered the gold standard for the diagnosis and staging of MAFLD, but it has associated risks and limitations. This has spurred the exploration of non-invasive diagnostics for MAFLD, especially for steatohepatitis and fibrosis. These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements, serum tests, imaging or stool metagenome profiling. However, they still need rigorous and widespread clinical validation for the diagnostic performance.
Collapse
Affiliation(s)
- Biao Qu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
18
|
Yao T, Fu L, Wu Y, Li L. Christensenella minuta Alleviates Acetaminophen-Induced Hepatotoxicity by Regulating Phenylalanine Metabolism. Nutrients 2024; 16:2314. [PMID: 39064757 PMCID: PMC11280030 DOI: 10.3390/nu16142314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI), even liver failure, is a significant challenge due to the limited availability of therapeutic medicine. Christensenella minuta (C. minuta), as a probiotic therapy, has shown promising prospects in metabolism and inflammatory diseases. Our research aimed to examine the influence of C. minuta on AILI and explore the molecular pathways underlying it. We found that administration of C. minuta remarkably alleviated AILI in a mouse model, as evidenced by decreased levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and improvements in the histopathological features of liver sections. Additionally, there was a notable decrease in malondialdehyde (MDA), accompanied by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, and superoxide dismutase (SOD) activity. Furthermore, there was a significant reduction in inflammatory markers (IL6, IL1β, TNF-α). C. minuta regulated phenylalanine metabolism. No significant difference in intestinal permeability was observed in either the model group or the treatment group. High levels of phenylalanine aggravated liver damage, which may be linked to phenylalanine-induced dysbiosis and dysregulation in cytochrome P450 metabolism, sphingolipid metabolism, the PI3K-AKT pathway, and the Integrin pathway. Furthermore, C. minuta restored the diversity of the microbiota, modulated metabolic pathways and MAPK pathway. Overall, this research demonstrates that supplementing with C. minuta offers both preventive and remedial benefits against AILI by modulating the gut microbiota, phenylalanine metabolism, oxidative stress, and the MAPK pathway, with high phenylalanine supplementation being identified as a risk factor exacerbating liver injury.
Collapse
Affiliation(s)
| | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| |
Collapse
|
19
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Jiang C, Deng S, Ma X, Song J, Li J, Yuan E. Mendelian randomization reveals association of gut microbiota with Henoch-Schönlein purpura and immune thrombocytopenia. Int J Hematol 2024; 120:50-59. [PMID: 38671184 PMCID: PMC11226487 DOI: 10.1007/s12185-024-03777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Gut microbiota have been linked to immune thrombocytopenia (ITP) and Henoch-Schönlein purpura (HSP) in recent studies, but a cause-and-effect relationship is unclear. We used Mendelian randomization (MR) to assess causal relationships between gut microbiota and HSP/ITP using summary statistics from the GWAS dataset of the international MiBioGen and FinnGen consortium. The IVW method was used as the main evaluation indicator. MR analysis of 196 intestinal flora and HSP/ITP/sTP phenotypes showed that 12 flora were potentially causally associated with ITP, 6 with HSP, and 9 with sTP. The genes predicted that genus Coprococcus3 (p = 0.0264, OR = 2.05, 95% CI 1.09-3.88)and genus Gordonibacter (p = 0.0073, OR = 1.38; 95% CI 1.09-1.75) were linked to a higher likelihood of developing ITP. Additionally, family Actinomycetaceae (p = 0.02, OR = 0.51, 95% CI 0.28-0.90) and order Actinomycetales (p = 0.0199, OR = 0.50, 95% CI 0.28-0.90) linked to reduced HSP risk. Genus Ruminococcaceae UCG013 (p = 0.0426, OR = 0.44, 95% CI 0.20-0.97) negatively correlated with sTP risk. Our MR analyses offer evidence of a possible cause-and-effect connection between certain gut microbiota species and the likelihood of HSP/ITP.
Collapse
Affiliation(s)
- Chendong Jiang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China.
| | - Shu Deng
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Xiaohan Ma
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Juan Song
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinpeng Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China.
| |
Collapse
|
21
|
Ha S, Wong VWS, Zhang X, Yu J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2024:gutjnl-2024-332398. [PMID: 38950910 DOI: 10.1136/gutjnl-2024-332398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a wide spectrum of liver injuries, ranging from hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis to MASLD-associated hepatocellular carcinoma (MASLD-HCC). Recent studies have highlighted the bidirectional impacts between host genetics/epigenetics and the gut microbial community. Host genetics influence the composition of gut microbiome, while the gut microbiota and their derived metabolites can induce host epigenetic modifications to affect the development of MASLD. The exploration of the intricate relationship between the gut microbiome and the genetic/epigenetic makeup of the host is anticipated to yield promising avenues for therapeutic interventions targeting MASLD and its associated conditions. In this review, we summarise the effects of gut microbiome, host genetics and epigenetic alterations in MASLD and MASLD-HCC. We further discuss research findings demonstrating the bidirectional impacts between gut microbiome and host genetics/epigenetics, emphasising the significance of this interconnection in MASLD prevention and treatment.
