1
|
Morton SU, Costain G, French CE, Wakeling E, Szuto A, Christodoulou J, Cohn R, Darras BT, Wojcik MH, D'Gama AM, Dowling JJ, Lunke S, Muntoni F, Raymond L, Rowitch D, Beggs AH, Stark Z, Agrawal PB. Exome and Genome Sequencing to Diagnose the Genetic Basis of Neonatal Hypotonia: An International Consortium Study. Neurology 2025; 104:e210106. [PMID: 39700446 DOI: 10.1212/wnl.0000000000210106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Hypotonia is a relatively common finding among infants in the neonatal intensive care unit (NICU). Consideration of genetic testing is recommended early in the care of infants with unexplained hypotonia. We aimed to assess the diagnostic yield and overall impact of exome and genome sequencing (ES and GS). METHODS Consecutive infants with hypotonia were identified from research and clinical databases across 5 teaching hospitals in United States, Canada, United Kingdom, and Australia. Inclusion criteria included NICU admission and genetic evaluation. Infants with a known explanation for hypotonia were excluded. Data regarding infant characteristics, genetic testing, and diagnoses were collected. The primary outcome was identification of a molecular diagnosis. Impact on care was a secondary outcome. The Fisher exact and Wilcoxon rank-sum tests were used for statistical analysis. RESULTS We identified 147 infants with unexplained hypotonia. The median gestational age was 39 weeks (interquartile range [IQR] 36-42 weeks), 77 (52%) were female, and the median age was 8 days at the time of evaluation (IQR 2-19 days). Eighty (54%) had hypotonia as the main clinical feature while 67 (46%) had additional multisystem involvement. Seventy-five (51%) underwent rapid ES, 44 (30%) rapid GS, 2 (1%) both ES and GS, and 26 (18%) were admitted before ES or GS became available. Of the 121 infants who underwent ES and/or GS, 72 (60%) had the primary outcome of a molecular diagnosis. In addition, 2 infants with mitochondrial genome variants were diagnosed by mitochondrial GS after negative ES, and one infant needed targeted testing to identify a short tandem repeat expansion missed by GS. The proportion diagnosed by ES and GS was not different between infants with hypotonia as the primary finding (37/56, 66%) and infants with multisystemic symptoms (35/65, 54%, odds ratio [OR] 1.7, CI 0.8-3.7, p value = 0.20). Testing was more likely to have an impact on care for infants receiving a genetic diagnosis (57/66 vs 14/33, OR 8.4, CI 2.9-26.1, p = 1.0E-05). DISCUSSION Rapid ES and GS provided a molecular diagnosis for most of the infants with unexplained hypotonia who underwent testing. Further studies are needed to assess the generalizability of these findings as increased access to genetic testing becomes available. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that in unexplained neonatal hypotonia, rapid ES or GS adds diagnostic specificity.
Collapse
Affiliation(s)
- Sarah U Morton
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Gregory Costain
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Courtney E French
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Emma Wakeling
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Anna Szuto
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - John Christodoulou
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Ronald Cohn
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Basil T Darras
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Monica H Wojcik
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Alissa M D'Gama
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - James J Dowling
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Sebastian Lunke
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Francesco Muntoni
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Lucy Raymond
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - David Rowitch
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Alan H Beggs
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Zornitza Stark
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| | - Pankaj B Agrawal
- From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL
| |
Collapse
|
2
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Shinawi M, Wegner DJ, Paul AJ, Buchser W, Schmidt R, Sharma J, Sardiello M, Sisco K, Manwaring L, Reynolds M, Fulton R, Fronick C, Shaver A, Huang TY, Carroll A, Roessler K, Halpern AL, Dickson PI, Wambach JA. Atypical free sialic acid storage disorder associated with tissue specific mosaicism of SLC17A5. Mol Genet Metab 2025; 144:109004. [PMID: 39742826 DOI: 10.1016/j.ymgme.2024.109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Free sialic acid storage disorder (FSASD) is a rare autosomal recessive lysosomal storage disease caused by pathogenic SLC17A5 variants with variable disease severity. We performed a multidisciplinary evaluation of an adolescent female with suspected lysosomal storage disease and conducted comprehensive studies to uncover the molecular etiology. The proband exhibited intellectual disability, a storage disease gestalt, and mildly elevated urine free sialic acid levels. Skin electron micrographs showed prominent cytoplasmic vacuolation. Clinical exome and genome sequencing identified a maternally-inherited SLC17A5 variant: c.533delC;p.Thr178Asnfs*34. RNASeq of proband skin fibroblasts revealed exon 3 skipping, which was not detected in RNA from proband blood or parental fibroblasts. Targeted deep sequencing of proband fibroblast DNA revealed a 184 bp deletion in ∼15 % of reads, encompassing the 3' end of exon 3. Illumina Complete Long Read sequencing confirmed the deletion was in the paternally-inherited allele and found in a mosaic state in proband fibroblasts and muscle but not in blood or buccal cells. Functional studies, including SLC17A5 knockout cells and transient transfections of mutated SLC17A5 demonstrated pathogenicity of the identified variants. We report an adolescent female with atypical FSASD with tissue-specific mosaicism for an intragenic deletion in SLC17A5, explaining the atypical clinical course, mild biochemical abnormalities, and long diagnostic process.
Collapse
Affiliation(s)
- Marwan Shinawi
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alexander J Paul
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - William Buchser
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert Schmidt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jaiprakash Sharma
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Marco Sardiello
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kathleen Sisco
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Linda Manwaring
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Margaret Reynolds
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Andrew Shaver
- Illumina Inc, San Diego, CA, United States of America
| | - Tina Y Huang
- Illumina Inc, San Diego, CA, United States of America
| | | | | | | | - Patricia I Dickson
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
4
|
Ball M, Bouffler SE, Barnett CB, Freckmann ML, Hunter MF, Kamien B, Kassahn KS, Lunke S, Patel CV, Pinner J, Roscioli T, Sandaradura SA, Scott HS, Tan TY, Wallis M, Compton AG, Thorburn DR, Stark Z, Christodoulou J. Critically unwell infants and children with mitochondrial disorders diagnosed by ultrarapid genomic sequencing. Genet Med 2025; 27:101293. [PMID: 39417332 DOI: 10.1016/j.gim.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultrarapid genomic testing as part of a national program. METHODS Ultrarapid genomic sequencing was performed in 454 families (genome sequencing: n = 290, exome sequencing +/- mitochondrial DNA sequencing: n = 164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD after broader analysis. Gene-agnostic analysis led to the discovery of 2 novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another 4 individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION Ultrarapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.
Collapse
Affiliation(s)
- Megan Ball
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Christopher B Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Karin S Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia; Euroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Tiong Y Tan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia.
| |
Collapse
|
5
|
Fehlberg Z, Stark Z, Klaic M, Best S. Blurring the lines: an empirical examination of the interrelationships among acceptability, appropriateness, and feasibility. Implement Sci Commun 2024; 5:139. [PMID: 39696691 DOI: 10.1186/s43058-024-00675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Acceptability, appropriateness, and feasibility are established implementation outcomes used to understand stakeholders' perceptions of an intervention. Further, they are thought to provide insight into behaviors, such as adoption. To date, measurement instruments for the three outcomes have focused on their individual assessment whilst nodding to the idea that they may interrelate. Despite this acknowledgment, there is little empirical evidence of the association among these constructs. Using the example of genetic health professionals providing additional genomic results to patients, this study aimed to examine the interrelationships among acceptability, appropriateness, and feasibility. METHODS A sequential explanatory mixed methods approach was employed. All genetic counsellors and clinical geneticists involved in a large research program were invited to complete pre/post surveys using existing measures of acceptability, appropriateness, and feasibility. Follow-up interviews, informed by the survey results, explored clinicians' perspectives of the three outcomes in relation to providing additional genomic results to patients. To categorize interrelationships and generate feedback loops, survey data were analyzed using descriptive and correlation statistics and interpreted alongside interview data analyzed using content analysis. RESULTS The survey results (pre n = 53 and post n = 40) for each outcome showed a similar midpoint mean, wide ranges, and little change post implementation (Acceptability: pre M = 3.55, range 2-5 post M = 3.56, range 1.5-5; Appropriateness: pre M = 3.35, range 1-5, post M = 3.48, range 1-5; Feasibility: pre M = 3.30, post M = 3.32; range 1.25-5). The strength of correlation among outcomes ranged from 0.54 to 0.78. Five interrelationships were categorized from analysis of interview data (n = 14) and explain how clinicians' perceptions of the intervention, positive or negative, were determined by interrelating factors of acceptability, appropriateness, and feasibility and that in different scenarios, the function and emphasis of importance among outcomes switched. CONCLUSIONS Rather than existing separately, our study promotes the need to consider interrelationships among acceptability, appropriateness, and feasibility to better characterize clinicians' perceptions of complex health care interventions and aid in the development of implementation strategies that have real world impact. Further, in the interest of reducing research waste, more research is needed to determine if the outcomes could serve as proxies for each other.
