1
|
Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med 2024; 30:1028-1046. [PMID: 38971705 DOI: 10.1016/j.molmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Autism spectrum disorders (ASD) comprise a range of neurodevelopmental pathologies characterized by deficits in social interaction and repetitive behaviors, collectively affecting almost 1% of the worldwide population. Deciphering the etiology of ASD has proven challenging due to the intricate interplay of genetic and environmental factors and the variety of molecular pathways affected. Epigenomic alterations have emerged as key players in ASD etiology. Their research has led to the identification of biomarkers for diagnosis and pinpointed specific gene targets for therapeutic interventions. This review examines the role of epigenetic alterations, resulting from both genetic and environmental influences, as a central causative factor in ASD, delving into its contribution to pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
2
|
Preciado C, Baida M, Li Y, Li Y, Demopoulos C. Prenatal exposure to hypoxic risk conditions in autistic and neurotypical youth: Associated ventricular differences, sleep disturbance, and sensory processing. Autism Res 2024. [PMID: 39411851 DOI: 10.1002/aur.3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/28/2024] [Indexed: 11/17/2024]
Abstract
There is a growing body of research that suggests conditions during the period of pregnancy and birth can affect how autism spectrum disorder (ASD) presents itself. This study aimed to investigate the incidence of oxygen deprivation during this period known as prenatal and perinatal hypoxic risk (HR) conditions in ASD compared with neurotypical control (NTC) youth. We also examined ventricular morphology variations associated with HR exposure, and to evaluate associations with clinical symptoms. Results from a cohort of 104 youth revealed a higher incidence of exposure to prenatal hypoxic conditions in the ASD group. Additionally, ASD individuals with prenatal hypoxic exposure (ASD + HR) demonstrated larger third ventricle volumes compared with both ASD and NTC individuals without such exposure (ASD-HR and NTC-HR, respectively). Furthermore, associations were identified between prenatal hypoxic exposure, third ventricle volume, sensory dysfunction, and severity of sleep disturbances. These findings suggest exposure to prenatal hypoxic risk conditions may exacerbate or modify the neurodevelopmental trajectory and symptom severity in ASD, emphasizing the need for better prenatal care and specific interventions to reduce these risks.
Collapse
Affiliation(s)
- Cristian Preciado
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA
| | - Maria Baida
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yi Li
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yan Li
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Carly Demopoulos
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
4
|
van der Geest AT, Jakobs CE, Ljubikj T, Huffels CFM, Cañizares Luna M, Vieira de Sá R, Adolfs Y, de Wit M, Rutten DH, Kaal M, Zwartkruis MM, Carcolé M, Groen EJN, Hol EM, Basak O, Isaacs AM, Westeneng HJ, van den Berg LH, Veldink JH, Schlegel DK, Pasterkamp RJ. Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids. Acta Neuropathol Commun 2024; 12:152. [PMID: 39289761 PMCID: PMC11409520 DOI: 10.1186/s40478-024-01857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Astrid T van der Geest
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Channa E Jakobs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tijana Ljubikj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daan H Rutten
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marthe Kaal
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maria M Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Domino K Schlegel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Umans BD, Gilad Y. Oxygen-induced stress reveals context-specific gene regulatory effects in human brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611030. [PMID: 39282424 PMCID: PMC11398411 DOI: 10.1101/2024.09.03.611030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The interaction between genetic variants and environmental stressors is key to understanding the mechanisms underlying neurological diseases. In this study, we used human brain organoids to explore how varying oxygen levels expose context-dependent gene regulatory effects. By subjecting a genetically diverse panel of 21 brain organoids to hypoxic and hyperoxic conditions, we identified thousands of gene regulatory changes that are undetectable under baseline conditions, with 1,745 trait-associated genes showing regulatory effects only in response to oxygen stress. To capture more nuanced transcriptional patterns, we employed topic modeling, which revealed context-specific gene regulation linked to dynamic cellular processes and environmental responses, offering a deeper understanding of how gene regulation is modulated in the brain. These findings underscore the importance of genotype-environment interactions in genetic studies of neurological disorders and provide new insights into the hidden regulatory mechanisms influenced by environmental factors in the brain.
Collapse
Affiliation(s)
- Benjamin D Umans
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yoav Gilad
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Jiang N, Wang C, Xie B, Xie H, Wu A, Kong X, Gu L, Jiang Y, Peng J. Identification of endoplasmic reticulum stress genes in human stroke based on bioinformatics and machine learning. Neurobiol Dis 2024; 199:106583. [PMID: 38942324 DOI: 10.1016/j.nbd.2024.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
After ischemic stroke (IS), secondary injury is intimately linked to endoplasmic reticulum (ER) stress and body-brain crosstalk. Nonetheless, the underlying mechanism systemic immune disorder mediated ER stress in human IS remains unknown. In this study, 32 candidate ER stress-related genes (ERSRGs) were identified by overlapping MSigDB ER stress pathway genes and DEGs. Three Key ERSRGs (ATF6, DDIT3 and ERP29) were identified using LASSO, random forest, and SVM-RFE. IS patients with different ERSRGs profile were clustered into two groups using consensus clustering and the difference between 2 group was further explored by GSVA. Through immune cell infiltration deconvolution analysis, and middle cerebral artery occlusion (MCAO) mouse scRNA analysis, we found that the expression of 3 key ERSRGs were closely related with peripheral macrophage cell ER stress in IS and this was further confirmed by RT-qPCR experiment. These ERS genes might be helpful to further accurately regulate the central nervous system and systemic immune response through ER stress and have potential application value in clinical practice in IS.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Chuying Wang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China; Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Institute of Brain Science, Southwest Medical University, Luzhou, China; Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Kim TW, Koo SY, Riessland M, Chaudhry F, Kolisnyk B, Cho HS, Russo MV, Saurat N, Mehta S, Garippa R, Betel D, Studer L. TNF-NF-κB-p53 axis restricts in vivo survival of hPSC-derived dopamine neurons. Cell 2024; 187:3671-3689.e23. [PMID: 38866017 DOI: 10.1016/j.cell.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Ongoing, early-stage clinical trials illustrate the translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, an unresolved challenge is the extensive cell death following transplantation. Here, we performed a pooled CRISPR-Cas9 screen to enhance postmitotic dopamine neuron survival in vivo. We identified p53-mediated apoptotic cell death as a major contributor to dopamine neuron loss and uncovered a causal link of tumor necrosis factor alpha (TNF-α)-nuclear factor κB (NF-κB) signaling in limiting cell survival. As a translationally relevant strategy to purify postmitotic dopamine neurons, we identified cell surface markers that enable purification without the need for genetic reporters. Combining cell sorting and treatment with adalimumab, a clinically approved TNF-α inhibitor, enabled efficient engraftment of postmitotic dopamine neurons with extensive reinnervation and functional recovery in a preclinical PD mouse model. Thus, transient TNF-α inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic hPSC-derived dopamine neurons in PD.
Collapse
Affiliation(s)
- Tae Wan Kim
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - So Yeon Koo
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fayzan Chaudhry
- Tri-Institutional PhD program in Computational Biology, New York, NY, USA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hyein S Cho
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Marco Vincenzo Russo
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: a manual to survive. Front Cell Neurosci 2024; 18:1419526. [PMID: 39049825 PMCID: PMC11267621 DOI: 10.3389/fncel.2024.1419526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In 2013, M. Lancaster described the first protocol to obtain human brain organoids. These organoids, usually generated from human-induced pluripotent stem cells, can mimic the three-dimensional structure of the human brain. While they recapitulate the salient developmental stages of the human brain, their use to investigate the onset and mechanisms of neurodegenerative diseases still faces crucial limitations. In this review, we aim to highlight these limitations, which hinder brain organoids from becoming reliable models to study neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Specifically, we will describe structural and biological impediments, including the lack of an aging footprint, angiogenesis, myelination, and the inclusion of functional and immunocompetent microglia—all important factors in the onset of neurodegeneration in AD, PD, and ALS. Additionally, we will discuss technical limitations for monitoring the microanatomy and electrophysiology of these organoids. In parallel, we will propose solutions to overcome the current limitations, thereby making human brain organoids a more reliable tool to model neurodegeneration.