Collapse
Affiliation(s)
- Suki Ha
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Zhang S, Yang S, Zhuang Y, Yang D, Gu X, Wang Y, Wang Z, Chen R, Yan F. Lactobacillus acidophilus CICC 6075 attenuates high-fat diet-induced obesity by improving gut microbiota composition and histidine biosynthesis. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:367-380. [PMID: 39364122 PMCID: PMC11444864 DOI: 10.12938/bmfh.2024-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to investigate the potential anti-obesity efficacy of Lactobacillus acidophilus CICC 6075. The study analyzed fecal metagenomic data from 120 obese and 100 non-obese individuals. C57BL/6 mice on normal diet or high-fat diet (HFD) were treated with L. acidophilus CICC 6075 by daily oral gavage for 12 weeks, followed by evaluations of the obesity phenotype. Metagenomic analysis revealed depletion of L. acidophilus in obese individuals. Administration of L. acidophilus CICC 6075 attenuated excessive weight gain and fat accumulation and maintained the intestinal barrier in HFD-induced obese mice. Sequencing results showed that HFD hindered α- and β-diversity while reducing the relative abundance of Lactobacillus and norank_f_Muribaculaceae and significantly increasing the relative abundance of Ileibacterium. L. acidophilus CICC 6075 reversed these results and reduced the Firmicutes/Bacteroidetes ratio. Supplementation of L. acidophilus CICC 6075 enhanced histidine biosynthesis, inhibited the NF-κB pathway, and significantly reduced the expression levels of inflammatory factors in adipose tissue. These results indicate that L. acidophilus CICC 6075 alleviates HFD-induced obesity in mice by inhibiting the activation of the NF-κB pathway and enhancing gut microbiota functionality. This suggests that L. acidophilus CICC 6075 may be a good candidate probiotic for preventing obesity.
Collapse
Affiliation(s)
- Shenyang Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun Zhuang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiqun Gu
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Wang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenzhen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fuling Yan
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
23
|
Baffy G, Portincasa P. Gut Microbiota and Sinusoidal Vasoregulation in MASLD: A Portal Perspective. Metabolites 2024; 14:324. [PMID: 38921459 PMCID: PMC11205793 DOI: 10.3390/metabo14060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition with heterogeneous outcomes difficult to predict at the individual level. Feared complications of advanced MASLD are linked to clinically significant portal hypertension and are initiated by functional and mechanical changes in the unique sinusoidal capillary network of the liver. Early sinusoidal vasoregulatory changes in MASLD lead to increased intrahepatic vascular resistance and represent the beginning of portal hypertension. In addition, the composition and function of gut microbiota in MASLD are distinctly different from the healthy state, and multiple lines of evidence demonstrate the association of dysbiosis with these vasoregulatory changes. The gut microbiota is involved in the biotransformation of nutrients, production of de novo metabolites, release of microbial structural components, and impairment of the intestinal barrier with impact on innate immune responses, metabolism, inflammation, fibrosis, and vasoregulation in the liver and beyond. The gut-liver axis is a conceptual framework in which portal circulation is the primary connection between gut microbiota and the liver. Accordingly, biochemical and hemodynamic attributes of portal circulation may hold the key to better understanding and predicting disease progression in MASLD. However, many specific details remain hidden due to limited access to the portal circulation, indicating a major unmet need for the development of innovative diagnostic tools to analyze portal metabolites and explore their effect on health and disease. We also need to safely and reliably monitor portal hemodynamics with the goal of providing preventive and curative interventions in all stages of MASLD. Here, we review recent advances that link portal metabolomics to altered sinusoidal vasoregulation and may allow for new insights into the development of portal hypertension in MASLD.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Portincasa
- Division of Internal Medicine, Department of Precision and Regenerative Medicine, University ‘Aldo Moro’ Medical School, 70121 Bari, Italy;
| |
Collapse
|
24
|
Wang Y, Wang J, Zhang J, Wang Y, Wang Y, Kang H, Zhao W, Bai W, Miao N, Wang J. Stiffness sensing via Piezo1 enhances macrophage efferocytosis and promotes the resolution of liver fibrosis. SCIENCE ADVANCES 2024; 10:eadj3289. [PMID: 38838160 DOI: 10.1126/sciadv.adj3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Tissue stiffening is a predominant feature of fibrotic disorders, but the response of macrophages to changes in tissue stiffness and cellular context in fibrotic diseases remains unclear. Here, we found that the mechanosensitive ion channel Piezo1 was up-regulated in hepatic fibrosis. Macrophages lacking Piezo1 showed sustained inflammation and impaired spontaneous resolution of early liver fibrosis. Further analysis revealed an impairment of clearance of apoptotic cells by macrophages in the fibrotic liver. Macrophages showed enhanced efferocytosis when cultured on rigid substrates but not soft ones, suggesting stiffness-dependent efferocytosis of macrophages required Piezo1 activation. Besides, Piezo1 was involved in the efficient acidification of the engulfed cargo in the phagolysosomes and affected the subsequent expression of anti-inflammation genes after efferocytosis. Pharmacological activation of Piezo1 increased the efferocytosis capacity of macrophages and accelerated the resolution of inflammation and fibrosis. Our study supports the antifibrotic role of Piezo1-mediated mechanical sensation in liver fibrosis, suggesting that targeting PIEZO1 to enhance macrophage efferocytosis could induce fibrosis regression.
Collapse
Affiliation(s)
- Yang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiahao Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yina Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haixia Kang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenying Zhao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjuan Bai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Naijun Miao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhang HJ, Fu J, Yu H, Xu H, Hu JC, Lu JY, Bu MM, Zhai Z, Wang JY, Ye ML, Zuo HT, Song JY, Zhao Y, Jiang JD, Wang Y. Berberine promotes the degradation of phenylacetic acid to prevent thrombosis by modulating gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155517. [PMID: 38518650 DOI: 10.1016/j.phymed.2024.155517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/11/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.