Collapse
Affiliation(s)
- Zoe Fehlberg
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, Australia
- School of Health Sciences, The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia
| | - Zornitza Stark
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Marlena Klaic
- School of Health Sciences, The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia
- The Royal Melbourne Hospital, Allied Health Department, Melbourne, Australia
| | - Stephanie Best
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, Australia.
- School of Health Sciences, The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
6
|
French CE, Andrews NC, Beggs AH, Boone PM, Brownstein CA, Chopra M, Chou J, Chung WK, D'Gama AM, Doan RN, Ebrahimi-Fakhari D, Goldstein RD, Irons M, Jacobsen C, Kenna M, Lee T, Madden JA, Majmundar AJ, Mann N, Morton SU, Poduri A, Randolph AG, Roberts AE, Roberts S, Sampson MG, Shao DD, Shao W, Sharma A, Shearer E, Shimamura A, Snapper SB, Srivastava S, Thiagarajah JR, Whitman MC, Wojcik MH, Rockowitz S, Sliz P. Hospital-wide access to genomic data advanced pediatric rare disease research and clinical outcomes. NPJ Genom Med 2024; 9:60. [PMID: 39622807 PMCID: PMC11612168 DOI: 10.1038/s41525-024-00441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Boston Children's Hospital has established a genomic sequencing and analysis research initiative to improve clinical care for pediatric rare disease patients. Through the Children's Rare Disease Collaborative (CRDC), the hospital offers CLIA-grade exome and genome sequencing, along with other sequencing types, to patients enrolled in specialized rare disease research studies. The data, consented for broad research use, are harmonized and analyzed with CRDC-supported variant interpretation tools. Since its launch, 66 investigators representing 26 divisions and 45 phenotype-based cohorts have joined the CRDC. These studies enrolled 4653 families, with 35% of analyzed cases having a finding either confirmed or under further investigation. This accessible and harmonized genomics platform also supports additional institutional data collections, research and clinical, and now encompasses 13,800+ patients and their families. This has fostered new research projects and collaborations, increased genetic diagnoses and accelerated innovative research via integration of genomics research with clinical care.
Collapse
Affiliation(s)
- Courtney E French
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
| | - Nancy C Andrews
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Philip M Boone
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Catherine A Brownstein
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Maya Chopra
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | - Janet Chou
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Wendy K Chung
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alissa M D'Gama
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Richard D Goldstein
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Mira Irons
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christina Jacobsen
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Margaret Kenna
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Ted Lee
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jill A Madden
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Amar J Majmundar
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Nina Mann
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Adrienne G Randolph
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Amy E Roberts
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Stephanie Roberts
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Matthew G Sampson
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Division of Nephrology, Brigham and Women's Hospital, Boston, MA, USA
| | - Diane D Shao
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Wanqing Shao
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
| | - Aditi Sharma
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
| | - Eliot Shearer
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Akiko Shimamura
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Hematology and Oncology, Boston Children's Hospital, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Scott B Snapper
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Siddharth Srivastava
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jay R Thiagarajah
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Mary C Whitman
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Monica H Wojcik
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Piotr Sliz
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Santos Gonzalez F, Hock DH, Thorburn DR, Mordaunt D, Williamson NA, Ang CS, Stroud DA, Christodoulou J, Goranitis I. A micro-costing study of mass-spectrometry based quantitative proteomics testing applied to the diagnostic pipeline of mitochondrial and other rare disorders. Orphanet J Rare Dis 2024; 19:443. [PMID: 39609890 PMCID: PMC11605922 DOI: 10.1186/s13023-024-03462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Mass spectrometry-based quantitative proteomics has a demonstrated utility in increasing the diagnostic yield of mitochondrial disorders (MDs) and other rare diseases. However, for this technology to be widely adopted in routine clinical practice, it is crucial to accurately estimate delivery costs. Resource use and unit costs required to undertake a proteomics test were measured and categorized into consumables, equipment, and labor. Unit costs were aggregated to obtain a total cost per patient, reported in 2023 Australian dollars (AUD). Probabilistic and deterministic sensitivity analysis were conducted to evaluate parameter uncertainty and identify key cost drivers. RESULTS The mean cost of a proteomics test was $897 (US$ 607) per patient (95% CI: $734-$1,111). Labor comprised 53% of the total costs. At $342 (US$ 228) per patient, liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was the most expensive non-salary component. An integrated analysis pipeline where all the standard analysis are performed automatically, as well as discounts or subsidized LC-MS/MS equipment or consumables can lower the cost per test. CONCLUSIONS Proteomics testing provide a lower-cost option and wider application compared to respiratory chain enzymology for mitochondrial disorders and potentially other functional assays in Australia. Our analysis suggests that streamlining and automating workflows can reduce labor costs. Using PBMC samples may be a cheaper and more efficient alternative to generating fibroblasts, although their use has not been extensively tested yet. Use of fibroblasts could potentially lower costs when fibroblasts are already available by avoiding the expense of isolating PBMCs. A joint evaluation of the health and economic implications of proteomics is now needed to support its introduction to routine clinical care.
Collapse
Affiliation(s)
- Francisco Santos Gonzalez
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Dylan Mordaunt
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Australian Genomics Health Alliance, Melbourne, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - Ilias Goranitis
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Australian Genomics Health Alliance, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
8
|
Abdulla S, Aevermann B, Assis P, Badajoz S, Bell SM, Bezzi E, Cakir B, Chaffer J, Chambers S, Cherry JM, Chi T, Chien J, Dorman L, Garcia-Nieto P, Gloria N, Hastie M, Hegeman D, Hilton J, Huang T, Infeld A, Istrate AM, Jelic I, Katsuya K, Kim YJ, Liang K, Lin M, Lombardo M, Marshall B, Martin B, McDade F, Megill C, Patel N, Predeus A, Raymor B, Robatmili B, Rogers D, Rutherford E, Sadgat D, Shin A, Small C, Smith T, Sridharan P, Tarashansky A, Tavares N, Thomas H, Tolopko A, Urisko M, Yan J, Yeretssian G, Zamanian J, Mani A, Cool J, Carr A. CZ CELLxGENE Discover: a single-cell data platform for scalable exploration, analysis and modeling of aggregated data. Nucleic Acids Res 2024:gkae1142. [PMID: 39607691 DOI: 10.1093/nar/gkae1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Hundreds of millions of single cells have been analyzed using high-throughput transcriptomic methods. The cumulative knowledge within these datasets provides an exciting opportunity for unlocking insights into health and disease at the level of single cells. Meta-analyses that span diverse datasets building on recent advances in large language models and other machine-learning approaches pose exciting new directions to model and extract insight from single-cell data. Despite the promise of these and emerging analytical tools for analyzing large amounts of data, the sheer number of datasets, data models and accessibility remains a challenge. Here, we present CZ CELLxGENE Discover (cellxgene.cziscience.com), a data platform that provides curated and interoperable single-cell data. Available via a free-to-use online data portal, CZ CELLxGENE hosts a growing corpus of community-contributed data of over 93 million unique cells. Curated, standardized and associated with consistent cell-level metadata, this collection of single-cell transcriptomic data is the largest of its kind and growing rapidly via community contributions. A suite of tools and features enables accessibility and reusability of the data via both computational and visual interfaces to allow researchers to explore individual datasets, perform cross-corpus analysis, and run meta-analyses of tens of millions of cells across studies and tissues at the resolution of single cells.