Collapse
Affiliation(s)
- Nerea Urrestizala-Arenaza
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
| | - Sonia Cerchio
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
- Fundación Biofisica Bizkaia, Leioa, Spain
| | - Chiara Magliaro
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Rodriguez de Los Santos M, Kopell BH, Buxbaum Grice A, Ganesh G, Yang A, Amini P, Liharska LE, Vornholt E, Fullard JF, Dong P, Park E, Zipkowitz S, Kaji DA, Thompson RC, Liu D, Park YJ, Cheng E, Ziafat K, Moya E, Fennessy B, Wilkins L, Silk H, Linares LM, Sullivan B, Cohen V, Kota P, Feng C, Johnson JS, Rieder MK, Scarpa J, Nadkarni GN, Wang M, Zhang B, Sklar P, Beckmann ND, Schadt EE, Roussos P, Charney AW, Breen MS. Divergent landscapes of A-to-I editing in postmortem and living human brain. Nat Commun 2024; 15:5366. [PMID: 38926387 PMCID: PMC11208617 DOI: 10.1038/s41467-024-49268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.
Collapse
Affiliation(s)
| | - Brian H Kopell
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gauri Ganesh
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andy Yang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pardis Amini
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lora E Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Vornholt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F Fullard
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pengfei Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Zipkowitz
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak A Kaji
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan C Thompson
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Donjing Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - You Jeong Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esther Cheng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimia Ziafat
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Moya
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Fennessy
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lillian Wilkins
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hannah Silk
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa M Linares
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan Sullivan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vanessa Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Kota
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Claudia Feng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Joseph Scarpa
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Minghui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D Beckmann
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Michael S Breen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Sandoval SO, Cappuccio G, Kruth K, Osenberg S, Khalil SM, Méndez-Albelo NM, Padmanabhan K, Wang D, Niciu MJ, Bhattacharyya A, Stein JL, Sousa AMM, Waxman EA, Buttermore ED, Whye D, Sirois CL, Williams A, Maletic-Savatic M, Zhao X. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go. Stem Cell Reports 2024; 19:796-816. [PMID: 38759644 PMCID: PMC11297560 DOI: 10.1016/j.stemcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gerarda Cappuccio
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karina Kruth
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Sivan Osenberg
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Saleh M Khalil
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Center for Visual Science, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark J Niciu
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aislinn Williams
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA.
| | - Mirjana Maletic-Savatic
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
11
|
de los Santos MR, Kopell BH, Grice AB, Ganesh G, Yang A, Amini P, Liharska LE, Vornholt E, Fullard JF, Dong P, Park E, Zipkowitz S, Kaji DA, Thompson RC, Liu D, Park YJ, Cheng E, Ziafat K, Moya E, Fennessy B, Wilkins L, Silk H, Linares LM, Sullivan B, Cohen V, Kota P, Feng C, Johnson JS, Rieder MK, Scarpa J, Nadkarni GN, Wang M, Zhang B, Sklar P, Beckmann ND, Schadt EE, Roussos P, Charney AW, Breen MS. Divergent landscapes of A-to-I editing in postmortem and living human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306763. [PMID: 38765961 PMCID: PMC11100843 DOI: 10.1101/2024.05.06.24306763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.
Collapse
Affiliation(s)
| | - Brian H. Kopell
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gauri Ganesh
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andy Yang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pardis Amini
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lora E. Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Vornholt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F. Fullard
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pengfei Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Zipkowitz
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak A. Kaji
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan C. Thompson
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Donjing Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - You Jeong Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esther Cheng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimia Ziafat
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Moya
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Fennessy
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lillian Wilkins
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hannah Silk
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa M. Linares
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan Sullivan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vanessa Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Kota
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Claudia Feng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Joseph Scarpa
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Minghui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D. Beckmann
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E. Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Michael S. Breen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
12
|
Petersilie L, Heiduschka S, Nelson JS, Neu LA, Le S, Anand R, Kafitz KW, Prigione A, Rose CR. Cortical brain organoid slices (cBOS) for the study of human neural cells in minimal networks. iScience 2024; 27:109415. [PMID: 38523789 PMCID: PMC10957451 DOI: 10.1016/j.isci.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Brain organoids derived from human pluripotent stem cells are a promising tool for studying human neurodevelopment and related disorders. Here, we generated long-term cultures of cortical brain organoid slices (cBOS) grown at the air-liquid interphase from regionalized cortical organoids. We show that cBOS host mature neurons and astrocytes organized in complex architecture. Whole-cell patch-clamp demonstrated subthreshold synaptic inputs and action potential firing of neurons. Spontaneous intracellular calcium signals turned into synchronous large-scale oscillations upon combined disinhibition of NMDA receptors and blocking of GABAA receptors. Brief metabolic inhibition to mimic transient energy restriction in the ischemic brain induced reversible intracellular calcium loading of cBOS. Moreover, metabolic inhibition induced a reversible decline in neuronal ATP as revealed by ATeam1.03YEMK. Overall, cBOS provide a powerful platform to assess morphological and functional aspects of human neural cells in intact minimal networks and to address the pathways that drive cellular damage during brain ischemia.
Collapse
Affiliation(s)
- Laura Petersilie
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Heiduschka
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Louis A. Neu
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Karl W. Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
13
|
Ouellette J, Crouch EE, Morel JL, Coelho-Santos V, Lacoste B. A Vascular-Centric Approach to Autism Spectrum Disorders. Neurosci Insights 2024; 19:26331055241235921. [PMID: 38476695 PMCID: PMC10929024 DOI: 10.1177/26331055241235921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Brain development and function are highly reliant on adequate establishment and maintenance of vascular networks. Early impairments in vascular health can impact brain maturation and energy metabolism, which may lead to neurodevelopmental anomalies. Our recent work not only provides novel insights into the development of cerebrovascular networks but also emphasizes the importance of their well-being for proper brain maturation. In particular, we have demonstrated that endothelial dysfunction in autism spectrum disorders (ASD) mouse models is causally related to altered behavior and brain metabolism. In the prenatal human brain, vascular cells change metabolic states in the second trimester. Such findings highlight the need to identify new cellular and molecular players in neurodevelopmental disorders, raising awareness about the importance of a healthy vasculature for brain development. It is thus essential to shift the mostly neuronal point of view in research on ASD and other neurodevelopmental disorders to also include vascular and metabolic features.
Collapse
Affiliation(s)
- Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Luc Morel
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
- University Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
14
|
Huang Y, Guo X, Lu S, Chen Q, Wang Z, Lai L, Liu Q, Zhu X, Luo L, Li J, Huang Y, Gao H, Zhang Z, Bu Q, Cen X. Long-term exposure to cadmium disrupts neurodevelopment in mature cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168923. [PMID: 38065485 DOI: 10.1016/j.scitotenv.2023.168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Cadmium (Cd) is a pervasive environmental pollutant. Increasing evidence suggests that Cd exposure during pregnancy can induce adverse neurodevelopmental outcomes. However, due to the limitations of neural cell and animal models, it is challenging to study the developmental neurotoxicity and underlying toxicity mechanism of long-term exposure to environmental pollutants during human brain development. In this study, chronic Cd exposure was performed in human mature cerebral organoids for 49 or 77 days. Our study found that prolonged exposure to Cd resulted in the inhibition of cerebral organoid growth and the disruption of neural differentiation and cortical layer organization. These potential consequences of chronic Cd exposure may include impaired GFAP expression, a reduction in SOX2+ neuronal progenitor cells, an increase in TUJ1+ immature neurons, as well as an initial increase and a subsequent decrease in both TBR2+ intermediate progenitors and CTIP2+ deep layer cortical neurons. Transcriptomic analyses revealed that long-term exposure to Cd disrupted zinc and copper ion homeostasis through excessive synthesis of metallothionein and disturbed synaptogenesis, as evidenced by inhibited postsynaptic protein. Our study employed mature cerebral organoids to evaluate the developmental neurotoxicity induced by long-term Cd exposure.
Collapse
Affiliation(s)
- Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xizhi Zhu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Department of Gynaecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China
| | - Zunzhen Zhang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Usatova VS, Mishina NM, Berestovoy MA, Ivanenko AV, Jappy D, Krut' VG, Sokolov RA, Moshchenko AA, Rozov A, Shevchenko EK, Belousov VV. Hydrogen peroxide is not generated intracellularly in human neural spheroids during ischemia-reperfusion. Free Radic Biol Med 2024; 212:234-240. [PMID: 38158053 DOI: 10.1016/j.freeradbiomed.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Reactive oxygen species (ROS) are considered a primary source of damage during ischemic stroke. However, the precise timing of ROS production (during hypoxia or reperfusion) remains unclear. Cellular 3D spheroids are often proposed as an optimal alternative to both 2D cell cultures and animal models in modeling disease conditions. Here we report live imaging of hydrogen peroxide dynamics during the acute phase of hypoxia and reperfusion in human iPSC-derived neural spheroids, stably expressing fluorescent biosensor HyPer7. Contrary to previous reports, we did not observe a hydrogen peroxide production burst neither during hypoxia nor in course of reperfusion. Our data suggest either lack of oxidative stress during ischemia-reperfusion in spheroids or existence of different mechanisms of oxidative damage.