Collapse
Affiliation(s)
- Hao-Jian Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jing-Yue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Heng-Tong Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
26
|
Wu W, Ren J, Han M, Huang B. Influence of gut microbiome on metabolic diseases: a new perspective based on microgravity. J Diabetes Metab Disord 2024; 23:353-364. [PMID: 38932858 PMCID: PMC11196560 DOI: 10.1007/s40200-024-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/28/2024] [Indexed: 06/28/2024]
Abstract
Purpose Microgravity, characterized by gravity levels of 10-3-10-6g, has been found to significantly impair various physiological systems in astronauts, including cardiovascular function, bone density, and metabolism. With the recent surge in human spaceflight, understanding the impact of microgravity on biological health has become paramount. Methods A comprehensive literature search was performed using the PubMed database to identify relevant publications pertaining to the interplay between gut microbiome, microgravity, space environment, and metabolic diseases. Results This comprehensive review primarily focuses on the progress made in investigating the gut microbiome and its association with metabolic diseases under microgravity conditions. Microgravity induces notable alterations in the composition, diversity, and functionality of the gut microbiome. These changes hold direct implications for metabolic disorders such as cardiovascular disease (CVD), bone metabolism disorders, energy metabolism dysregulation, liver dysfunction, and complications during pregnancy. Conclusion This novel perspective is crucial for preparing for deep space exploration and interstellar migration, where understanding the complex interplay between the gut microbiome and metabolic health becomes indispensable.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, 230032 Anhui China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui China
| |
Collapse
|
27
|
Li JH, Ma XY, Yi Y, Li LR, Xu ZY, Chang Y. Association between Serum Ferritin Levels and Metabolic-associated Fatty Liver Disease in Adults: a Cross-sectional Study Based on the NHANES. Curr Med Sci 2024; 44:494-502. [PMID: 38748368 DOI: 10.1007/s11596-024-2868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Ferritin, initially acting as an iron-storage protein, was found to be associated with metabolic diseases. Our study was designed to investigate the association between serum ferritin and metabolic-associated fatty liver disease (MAFLD) using data from the National Health and Nutrition Examination Survey (NHANES) of the United State of America. METHODS A cross-sectional study was conducted, enrolling a total of 2145 participants from the NHANES in the 2017-2018 cycles. Hepatic steatosis and liver fibrosis were assessed by ultrasound images and several non-invasive indexes. Multiple regression analysis was conducted to determine the associations between serum ferritin concentration and MAFLD and liver fibrosis. RESULTS The analysis revealed that participants with higher serum ferritin levels (Q3 and Q4 groups) had a higher prevalence of MAFLD than those with the lowest serum ferritin levels [Q3 vs. Q1: OR=2.17 (1.33, 3.53), P<0.05 in fatty liver index (FLI); Q4 vs. Q1: OR=3.13 (1.91, 5.13), P<0.05 in FLI]. Additionally, participants with the highest serum ferritin levels (Q4 group) displayed a higher prevalence of liver fibrosis [Q4 vs. Q1: OR=2.59 (1.19, 5.62), P<0.05 in liver stiffness measurement; OR=5.06 (1.12, 22.94), P<0.05 in fibrosis-4 index], with significantly increased risk observed in participants with concomitant diabetes [OR=7.45 (1.55, 35.72), P=0.012]. CONCLUSION Our study revealed that elevated serum ferritin levels are associated with a higher prevalence of MAFLD and advanced liver fibrosis in patients. Elevated serum ferritin levels combined with diabetes are important risk factors for liver fibrosis.
Collapse
Affiliation(s)
- Jiang-Hui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xue-Yao Ma
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lu-Rao Li
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhi-Yong Xu
- Endoscopy Center, The People's Hospital of Yingshan, Huanggang, 438799, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
28
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
29
|
Effenberger M, Grander C, Hausmann B, Enrich B, Pjevac P, Zoller H, Tilg H. Apelin and the gut microbiome: Potential interaction in human MASLD. Dig Liver Dis 2024; 56:932-940. [PMID: 38087672 DOI: 10.1016/j.dld.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease with increasing numbers worldwide. Adipokines like apelin (APLN) can act as key players in the complex pathophysiology of MASLD. AIMS Investigating the role of APLN in MASLD. METHODS Fecal and blood samples were collected in a MASLD cohort and healthy controls (HC). MASLD patients with liver fibrosis and MASLD-associated hepatocellular carcinoma (HCC) were included into the study. Systemic concentration of Apelin, Apelin receptor (APLNR) and circulating cytokines were measured in serum samples. RESULTS Apelin concentration correlated with the Fib-4 score and was elevated in MASLD patients (mild fibrosis, mF (Fib-4 <3.25) and severe fibrosis, sF (Fib-4 >3.25)) as well as in MASLD-associated HCC patients compared to HC. In accordance APLNR and circulating cytokines were also elevated in mF and sF. In contrast apelin levels were negatively associated with liver survival at three and five years. Changes in taxa composition at phylum level showed an increase of Enterobactericae, Prevotellaceae and Lactobacillaceae in patients with sF compared to mF. We could also observe an association between apelin concentrations and bacterial lineages (phyla). CONCLUSIONS Circulating apelin is associated with liver fibrosis and HCC. In addition, there might exist an interaction between systemic apelin and the gut microbiome.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Ballanti M, Antonetti L, Mavilio M, Casagrande V, Moscatelli A, Pietrucci D, Teofani A, Internò C, Cardellini M, Paoluzi O, Monteleone G, Lefebvre P, Staels B, Mingrone G, Menghini R, Federici M. Decreased circulating IPA levels identify subjects with metabolic comorbidities: A multi-omics study. Pharmacol Res 2024; 204:107207. [PMID: 38734193 DOI: 10.1016/j.phrs.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.
