1
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Xu Z, Zheng X, Fan J, Jiao Y, Huang S, Xie Y, Xu S, Lu Y, Liu A, Liu R, Yang Y, Luo GZ, Pan T, Wang X. Microbiome-induced reprogramming in post-transcriptional landscape using nanopore direct RNA sequencing. Cell Rep 2024; 43:114798. [PMID: 39365698 DOI: 10.1016/j.celrep.2024.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
It has been widely recognized that the microbiota has the capacity to shape host gene expression and physiological functions. However, there remains a paucity of comprehensive study revealing the host transcriptional landscape regulated by the microbiota. Here, we comprehensively examined mRNA landscapes in mouse tissues (brain and cecum) from specific-pathogen-free and germ-free mice using nanopore direct RNA sequencing. Our results show that the microbiome has global influence on a host's RNA modifications (m6A, m5C, Ψ), isoform generation, poly(A) tail length, and transcript abundance in both brain and cecum tissues. Moreover, the microbiome exerts tissue-specific effects on various post-transcriptional regulatory processes. In addition, the microbiome impacts the coordination of multiple RNA modifications in host brain and cecum tissues. In conclusion, we establish the relationship between microbial regulation and gene expression. Our results help the understanding of the mechanisms by which the microbiome reprograms host gene expression.
Collapse
Affiliation(s)
- Zihe Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoqi Zheng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiajun Fan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuting Jiao
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sihao Huang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yingyuan Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shunlan Xu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yi Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Anrui Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Runzhou Liu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyun Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, South China Normal University, Guangzhou 510631, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang B, Zhang S, Wu Y, Li Y, Kong L, Wu R, Zhao M, Liu W, Yu H. Defining context-dependent m 6A RNA methylomes in Arabidopsis. Dev Cell 2024; 59:2772-2786.e3. [PMID: 39025060 DOI: 10.1016/j.devcel.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
N6-Methyladenosine (m6A) prevalently occurs on cellular RNA across almost all kingdoms of life. It governs RNA fate and is essential for development and stress responses. However, the dynamic, context-dependent m6A methylomes across tissues and in response to various stimuli remain largely unknown in multicellular organisms. Here, we generate a comprehensive census that identifies m6A methylomes in 100 samples during development or following exposure to various external conditions in Arabidopsis thaliana. We demonstrate that m6A is a suitable biomarker to reflect the developmental lineage, and that various stimuli rapidly affect m6A methylomes that constitute the regulatory network required for an effective response to the stimuli. Integrative analyses of the census and its correlation with m6A regulators identify multiple layers of regulation on highly context-dependent m6A modification in response to diverse developmental and environmental stimuli, providing insights into m6A modification dynamics in the myriad contexts of multicellular organisms.
Collapse
Affiliation(s)
- Bin Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yujin Wu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lingyao Kong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ranran Wu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Zhao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Luo Z, Yu L, Xu Z, Liu K, Gu L. Comprehensive Review and Assessment of Computational Methods for Prediction of N6-Methyladenosine Sites. BIOLOGY 2024; 13:777. [PMID: 39452086 PMCID: PMC11504118 DOI: 10.3390/biology13100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
N6-methyladenosine (m6A) plays a crucial regulatory role in the control of cellular functions and gene expression. Recent advances in sequencing techniques for transcriptome-wide m6A mapping have accelerated the accumulation of m6A site information at a single-nucleotide level, providing more high-confidence training data to develop computational approaches for m6A site prediction. However, it is still a major challenge to precisely predict m6A sites using in silico approaches. To advance the computational support for m6A site identification, here, we curated 13 up-to-date benchmark datasets from nine different species (i.e., H. sapiens, M. musculus, Rat, S. cerevisiae, Zebrafish, A. thaliana, Pig, Rhesus, and Chimpanzee). This will assist the research community in conducting an unbiased evaluation of alternative approaches and support future research on m6A modification. We revisited 52 computational approaches published since 2015 for m6A site identification, including 30 traditional machine learning-based, 14 deep learning-based, and 8 ensemble learning-based methods. We comprehensively reviewed these computational approaches in terms of their training datasets, calculated features, computational methodologies, performance evaluation strategy, and webserver/software usability. Using these benchmark datasets, we benchmarked nine predictors with available online websites or stand-alone software and assessed their prediction performance. We found that deep learning and traditional machine learning approaches generally outperformed scoring function-based approaches. In summary, the curated benchmark dataset repository and the systematic assessment in this study serve to inform the design and implementation of state-of-the-art computational approaches for m6A identification and facilitate more rigorous comparisons of new methods in the future.