Collapse
Affiliation(s)
- Veronika S Usatova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
| | - Natalie M Mishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Laboratory of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Mikhail A Berestovoy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
| | - Alexander V Ivanenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022, Nizhny Novgorod, Russia
| | - Viktoriya G Krut'
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Laboratory of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Rostislav A Sokolov
- Laboratory of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022, Nizhny Novgorod, Russia
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Laboratory of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Life Improvement by Future Technologies (LIFT) Center, 121205, Moscow, Russia.
| |
Collapse
|
16
|
Andrews MG, Pearson CA. Toward an understanding of glucose metabolism in radial glial biology and brain development. Life Sci Alliance 2024; 7:e202302193. [PMID: 37798120 PMCID: PMC10556723 DOI: 10.26508/lsa.202302193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Decades of research have sought to determine the intrinsic and extrinsic mechanisms underpinning the regulation of neural progenitor maintenance and differentiation. A series of precise temporal transitions within progenitor cell populations generates all the appropriate neural cell types while maintaining a pool of self-renewing progenitors throughout embryogenesis. Recent technological advances have enabled us to gain new insights at the single-cell level, revealing an interplay between metabolic state and developmental progression that impacts the timing of proliferation and neurogenesis. This can have long-term consequences for the developing brain's neuronal specification, maturation state, and organization. Furthermore, these studies have highlighted the need to reassess the instructive role of glucose metabolism in determining progenitor cell division, differentiation, and fate. This review focuses on glucose metabolism (glycolysis) in cortical progenitor cells and the emerging focus on glycolysis during neurogenic transitions. Furthermore, we discuss how the field can learn from other biological systems to improve our understanding of the spatial and temporal changes in glycolysis in progenitors and evaluate functional neurological outcomes.
Collapse
Affiliation(s)
- Madeline G Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Caroline A Pearson
- https://ror.org/02r109517 Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Zhi Y, Zhu Y, Wang J, Zhao J, Zhao Y. Cortical Organoid-on-a-Chip with Physiological Hypoxia for Investigating Tanshinone IIA-Induced Neural Differentiation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0273. [PMID: 38434243 PMCID: PMC10907018 DOI: 10.34133/research.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/04/2023] [Indexed: 03/05/2024]
Abstract
Cortical organoids represent cutting-edge models for mimic human brain development during the early and even middle stage of pregnancy, while they often fail to recreate the complex microenvironmental factors, such as physiological hypoxia. Herein, to recapitulate fetal brain development, we propose a novel cortical organoid-on-a-chip with physiological hypoxia and further explore the effects of tanshinone IIA (Tan IIA) in neural differentiation. The microfluidic chip was designed with a micropillar array for the controlled and efficient generation of cortical organoids. With low oxygen, the generated cortical organoids could recapitulate key aspects of early-gestational human brain development. Compared to organoids in normoxic culturing condition, the promoted neurogenesis, synaptogenesis and neuronal maturation were observed in the present microsystem, suggesting the significance of physiological hypoxia in cortical development. Based on this model, we have found that Chinese herbal drug Tan IIA could promote neural differentiation and maturation, indicating its potential therapeutic effects on neurodevelopmental disorders as well as congenital neuropsychiatric diseases. These results indicate that the proposed biomimetic cortical organoid-on-a-chip model with physiological hypoxia can offer a promising platform to simulate prenatal environment, explore brain development, and screen natural neuroactive components.
Collapse
Affiliation(s)
- Yue Zhi
- Department of Rheumatology and Immunology,
Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Junqi Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology,
Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute,
Southeast University, Shenzhen, 518038, China
| |
Collapse
|
18
|
Singh SK, Wang Y, Habib A, Priyadarshini M, Kodavali CV, Chen A, Ma W, Wang J, Hameed NUF, Hu B, Fuller GN, Kulich SM, Amankulor N, Colen RR, Edwards LA, Zinn PO. TP53-PTEN-NF1 depletion in human brain organoids produces a glioma phenotype in vitro. Front Oncol 2023; 13:1279806. [PMID: 37881491 PMCID: PMC10597663 DOI: 10.3389/fonc.2023.1279806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Glioblastoma (GBM) is fatal and the study of therapeutic resistance, disease progression, and drug discovery in GBM or glioma stem cells is often hindered by limited resources. This limitation slows down progress in both drug discovery and patient survival. Here we present a genetically engineered human cerebral organoid model with a cancer-like phenotype that could provide a basis for GBM-like models. Specifically, we engineered a doxycycline-inducible vector encoding shRNAs enabling depletion of the TP53, PTEN, and NF1 tumor suppressors in human cerebral organoids. Designated as inducible short hairpin-TP53-PTEN-NF1 (ish-TPN), doxycycline treatment resulted in human cancer-like cerebral organoids that effaced the entire organoid cytoarchitecture, while uninduced ish-TPN cerebral organoids recapitulated the normal cytoarchitecture of the brain. Transcriptomic analysis revealed a proneural GBM subtype. This proof-of-concept study offers a valuable resource for directly investigating the emergence and progression of gliomas within the context of specific genetic alterations in normal cerebral organoids.
Collapse
Affiliation(s)
- Sanjay K. Singh
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, United States
| | - Yan Wang
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Mamindla Priyadarshini
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Apeng Chen
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Wencai Ma
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jing Wang
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, United States
| | - N. U. Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Baoli Hu
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Gregory N. Fuller
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Scott M. Kulich
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Rivka R. Colen
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Lincoln A. Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Gaston-Breton R, Maïza Letrou A, Hamoudi R, Stonestreet BS, Mabondzo A. Brain organoids for hypoxic-ischemic studies: from bench to bedside. Cell Mol Life Sci 2023; 80:318. [PMID: 37804439 PMCID: PMC10560197 DOI: 10.1007/s00018-023-04951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.
Collapse
Affiliation(s)
- Romane Gaston-Breton
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Auriane Maïza Letrou
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| | - Barbara S Stonestreet
- Departments of Molecular Biology, Cell Biology and Biochemistry and Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Aloïse Mabondzo
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
20
|
Kim SH, Chang MY. Application of Human Brain Organoids-Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases. Int J Mol Sci 2023; 24:12528. [PMID: 37569905 PMCID: PMC10420018 DOI: 10.3390/ijms241512528] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Brain organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that reflect early brain organization. These organoids contain different cell types, including neurons and glia, similar to those found in the human brain. Human brain organoids provide unique opportunities to model features of human brain development that are not well-reflected in animal models. Compared with traditional cell cultures and animal models, brain organoids offer a more accurate representation of human brain development and function, rendering them suitable models for neurodevelopmental diseases. In particular, brain organoids derived from patients' cells have enabled researchers to study diseases at different stages and gain a better understanding of disease mechanisms. Multi-brain regional assembloids allow for the investigation of interactions between distinct brain regions while achieving a higher level of consistency in molecular and functional characterization. Although organoids possess promising features, their usefulness is limited by several unresolved constraints, including cellular stress, hypoxia, necrosis, a lack of high-fidelity cell types, limited maturation, and circuit formation. In this review, we discuss studies to overcome the natural limitations of brain organoids, emphasizing the importance of combinations of all neural cell types, such as glia (astrocyte, oligodendrocytes, and microglia) and vascular cells. Additionally, considering the similarity of organoids to the developing brain, regionally patterned brain organoid-derived neural stem cells (NSCs) could serve as a scalable source for cell replacement therapy. We highlight the potential application of brain organoid-derived cells in disease cell therapy within this field.