Collapse
Affiliation(s)
- Marta Ballanti
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Lorenzo Antonetti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, Rome, 00179, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marina Cardellini
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Omero Paoluzi
- Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London WC2R 2LS, UK
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Federici
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
31
|
Babu AF, Palomurto S, Kärjä V, Käkelä P, Lehtonen M, Hanhineva K, Pihlajamäki J, Männistö V. Metabolic signatures of metabolic dysfunction-associated steatotic liver disease in severely obese patients. Dig Liver Dis 2024:S1590-8658(24)00773-4. [PMID: 38825414 DOI: 10.1016/j.dld.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
BACKROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Still, most patients with MASLD die from cardiovascular diseases indicating metabolic alterations related to both liver and cardiovascular pathology. AIMS AND METHODS The aim of this study was to assess biologic pathways behind MASLD progression from steatosis to metabolic dysfunction-associated steatohepatitis (MASH) using non-targeted liquid chromatography-mass spectrometry analysis in 106 severely obese individuals (78 women, mean age 47.7 7 ± 9.2 years, body mass index 41.8 ± 4.3 kg/m²) undergoing laparoscopic Roux-en-Y gastric bypass. RESULTS We identified several metabolites that are associated with MASLD progression. Most importantly, we observed a decrease of lysophosphatidylcholines LPC(18:2), LPC(18:3), and LPC(20:3) and increase of xanthine when comparing those with steatosis to those with MASH. We found that indole propionic acid and threonine were negatively correlated to fibrosis, but not with the metabolic disturbances associated with cardiovascular risk. Xanthine, ketoleucine, and tryptophan were positively correlated to lobular inflammation and ballooning but also with insulin resistance, and dyslipidemia, respectively. The results did not change when taking into account the most important genetic risk factors of MASLD. CONCLUSIONS Our findings suggest that there are several separate biological pathways, some of them independent of insulin resistance and dyslipidemia, associating with MASLD.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Saana Palomurto
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Vesa Kärjä
- Department of Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Pirjo Käkelä
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, 70211 Kuopio, Finland; LC-MS Metabolomics Center, Biocenter Kuopio, 70211 Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, 20014 Turku, Finland
| | - Jussi Pihlajamäki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland.
| |
Collapse
|
32
|
Zhang X, Jia L, Ma Q, Zhang X, Chen M, Liu F, Zhang T, Jia W, Zhu L, Qi W, Wang N. Astragalus Polysaccharide Modulates the Gut Microbiota and Metabolites of Patients with Type 2 Diabetes in an In Vitro Fermentation Model. Nutrients 2024; 16:1698. [PMID: 38892631 PMCID: PMC11174380 DOI: 10.3390/nu16111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigated the effect of astragalus polysaccharide (APS, an ingredient with hypoglycemic function in a traditional Chinese herbal medicine) on gut microbiota and metabolites of type 2 diabetes mellitus (T2DM) patients using a simulated fermentation model in vitro. The main components of APS were isolated, purified, and structure characterized. APS fermentation was found to increase the abundance of Lactobacillus and Bifidobacterium and decrease the Escherichia-Shigella level in the fecal microbiota of T2DM patients. Apart from increasing propionic acid, APS also caused an increase in all-trans-retinoic acid and thiamine (both have antioxidant properties), with their enrichment in the KEGG pathway associated with thiamine metabolism, etc. Notably, APS could also enhance fecal antioxidant properties. Correlation analysis confirmed a significant positive correlation of Lactobacillus with thiamine and DPPH-clearance rate, suggesting the antioxidant activity of APS was related to its ability to enrich some specific bacteria and upregulate their metabolites.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Lina Jia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Qian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Xiaoyuan Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China; (X.Z.); (M.C.); (F.L.)
| | - Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China; (X.Z.); (M.C.); (F.L.)
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China; (X.Z.); (M.C.); (F.L.)
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Weiguo Jia
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Liying Zhu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Wei Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| |
Collapse
|
33
|
Wu T, Zeng Z, Yu Y. Role of Probiotics in Gut Microbiome and Metabolome in Non-Alcoholic Fatty Liver Disease Mouse Model: A Comparative Study. Microorganisms 2024; 12:1020. [PMID: 38792849 PMCID: PMC11124503 DOI: 10.3390/microorganisms12051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition worldwide. Numerous studies conducted recently have demonstrated a connection between the dysbiosis of the development of NAFLD and gut microbiota. Rebuilding a healthy gut ecology has been proposed as a strategy involving the use of probiotics. The purpose of this work is to investigate and compare the function of probiotics Akkermansia muciniphila (A. muciniphila) and VSL#3 in NAFLD mice. Rodent NAFLD was modeled using a methionine choline-deficient diet (MCD) with/without oral probiotic delivery. Subsequently, qPCR, histological staining, and liver function tests were conducted. Mass spectrometry-based analysis and 16S rDNA gene sequencing were used to investigate the liver metabolome and gut microbiota. We found that while both A. muciniphila and VSL#3 reduced hepatic fat content, A. muciniphila outperformed VSL#3. Furthermore, probiotic treatment restored the β diversity of the gut flora and A. muciniphila decreased the abundance of pathogenic bacteria such as Ileibacterium valens. These probiotics altered the metabolism in MCD mice, especially the glycerophospholipid metabolism. In conclusion, our findings distinguished the role of A. muciniphila and VSL#3 in NAFLD and indicated that oral-gavage probiotics remodel gut microbiota and improve metabolism, raising the possibility of using probiotics in the cure of NAFLD.