Collapse
Affiliation(s)
- Shibla Abdulla
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Brian Aevermann
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Pedro Assis
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Seve Badajoz
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Sidney M Bell
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Emanuele Bezzi
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jim Chaffer
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Signe Chambers
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - J Michael Cherry
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Tiffany Chi
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Jennifer Chien
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Leah Dorman
- Chan Zuckerberg, Biohub, SF, 499 Illinois St, San Francisco, CA 94158, USA
| | - Pablo Garcia-Nieto
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Nayib Gloria
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Mim Hastie
- Clever Canary, 850 Front St. #1491, Santa Cruz, CA, USA
| | - Daniel Hegeman
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Jason Hilton
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Timmy Huang
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Amanda Infeld
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Ana-Maria Istrate
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Ivana Jelic
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Kuni Katsuya
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Yang Joon Kim
- Chan Zuckerberg, Biohub, SF, 499 Illinois St, San Francisco, CA 94158, USA
| | - Karen Liang
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Mike Lin
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | | | - Bailey Marshall
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Bruce Martin
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Fran McDade
- Clever Canary, 850 Front St. #1491, Santa Cruz, CA, USA
| | - Colin Megill
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Nikhil Patel
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Alexander Predeus
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Brian Raymor
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Behnam Robatmili
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Dave Rogers
- Clever Canary, 850 Front St. #1491, Santa Cruz, CA, USA
| | - Erica Rutherford
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Dana Sadgat
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Andrew Shin
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Corinn Small
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Trent Smith
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Prathap Sridharan
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | | | - Norbert Tavares
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Harley Thomas
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Andrew Tolopko
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Meghan Urisko
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Joyce Yan
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Garabet Yeretssian
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Jennifer Zamanian
- Department of Genetics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305, USA
| | - Arathi Mani
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Jonah Cool
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| | - Ambrose Carr
- Chan Zuckerberg Initiative, 1180 Main Street, Redwood City, CA 94063, USA
| |
Collapse
|
9
|
Ellard S, Morgan S, Wynn SL, Walker S, Parrish A, Mein R, Juett A, Ahn JW, Berry I, Cassidy EJ, Durkie M, Fish L, Hall R, Howard E, Rankin J, Wright CF, Deans ZC, Scott RH, Hill SL, Baple EL, Taylor RW. Rare disease genomic testing in the UK and Ireland: promoting timely and equitable access. J Med Genet 2024; 61:1103-1112. [PMID: 39327040 PMCID: PMC11671936 DOI: 10.1136/jmg-2024-110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE AND SCOPE The aim of this position statement is to provide recommendations regarding the delivery of genomic testing to patients with rare disease in the UK and Ireland. The statement has been developed to facilitate timely and equitable access to genomic testing with reporting of results within commissioned turnaround times. METHODS OF STATEMENT DEVELOPMENT A 1-day workshop was convened by the UK Association for Clinical Genomic Science and attended by key stakeholders within the NHS Genomic Medicine Service, including clinical scientists, clinical geneticists and patient support group representatives. The aim was to identify best practice and innovations for streamlined, geographically consistent services delivering timely results. Attendees and senior responsible officers for genomic testing services in the UK nations and Ireland were invited to contribute. RESULTS AND CONCLUSIONS We identified eight fundamental requirements and describe these together with key enablers in the form of specific recommendations. These relate to laboratory practice (proportionate variant analysis, bioinformatics pipelines, multidisciplinary team working model and test request monitoring), compliance with national guidance (variant classification, incidental findings, reporting and reanalysis), service development and improvement (multimodal testing and innovation through research, informed by patient experience), service demand, capacity management, workforce (recruitment, retention and development), and education and training for service users. This position statement was developed to provide best practice guidance for the specialist genomics workforce within the UK and Ireland but is relevant to any publicly funded healthcare system seeking to deliver timely rare disease genomic testing in the context of high demand and limited resources.
Collapse
Affiliation(s)
- Sian Ellard
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sian Morgan
- All Wales Genetics Laboratory, University Hospital of Wales, Cardiff, UK
| | - Sarah L Wynn
- Rare Chromosome Disorder Support Group, Unique, Surrey, UK
| | | | - Andrew Parrish
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- South West Genomic Medicine Service, England, UK
| | | | - Ana Juett
- South West Genomic Medicine Service, England, UK
| | - Joo Wook Ahn
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ian Berry
- South West Genomic Medicine Service, England, UK
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Emma-Jane Cassidy
- Wessex Genomics Laboratory Service, University Hospital Southampton NHS Foundation Trust, Salisbury, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | | | - Emma Howard
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Julia Rankin
- South West Genomic Medicine Service, England, UK
- Peninsula Clinical Genetics Service, Exeter, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Zandra C Deans
- GenQA, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard H Scott
- Genomics England Limited, London, UK
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | | | - Emma L Baple
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- South West Genomic Medicine Service, England, UK
- Peninsula Clinical Genetics Service, Exeter, UK
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, North East and Yorkshire Genomic Laboratory Hub, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Association for Clinical Genomic Science Rare Disease Position Statement Working Group
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- All Wales Genetics Laboratory, University Hospital of Wales, Cardiff, UK
- Rare Chromosome Disorder Support Group, Unique, Surrey, UK
- Genomics England Limited, London, UK
- South West Genomic Medicine Service, England, UK
- NHS England, London, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
- Wessex Genomics Laboratory Service, University Hospital Southampton NHS Foundation Trust, Salisbury, UK
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Genetic Alliance UK, London, UK
- South East Genomic Laboratory Hub, London, UK
- Manchester University NHS Foundation Trust, Manchester, UK
- Peninsula Clinical Genetics Service, Exeter, UK
- GenQA, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, North East and Yorkshire Genomic Laboratory Hub, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Ali SS, Li Q, Agrawal PB. Implementation of multi-omics in diagnosis of pediatric rare diseases. Pediatr Res 2024:10.1038/s41390-024-03728-w. [PMID: 39562738 DOI: 10.1038/s41390-024-03728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The rapid and accurate diagnosis of rare diseases is paramount in directing clinical management. In recent years, the integration of multi-omics approaches has emerged as a potential strategy to overcome diagnostic hurdles. This review examines the application of multi-omics technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, in relation to the diagnostic journey of rare diseases. We explore how these combined approaches enhance the detection of pathogenic genetic variants and decipher molecular mechanisms. This review highlights the groundbreaking potential of multi-omics in advancing the precision medicine paradigm for rare diseases, offering insights into future directions and clinical applications. IMPACT: This review discusses using current tests and emerging technologies to diagnose pediatric rare diseases. We describe the next steps after inconclusive molecular testing and a structure for using multi-omics in further investigations. The use of multi-omics is expanding, and it is essential to incorporate it into clinical practice to enhance individualized patient care.
Collapse
Affiliation(s)
- Sara S Ali
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA.
| |
Collapse
|
11
|
Martyn M, Lee L, Jan A, Tytherleigh R, Lynch F, Mighton C, Bouffler SE, Lynch E, Macciocca I, Curnow L, McCorkell G, Lunke S, Chong B, Delatycki MB, Downie L, Vears D, Best S, Clausen M, Bombard Y, Stark Z, Gaff C. Offering complex genomic screening in acute pediatric settings: Family decision-making and outcomes. Genet Med 2024; 27:101327. [PMID: 39548854 DOI: 10.1016/j.gim.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
PURPOSE Families of children in pediatric acute care who are offered ultrarapid genomic sequencing are making complex decisions during a high-stress period. To reduce complexity for families and clinicians, we offered genomic screening for the child and parents after the completion of diagnostic testing. We evaluated uptake, understanding, and service delivery preferences. METHODS A cohort of 235 families who had completed ultrarapid diagnostic genomic sequencing at 17 Australian hospitals were offered up to 3 screens on their genomic data: pediatric-onset, adult-onset, and expanded couple carrier screening. We investigated decision making, understanding, and service delivery preferences using surveys at 3 time points (pre counseling, post counseling, and post result) and performed inductive content analysis of pretest genetic counseling transcripts. RESULTS A total of 119 families (51%) attended genetic counseling with 115 (49%) accepting genomic screening. Survey respondents were more likely to find decisions about couple carrier screening easy (87%) compared with adult (68%; P = .002) or pediatric (71%; P = .01) screening decisions. All respondents with newly detected pathogenic variants accurately recalled this 1 month later. A delayed offer of screening was acceptable to most respondents (78%). CONCLUSION Separating genomic screening from the stressful diagnostic period is supported by families who demonstrate good knowledge and recall. Our results suggest delaying genomic screening should be trialed more widely.