Collapse
Affiliation(s)
- Soo-hyun Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea;
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| | - Mi-Yoon Chang
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea;
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Department of Premedicine, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
21
|
Roth JG, Brunel LG, Huang MS, Liu Y, Cai B, Sinha S, Yang F, Pașca SP, Shin S, Heilshorn SC. Spatially controlled construction of assembloids using bioprinting. Nat Commun 2023; 14:4346. [PMID: 37468483 PMCID: PMC10356773 DOI: 10.1038/s41467-023-40006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA
- Complex in Vitro Systems, Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergiu P Pașca
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sungchul Shin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Sun J, Chong J, Zhang J, Ge L. Preterm pigs for preterm birth research: reasonably feasible. Front Physiol 2023; 14:1189422. [PMID: 37520824 PMCID: PMC10374951 DOI: 10.3389/fphys.2023.1189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Preterm birth will disrupt the pattern and course of organ development, which may result in morbidity and mortality of newborn infants. Large animal models are crucial resources for developing novel, credible, and effective treatments for preterm infants. This review summarizes the classification, definition, and prevalence of preterm birth, and analyzes the relationship between the predicted animal days and one human year in the most widely used animal models (mice, rats, rabbits, sheep, and pigs) for preterm birth studies. After that, the physiological characteristics of preterm pig models at different gestational ages are described in more detail, including birth weight, body temperature, brain development, cardiovascular system development, respiratory, digestive, and immune system development, kidney development, and blood constituents. Studies on postnatal development and adaptation of preterm pig models of different gestational ages will help to determine the physiological basis for survival and development of very preterm, middle preterm, and late preterm newborns, and will also aid in the study and accurate optimization of feeding conditions, diet- or drug-related interventions for preterm neonates. Finally, this review summarizes several accepted pediatric applications of preterm pig models in nutritional fortification, necrotizing enterocolitis, neonatal encephalopathy and hypothermia intervention, mechanical ventilation, and oxygen therapy for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jie Chong
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
23
|
Adlakha YK. Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discov 2023; 9:221. [PMID: 37400464 DOI: 10.1038/s41420-023-01523-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Understanding of human brain development, dysfunction and neurological diseases has remained limited and challenging due to inability to recapitulate human brain-specific features in animal models. Though the anatomy and physiology of the human brain has been understood in a remarkable way using post-mortem, pathological samples of human and animal models, however, modeling of human brain development and neurological diseases remains a challenge owing to distinct complexity of human brain. In this perspective, three-dimensional (3D) brain organoids have shown a beam of light. Tremendous growth in stem cell technologies has permitted the differentiation of pluripotent stem cells under 3D culture conditions into brain organoids, which recapitulate the unique features of human brain in many ways and also offer the detailed investigation of brain development, dysfunction and neurological diseases. Their translational value has also emerged and will benefit the society once the protocols for the upscaling of brain organoids are in place. Here, we summarize new advancements in methods for generation of more complex brain organoids including vascularized and mixed lineage tissue from PSCs. How synthetic biomaterials and microfluidic technology is boosting brain organoid development, has also been highlighted. We discuss the applications of brain organoids in studying preterm birth associated brain dysfunction; viral infections mediated neuroinflammation, neurodevelopmental and neurodegenerative diseases. We also highlight the translational value of brain organoids and current challenges that the field is experiencing.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
- Maternal and Child Health Domain, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|
24
|
Yan YW, Qian ES, Woodard LE, Bejoy J. Neural lineage differentiation of human pluripotent stem cells: Advances in disease modeling. World J Stem Cells 2023; 15:530-547. [PMID: 37424945 PMCID: PMC10324500 DOI: 10.4252/wjsc.v15.i6.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.
Collapse
Affiliation(s)
- Yuan-Wei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Eddie S Qian
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lauren E Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
25
|
Kilpatrick S, Irwin C, Singh KK. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Transl Psychiatry 2023; 13:217. [PMID: 37344450 PMCID: PMC10284884 DOI: 10.1038/s41398-023-02510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder caused by genetic or environmental perturbations during early development. Diagnoses are dependent on the identification of behavioral abnormalities that likely emerge well after the disorder is established, leaving critical developmental windows uncharacterized. This is further complicated by the incredible clinical and genetic heterogeneity of the disorder that is not captured in most mammalian models. In recent years, advancements in stem cell technology have created the opportunity to model ASD in a human context through the use of pluripotent stem cells (hPSCs), which can be used to generate 2D cellular models as well as 3D unguided- and region-specific neural organoids. These models produce profoundly intricate systems, capable of modeling the developing brain spatiotemporally to reproduce key developmental milestones throughout early development. When complemented with multi-omics, genome editing, and electrophysiology analysis, they can be used as a powerful tool to profile the neurobiological mechanisms underlying this complex disorder. In this review, we will explore the recent advancements in hPSC-based modeling, discuss present and future applications of the model to ASD research, and finally consider the limitations and future directions within the field to make this system more robust and broadly applicable.
Collapse
Affiliation(s)
- Savannah Kilpatrick
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON, Canada
| | - Courtney Irwin
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karun K Singh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Cappuccio G, Khalil SM, Osenberg S, Li F, Maletic-Savatic M. Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids. Front Mol Biosci 2023; 10:1181965. [PMID: 37304070 PMCID: PMC10251497 DOI: 10.3389/fmolb.2023.1181965] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Human brain organoids are emerging models to study human brain development and pathology as they recapitulate the development and characteristics of major neural cell types, and enable manipulation through an in vitro system. Over the past decade, with the advent of spatial technologies, mass spectrometry imaging (MSI) has become a prominent tool for metabolic microscopy, providing label-free, non-targeted molecular and spatial distribution information of the metabolites within tissue, including lipids. This technology has never been used for studies of brain organoids and here, we set out to develop a standardized protocol for preparation and mass spectrometry imaging of human brain organoids. We present an optimized and validated sample preparation protocol, including sample fixation, optimal embedding solution, homogenous deposition of matrices, data acquisition and processing to maximize the molecular information derived from mass spectrometry imaging. We focus on lipids in organoids, as they play critical roles during cellular and brain development. Using high spatial and mass resolution in positive- and negative-ion modes, we detected 260 lipids in the organoids. Seven of them were uniquely localized within the neurogenic niches or rosettes as confirmed by histology, suggesting their importance for neuroprogenitor proliferation. We observed a particularly striking distribution of ceramide-phosphoethanolamine CerPE 36:1; O2 which was restricted within rosettes and of phosphatidyl-ethanolamine PE 38:3, which was distributed throughout the organoid tissue but not in rosettes. This suggests that ceramide in this particular lipid species might be important for neuroprogenitor biology, while its removal may be important for terminal differentiation of their progeny. Overall, our study establishes the first optimized experimental pipeline and data processing strategy for mass spectrometry imaging of human brain organoids, allowing direct comparison of lipid signal intensities and distributions in these tissues. Further, our data shed new light on the complex processes that govern brain development by identifying specific lipid signatures that may play a role in cell fate trajectories. Mass spectrometry imaging thus has great potential in advancing our understanding of early brain development as well as disease modeling and drug discovery.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Saleh M. Khalil
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Sivan Osenberg
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Mirjana Maletic-Savatic
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
27
|
Jimenez-Tellez N, Pehar M, Visser F, Casas-Ortiz A, Rice T, Syed NI. Sevoflurane Exposure in Neonates Perturbs the Expression Patterns of Specific Genes That May Underly the Observed Learning and Memory Deficits. Int J Mol Sci 2023; 24:ijms24108696. [PMID: 37240038 DOI: 10.3390/ijms24108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Exposure to commonly used anesthetics leads to neurotoxic effects in animal models-ranging from cell death to learning and memory deficits. These neurotoxic effects invoke a variety of molecular pathways, exerting either immediate or long-term effects at the cellular and behavioural levels. However, little is known about the gene expression changes following early neonatal exposure to these anesthetic agents. We report here on the effects of sevoflurane, a commonly used inhalational anesthetic, on learning and memory and identify a key set of genes that may likely be involved in the observed behavioural deficits. Specifically, we demonstrate that sevoflurane exposure in postnatal day 7 (P7) rat pups results in subtle, but distinct, memory deficits in the adult animals that have not been reported previously. Interestingly, when given intraperitoneally, pre-treatment with dexmedetomidine (DEX) could only prevent sevoflurane-induced anxiety in open field testing. To identify genes that may have been altered in the neonatal rats after sevoflurane and DEX exposure, specifically those impacting cellular viability, learning, and memory, we conducted an extensive Nanostring study examining over 770 genes. We found differential changes in the gene expression levels after exposure to both agents. A number of the perturbed genes found in this study have previously been implicated in synaptic transmission, plasticity, neurogenesis, apoptosis, myelination, and learning and memory. Our data thus demonstrate that subtle, albeit long-term, changes observed in an adult animal's learning and memory after neonatal anesthetic exposure may likely involve perturbation of specific gene expression patterns.
Collapse
Affiliation(s)
- Nerea Jimenez-Tellez
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marcus Pehar
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frank Visser
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alberto Casas-Ortiz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tiffany Rice
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Naweed I Syed
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
28
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
29
|
Nwadiugwu M, Shen H, Deng HW. Potential Molecular Mechanisms of Alzheimer's Disease from Genetic Studies. BIOLOGY 2023; 12:biology12040602. [PMID: 37106802 PMCID: PMC10136191 DOI: 10.3390/biology12040602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
The devastating effects of Alzheimer's disease (AD) are yet to be ameliorated due to the absence of curative treatment options. AD is an aging-related disease that affects cognition, and molecular imbalance is one of its hallmarks. There is a need to identify common causes of molecular imbalance in AD and their potential mechanisms for continuing research. A narrative synthesis of molecular mechanisms in AD from primary studies that employed single-cell sequencing (scRNA-seq) or spatial genomics was conducted using Embase and PubMed databases. We found that differences in molecular mechanisms in AD could be grouped into four key categories: sex-specific features, early-onset features, aging, and immune system pathways. The reported causes of molecular imbalance were alterations in bile acid (BA) synthesis, PITRM1, TREM2, olfactory mucosa (OM) cells, cholesterol catabolism, NFkB, double-strand break (DSB) neuronal damage, P65KD silencing, tau and APOE expression. What changed from previous findings in contrast to results obtained were explored to find potential factors for AD-modifying investigations.