Collapse
Affiliation(s)
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China;
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China;
| |
Collapse
|
34
|
Samy AM, Kandeil MA, Sabry D, Abdel-Ghany A, Mahmoud MO. From NAFLD to NASH: Understanding the spectrum of non-alcoholic liver diseases and their consequences. Heliyon 2024; 10:e30387. [PMID: 38737288 PMCID: PMC11088336 DOI: 10.1016/j.heliyon.2024.e30387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most frequent chronic liver diseases worldwide in recent decades. Metabolic diseases like excessive blood glucose, central obesity, dyslipidemia, hypertension, and liver function abnormalities cause NAFLD. NAFLD significantly increases the likelihood of liver cancer, heart disease, and mortality, making it a leading cause of liver transplants. Non-alcoholic steatohepatitis (NASH) is a more advanced form of the disease that causes scarring and inflammation of the liver over time and can ultimately result in cirrhosis and hepatocellular carcinoma. In this review, we briefly discuss NAFLD's pathogenic mechanisms, their progression into NASH and afterward to NASH-related cirrhosis. It also covers disease epidemiology, metabolic mechanisms, glucose and lipid metabolism in the liver, macrophage dysfunction, bile acid toxicity, and liver stellate cell stimulation. Additionally, we consider the contribution of intestinal microbiota, genetics, epigenetics, and ecological factors to fibrosis progression and hepatocellular carcinoma risk in NAFLD and NASH patients.
Collapse
Affiliation(s)
- Ahmed M. Samy
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Mohamed A. Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo 11829, Egypt
| | - A.A. Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assuit Branch, Egypt
| | - Mohamed O. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
35
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
36
|
Tilves C, Mueller NT, Zmuda JM, Kuipers AL, Methé B, Li K, Carr JJ, Terry JG, Wheeler V, Nair S, Miljkovic I. Associations of Fecal Microbiota with Ectopic Fat in African Caribbean Men. Microorganisms 2024; 12:812. [PMID: 38674756 PMCID: PMC11052294 DOI: 10.3390/microorganisms12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE The gut microbiome has been associated with visceral fat (VAT) in European and Asian populations; however, associations with VAT and with ectopic fats among African-ancestry individuals are not known. Our objective was to investigate cross-sectional associations of fecal microbiota diversity and composition with VAT and ectopic fat, as well as body mass index (BMI), among middle-aged and older African Caribbean men. METHODS We included in our analysis n = 193 men (mean age = 62.2 ± 7.6 years; mean BMI = 28.3 ± 4.9 kg/m2) from the Tobago Health Study. We assessed fecal microbiota using V4 16s rRNA gene sequencing. We evaluated multivariable-adjusted associations of microbiota features (alpha diversity, beta diversity, microbiota differential abundance) with BMI and with computed tomography-measured VAT and ectopic fats (pericardial and intermuscular fat; muscle and liver attenuation). RESULTS Lower alpha diversity was associated with higher VAT and BMI, and somewhat with higher pericardial and liver fat. VAT, BMI, and pericardial fat each explained similar levels of variance in beta diversity. Gram-negative Prevotellaceae and Negativicutes microbiota showed positive associations, while gram-positive Ruminococcaceae microbiota showed inverse associations, with ectopic fats. CONCLUSIONS Fecal microbiota features associated with measures of general adiposity also extend to metabolically pernicious VAT and ectopic fat accumulation in older African-ancestry men.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA;
- LEAD Center, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Noel T. Mueller
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA;
- LEAD Center, Colorado School of Public Health, Aurora, CO 80045, USA
- Department of Pediatrics, Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph M. Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| | - Allison L. Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| | - Barbara Methé
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.M.); (K.L.)
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.M.); (K.L.)
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - James G. Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - Victor Wheeler
- Tobago Health Studies Office, TTMF Jerningham Court, James Park Upper Scarborough, Scarborough, Trinidad and Tobago;
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| |
Collapse
|
37
|
Alghamdi W, Mosli M, Alqahtani SA. Gut microbiota in MAFLD: therapeutic and diagnostic implications. Ther Adv Endocrinol Metab 2024; 15:20420188241242937. [PMID: 38628492 PMCID: PMC11020731 DOI: 10.1177/20420188241242937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is becoming a significant contributor to chronic liver disease globally, surpassing other etiologies, such as viral hepatitis. Prevention and early treatment strategies to curb its growing prevalence are urgently required. Recent evidence suggests that targeting the gut microbiota may help treat and alleviate disease progression in patients with MAFLD. This review aims to explore the complex relationship between MAFLD and the gut microbiota in relation to disease pathogenesis. Additionally, it delves into the therapeutic strategies targeting the gut microbiota, such as diet, exercise, antibiotics, probiotics, synbiotics, glucagon-like peptide-1 receptor agonists, and fecal microbiota transplantation, and discusses novel biomarkers, such as microbiota-derived testing and liquid biopsy, for their diagnostic and staging potential. Overall, the review emphasizes the urgent need for preventive and therapeutic strategies to address the devastating consequences of MAFLD at both individual and societal levels and recognizes that further exploration of the gut microbiota may open avenues for managing MAFLD effectively in the future.