Collapse
Affiliation(s)
- Melissa Martyn
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ling Lee
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alli Jan
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Australian Genomics Health Alliance, Parkville, VIC, Australia
| | - Rigan Tytherleigh
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Fiona Lynch
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Chloe Mighton
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | | | - Elly Lynch
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Ivan Macciocca
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Lisette Curnow
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Martin B Delatycki
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Lilian Downie
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Danya Vears
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia; Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Stephanie Best
- Australian Genomics Health Alliance, Parkville, VIC, Australia; Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marc Clausen
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Zornitza Stark
- Australian Genomics Health Alliance, Parkville, VIC, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Clara Gaff
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Nyaga DM, Tsai P, Gebbie C, Phua HH, Yap P, Le Quesne Stabej P, Farrow S, Rong J, Toldi G, Thorstensen E, Stark Z, Lunke S, Gamet K, Van Dyk J, Greenslade M, O'Sullivan JM. Benchmarking nanopore sequencing and rapid genomics feasibility: validation at a quaternary hospital in New Zealand. NPJ Genom Med 2024; 9:57. [PMID: 39516456 PMCID: PMC11549486 DOI: 10.1038/s41525-024-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 200 critically ill infants and children in New Zealand are in high-dependency care, many suspected of having genetic conditions, requiring scalable genomic testing. We adopted an acute care genomics protocol from an accredited laboratory and established a clinical pipeline using Oxford Nanopore Technologies PromethION 2 solo system and Fabric GEM™ software. Benchmarking of the pipeline was performed using Global Alliance for Genomics and Health benchmarking tools and Genome in a Bottle samples (HG002-HG007). Evaluation of single nucleotide variants resulted in a precision and recall of 0.997 and 0.992, respectively. Small indel identification approached a precision of 0.922 and recall of 0.838. Large genomic variations from Coriell Copy Number Variation Reference Panel 1 were reliably detected with ~2 M long reads. Finally, we present results obtained from fourteen trio samples, ten of which were processed in parallel with a clinically accredited short-read rapid genomic testing pipeline (Newborn Genomics Programme; NCT06081075; 2023-10-12).
Collapse
Affiliation(s)
- Denis M Nyaga
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Clare Gebbie
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Hui Hui Phua
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand-Northern Hub, Te Toka Tumai, Auckland, New Zealand
| | - Polona Le Quesne Stabej
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Sophie Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Gergely Toldi
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Starship Child Health, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Eric Thorstensen
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Kimberley Gamet
- Genetic Health Service New Zealand-Northern Hub, Te Toka Tumai, Auckland, New Zealand
| | - Jodi Van Dyk
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Mark Greenslade
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Toka Tumai, Auckland, New Zealand
| | | |
Collapse
|
13
|
Starosta RT, Larson AA, Meeks NJL, Gracie S, Friederich MW, Gaughan SM, Baker PR, Knupp KG, Michel CR, Reisdorph R, Hock DH, Stroud DA, Wood T, Van Hove JLK. An integrated multi-omics approach allowed ultra-rapid diagnosis of a deep intronic pathogenic variant in PDHX and precision treatment in a neonate critically ill with lactic acidosis. Mitochondrion 2024; 79:101973. [PMID: 39413893 PMCID: PMC11578067 DOI: 10.1016/j.mito.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The diagnosis of mitochondrial disorders is complex. Rapid whole genome sequencing is a first line test for critically ill neonates and infants allowing rapid diagnosis and treatment. Standard genomic technology and bioinformatic pipelines still have an incomplete diagnostic yield requiring complementary approaches. There are currently limited options for rapid additional tests to continue a diagnostic work-up after a negative rapid whole-genome sequencing result, reflecting a gap in clinical practice. Multi-modal integrative diagnostic approaches derived from systems biology including proteomics and transcriptomics show promise in suspected mitochondrial disorders. In this article, we report the case of a neonate who presented with severe lactic acidosis on the second day of life, for whom an initial report of ultra-rapid genome sequencing was negative. The patient was started on dichloroacetate as an emergency investigational new drug (eIND), with a sharp decline in lactic acid levels and clinical stabilization. A proteomics-based approach identified a complete absence of PDHX protein, leading to a re-review of the genome data for the PDHX gene in which a homozygous deep intronic pathogenic variant was identified. Subsequent testing in the following months confirmed the diagnosis with deficient pyruvate dehydrogenase enzyme activity, reduced protein levels of E3-binding protein, and confirmed by mRNA sequencing to lead to the inclusion of a cryptic exon and a premature stop codon. This case highlights the power of rapid proteomics in guiding genomic analysis. It also shows a promising role for dichloroacetate treatment in controlling lactic acidosis related to PDHX-related pyruvate dehydrogenase complex deficiency.
Collapse
Affiliation(s)
- Rodrigo T Starosta
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sara Gracie
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sommer M Gaughan
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Kelly G Knupp
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Tim Wood
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Correia SP, Moedas MF, Taylor LS, Naess K, Lim AZ, McFarland R, Kazior Z, Rumyantseva A, Wibom R, Engvall M, Bruhn H, Lesko N, Végvári Á, Käll L, Trost M, Alston CL, Freyer C, Taylor RW, Wedell A, Wredenberg A. Quantitative proteomics of patient fibroblasts reveal biomarkers and diagnostic signatures of mitochondrial disease. JCI Insight 2024; 9:e178645. [PMID: 39288270 PMCID: PMC11530135 DOI: 10.1172/jci.insight.178645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDMitochondrial diseases belong to the group of inborn errors of metabolism (IEM), with a prevalence of 1 in 2,000-5,000 individuals. They are the most common form of IEM, but, despite advances in next-generation sequencing technologies, almost half of the patients are left genetically undiagnosed.METHODSWe investigated a cohort of 61 patients with defined mitochondrial disease to improve diagnostics, identify biomarkers, and correlate metabolic pathways to specific disease groups. Clinical presentations were structured using human phenotype ontology terms, and mass spectrometry-based proteomics was performed on primary fibroblasts. Additionally, we integrated 6 patients carrying variants of uncertain significance (VUS) to test proteomics as a diagnostic expansion.RESULTSProteomic profiles from patient samples could be classified according to their biochemical and genetic characteristics, with the expression of 5 proteins (GPX4, MORF4L1, MOXD1, MSRA, and TMED9) correlating with the disease cohort, thus acting as putative biomarkers. Pathway analysis showed a deregulation of inflammatory and mitochondrial stress responses. This included the upregulation of glycosphingolipid metabolism and mitochondrial protein import, as well as the downregulation of arachidonic acid metabolism. Furthermore, we could assign pathogenicity to a VUS in MRPS23 by demonstrating the loss of associated mitochondrial ribosome subunits.CONCLUSIONWe established mass spectrometry-based proteomics on patient fibroblasts as a viable and versatile tool for diagnosing patients with mitochondrial disease.FUNDINGThe NovoNordisk Foundation, Knut and Alice Wallenberg Foundation, Wellcome Centre for Mitochondrial Research, UK Medical Research Council, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children.
Collapse
Affiliation(s)
- Sandrina P. Correia
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marco F. Moedas
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucie S. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Albert Z. Lim
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Kazior
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasia Rumyantseva
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden
| | - Matthias Trost
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte L. Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Christoph Freyer
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Stark Z, Glazer D, Hofmann O, Rendon A, Marshall CR, Ginsburg GS, Lunt C, Allen N, Effingham M, Hastings Ward J, Hill SL, Ali R, Goodhand P, Page A, Rehm HL, North KN, Scott RH. A call to action to scale up research and clinical genomic data sharing. Nat Rev Genet 2024:10.1038/s41576-024-00776-0. [PMID: 39375561 DOI: 10.1038/s41576-024-00776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/09/2024]
Abstract
Genomic data from millions of individuals have been generated worldwide to drive discovery and clinical impact in precision medicine. Lowering the barriers to using these data collectively is needed to equitably realize the benefits of the diversity and scale of population data. We examine the current landscape of global genomic data sharing, including the evolution of data sharing models from data aggregation through to data visiting, and for certain use cases, cross-cohort analysis using federated approaches across multiple environments. We highlight emerging examples of best practice relating to participant, patient and community engagement; evolution of technical standards, tools and infrastructure; and impact of research and health-care policy. We outline 12 actions we can all take together to scale up efforts to enable safe global data sharing and move beyond projects demonstrating feasibility to routinely cross-analysing research and clinical data sets, optimizing benefit.