Collapse
Affiliation(s)
- Martin Nwadiugwu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Adams JW, Negraes PD, Truong J, Tran T, Szeto RA, Guerra BS, Herai RH, Teodorof-Diedrich C, Spector SA, Del Campo M, Jones KL, Muotri AR, Trujillo CA. Impact of alcohol exposure on neural development and network formation in human cortical organoids. Mol Psychiatry 2023; 28:1571-1584. [PMID: 36385168 PMCID: PMC10208963 DOI: 10.1038/s41380-022-01862-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Prenatal alcohol exposure is the foremost preventable etiology of intellectual disability and leads to a collection of diagnoses known as Fetal Alcohol Spectrum Disorders (FASD). Alcohol (EtOH) impacts diverse neural cell types and activity, but the precise functional pathophysiological effects on the human fetal cerebral cortex are unclear. Here, we used human cortical organoids to study the effects of EtOH on neurogenesis and validated our findings in primary human fetal neurons. EtOH exposure produced temporally dependent cellular effects on proliferation, cell cycle, and apoptosis. In addition, we identified EtOH-induced alterations in post-translational histone modifications and chromatin accessibility, leading to impairment of cAMP and calcium signaling, glutamatergic synaptic development, and astrocytic function. Proteomic spatial profiling of cortical organoids showed region-specific, EtOH-induced alterations linked to changes in cytoskeleton, gliogenesis, and impaired synaptogenesis. Finally, multi-electrode array electrophysiology recordings confirmed the deleterious impact of EtOH on neural network formation and activity in cortical organoids, which was validated in primary human fetal tissues. Our findings demonstrate progress in defining the human molecular and cellular phenotypic signatures of prenatal alcohol exposure on functional neurodevelopment, increasing our knowledge for potential therapeutic interventions targeting FASD symptoms.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, CA, 92093, USA
| | - Priscilla D Negraes
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Justin Truong
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Timothy Tran
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Ryan A Szeto
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Bruno S Guerra
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
- Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
- Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Del Campo
- Department of Pediatrics, Division of Dysmorphology and Teratology, University of California, La Jolla, CA, 92093, USA
| | - Kenneth L Jones
- Department of Pediatrics, Division of Dysmorphology and Teratology, University of California, La Jolla, CA, 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA.
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
31
|
Liu ZX, Wang P, Zhang Q, Li S, Zhang Y, Guo Y, Jia C, Shao T, Li L, Cheng H, Wang Z. iHypoxia: An Integrative Database of Protein Expression Dynamics in Response to Hypoxia in Animals. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:267-277. [PMID: 36503126 PMCID: PMC10626056 DOI: 10.1016/j.gpb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Mammals have evolved mechanisms to sense hypoxia and induce hypoxic responses. Recently, high-throughput techniques have greatly promoted global studies of protein expression changes during hypoxia and the identification of candidate genes associated with hypoxia-adaptive evolution, which have contributed to the understanding of the complex regulatory networks of hypoxia. In this study, we developed an integrated resource for the expression dynamics of proteins in response to hypoxia (iHypoxia), and this database contains 2589 expression events of 1944 proteins identified by low-throughput experiments (LTEs) and 422,553 quantitative expression events of 33,559 proteins identified by high-throughput experiments from five mammals that exhibit a response to hypoxia. Various experimental details, such as the hypoxic experimental conditions, expression patterns, and sample types, were carefully collected and integrated. Furthermore, 8788 candidate genes from diverse species inhabiting low-oxygen environments were also integrated. In addition, we conducted an orthologous search and computationally identified 394,141 proteins that may respond to hypoxia among 48 animals. An enrichment analysis of human proteins identified from LTEs shows that these proteins are enriched in certain drug targets and cancer genes. Annotation of known posttranslational modification (PTM) sites in the proteins identified by LTEs reveals that these proteins undergo extensive PTMs, particularly phosphorylation, ubiquitination, and acetylation. iHypoxia provides a convenient and user-friendly method for users to obtain hypoxia-related information of interest. We anticipate that iHypoxia, which is freely accessible at https://ihypoxia.omicsbio.info, will advance the understanding of hypoxia and serve as a valuable data resource.
Collapse
Affiliation(s)
- Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shihua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yutong Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chongchong Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
32
|
Levy RJ, Paşca SP. What Have Organoids and Assembloids Taught Us About the Pathophysiology of Neuropsychiatric Disorders? Biol Psychiatry 2023; 93:632-641. [PMID: 36739210 DOI: 10.1016/j.biopsych.2022.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Neuropsychiatric research has been impeded by limited access to human brain tissue, especially from early stages of neurodevelopment when the pathophysiology of many childhood-onset disorders is initiated. Neural organoids are 3-dimensional, self-organizing, multicellular structures generated from pluripotent stem cells that recapitulate some of the cell diversity, cytoarchitecture, and functional features of domains of the developing nervous system. Assembloids are 3-dimensional, self-organizing cultures created by the combination of two or more distinctly patterned organoids or an organoid plus additional cell or tissue type(s) that are used to model cell migration and connectivity. Here we review recent advances in neuropsychiatric disorder research using organoid and assembloid models to study the role of disease-relevant genes and mutations, as well as the impact of environmental risk factors on neural development. We also highlight some of the advantages and limitations of these model systems in bringing insights into the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca J Levy
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, California
| | - Sergiu P Paşca
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, California; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| |
Collapse
|
33
|
Wang L, Owusu-Hammond C, Sievert D, Gleeson JG. Stem Cell-Based Organoid Models of Neurodevelopmental Disorders. Biol Psychiatry 2023; 93:622-631. [PMID: 36759260 PMCID: PMC10022535 DOI: 10.1016/j.biopsych.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The past decade has seen an explosion in the identification of genetic causes of neurodevelopmental disorders, including Mendelian, de novo, and somatic factors. These discoveries provide opportunities to understand cellular and molecular mechanisms as well as potential gene-gene and gene-environment interactions to support novel therapies. Stem cell-based models, particularly human brain organoids, can capture disease-associated alleles in the context of the human genome, engineered to mirror disease-relevant aspects of cellular complexity and developmental timing. These models have brought key insights into neurodevelopmental disorders as diverse as microcephaly, autism, and focal epilepsy. However, intrinsic organoid-to-organoid variability, low levels of certain brain-resident cell types, and long culture times required to reach maturity can impede progress. Several recent advances incorporate specific morphogen gradients, mixtures of diverse brain cell types, and organoid engraftment into animal models. Together with nonhuman primate organoid comparisons, mechanisms of human neurodevelopmental disorders are emerging.
Collapse
Affiliation(s)
- Lu Wang
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Charlotte Owusu-Hammond
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - David Sievert
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Joseph G Gleeson
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California.
| |
Collapse
|
34
|
Seah C, Huckins LM, Brennand KJ. Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biol Psychiatry 2023; 93:642-650. [PMID: 36658083 DOI: 10.1016/j.biopsych.2022.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
Genome-wide association studies reveal the complex polygenic architecture underlying psychiatric disorder risk, but there is an unmet need to validate causal variants, resolve their target genes(s), and explore their functional impacts on disorder-related mechanisms. Disorder-associated loci regulate transcription of target genes in a cell type- and context-specific manner, which can be measured through expression quantitative trait loci. In this review, we discuss methods and insights from context-specific modeling of genetically and environmentally regulated expression. Human induced pluripotent stem cell-derived cell type and organoid models have uncovered context-specific psychiatric disorder associations by investigating tissue-, cell type-, sex-, age-, and stressor-specific genetic regulation of expression. Techniques such as massively parallel reporter assays and pooled CRISPR (clustered regularly interspaced short palindromic repeats) screens make it possible to functionally fine-map genome-wide association study loci and validate their target genes at scale. Integration of disorder-associated contexts with these patient-specific human induced pluripotent stem cell models makes it possible to uncover gene by environment interactions that mediate disorder risk, which will ultimately improve our ability to diagnose and treat psychiatric disorders.