Collapse
Affiliation(s)
- Waleed Alghamdi
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
39
|
Huang F, Lyu B, Xie F, Li F, Xing Y, Han Z, Lai J, Ma J, Zou Y, Zeng H, Xu Z, Gao P, Luo Y, Bolund L, Tong G, Fengping X. From gut to liver: unveiling the differences of intestinal microbiota in NAFL and NASH patients. Front Microbiol 2024; 15:1366744. [PMID: 38638907 PMCID: PMC11024258 DOI: 10.3389/fmicb.2024.1366744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasingly recognized for its global prevalence and potential progression to more severe liver diseases such as non-alcoholic steatohepatitis (NASH). The gut microbiota plays a pivotal role in the pathogenesis of NAFLD, yet the detailed characteristics and ecological alterations of gut microbial communities during the progression from non-alcoholic fatty liver (NAFL) to NASH remain poorly understood. Methods: In this study, we conducted a comparative analysis of gut microbiota composition in individuals with NAFL and NASH to elucidate differences and characteristics. We utilized 16S rRNA sequencing to compare the intestinal gut microbiota among a healthy control group (65 cases), NAFL group (64 cases), and NASH group (53 cases). Random forest machine learning and database validation methods were employed to analyze the data. Results: Our findings indicate a significant decrease in the diversity of intestinal flora during the progression of NAFLD (p < 0.05). At the phylum level, high abundances of Bacteroidetes and Fusobacteria were observed in both NAFL and NASH patients, whereas Firmicutes were less abundant. At the genus level, a significant decrease in Prevotella expression was seen in the NAFL group (AUC 0.738), whereas an increase in the combination of Megamonas and Fusobacterium was noted in the NASH group (AUC 0.769). Furthermore, KEGG pathway analysis highlighted significant disturbances in various types of glucose metabolism pathways in the NASH group compared to the NAFL group, as well as notably compromised flavonoid and flavonol biosynthesis functions. The study uncovers distinct microbiota characteristics and microecological changes within the gut during the transition from NAFL to NASH, providing insights that could facilitate the discovery of novel biomarkers and therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Furong Huang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Bo Lyu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Cell, Shenzhen, China
| | - Fanci Xie
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- People's Hospital of Longhua, Shenzhen, China
| | - Fang Li
- BGI, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI Research, Qingdao, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhiyi Han
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jianping Lai
- Department of Infectious Diseases, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | | | - Yuanqiang Zou
- BGI, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | - Hua Zeng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhe Xu
- BGI, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI Research, Qingdao, China
| | - Pan Gao
- BGI, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI Research, Qingdao, China
| | - Yonglun Luo
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Cell, Shenzhen, China
- BGI, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI Research, Qingdao, China
| | - Lars Bolund
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- BGI Cell, Shenzhen, China
- BGI, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI Research, Qingdao, China
| | - Guangdong Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xu Fengping
- Department of Sanming Project of Medicine in Shenzhen, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Cell, Shenzhen, China
- BGI, Shenzhen, China
| |
Collapse
|
40
|
Lombardi M, Troisi J, Motta BM, Torre P, Masarone M, Persico M. Gut-Liver Axis Dysregulation in Portal Hypertension: Emerging Frontiers. Nutrients 2024; 16:1025. [PMID: 38613058 PMCID: PMC11013091 DOI: 10.3390/nu16071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Portal hypertension (PH) is a complex clinical challenge with severe complications, including variceal bleeding, ascites, hepatic encephalopathy, and hepatorenal syndrome. The gut microbiota (GM) and its interconnectedness with human health have emerged as a captivating field of research. This review explores the intricate connections between the gut and the liver, aiming to elucidate how alterations in GM, intestinal barrier function, and gut-derived molecules impact the development and progression of PH. A systematic literature search, following PRISMA guidelines, identified 12 original articles that suggest a relationship between GM, the gut-liver axis, and PH. Mechanisms such as dysbiosis, bacterial translocation, altered microbial structure, and inflammation appear to orchestrate this relationship. One notable study highlights the pivotal role of the farnesoid X receptor axis in regulating the interplay between the gut and liver and proposes it as a promising therapeutic target. Fecal transplantation experiments further emphasize the pathogenic significance of the GM in modulating liver maladies, including PH. Recent advancements in metagenomics and metabolomics have expanded our understanding of the GM's role in human ailments. The review suggests that addressing the unmet need of identifying gut-liver axis-related metabolic and molecular pathways holds potential for elucidating pathogenesis and directing novel therapeutic interventions.
Collapse
Affiliation(s)
- Martina Lombardi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Jacopo Troisi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Pietro Torre
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Mario Masarone
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Marcello Persico
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| |
Collapse
|
41
|
Wen Y, Zhang T, Zhang B, Wang F, Wei X, Wei Y, Ma X, Tang X. Comprehensive bibliometric and visualized analysis of research on gut-liver axis published from 1998 to 2022. Heliyon 2024; 10:e27819. [PMID: 38496853 PMCID: PMC10944270 DOI: 10.1016/j.heliyon.2024.e27819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Background The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.
Collapse
Affiliation(s)
- Yongtian Wen
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuxiu Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Mirzaei S, DeVon HA, Cantor RM, Cupido AJ, Pan C, Ha SM, Silva LF, Hilser JR, Hartiala J, Allayee H, Rey FE, Laakso M, Lusis AJ. Relationships and Mendelian Randomization of Gut Microbe-Derived Metabolites with Metabolic Syndrome Traits in the METSIM Cohort. Metabolites 2024; 14:174. [PMID: 38535334 PMCID: PMC10972019 DOI: 10.3390/metabo14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass index (BMI) (β = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (β = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (β = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23, p = 4.4 × 10-33), and BMI (β = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (β = -0.19, p = 3.8 × 10-51) and triglycerides (β = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
Collapse
Affiliation(s)
- Sahereh Mirzaei
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Holli A. DeVon
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Rita M. Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1007 AZ Amsterdam, The Netherlands
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Lilian Fernandes Silva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaana Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markku Laakso
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Human Genetics and Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Zhang J, Zhou J, He Z, Li H. Bacteroides and NAFLD: pathophysiology and therapy. Front Microbiol 2024; 15:1288856. [PMID: 38572244 PMCID: PMC10988783 DOI: 10.3389/fmicb.2024.1288856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition observed globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Currently, the US Food and Drug Administration (FDA) has not approved any drugs for the treatment of NAFLD. NAFLD is characterized by histopathological abnormalities in the liver, such as lipid accumulation, steatosis, hepatic balloon degeneration, and inflammation. Dysbiosis of the gut microbiota and its metabolites significantly contribute to the initiation and advancement of NAFLD. Bacteroides, a potential probiotic, has shown strong potential in preventing the onset and progression of NAFLD. However, the precise mechanism by which Bacteroides treats NAFLD remains uncertain. In this review, we explore the current understanding of the role of Bacteroides and its metabolites in the treatment of NAFLD, focusing on their ability to reduce liver inflammation, mitigate hepatic steatosis, and enhance intestinal barrier function. Additionally, we summarize how Bacteroides alleviates pathological changes by restoring the metabolism, improving insulin resistance, regulating cytokines, and promoting tight-junctions. A deeper comprehension of the mechanisms through which Bacteroides is involved in the pathogenesis of NAFLD should aid the development of innovative drugs targeting NAFLD.