Collapse
Affiliation(s)
- Zornitza Stark
- Australian Genomics, Melbourne, Victoria, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- University of Melbourne, Melbourne, Victoria, Australia.
| | - David Glazer
- Verily Life Sciences, South San Francisco, CA, USA.
| | - Oliver Hofmann
- Australian Genomics, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Melbourne, Victoria, Australia
| | | | - Christian R Marshall
- Division of Genome Diagnostics, Pediatric Laboratory Medicine Department, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Geoffrey S Ginsburg
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Chris Lunt
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Naomi Allen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- UK Biobank, Stockport, UK
| | | | | | - Sue L Hill
- National Health Service England, London, UK
| | - Raghib Ali
- Our Future Health, Manchester, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Peter Goodhand
- Global Alliance for Genomics and Health, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Angela Page
- Global Alliance for Genomics and Health, Toronto, Ontario, Canada
| | - Heidi L Rehm
- Global Alliance for Genomics and Health, Toronto, Ontario, Canada
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn N North
- Australian Genomics, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Richard H Scott
- Genomics England, London, UK
- Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
16
|
Kumar KR, Cowley MJ, Davis RL. The Next, Next-Generation of Sequencing, Promising to Boost Research and Clinical Practice. Semin Thromb Hemost 2024; 50:1039-1046. [PMID: 38733978 DOI: 10.1055/s-0044-1786756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Affiliation(s)
- Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord Clinical School, University of Sydney, Concord, NSW, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Mark J Cowley
- School of Clinical Medicine, UNSW Sydney, Randwick, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Randwick, NSW, Australia
| | - Ryan L Davis
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| |
Collapse
|
17
|
Rogers A, De Jong L, Waters W, Rawlings LH, Simons K, Gao S, Soubrier J, Kenyon R, Lin M, King R, Lawrence DM, Muller P, Leblanc S, McGregor L, Sallevelt SCEH, Liebelt J, Hardy TSE, Fletcher JM, Scott HS, Kulkarni A, Barnett CP, Kassahn KS. Extending the new era of genomic testing into pregnancy management: A proposed model for Australian prenatal services. Aust N Z J Obstet Gynaecol 2024; 64:467-474. [PMID: 38577897 PMCID: PMC11660018 DOI: 10.1111/ajo.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Trio exome sequencing can be used to investigate congenital abnormalities identified on pregnancy ultrasound, but its use in an Australian context has not been assessed. AIMS Assess clinical outcomes and changes in management after expedited genomic testing in the prenatal period to guide the development of a model for widespread implementation. MATERIALS AND METHODS Forty-three prospective referrals for whole exome sequencing, including 40 trios (parents and pregnancy), two singletons and one duo were assessed in a tertiary hospital setting with access to a state-wide pathology laboratory. Diagnostic yield, turn-around time (TAT), gestational age at reporting, pregnancy outcome, change in management and future pregnancy status were assessed for each family. RESULTS A clinically significant genomic diagnosis was made in 15/43 pregnancies (35%), with an average TAT of 12 days. Gestational age at time of report ranged from 16 + 5 to 31 + 6 weeks (median 21 + 3 weeks). Molecular diagnoses included neuromuscular and skeletal disorders, RASopathies and a range of other rare Mendelian disorders. The majority of families actively used the results in pregnancy decision making as well as in management of future pregnancies. CONCLUSIONS Rapid second trimester prenatal genomic testing can be successfully delivered to investigate structural abnormalities in pregnancy, providing crucial guidance for current and future pregnancy management. The time-sensitive nature of this testing requires close laboratory and clinical collaboration to ensure appropriate referral and result communication. We found the establishment of a prenatal coordinator role and dedicated reporting team to be important facilitators. We propose this as a model for genomic testing in other prenatal services.
Collapse
Affiliation(s)
- Alice Rogers
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Lucas De Jong
- Technology Advancement UnitGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Wendy Waters
- Genetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Lesley H. Rawlings
- Genomics UnitGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Keryn Simons
- Genomics UnitGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Song Gao
- Technology Advancement UnitGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Julien Soubrier
- Technology Advancement UnitGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
- Pathology Queensland, Royal Brisbane and Women’s HospitalBrisbaneQueenslandAustralia
| | - Rosalie Kenyon
- ACRF SA Cancer Genome FacilityGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Ming Lin
- ACRF SA Cancer Genome FacilityGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Rob King
- ACRF SA Cancer Genome FacilityGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - David M. Lawrence
- ACRF SA Cancer Genome FacilityGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Peter Muller
- Maternal Fetal Medicine Service (MFMS)Women's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Shannon Leblanc
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Lesley McGregor
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Suzanne C. E. H. Sallevelt
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Jan Liebelt
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Tristan S. E. Hardy
- Genetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
- RepromedMonash IVFAdelaideSouth AustraliaAustralia
| | - Janice M. Fletcher
- Genetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Hamish S. Scott
- Genetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Abhi Kulkarni
- Genetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| | - Christopher P. Barnett
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Karin S. Kassahn
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Technology Advancement UnitGenetics and Molecular Pathology, SA PathologyAdelaideSouth AustraliaAustralia
| |
Collapse
|
18
|
McCorkell G, Nisselle A, Halton D, Bouffler SE, Patel C, Christodoulou J, Maher F, McClaren B, Brett GR, Sandaradura S, Boggs K, de Silva MG, Lynch F, Macciocca I, Lynch E, Martyn M, Best S, Stark Z, Gaff CL. A national education program for rapid genomics in pediatric acute care: Building workforce confidence, competence, and capability. Genet Med 2024; 26:101224. [PMID: 39092589 DOI: 10.1016/j.gim.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE To develop and evaluate a scalable national program to build confidence, competence and capability in the use of rapid genomic testing (rGT) in the acute pediatric setting. METHODS We used theory-informed approaches to design a modular, adaptive program of blended learning aimed at diverse professional groups involved in acute pediatric care. The program comprised 4 online learning modules and an online workshop and was centered on case-based learning. We evaluated the program using the Kirkpatrick 4-level model of training evaluation and report our findings using the Reporting Item Standards for Education and its Evaluation (RISE2) guidelines for genomics education and evaluation. RESULTS Two hundred and two participants engaged with at least 1 component of the program. Participants self-reported increased confidence in using rGT, (P < .001), and quiz responses objectively demonstrated increased competence (eg, correct responses to a question on pretest counseling increased from 30% to 64%; P < .001). Additionally, their capability in applying genomic principles to simulated clinical cases increased (P < .001), as did their desire to take on more responsibility for performing rGT. The clinical interpretation of more complex test results (such as negative results or variants of uncertain significance) appeared to be more challenging, indicating a need for targeted education in this area. CONCLUSION The program format was effective in delivering multidisciplinary and wide-scale genomics education in the acute care context. The modular approach we have developed now lends itself to application in other medical specialties or areas of health care.
Collapse
Affiliation(s)
- Giulia McCorkell
- Australian Genomics, Melbourne, Australia; The University of Melbourne, Melbourne, Australia; Royal Melbourne Institute of Technology, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Amy Nisselle
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Donna Halton
- Australian Genomics, Melbourne, Australia; The University of Melbourne, Melbourne, Australia; Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Sophie E Bouffler
- Australian Genomics, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - John Christodoulou
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Fran Maher
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Melbourne Genomics Health Alliance, Melbourne, Australia; WEHI, Melbourne, Australia
| | - Belinda McClaren
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Gemma R Brett
- The University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Melbourne, Australia
| | - Sarah Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Kirsten Boggs
- Australian Genomics, Melbourne, Australia; Sydney Children's Hospitals Network-Westmead, Sydney, Australia; Sydney Children's Hospitals Network-Randwick, Sydney, Australia
| | - Michelle G de Silva
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Victorian Clinical Genetics Services, Melbourne, Australia
| | - Fiona Lynch
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Ivan Macciocca
- The University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Melbourne, Australia
| | - Elly Lynch
- Melbourne Genomics Health Alliance, Melbourne, Australia; Victorian Clinical Genetics Services, Melbourne, Australia
| | - Melissa Martyn
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Stephanie Best
- Australian Genomics, Melbourne, Australia; Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Australian Genomics, Melbourne, Australia; The University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Melbourne, Australia.
| | - Clara L Gaff
- The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Melbourne Genomics Health Alliance, Melbourne, Australia
| |
Collapse
|
19
|
Choi WH, Cho Y, Cha JH, Lee DH, Jeong JG, Jung SH, Song JJ, Lee JH, Lee SY. Functional pathogenicity of ESRRB variant of uncertain significance contributes to hearing loss (DFNB35). Sci Rep 2024; 14:21215. [PMID: 39261511 PMCID: PMC11390957 DOI: 10.1038/s41598-024-70795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Advances in next-generation sequencing technologies have led to elucidation of sensorineural hearing loss genetics and associated clinical impacts. However, studies on the functional pathogenicity of variants of uncertain significance (VUS), despite their close association with clinical phenotypes, are lacking. Here we identified compound heterozygous variants in ESRRB transcription factor gene linked to DFNB35, specifically a novel splicing variant (NM_004452.4(ESRRB): c.397 + 2T>G) in trans with a missense variant (NM_004452.4(ESRRB): c.1144C>T p.(Arg382Cys)) whose pathogenicity remains unclear. The splicing variant (c.397 + 2T>G) caused exon 4 skipping, leading to premature stop codon formation and nonsense-mediated decay. The p.(Arg382Cys) variant was classified as a VUS due to its particularly higher allele frequency among East Asian population despite disease-causing in-silico predictions. However, functional assays showed that p.(Arg382Cys) variant disrupted key intramolecular interactions, leading to protein instability. This variant also reduced transcriptional activity and altered expression of downstream target genes essential for inner ear function, suggesting genetic contribution to disease phenotype. This study expanded the phenotypic and genotypic spectrum of ESRRB in DFNB35 and revealed molecular mechanisms underlying ESRRB-associated DFNB35. These findings suggest that variants with high allele frequencies can also possess functional pathogenicity, providing a breakthrough for cases where VUS, previously unexplored, could be reinterpreted by elucidating their functional roles and disease-causing characteristics.