Collapse
Affiliation(s)
- Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
35
|
Kim TW, Koo SY, Riessland M, Cho H, Chaudhry F, Kolisnyk B, Russo MV, Saurat N, Mehta S, Garippa R, Betel D, Studer L. TNF-NFkB-p53 axis restricts in vivo survival of hPSC-derived dopamine neuron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534819. [PMID: 37034664 PMCID: PMC10081262 DOI: 10.1101/2023.03.29.534819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ongoing, first-in-human clinical trials illustrate the feasibility and translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, a major unresolved challenge in the field is the extensive cell death following transplantation with <10% of grafted dopamine neurons surviving. Here, we performed a pooled CRISPR/Cas9 screen to enhance survival of postmitotic dopamine neurons in vivo . We identified p53-mediated apoptotic cell death as major contributor to dopamine neuron loss and uncovered a causal link of TNFa-NFκB signaling in limiting cell survival. As a translationally applicable strategy to purify postmitotic dopamine neurons, we performed a cell surface marker screen that enabled purification without the need for genetic reporters. Combining cell sorting with adalimumab pretreatment, a clinically approved and widely used TNFa inhibitor, enabled efficient engraftment of postmitotic dopamine neurons leading to extensive re-innervation and functional recovery in a preclinical PD mouse model. Thus, transient TNFa inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic human PSC-derived dopamine neurons in PD. Highlights In vivo CRISPR-Cas9 screen identifies p53 limiting survival of grafted human dopamine neurons. TNFα-NFκB pathway mediates p53-dependent human dopamine neuron deathCell surface marker screen to enrich human dopamine neurons for translational use. FDA approved TNF-alpha inhibitor rescues in vivo dopamine neuron survival with in vivo function.
Collapse
|
36
|
Sidhaye J, Trepte P, Sepke N, Novatchkova M, Schutzbier M, Dürnberger G, Mechtler K, Knoblich JA. Integrated transcriptome and proteome analysis reveals posttranscriptional regulation of ribosomal genes in human brain organoids. eLife 2023; 12:e85135. [PMID: 36989136 PMCID: PMC10059687 DOI: 10.7554/elife.85135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
During development of the human cerebral cortex, multipotent neural progenitors generate excitatory neurons and glial cells. Investigations of the transcriptome and epigenome have revealed important gene regulatory networks underlying this crucial developmental event. However, the posttranscriptional control of gene expression and protein abundance during human corticogenesis remains poorly understood. We addressed this issue by using human telencephalic brain organoids grown using a dual reporter cell line to isolate neural progenitors and neurons and performed cell class and developmental stage-specific transcriptome and proteome analysis. Integrating the two datasets revealed modules of gene expression during human corticogenesis. Investigation of one such module uncovered mTOR-mediated regulation of translation of the 5'TOP element-enriched translation machinery in early progenitor cells. We show that in early progenitors partial inhibition of the translation of ribosomal genes prevents precocious translation of differentiation markers. Overall, our multiomics approach proposes novel posttranscriptional regulatory mechanisms crucial for the fidelity of cortical development.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Philipp Trepte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Natalie Sepke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Karl Mechtler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Department of Neurology, Medical University of ViennaViennaAustria
| |
Collapse
|
37
|
Xu J, Fang S, Deng S, Li H, Lin X, Huang Y, Chung S, Shu Y, Shao Z. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng 2023; 7:253-269. [PMID: 36424465 DOI: 10.1038/s41551-022-00963-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2022] [Indexed: 11/26/2022]
Abstract
Organoids with region-specific architecture could facilitate the repair of injuries of the central nervous system. Here we show that human astrocytes can be directly reprogrammed into early neuroectodermal cells via the overexpression of OCT4, the suppression of p53 and the provision of the small molecules CHIR99021, SB431542, RepSox and Y27632. We also report that the activation of signalling mediated by fibroblast growth factor, sonic hedgehog and bone morphogenetic protein 4 in the reprogrammed cells induces them to form spinal-cord organoids with functional neurons specific to the dorsal and ventral domains. In mice with complete spinal-cord injury, organoids transplanted into the lesion differentiated into spinal-cord neurons, which migrated and formed synapses with host neurons. The direct reprogramming of human astrocytes into neurons may pave the way for in vivo neural organogenesis from endogenous astrocytes for the repair of injuries to the central nervous system.
Collapse
Affiliation(s)
- Jinhong Xu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shi Fang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Suixin Deng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Huijuan Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Yongheng Huang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Yousheng Shu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Zhicheng Shao
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
38
|
Sullivan G, Vaher K, Blesa M, Galdi P, Stoye DQ, Quigley AJ, Thrippleton MJ, Norrie J, Bastin ME, Boardman JP. Breast Milk Exposure is Associated With Cortical Maturation in Preterm Infants. Ann Neurol 2023; 93:591-603. [PMID: 36412221 DOI: 10.1002/ana.26559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Breast milk exposure is associated with improved neurocognitive outcomes following preterm birth but the neural substrates linking breast milk with outcome are uncertain. We tested the hypothesis that high versus low breast milk exposure in preterm infants results in cortical morphology that more closely resembles that of term-born infants. METHODS We studied 135 preterm (<32 weeks' gestation) and 77 term infants. Feeding data were collected from birth until hospital discharge and brain magnetic resonance imaging (MRI) was performed at term-equivalent age. Cortical indices (volume, thickness, surface area, gyrification index, sulcal depth, and curvature) and diffusion parameters (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], axial diffusivity [AD], neurite density index [NDI], and orientation dispersion index [ODI]) were compared between preterm infants who received exclusive breast milk for <75% of inpatient days, preterm infants who received exclusive breast milk for ≥75% of inpatient days and term-born controls. To investigate a dose response effect, we performed linear regression using breast milk exposure quartile weighted by propensity scores. RESULTS In preterm infants, high breast milk exposure was associated with reduced cortical gray matter volume (d = 0.47, 95% confidence interval [CI] = 0.14 to 0.94, p = 0.014), thickness (d = 0.42, 95% CI = 0.08 to 0.84, p = 0.039), and RD (d = 0.38, 95% CI = 0.002 to 0.77, p = 0.039), and increased FA (d = -0.38, 95% CI = -0.74 to -0.01, p = 0.037) after adjustment for age at MRI, which was similar to the cortical phenotype observed in term-born controls. Breast milk exposure quartile was associated with cortical volume (ß = -0.192, 95% CI = -0.342 to -0.042, p = 0.017), FA (ß = 0.223, 95% CI = 0.075 to 0.372, p = 0.007), and RD (ß = -0.225, 95% CI = -0.373 to -0.076, p = 0.007) following adjustment for age at birth, age at MRI, and weighted by propensity scores, suggesting a dose effect. INTERPRETATION High breast milk exposure following preterm birth is associated with a cortical imaging phenotype that more closely resembles the brain morphology of term-born infants and effects appear to be dose-dependent. ANN NEUROL 2023;93:591-603.
Collapse
Affiliation(s)
- Gemma Sullivan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kadi Vaher
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Manuel Blesa
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Paola Galdi
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David Q Stoye
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Michael J Thrippleton
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| | - John Norrie
- Usher Institute, Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
De Paola M, Pischiutta F, Comolli D, Mariani A, Kelk J, Lisi I, Cerovic M, Fumagalli S, Forloni G, Zanier ER. Neural cortical organoids from self-assembling human iPSC as a model to investigate neurotoxicity in brain ischemia. J Cereb Blood Flow Metab 2023; 43:680-693. [PMID: 36655331 PMCID: PMC10108182 DOI: 10.1177/0271678x231152023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brain ischemia is a common acute injury resulting from impaired blood flow to the brain. Translation of effective drug candidates from experimental models to patients has systematically failed. The use of human induced pluripotent stem cells (iPSC) offers new opportunities to gain translational insights into diseases including brain ischemia. We used a human 3D self-assembling iPSC-derived model (human cortical organoids, hCO) to characterize the effects of ischemia caused by oxygen-glucose deprivation (OGD). hCO exposed to 2 h or 8 h of OGD had neuronal death and impaired neuronal network complexity, measured in whole-mounting microtubule-associated protein 2 (MAP-2) immunostaining. Neuronal vulnerability was reflected by a reduction in MAP-2 mRNA levels, and increased release of neurofilament light chain (NfL) in culture media, proportional to OGD severity. Glial fibrillary acidic protein (GFAP) gene or protein levels did not change in hCO, but their release in medium increased after prolonged OGD. In conclusion, this human 3D iPSC-based in vitro model of brain ischemic injury is characterized by marked neuronal injury reflected by the release of the translational biomarker NfL which is relevant for testing neuroprotective strategies.