Collapse
Affiliation(s)
- Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Zheyun He
- Liver Diseases Institute, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
44
|
Yuan C, Yu XT, Wang J, Shu B, Wang XY, Huang C, Lv X, Peng QQ, Qi WH, Zhang J, Zheng Y, Wang SJ, Liang QQ, Shi Q, Li T, Huang H, Mei ZD, Zhang HT, Xu HB, Cui J, Wang H, Zhang H, Shi BH, Sun P, Zhang H, Ma ZL, Feng Y, Chen L, Zeng T, Tang DZ, Wang YJ. Multi-modal molecular determinants of clinically relevant osteoporosis subtypes. Cell Discov 2024; 10:28. [PMID: 38472169 PMCID: PMC10933295 DOI: 10.1038/s41421-024-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).
Collapse
Affiliation(s)
- Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xia Lv
- Hudong Hospital of Shanghai, Shanghai, China
| | - Qian-Qian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hao Qi
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhang
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yan Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Si-Jia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhen-Dong Mei
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai-Tao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Bin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiarui Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin-Hao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Hudong Hospital of Shanghai, Shanghai, China
| | | | - Yuan Feng
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China.
| | - De-Zhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
45
|
Long Q, Luo F, Li B, Li Z, Guo Z, Chen Z, Wu W, Hu M. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024; 8:e0310. [PMID: 38407327 PMCID: PMC10898672 DOI: 10.1097/hc9.0000000000000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/05/2023] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a replacement of the nomenclature employed for NAFLD, is the most prevalent chronic liver disease worldwide. Despite its high global prevalence, NAFLD is often under-recognized due to the absence of reliable noninvasive biomarkers for diagnosis and staging. Growing evidence suggests that the gut microbiome plays a significant role in the occurrence and progression of NAFLD by causing immune dysregulation and metabolic alterations due to gut dysbiosis. The rapid advancement of sequencing tools and metabolomics has enabled the identification of alterations in microbiome signatures and gut microbiota-derived metabolite profiles in numerous clinical studies related to NAFLD. Overall, these studies have shown a decrease in α-diversity and changes in gut microbiota abundance, characterized by increased levels of Escherichia and Prevotella, and decreased levels of Akkermansia muciniphila and Faecalibacterium in patients with NAFLD. Furthermore, bile acids, short-chain fatty acids, trimethylamine N-oxide, and tryptophan metabolites are believed to be closely associated with the onset and progression of NAFLD. In this review, we provide novel insights into the vital role of gut microbiome in the pathogenesis of NAFLD. Specifically, we summarize the major classes of gut microbiota and metabolic biomarkers in NAFLD, thereby highlighting the links between specific bacterial species and certain gut microbiota-derived metabolites in patients with NAFLD.
Collapse
|
46
|
Wyss J, Raselli T, Wyss A, Telzerow A, Rogler G, Krupka N, Yilmaz B, Schmidt TSB, Misselwitz B. Development of non-alcoholic steatohepatitis is associated with gut microbiota but not with oxysterol enzymes CH25H, EBI2, or CYP7B1 in mice. BMC Microbiol 2024; 24:69. [PMID: 38418983 PMCID: PMC10900623 DOI: 10.1186/s12866-024-03195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Liver steatosis is the most frequent liver disorder and its advanced stage, non-alcoholic steatohepatitis (NASH), will soon become the main reason for liver fibrosis and cirrhosis. The "multiple hits hypothesis" suggests that progression from simple steatosis to NASH is triggered by multiple factors including the gut microbiota composition. The Epstein Barr virus induced gene 2 (EBI2) is a receptor for the oxysterol 7a, 25-dihydroxycholesterol synthesized by the enzymes CH25H and CYP7B1. EBI2 and its ligand control activation of immune cells in secondary lymphoid organs and the gut. Here we show a concurrent study of the microbial dysregulation and perturbation of the EBI2 axis in a mice model of NASH.We used mice with wildtype, or littermates with CH25H-/-, EBI2-/-, or CYP7B1-/- genotypes fed with a high-fat diet (HFD) containing high amounts of fat, cholesterol, and fructose for 20 weeks to induce liver steatosis and NASH. Fecal and small intestinal microbiota samples were collected, and microbiota signatures were compared according to genotype and NASH disease state.We found pronounced differences in microbiota composition of mice with HFD developing NASH compared to mice did not developing NASH. In mice with NASH, we identified significantly increased 33 taxa mainly belonging to the Clostridiales order and/ or the family, and significantly decreased 17 taxa. Using an Elastic Net algorithm, we suggest a microbiota signature that predicts NASH in animals with a HFD from the microbiota composition with moderate accuracy (area under the receiver operator characteristics curve = 0.64). In contrast, no microbiota differences regarding the studied genotypes (wildtype vs knock-out CH25H-/-, EBI2-/-, or CYP7B1-/-) were observed.In conclusion, our data confirm previous studies identifying the intestinal microbiota composition as a relevant marker for NASH pathogenesis. Further, no link of the EBI2 - oxysterol axis to the intestinal microbiota was detectable in the current study.