Collapse
Affiliation(s)
- Zhengtao Luo
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| | - Liyi Yu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Zhaochun Xu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Kening Liu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Lichuan Gu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Deng T, Ma J. Structures and mechanisms of the RNA m 6A writer. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39238441 DOI: 10.3724/abbs.2024152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
N 6-methyladenosine (m 6A) is the most prevalent epigenetic modification found in eukaryotic mRNAs and plays a crucial role in regulating gene expression by influencing numerous aspects of mRNA metabolism. The m 6A writer for mRNAs and long non-coding RNAs consists of the catalytic subunit m 6A-METTL complex (MTC) (including METTL3/METTL14) and the regulatory subunit m 6A-METTL-associated complex (MACOM) (including HAKAI, WTAP, VIRMA, ZC3H13, and RBM15/15B). In this review, we focus on recent advances in our understanding of the structural and functional properties of m 6A writers and the possible mechanism by which they recognize RNA substrates and perform selective m 6A modifications.
Collapse
|
6
|
Li ST, Ke Y, Zhu Y, Zhu TY, Huang H, Li L, Hou Z, Zhang X, Li Y, Liu C, Li X, Xie M, Zhou L, Meng C, Wang F, Gu X, Yang B, Yu H, Liang Z. Mass spectrometry-based proteomic landscape of rice reveals a post-transcriptional regulatory role of N 6-methyladenosine. NATURE PLANTS 2024; 10:1201-1214. [PMID: 38997433 DOI: 10.1038/s41477-024-01745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Rice is one of the most important staple food and model species in plant biology, yet its quantitative proteomes are largely uncharacterized. Here we quantify the relative protein levels of over 15,000 genes across major rice tissues using a tandem mass tag strategy followed by intensive fractionation and mass spectrometry. We identify tissue-specific and tissue-enriched proteins that are linked to the functional specificity of individual tissues. Proteogenomic comparison of rice and Arabidopsis reveals conserved proteome expression, which differs from mammals in that there is a strong separation of species rather than tissues. Notably, profiling of N6-methyladenosine (m6A) across the rice major tissues shows that m6A at untranslated regions is negatively correlated with protein abundance and contributes to the discordance between RNA and protein levels. We also demonstrate that our data are valuable for identifying novel genes required for regulating m6A methylation. Taken together, this study provides a paradigm for further research into rice proteogenome.
Collapse
Affiliation(s)
- Shang-Tong Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Glbizzia Biosciences, Beijing, China
| | - Yunzhuo Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunke Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian-Yi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Huanwei Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linxia Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyang Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaping Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaofan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiulan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Lianqi Zhou
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Faming Wang
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Generation and analysis of the rice proteome reveals a role for m 6A in posttranscriptional regulation. NATURE PLANTS 2024; 10:1155-1156. [PMID: 39014154 DOI: 10.1038/s41477-024-01748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
|
8
|
Yang M, Zheng X, Fan J, Cheng W, Yan T, Lai Y, Zhang N, Lu Y, Qi J, Huo Z, Xu Z, Huang J, Jiao Y, Liu B, Pang R, Zhong X, Huang S, Luo G, Lee G, Jobin C, Eren AM, Chang EB, Wei H, Pan T, Wang X. Antibiotic-Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m 6A Epitranscriptome via Bile Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307981. [PMID: 38713722 PMCID: PMC11267274 DOI: 10.1002/advs.202307981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.
Collapse
Affiliation(s)
- Meng Yang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Xiaoqi Zheng
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiajun Fan
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Wei Cheng
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tong‐Meng Yan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacau999078China
| | - Yushan Lai
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Nianping Zhang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yi Lu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiali Qi
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zhengyi Huo
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zihe Xu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jia Huang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yuting Jiao
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Biaodi Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and HealthState Key Laboratory of Applied Microbiology Southern ChinaInstitute of MicrobiologyGuangdong Academy of SciencesGuangzhou510070China
| | - Xiang Zhong
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Shi Huang
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Guan‐Zheng Luo
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Gina Lee
- Department of Microbiology and Molecular GeneticsChao Family Comprehensive Cancer CenterUniversity of California Irvine School of MedicineIrvineCA92697USA
| | - Christian Jobin
- Department of MedicineUniversity of Florida College of MedicineGainesvilleFL32610USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity26129OldenburgGermany
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of Oldenburg26129OldenburgGermany
| | - Eugene B Chang
- Department of MedicineKnapp Center for Biomedical DiscoveryThe University of Chicago Knapp Center for Biomedical DiscoveryChicagoIL60637USA
| | - Hong Wei
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tao Pan
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIL60637USA
| | - Xiaoyun Wang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
9
|
Vignolini T, Couble JEC, Doré GRG, Baumgarten S. Transcript tinkering: RNA modifications in protozoan parasites. Curr Opin Microbiol 2024; 79:102477. [PMID: 38663181 DOI: 10.1016/j.mib.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024]
Abstract
Apicomplexan and trypanosomatid parasites have evolved a wide range of post-transcriptional processes that allow them to replicate, differentiate, and transmit within and among multiple different tissue, host, and vector environments. In this review, we highlight the recent advances that point toward the regulatory potential of RNA modifications in mediating these processes on the coding and noncoding transcriptome throughout the life cycle of protozoan parasites. We discuss the recent technical advancements enabling the study of the 'epitranscriptome' and how parasites evolved RNA modification-mediated mechanisms adapted to their unique lifestyles.