Collapse
Affiliation(s)
- Massimiliano De Paola
- Biology of Neurodegenerative Diseases Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Francesca Pischiutta
- Acute Brain Injury and Therapeutic Strategies Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Davide Comolli
- Biology of Neurodegenerative Diseases Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alessandro Mariani
- Biology of Neurodegenerative Diseases Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Joe Kelk
- Biology of Neurodegenerative Diseases Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ilaria Lisi
- Acute Brain Injury and Therapeutic Strategies Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Milica Cerovic
- Biology of Neurodegenerative Diseases Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Stefano Fumagalli
- Biology of Neurodegenerative Diseases Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Gianluigi Forloni
- Biology of Neurodegenerative Diseases Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elisa R Zanier
- Acute Brain Injury and Therapeutic Strategies Lab, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
40
|
Dixon TA, Muotri AR. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol Psychiatry 2023; 28:83-95. [PMID: 35948659 PMCID: PMC9812789 DOI: 10.1038/s41380-022-01708-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
Psychiatric disorders are often distinguished from neurological disorders in that the former do not have characteristic lesions or findings from cerebrospinal fluid, electroencephalograms (EEGs), or brain imaging, and furthermore do not have commonly recognized convergent mechanisms. Psychiatric disorders commonly involve clinical diagnosis of phenotypic behavioral disturbances of mood and psychosis, often with a poorly understood contribution of environmental factors. As such, psychiatric disease has been challenging to model preclinically for mechanistic understanding and pharmaceutical development. This review compares commonly used animal paradigms of preclinical testing with evolving techniques of induced pluripotent cell culture with a focus on emerging three-dimensional models. Advances in complexity of 3D cultures, recapitulating electrical activity in utero, and disease modeling of psychosis, mood, and environmentally induced disorders are reviewed. Insights from these rapidly expanding technologies are discussed as they pertain to the utility of human organoid and other models in finding novel research directions, validating pharmaceutical action, and recapitulating human disease.
Collapse
Affiliation(s)
- Thomas Anthony Dixon
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037 USA
| |
Collapse
|
41
|
Li S, Wan L, Sun J, Yan W, Wang J, Gao X, Ren C, Hao L. New Insights into Mechanisms of Ferroptosis Associated with Immune Infiltration in Neonatal Hypoxic-Ischemic Brain Damage. Cells 2022; 11:3778. [PMID: 36497037 PMCID: PMC9736049 DOI: 10.3390/cells11233778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The mechanisms underlying ferroptosis in neonatal hypoxic-ischemic brain damage (HIBD) remain unclear. METHOD Four microarray datasets were collected from the GEO database (three mRNA datasets GSE23317, GSE144456, and GSE112137, and one miRNA microarray dataset GSE184939). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of HIBD-related genes. The ferroptosis-related genes were extracted from FerrDb, of which closely correlated to HIBD were obtained after the intersection with existing HIBD's DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as protein-protein interaction (PPI) network analysis were subsequently conducted. Cytoscape was used to identify central genes. Immune cell infiltration analysis was performed by the CIBERSORT algorithm. RESULT Fifty-six ferroptosis-related differentially expressed genes (FRDEGs) were screened, mainly related to ferroptosis, autophagy, hypoxia response, metabolic pathways, and immune inflammation. The seven optimal hub FRDEGs were obtained by intersecting with key modules of WGCNA. Then, the expression levels of the seven optimal hub FRDEGs were validated in the GSE144456 and GSE112137 datasets, and the ferroptosis-related mRNA-miRNA network was established. In addition, this study revealed immune cell infiltration in the HIBD cerebral cortex and the interaction between immune cells. Moreover, notably, specific FRDEGs were strongly positively correlated with immune function. CONCLUSIONS The mechanism of ferroptosis is intricate and closely related to neonatal HIBD. Therefore, targeting ferroptosis-related gene therapy and immunotherapy may have therapeutic prospects for neonatal HIBD.
Collapse
Affiliation(s)
- Shangbin Li
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Li Wan
- Institute for Epidemic Disease Control, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Jingfei Sun
- Department of Pediatrics, Zhengding People’s Hospital, Shijiazhuang 050000, China
| | - Weichen Yan
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Jie Wang
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Xiong Gao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Changjun Ren
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Ling Hao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
42
|
Renz P, Schoeberlein A, Haesler V, Maragkou T, Surbek D, Brosius Lutz A. A Novel Murine Multi-Hit Model of Perinatal Acute Diffuse White Matter Injury Recapitulates Major Features of Human Disease. Biomedicines 2022; 10:biomedicines10112810. [PMID: 36359331 PMCID: PMC9687579 DOI: 10.3390/biomedicines10112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The selection of an appropriate animal model is key to the production of results with optimal relevance to human disease. Particularly in the case of perinatal brain injury, a dearth of affected human neonatal tissue available for research purposes increases the reliance on animal models for insight into disease mechanisms. Improvements in obstetric and neonatal care in the past 20 years have caused the pathologic hallmarks of perinatal white matter injury (WMI) to evolve away from cystic necrotic lesions and toward diffuse regions of reactive gliosis and persistent myelin disruption. Therefore, updated animal models are needed that recapitulate the key features of contemporary disease. Here, we report a murine model of acute diffuse perinatal WMI induced through a two-hit inflammatory–hypoxic injury paradigm. Consistent with diffuse human perinatal white matter injury (dWMI), our model did not show the formation of cystic lesions. Corresponding to cellular outcomes of dWMI, our injury protocol produced reactive microgliosis and astrogliosis, disrupted oligodendrocyte maturation, and disrupted myelination.. Functionally, we observed sensorimotor and cognitive deficits in affected mice. In conclusion, we report a novel murine model of dWMI that induces a pattern of brain injury mirroring multiple key aspects of the contemporary human clinical disease scenario.
Collapse
Affiliation(s)
- Patricia Renz
- Department for BioMedical Research, University of Bern and Switzerland, 3010 Bern, Switzerland
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Andreina Schoeberlein
- Department for BioMedical Research, University of Bern and Switzerland, 3010 Bern, Switzerland
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Valérie Haesler
- Department for BioMedical Research, University of Bern and Switzerland, 3010 Bern, Switzerland
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Theoni Maragkou
- Institute of Pathology, University of Bern, 3010 Bern, Switzerland
| | - Daniel Surbek
- Department for BioMedical Research, University of Bern and Switzerland, 3010 Bern, Switzerland
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Amanda Brosius Lutz
- Department for BioMedical Research, University of Bern and Switzerland, 3010 Bern, Switzerland
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
43
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
44
|
Li TL, Liu Y, Forro C, Yang X, Beker L, Bao Z, Cui B, Pașca SP. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. Biomaterials 2022; 290:121825. [PMID: 36326509 PMCID: PMC9879137 DOI: 10.1016/j.biomaterials.2022.121825] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 02/03/2023]
Abstract
Advances in tridimensional (3D) culture approaches have led to the generation of organoids that recapitulate cellular and physiological features of domains of the human nervous system. Although microelectrodes have been developed for long-term electrophysiological interfaces with neural tissue, studies of long-term interfaces between microelectrodes and free-floating organoids remain limited. In this study, we report a stretchable, soft mesh electrode system that establishes an intimate in vitro electrical interface with human neurons in 3D organoids. Our mesh is constructed with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based electrically conductive hydrogel electrode arrays and elastomeric poly(styrene-ethylene-butylene-styrene) (SEBS) as the substrate and encapsulation materials. This mesh electrode can maintain a stable electrochemical impedance in buffer solution under 50% compressive and 50% tensile strain. We have successfully cultured pluripotent stem cell-derived human cortical organoids (hCO) on this polymeric mesh for more than 3 months and demonstrated that organoids readily integrate with the mesh. Using simultaneous stimulation and calcium imaging, we show that electrical stimulation through the mesh can elicit intensity-dependent calcium signals comparable to stimulation from a bipolar stereotrode. This platform may serve as a tool for monitoring and modulating the electrical activity of in vitro models of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Thomas L Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yuxin Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Csaba Forro
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Xiao Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Levent Beker
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA, 94305, USA.
| |
Collapse
|
45
|
Morales A, Andrews MG. Approaches to investigating metabolism in human neurodevelopment using organoids: insights from intestinal and cancer studies. Development 2022; 149:dev200506. [PMID: 36255366 PMCID: PMC9720749 DOI: 10.1242/dev.200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interrogating the impact of metabolism during development is important for understanding cellular and tissue formation, organ and systemic homeostasis, and dysregulation in disease states. To evaluate the vital functions metabolism coordinates during human brain development and disease, pluripotent stem cell-derived models, such as organoids, provide tractable access to neurodevelopmental processes. Despite many strengths of neural organoid models, the extent of their replication of endogenous metabolic programs is currently unclear and requires direct investigation. Studies in intestinal and cancer organoids that functionally evaluate dynamic bioenergetic changes provide a framework that can be adapted for the study of neural metabolism. Validation of in vitro models remains a significant challenge; investigation using in vivo models and primary tissue samples is required to improve our in vitro model systems and, concomitantly, improve our understanding of human development.