Collapse
Affiliation(s)
- Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anja Telzerow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Qiu XX, Cheng SL, Liu YH, Li Y, Zhang R, Li NN, Li Z. Fecal microbiota transplantation for treatment of non-alcoholic fatty liver disease: Mechanism, clinical evidence, and prospect. World J Gastroenterol 2024; 30:833-842. [PMID: 38516241 PMCID: PMC10950639 DOI: 10.3748/wjg.v30.i8.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
The population of non-alcoholic fatty liver disease (NAFLD) patients along with relevant advanced liver disease is projected to continue growing, because currently no medications are approved for treatment. Fecal microbiota transplantation (FMT) is believed a novel and promising therapeutic approach based on the concept of the gut-liver axis in liver disease. There has been an increase in the number of pre-clinical and clinical studies evaluating FMT in NAFLD treatment, however, existing findings diverge on its effects. Herein, we briefly summarized the mechanism of FMT for NAFLD treatment, reviewed randomized controlled trials for evaluating its efficacy in NAFLD, and proposed the prospect of future trials on FMT.
Collapse
Affiliation(s)
- Xiao-Xia Qiu
- Research and Education Department, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310022, Zhejiang Province, China
| | - Sheng-Li Cheng
- Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230000, Anhui Province, China
| | - Yan-Hui Liu
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei 230000, Anhui Province, China
| | - Yu Li
- Department of Pharmacy, Taihe County People’s Hospital of Anhui Province, Fuyang 236600, Anhui Province, China
| | - Rui Zhang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Nan-Nan Li
- University of Science and Technology of China, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
48
|
Ding Y, Yanagi K, Yang F, Callaway E, Cheng C, Hensel ME, Menon R, Alaniz RC, Lee K, Jayaraman A. Oral supplementation of gut microbial metabolite indole-3-acetate alleviates diet-induced steatosis and inflammation in mice. eLife 2024; 12:RP87458. [PMID: 38412016 PMCID: PMC10942630 DOI: 10.7554/elife.87458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Yufang Ding
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Karin Yanagi
- Department of Chemical and Biological Engineering, Tufts UniversityMedfordUnited States
| | - Fang Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Evelyn Callaway
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Clint Cheng
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Martha E Hensel
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationUnited States
| | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M UniversityBryanUnited States
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts UniversityMedfordUnited States
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M UniversityBryanUnited States
| |
Collapse
|
49
|
He QJ, Li YF, Zhao LT, Lin CT, Yu CY, Wang D. Recent advances in age-related metabolic dysfunction-associated steatotic liver disease. World J Gastroenterol 2024; 30:652-662. [PMID: 38515956 PMCID: PMC10950625 DOI: 10.3748/wjg.v30.i7.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately 25% of the world's population and has become a leading cause of chronic liver disease. In recent years, an increasing amount of data suggests that MASLD is associated with aging. As the population ages, age-related MASLD will become a major global health problem. Targeting an aging will become a new approach to the treatment of MASLD. This paper reviews the current studies on the role of aging-related factors and therapeutic targets in MASLD, including: Oxidative stress, autophagy, mitochondrial homeostasis, bile acid metabolism homeostasis, and dysbiosis. The aim is to identify effective therapeutic targets for age-related MASLD and its progression.
Collapse
Affiliation(s)
- Qian-Jun He
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Yi-Fei Li
- Department of Traumatic Surgery, Jilin Central Hospital, Jilin 132001, Jilin Province, China
| | - Ling-Tong Zhao
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Chun-Tong Lin
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Chun-Yan Yu
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Dan Wang
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| |
Collapse
|
50
|
Meroni M, Longo M, Paolini E, Dongiovanni P. A narrative review about cognitive impairment in metabolic Dysfunction-Associated liver disease (MASLD): Another matter to face through a holistic approach. J Adv Res 2024:S2090-1232(24)00069-9. [PMID: 38369241 DOI: 10.1016/j.jare.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic hepatic disorder worldwide in both adults and children. It is well established that MASLD represents the hepatic manifestation of the metabolic syndrome whose definition includes the presence of obesity, type 2 diabetes (T2D), dyslipidemia, hypertension and hypercoagulability. All these conditions contribute to a chronic inflammatory status which may impact on blood brain barrier (BBB) integrity leading to an impaired function of central nervous system (CNS). AIM OF REVIEW Since the mechanisms underlying the brain-liver-gut axis derangement are still inconclusive, the present narrative review aims to make a roundup of the most recent studies regarding the cognitive decline in MASLD also highlighting possible therapeutic strategies to reach a holistic advantage for the patients. KEY SCIENTIFIC CONCEPTS OF REVIEW Due to its ever-growing prevalence, the MASLD-related mental dysfunction represents an enormous socio-economic burden since it largely impacts on the quality of life of patients as well as on their working productivity. Indeed, cognitive decline in MASLD translates in low concentration and processing speed, reduced memory, sleepiness but also anxiety and depression. Chronic systemic inflammation, hyperammonemia, genetic background and intestinal dysbiosis possibly contribute to the cognitive decline in MASLD patients. However, its diagnosis is still underestimated since the leading mechanisms are multi-faceted and unexplained and do not exist standardized diagnostic tools or cognitive test strategies. In this scenario, nutritional and lifestyle interventions as well as intestinal microbiota manipulation (probiotics, fecal transplantation) may represent new approaches to counteract mental impairment in these subjects. In sum, to face the "mental aspect" of this multifactorial disease which is almost unexplored, cognitive tools should be introduced in the management of MASLD patients.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|