Collapse
Affiliation(s)
- Won Hoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeijean Cho
- Seoul National University College of Medicine, Seoul, South Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dae Hee Lee
- CTCELLS, Inc., 21, Yuseong-Daero, 1205 Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea
| | - Jong Gwan Jeong
- CTCELLS, Inc., 21, Yuseong-Daero, 1205 Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea
| | - Sung Ho Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Prokisch H, Zech M. Proteomic Profiling in Dystonia: The Next Frontier for Pathophysiology Research and Biomarker Exploration. Mov Disord 2024; 39:1478-1479. [PMID: 39132864 DOI: 10.1002/mds.29964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Affiliation(s)
- Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
21
|
Bhatia S, Pal S, Kulshrestha S, Gupta D, Soni A, Saxena R, Bijarnia-Mahay S, Verma IC, Puri RD. Role of next generation sequencing in diagnosis and management of critically ill children with suspected monogenic disorder. Eur J Hum Genet 2024; 32:1106-1115. [PMID: 38605122 PMCID: PMC11369102 DOI: 10.1038/s41431-024-01569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 04/13/2024] Open
Abstract
Next generation sequencing based diagnosis has emerged as a promising tool for evaluating critically ill neonates and children. However, there is limited data on its utility in developing countries. We assessed its diagnostic rate and clinical impact on management of pediatric patients with a suspected genetic disorder requiring critical care. The study was conducted at a single tertiary hospital in Northern India. We analyzed 70 children with an illness requiring intensive care and obtained a precise molecular diagnosis in 32 of 70 probands (45.3%) using diverse sequencing techniques such as clinical exome, whole exome, and whole genome. A significant change in clinical outcome was observed in 13 of 32 (40.6%) diagnosed probands with a change in medication in 11 subjects and redirection to palliative care in two subjects. Additional benefits included specific dietary management (three cases), avoidance of a major procedure (one case) and better reproductive counseling. Dramatic therapeutic responses were observed in three cases with SCN1A, SCN2A and KCNQ2-related epileptic encephalopathy. A delayed turn-around for sequencing results was perceived as a major limiting factor in the study, as rapid and ultra-rapid sequencing was not available. Achieving a precise molecular diagnosis has great utility in managing critically ill patients with suspected genetic disorders in developing countries.
Collapse
Affiliation(s)
- Sameer Bhatia
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Swasti Pal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Dhiren Gupta
- Department of Paediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Arun Soni
- Department of Neonatology, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
22
|
Drăgoi CM, Nicolae AC, Dumitrescu IB. Emerging Strategies in Drug Development and Clinical Care in the Era of Personalized and Precision Medicine. Pharmaceutics 2024; 16:1107. [PMID: 39204452 PMCID: PMC11359044 DOI: 10.3390/pharmaceutics16081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
In the ever-changing landscape of modern medicine, we face an important moment where the interplay of disease, drugs, and patients defines a new paradigm [...].
Collapse
Affiliation(s)
| | - Alina Crenguța Nicolae
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (I.-B.D.)
| | | |
Collapse
|
23
|
Adams DR, van Karnebeek CDM, Agulló SB, Faùndes V, Jamuar SS, Lynch SA, Pintos-Morell G, Puri RD, Shai R, Steward CA, Tumiene B, Verloes A. Addressing diagnostic gaps and priorities of the global rare diseases community: Recommendations from the IRDiRC diagnostics scientific committee. Eur J Med Genet 2024; 70:104951. [PMID: 38848991 DOI: 10.1016/j.ejmg.2024.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
The International Rare Diseases Research Consortium (IRDiRC) Diagnostic Scientific Committee (DSC) is charged with discussion and contribution to progress on diagnostic aspects of the IRDiRC core mission. Specifically, IRDiRC goals include timely diagnosis, use of globally coordinated diagnostic pipelines, and assessing the impact of rare diseases on affected individuals. As part of this mission, the DSC endeavored to create a list of research priorities to achieve these goals. We present a discussion of those priorities along with aspects of current, global rare disease needs and opportunities that support our prioritization. In support of this discussion, we also provide clinical vignettes illustrating real-world examples of diagnostic challenges.
Collapse
Affiliation(s)
- David R Adams
- National Human Genome Research Institute, National Institutes of Health, USA.
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-enterology Endocrinology Metabolism, Amsterdam University Medical Centers, the Netherlands
| | - Sergi Beltran Agulló
- Centre Nacional d'Anàlisi Genòmica (CNAG), Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Spain
| | - Víctor Faùndes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Saumya Shekhar Jamuar
- Genetics Service, KK Women's and Children's Hospital and Paediatrics ACP, Duke-NUS Medical School, Singapore; Singhealth Duke-NUS Institute of Precision Medicine, Singapore
| | | | - Guillem Pintos-Morell
- Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital, Spain; MPS-Spain Patient Advocacy Organization, Spain
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, India
| | - Ruty Shai
- Pediatric Cancer Molecular Lab, Sheba Medical Center, Israel
| | | | - Biruté Tumiene
- Vilnius University, Faculty of Medicine, Institute of Biomedical Sciences, Lithuania
| | - Alain Verloes
- Département de Génétique, CHU Paris - Hôpital Robert Debré, France
| |
Collapse
|
24
|
Smail C, Montgomery SB. RNA Sequencing in Disease Diagnosis. Annu Rev Genomics Hum Genet 2024; 25:353-367. [PMID: 38360541 DOI: 10.1146/annurev-genom-021623-121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA sequencing (RNA-seq) enables the accurate measurement of multiple transcriptomic phenotypes for modeling the impacts of disease variants. Advances in technologies, experimental protocols, and analysis strategies are rapidly expanding the application of RNA-seq to identify disease biomarkers, tissue- and cell-type-specific impacts, and the spatial localization of disease-associated mechanisms. Ongoing international efforts to construct biobank-scale transcriptomic repositories with matched genomic data across diverse population groups are further increasing the utility of RNA-seq approaches by providing large-scale normative reference resources. The availability of these resources, combined with improved computational analysis pipelines, has enabled the detection of aberrant transcriptomic phenotypes underlying rare diseases. Further expansion of these resources, across both somatic and developmental tissues, is expected to soon provide unprecedented insights to resolve disease origin, mechanism of action, and causal gene contributions, suggesting the continued high utility of RNA-seq in disease diagnosis.
Collapse
Affiliation(s)
- Craig Smail
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA;
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Department of Genetics, and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
25
|
Boggs K, Lynch F, Ward M, Bouffler SE, Ayres S, Forbes R, Springer A, de Silva MG, Lynch E, Gallacher L, Davis T, Rakonjac A, Stallard K, Brett GR, Stark Z. Rapid genomic testing in critically ill pediatric patients: Genetic counseling lessons from a national program. GENETICS IN MEDICINE OPEN 2024; 2:101878. [PMID: 39712956 PMCID: PMC11658312 DOI: 10.1016/j.gimo.2024.101878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 12/24/2024]
Abstract
Genetic counselors (GCs) face unique challenges in the acute care setting. Acute care environments-such as neonatal and pediatric intensive care units-are characterized by urgency, complexity, and rapid decision making. These settings require GCs to navigate a delicate balance between addressing the immediate clinical needs of patients and providing comprehensive genetic information to families, while demanding adaptation of existing skills for practice. Rapid genomic testing (rGT) is increasingly becoming standard of care in acute care. GCs are well placed to support families through the rGT process. Despite this, there is a lack of consistency in the provision of comprehensive acute care genetic counseling globally and a subsequent need for professional guidance in this area. The Acute Care Genomics study piloted a national approach to delivering rGT for infants and children admitted to intensive care units in Australia with suspected genetic conditions between 2018 and 2022. GCs from across Australia were involved in both pre- and post-test counseling for the families of these critically unwell children. Based on our collective experience of delivering this national rGT program, this article provides a discussion of common challenges for health professionals new to delivering rGT in intensive care. We share some practical solutions and make recommendations for supporting families in this area of practice.