Collapse
Affiliation(s)
- Alexandria Morales
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
- Biomedical Engineering Graduate Program, Arizona State University, Tempe, AZ 85281, USA
| | - Madeline G. Andrews
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
46
|
Sozzi E, Kajtez J, Bruzelius A, Wesseler MF, Nilsson F, Birtele M, Larsen NB, Ottosson DR, Storm P, Parmar M, Fiorenzano A. Silk scaffolding drives self-assembly of functional and mature human brain organoids. Front Cell Dev Biol 2022; 10:1023279. [PMID: 36313550 PMCID: PMC9614032 DOI: 10.3389/fcell.2022.1023279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are intrinsically able to self-organize into cerebral organoids that mimic features of developing human brain tissue. These three-dimensional structures provide a unique opportunity to generate cytoarchitecture and cell-cell interactions reminiscent of human brain complexity in a dish. However, current in vitro brain organoid methodologies often result in intra-organoid variability, limiting their use in recapitulating later developmental stages as well as in disease modeling and drug discovery. In addition, cell stress and hypoxia resulting from long-term culture lead to incomplete maturation and cell death within the inner core. Here, we used a recombinant silk microfiber network as a scaffold to drive hPSCs to self-arrange into engineered cerebral organoids. Silk scaffolding promoted neuroectoderm formation and reduced heterogeneity of cellular organization within individual organoids. Bulk and single cell transcriptomics confirmed that silk cerebral organoids display more homogeneous and functionally mature neuronal properties than organoids grown in the absence of silk scaffold. Furthermore, oxygen sensing analysis showed that silk scaffolds create more favorable growth and differentiation conditions by facilitating the delivery of oxygen and nutrients. The silk scaffolding strategy appears to reduce intra-organoid variability and enhances self-organization into functionally mature human brain organoids.
Collapse
Affiliation(s)
- Edoardo Sozzi
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Janko Kajtez
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Andreas Bruzelius
- Department of Experimental Medical Science, Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Milan Finn Wesseler
- Department of Health Technology (DTU Health Tech), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fredrik Nilsson
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marcella Birtele
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niels B. Larsen
- Department of Health Technology (DTU Health Tech), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniella Rylander Ottosson
- Department of Experimental Medical Science, Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Petter Storm
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Alessandro Fiorenzano,
| |
Collapse
|
47
|
Bhargava A, Sandoval Castellanos AM, Shah S, Ning K. An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders. Interface Focus 2022; 12:20220040. [PMID: 35992771 PMCID: PMC9372641 DOI: 10.1098/rsfs.2022.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) is a promising approach when used as models to study neurodegenerative disorders (NDDs) in vitro. iPSCs have been used in in vitro two-dimensional cultures; however, these two-dimensional cultures do not mimic the physiological three-dimensional cellular environment. The use of iPSCs-derived three-dimensional organoids has risen as a powerful alternative to using animal models to study NDDs. These iPSCs-derived three-dimensional organoids can resemble the complexity of the tissue of interest, making it an approachable, cost-effective technique, to study NDDs in an ethical manner. Furthermore, the use of iPSCs-derived organoids will be an important tool to develop new therapeutics and pharmaceutics to treat NDDs. Herein, we will highlight how iPSCs-derived two-dimensional cultures and three-dimensional organoids have been used to study NDDs, as well as the advantages and disadvantages of both techniques.
Collapse
Affiliation(s)
- Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ana M. Sandoval Castellanos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Sonali Shah
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
48
|
Zou Y, Yuan Z, Sun Y, Zhai M, Tan Z, Guan R, Aschner M, Luo W, Zhang J. Resetting Proteostasis of CIRBP with ISRIB Suppresses Neural Stem Cell Apoptosis under Hypoxic Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3627026. [PMID: 36211820 PMCID: PMC9546721 DOI: 10.1155/2022/3627026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Neurological disorders are often progressive and lead to disabilities with limited available therapies. Epidemiological evidence implicated that prolonged exposure to hypoxia leads to neurological damage and a plethora of complications. Neural stem cells (NSCs) are a promising tool for neurological damage therapy in terms of their unique properties. However, the literature on the outcome of NSCs exposed to severe hypoxia is scarce. In this study, we identified a responsive gene that reacts to multiple cellular stresses, marked cold-inducible RNA-binding protein (CIRBP), which could attenuate NSC apoptosis under hypoxic pressure. Interestingly, ISRIB, a small-molecule modulator of the PERK-ATF4 signaling pathway, could prevent the reduction and apoptosis of NSCs in two steps: enhancing the expression of CIRBP through the protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4) axis. Taken together, CIRBP was found to be a critical factor that could protect NSCs against apoptosis induced by hypoxia, and ISRIB could be acted upstream of the axis and may be recruited as an open potential therapeutic strategy to prevent or treat hypoxia-induced brain hazards.
Collapse
Affiliation(s)
- Yuankang Zou
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Ziyan Yuan
- Institute of Medical Information and Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yafei Sun
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Maodeng Zhai
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Zhice Tan
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Ruili Guan
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wenjing Luo
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| |
Collapse
|
49
|
Jia X, Zhang S, Tan S, Du B, He M, Qin H, Chen J, Duan X, Luo J, Chen F, Ouyang L, Wang J, Chen G, Yu B, Zhang G, Zhang Z, Lyu Y, Huang Y, Jiao J, Chen JY(H, Swoboda KJ, Agolini E, Novelli A, Leoni C, Zampino G, Cappuccio G, Brunetti-Pierri N, Gerard B, Ginglinger E, Richer J, McMillan H, White-Brown A, Hoekzema K, Bernier RA, Kurtz-Nelson EC, Earl RK, Meddens C, Alders M, Fuchs M, Caumes R, Brunelle P, Smol T, Kuehl R, Day-Salvatore DL, Monaghan KG, Morrow MM, Eichler EE, Hu Z, Yuan L, Tan J, Xia K, Shen Y, Guo H. De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders. SCIENCE ADVANCES 2022; 8:eabo7112. [PMID: 35977029 PMCID: PMC9385150 DOI: 10.1126/sciadv.abo7112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 05/25/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.
Collapse
Affiliation(s)
- Xiangbin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Senwei Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bing Du
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Mei He
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China
| | - Haisong Qin
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jia Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Xinyu Duan
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Luping Ouyang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bin Yu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ge Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Zimin Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jian Jiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jin Yun (Helen) Chen
- Massachusetts General Hospital Neurogenetics Unit, Department of Neurology, Massachusetts General Brigham, Boston, MA 02114, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy
- Fondazione Policlinico Universitario Agostino Gemelli Dipartimento Scienze della Salute della Donna e del Bambino, Rome, Italy
- Università Cattolica S. Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Rome, Italy
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Benedicte Gerard
- Institut de Génétique Médicale d’Alsace (IGMA), Laboratoire de Diagnostic Génétique, Hôpitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | | | - Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Hugh McMillan
- Department of Pediatrics, Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Canada
| | - Alexandre White-Brown
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Rachel K. Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claartje Meddens
- Amsterdam University Medical Center, Department of Clinical Genetics, Amsterdam, Netherlands
- University Medical Center Utrecht, Department of Paediatrics, Utrecht, Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Roseline Caumes
- CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000 Lille, France
| | - Perrine Brunelle
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Thomas Smol
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Ryan Kuehl
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | - Debra-Lynn Day-Salvatore
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | | | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ling Yuan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200000, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan 410078, China
| |
Collapse
|
50
|
Vértesy Á, Eichmüller OL, Naas J, Novatchkova M, Esk C, Balmaña M, Ladstaetter S, Bock C, von Haeseler A, Knoblich JA. Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. EMBO J 2022; 41:e111118. [PMID: 35919947 PMCID: PMC9433936 DOI: 10.15252/embj.2022111118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single‐cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data.
Collapse
Affiliation(s)
- Ábel Vértesy
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Oliver L Eichmüller
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Julia Naas
- Max Perutz Labs, Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Vienna, Austria.,Medical University of Vienna, Vienna Biocenter, Vienna, Austria.,Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | | | - Christopher Esk
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Meritxell Balmaña
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Sabrina Ladstaetter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Arndt von Haeseler
- Max Perutz Labs, Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|