Collapse
Affiliation(s)
- Kirsten Boggs
- Australian Genomics, Melbourne, Australia
- Sydney Children’s Hospitals Network, Westmead, Sydney, Australia
- Sydney Children’s Hospitals Network, Randwick, Sydney, Australia
| | - Fiona Lynch
- Murdoch Children’s Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | | | - Sophie E. Bouffler
- Australian Genomics, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Samantha Ayres
- University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Robin Forbes
- Murdoch Children’s Research Institute, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Amanda Springer
- Monash Genetics, Monash Health, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Michelle G. de Silva
- Murdoch Children’s Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Elly Lynch
- Murdoch Children’s Research Institute, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Lyndon Gallacher
- University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
| | | | | | - Kirsty Stallard
- Paediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, North Adelaide, Australia
| | - Gemma R. Brett
- University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Australian Genomics, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
26
|
Palmer EE, Cederroth H, Cederroth M, Delgado-Vega AM, Roberts N, Taylan F, Nordgren A, Botto LD. Equity in action: The Diagnostic Working Group of The Undiagnosed Diseases Network International. NPJ Genom Med 2024; 9:37. [PMID: 38965249 PMCID: PMC11224220 DOI: 10.1038/s41525-024-00422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Rare diseases are recognized as a global public health priority. A timely and accurate diagnosis is a critical enabler for precise and personalized health care. However, barriers to rare disease diagnoses are especially steep for those from historically underserved communities, including low- and middle-income countries. The Undiagnosed Diseases Network International (UDNI) was launched in 2015 to help fill the knowledge gaps that impede diagnosis for rare diseases, and to foster the translation of research into medical practice, aided by active patient involvement. To better pursue these goals, in 2021 the UDNI established the Diagnostic Working Group of the UDNI (UDNI DWG) as a community of practice that would (a) accelerate diagnoses for more families; (b) support and share knowledge and skills by developing Undiagnosed Diseases Programs, particularly those in lower resource areas; and (c) promote discovery and expand global medical knowledge. This Perspectives article documents the initial establishment and iterative co-design of the UDNI DWG.
Collapse
Affiliation(s)
- Elizabeth Emma Palmer
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
- Centre for Clinical Genetics, Sydney Childrens' Hospitals Network, Sydney, NSW, Australia.
| | | | | | - Angelica Maria Delgado-Vega
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Roberts
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
27
|
Baple EL, Scott RH, Banka S, Buchanan J, Fish L, Wynn S, Wilkinson D, Ellard S, MacArthur DG, Stark Z. Exploring the benefits, harms and costs of genomic newborn screening for rare diseases. Nat Med 2024; 30:1823-1825. [PMID: 38898121 DOI: 10.1038/s41591-024-03055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
| | - Richard H Scott
- Great Ormond Street Hospital for Children, London, UK.
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Genomics England, London, UK.
| | - Siddharth Banka
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - James Buchanan
- Health Economics and Policy Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | | - Sarah Wynn
- Unique-Rare Chromosome Disorder Support Group, Oxted, UK
| | - Dominic Wilkinson
- Faculty of Philosophy, Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Centre for Biomedical Ethics, National University of, Singapore, Singapore
| | - Sian Ellard
- Exeter Genomics Laboratory, South West Genomic Laboratory Hub, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, 384 Victoria Street, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
28
|
Antoniou AA, McGinley R, Metzler M, Chaudhari BP. NeoGx: Machine-Recommended Rapid Genome Sequencing for Neonates. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309403. [PMID: 38978650 PMCID: PMC11230343 DOI: 10.1101/2024.06.24.24309403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Genetic disease is common in the Level IV Neonatal Intensive Care Unit (NICU), but neonatology providers are not always able to identify the need for genetic evaluation. We trained a machine learning (ML) algorithm to predict the need for genetic testing within the first 18 months of life using health record phenotypes. Methods For a decade of NICU patients, we extracted Human Phenotype Ontology (HPO) terms from clinical text with Natural Language Processing tools. Considering multiple feature sets, classifier architectures, and hyperparameters, we selected a classifier and made predictions on a validation cohort of 2,241 Level IV NICU admits born 2020-2021. Results Our classifier had ROC AUC of 0.87 and PR AUC of 0.73 when making predictions during the first week in the Level IV NICU. We simulated testing policies under which subjects begin testing at the time of first ML prediction, estimating diagnostic odyssey length both with and without the additional benefit of pursuing rGS at this time. Just by using ML to accelerate initial genetic testing (without changing the tests ordered), the median time to first genetic test dropped from 10 days to 1 day, and the number of diagnostic odysseys resolved within 14 days of NICU admission increased by a factor of 1.8. By additionally requiring rGS at the time of positive ML prediction, the number of diagnostic odysseys resolved within 14 days was 3.8 times higher than the baseline. Conclusions ML predictions of genetic testing need, together with the application of the right rapid testing modality, can help providers accelerate genetics evaluation and bring about earlier and better outcomes for patients.
Collapse
Affiliation(s)
- Austin A Antoniou
- The Office of Data Sciences, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Regan McGinley
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Marina Metzler
- Division of Newborn Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Division of Newborn Medicine, Women and Infants Center, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Bimal P Chaudhari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center for Clinical and Translational Science, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
29
|
Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, Siu CWK, King J, Mas E, Kassahn KS. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. Int J Neonatal Screen 2024; 10:42. [PMID: 39051398 PMCID: PMC11270328 DOI: 10.3390/ijns10030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven the expansion of screening programs to cover additional conditions. In the current era, the breadth of screened conditions could be further expanded by integrating omic technologies such as untargeted metabolomics and genomics. Genomic screening could offer opportunities for lifelong care beyond the newborn period. For genomic newborn screening to be effective and ready for routine adoption, it must overcome barriers such as implementation cost, public acceptability, and scalability. Metabolomics approaches, on the other hand, can offer insight into disease phenotypes and could be used to identify known and novel biomarkers of disease. Given recent advances in metabolomic technologies, alongside advances in genomics including whole-genome sequencing, the combination of complementary multi-omic approaches may provide an exciting opportunity to leverage the best of both approaches and overcome their respective limitations. These techniques are described, along with the current outlook on multi-omic-based NBS research.
Collapse
Affiliation(s)
- Alex J. Ashenden
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Ayesha Chowdhury
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Lucy T. Anastasi
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Khoa Lam
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tomas Rozek
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Enzo Ranieri
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Carol Wai-Kwan Siu
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jovanka King
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Department of Allergy and Clinical Immunology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Discipline of Paediatrics, Women’s and Children’s Hospital, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Emilie Mas
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karin S. Kassahn
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
30
|
Marić I, Stevenson DK, Aghaeepour N, Gaudillière B, Wong RJ, Angst MS. Predicting Preterm Birth Using Proteomics. Clin Perinatol 2024; 51:391-409. [PMID: 38705648 PMCID: PMC11186213 DOI: 10.1016/j.clp.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The complexity of preterm birth (PTB), both spontaneous and medically indicated, and its various etiologies and associated risk factors pose a significant challenge for developing tools to accurately predict risk. This review focuses on the discovery of proteomics signatures that might be useful for predicting spontaneous PTB or preeclampsia, which often results in PTB. We describe methods for proteomics analyses, proteomics biomarker candidates that have so far been identified, obstacles for discovering biomarkers that are sufficiently accurate for clinical use, and the derivation of composite signatures including clinical parameters to increase predictive power.
Collapse
Affiliation(s)
- Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA.
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Grant Building, Office 276A, 300 Pasteur Drive, Stanford, CA 94305-5117, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Grant Building, Office 276A, 300 Pasteur Drive, Stanford, CA 94305-5117, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Grant S280, Stanford, CA 94305, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Grant Building, Office 276A, 300 Pasteur Drive, Stanford, CA 94305-5117, USA
| |
Collapse
|
31
|
Cinti C, Trivella MG, Joulie M, Ayoub H, Frenzel M. The Roadmap toward Personalized Medicine: Challenges and Opportunities. J Pers Med 2024; 14:546. [PMID: 38929767 PMCID: PMC11204408 DOI: 10.3390/jpm14060546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
In 2019, the International Consortium for Personalised Medicine (ICPerMed) developed a vision on how the use of personalized medicine (PM) approaches will promote "next-generation" medicine in 2030 more firmly centered on the individual's personal characteristics, leading to improved health outcomes within sustainable healthcare systems through research, development, innovation, and implementation for the benefit of patients, citizens, and society. Nevertheless, there are significant hurdles that healthcare professionals, researchers, policy makers, and patients must overcome to implement PM. The ICPerMed aims to provide recommendations to increase stakeholders' awareness on actionable measures to be implemented for the realization of PM. Starting with best practice examples of PM together with consultation of experts and stakeholders, a careful analysis that underlined hurdles, opportunities, recommendations, and information, aiming at developing knowledge on the requirements for PM implementation in healthcare practices, has been provided. A pragmatic roadmap has been defined for PM integration into healthcare systems, suggesting actions to overcome existing barriers and harness the potential of PM for improved health outcomes. In fact, to facilitate the adoption of PM by diverse stakeholders, it is mandatory to have a comprehensive set of resources tailored to stakeholder needs in critical areas of PM. These include engagement strategies, collaboration frameworks, infrastructure development, education and training programs, ethical considerations, resource allocation guidelines, regulatory compliance, and data management and privacy.
Collapse
Affiliation(s)
| | | | - Michael Joulie
- Agence Nationale de la Recherche (ANR), 75013 Paris, France (M.F.)
| | - Hussein Ayoub
- Agence Nationale de la Recherche (ANR), 75013 Paris, France (M.F.)
| | - Monika Frenzel
- Agence Nationale de la Recherche (ANR), 75013 Paris, France (M.F.)
| |
Collapse
|
32
|
Cao X, Huber S, Ahari AJ, Traube FR, Seifert M, Oakes CC, Secheyko P, Vilov S, Scheller IF, Wagner N, Yépez VA, Blombery P, Haferlach T, Heinig M, Wachutka L, Hutter S, Gagneur J. Analysis of 3760 hematologic malignancies reveals rare transcriptomic aberrations of driver genes. Genome Med 2024; 16:70. [PMID: 38769532 PMCID: PMC11103968 DOI: 10.1186/s13073-024-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.
Collapse
Affiliation(s)
- Xueqi Cao
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany
| | - Sandra Huber
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ata Jadid Ahari
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Franziska R Traube
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christopher C Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Polina Secheyko
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sergey Vilov
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Ines F Scheller
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Torsten Haferlach Leukämiediagnostik Stiftung, Munich, Germany
| | | | - Matthias Heinig
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Leonhard Wachutka
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
33
|
Kronzer VL, Sparks JA, Raychaudhuri S, Cerhan JR. Low-frequency and rare genetic variants associated with rheumatoid arthritis risk. Nat Rev Rheumatol 2024; 20:290-300. [PMID: 38538758 DOI: 10.1038/s41584-024-01096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Rheumatoid arthritis (RA) has an estimated heritability of nearly 50%, which is particularly high in seropositive RA. HLA alleles account for a large proportion of this heritability, in addition to many common single-nucleotide polymorphisms with smaller individual effects. Low-frequency and rare variants, such as those captured by next-generation sequencing, can also have a large role in heritability in some individuals. Rare variant discovery has informed the development of drugs such as inhibitors of PCSK9 and Janus kinases. Some 34 low-frequency and rare variants are currently associated with RA risk. One variant (19:10352442G>C in TYK2) was identified in five separate studies, and might therefore represent a promising therapeutic target. Following a set of best practices in future studies, including studying diverse populations, using large sample sizes, validating RA and serostatus, replicating findings, adjusting for other variants and performing functional assessment, could help to ensure the relevance of identified variants. Exciting opportunities are now on the horizon for genetics in RA, including larger datasets and consortia, whole-genome sequencing and direct applications of findings in the management, and especially treatment, of RA.
Collapse
Affiliation(s)
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Vears DF, Lynch F, Nisselle A, Ayres S, Stark Z. Rapid genomic testing in critically ill patients with genetic conditions: position statement by the Human Genetics Society of Australasia. Eur J Hum Genet 2024; 32:150-154. [PMID: 37864047 PMCID: PMC10853566 DOI: 10.1038/s41431-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Danya F Vears
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Fiona Lynch
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Amy Nisselle
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Samantha Ayres
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- The University of Melbourne, Melbourne, VIC, Australia.
- Australian Genomics, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Audet S, Triassi V, Gelinas M, Legault-Cadieux N, Ferraro V, Duquette A, Tetreault M. Integration of multi-omics technologies for molecular diagnosis in ataxia patients. Front Genet 2024; 14:1304711. [PMID: 38239855 PMCID: PMC10794629 DOI: 10.3389/fgene.2023.1304711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Episodic ataxias are rare neurological disorders characterized by recurring episodes of imbalance and coordination difficulties. Obtaining definitive molecular diagnoses poses challenges, as clinical presentation is highly heterogeneous, and literature on the underlying genetics is limited. While the advent of high-throughput sequencing technologies has significantly contributed to Mendelian disorders genetics, interpretation of variants of uncertain significance and other limitations inherent to individual methods still leaves many patients undiagnosed. This study aimed to investigate the utility of multi-omics for the identification and validation of molecular candidates in a cohort of complex cases of ataxia with episodic presentation. Methods: Eight patients lacking molecular diagnosis despite extensive clinical examination were recruited following standard genetic testing. Whole genome and RNA sequencing were performed on samples isolated from peripheral blood mononuclear cells. Integration of expression and splicing data facilitated genomic variants prioritization. Subsequently, long-read sequencing played a crucial role in the validation of those candidate variants. Results: Whole genome sequencing uncovered pathogenic variants in four genes (SPG7, ATXN2, ELOVL4, PMPCB). A missense and a nonsense variant, both previously reported as likely pathogenic, configured in trans in individual #1 (SPG7: c.2228T>C/p.I743T, c.1861C>T/p.Q621*). An ATXN2 microsatellite expansion (CAG32) in another late-onset case. In two separate individuals, intronic variants near splice sites (ELOVL4: c.541 + 5G>A; PMPCB: c.1154 + 5G>C) were predicted to induce loss-of-function splicing, but had never been reported as disease-causing. Long-read sequencing confirmed the compound heterozygous variants configuration, repeat expansion length, as well as splicing landscape for those pathogenic variants. A potential genetic modifier of the ATXN2 expansion was discovered in ZFYVE26 (c.3022C>T/p.R1008*). Conclusion: Despite failure to identify pathogenic variants through clinical genetic testing, the multi-omics approach enabled the molecular diagnosis in 50% of patients, also giving valuable insights for variant prioritization in remaining cases. The findings demonstrate the value of long-read sequencing for the validation of candidate variants in various scenarios. Our study demonstrates the effectiveness of leveraging complementary omics technologies to unravel the underlying genetics in patients with unresolved rare diseases such as ataxia. Molecular diagnoses not only hold significant promise in improving patient care management, but also alleviates the burden of diagnostic odysseys, more broadly enhancing quality of life.
Collapse
Affiliation(s)
- Sebastien Audet
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Valerie Triassi
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Myriam Gelinas
- Department of Medicine, University of Montreal Hospital Centre (CHUM), Montreal, QC, Canada
| | - Nab Legault-Cadieux
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Vincent Ferraro
- Department of Medicine, University of Montreal Hospital Centre (CHUM), Montreal, QC, Canada
| | - Antoine Duquette
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Neurology Service, Department of Medicine, André-Barbeau Movement Disorders Unit, University of Montreal Hospital (CHUM), Montreal, QC, Canada
- Genetic Service, Department of Medicine, University of Montreal Hospital (CHUM), Montreal, QC, Canada
| | - Martine Tetreault
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
36
|
Abou Tayoun AN, Alsheikh-Ali A. A rapid whole-genome sequencing service for infants with rare diseases in the United Arab Emirates. Nat Med 2023; 29:2979-2980. [PMID: 37872224 DOI: 10.1038/s41591-023-02596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Affiliation(s)
- Ahmad N Abou Tayoun
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Dubai Academic Health Corporation, Dubai, United Arab Emirates.
| | - Alawi Alsheikh-Ali
- Dubai Academic Health Corporation, Dubai, United Arab Emirates
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
37
|
Bonjoch L, Castellví-Bel S, Ruiz-Ponte C. Reply. Gastroenterology 2023; 165:1577-1578. [PMID: 37741422 DOI: 10.1053/j.gastro.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica-Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| |
Collapse
|
38
|
Hollstein R, Peron A, Wendt KS, Parenti I. Editorial: Pathogenic mechanisms in neurodevelopmental disorders: advances in cellular models and multi-omics approaches. Front Cell Dev Biol 2023; 11:1296885. [PMID: 37868909 PMCID: PMC10588624 DOI: 10.3389/fcell.2023.1296885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Affiliation(s)
- R. Hollstein
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - A. Peron
- Medical Genetics, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università Degli Studi Di Firenze, Florence, Italy
| | - K. S. Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - I. Parenti
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|