Collapse
Affiliation(s)
- Tiziano Vignolini
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Justine E C Couble
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Grégory R G Doré
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Sebastian Baumgarten
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France.
| |
Collapse
|
10
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Yan Y, Ma J, Chen Q, Zhang T, Fan R, Du J. GAS5 regulated by FTO-mediated m6A modification suppresses cell proliferation via the IGF2BP2/QKI axis in breast cancer. Discov Oncol 2024; 15:182. [PMID: 38782769 PMCID: PMC11116296 DOI: 10.1007/s12672-024-01051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The lncRNA growth arrest-specific 5 (GAS5) is involved in regulating breast cancer progression. In this study, we aimed to elucidate the function and mechanism of GAS5 in breast cancer. METHODS The expressions of GAS5, fat mass and obesity-associated protein (FTO), insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), and Quaking (QKI) were assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. The m6A modification level of GAS5 was detected using m6A immunoprecipitation assay (MeRIP). The interaction between IGF2BP2 and GAS5 or QKI was detected using RNA immunoprecipitation assay (RIP) and dual luciferase reporter assay. Cell proliferation was measured using the Cell Counting Kit-8 (CCK-8) assay. The biological functions of the FTO/GAS5/IGF2BP2/QKI axis was assessed using the tumor xenograft assay. RESULTS LncRNA GAS5 expression decreased in breast cancer and was regulated by FTO-mediated m6A modification in an IGF2BP2-dependent manner, resulting in decreased GAS5 stability and expression. GAS5 recruited IGF2BP2 to target QKI and upregulated QKI expression in breast cancer cells. GAS5 suppressed breast cancer growth via IGF2BP2/QKI, and this inhibitory effect was modulated by FTO both in vitro and in vivo. CONCLUSIONS GAS5 regulated by FTO-mediated m6A modification represses the growth of breast cancer via the IGF2BP2/QKI pathway, suggesting that the FTO/GAS5/IGF2BP2/QKI pathway can be a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Yuzhao Yan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast Cancer, Chongqing, 400038, China
| | - Jing Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast Cancer, Chongqing, 400038, China
| | - Qingqiu Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast Cancer, Chongqing, 400038, China
| | - Ting Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast Cancer, Chongqing, 400038, China
| | - Rui Fan
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Junze Du
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast Cancer, Chongqing, 400038, China.
| |
Collapse
|
12
|
Tegowski M, Meyer KD. Studying m 6A in the brain: a perspective on current methods, challenges, and future directions. Front Mol Neurosci 2024; 17:1393973. [PMID: 38711483 PMCID: PMC11070500 DOI: 10.3389/fnmol.2024.1393973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
A major mechanism of post-transcriptional RNA regulation in cells is the addition of chemical modifications to RNA nucleosides, which contributes to nearly every aspect of the RNA life cycle. N6-methyladenosine (m6A) is a highly prevalent modification in cellular mRNAs and non-coding RNAs, and it plays important roles in the control of gene expression and cellular function. Within the brain, proper regulation of m6A is critical for neurodevelopment, learning and memory, and the response to injury, and m6A dysregulation has been implicated in a variety of neurological disorders. Thus, understanding m6A and how it is regulated in the brain is important for uncovering its roles in brain function and potentially identifying novel therapeutic pathways for human disease. Much of our knowledge of m6A has been driven by technical advances in the ability to map and quantify m6A sites. Here, we review current technologies for characterizing m6A and highlight emerging methods. We discuss the advantages and limitations of current tools as well as major challenges going forward, and we provide our perspective on how continued developments in this area can propel our understanding of m6A in the brain and its role in brain disease.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
13
|
Georgeson J, Schwartz S. No evidence for ac4C within human mRNA upon data reassessment. Mol Cell 2024; 84:1601-1610.e2. [PMID: 38640895 DOI: 10.1016/j.molcel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 04/21/2024]
Abstract
Cytidine acetylation (ac4C) of RNA is a post-transcriptional modification catalyzed by Nat10. Recently, an approach termed RedaC:T was employed to map ac4C in human mRNA, relying on detection of C>T mutations in WT but not in Nat10-KO cells. RedaC:T suggested widespread ac4C presence. Here, we reanalyze RedaC:T data. We find that mismatch signatures are not reproducible, as C>T mismatches are nearly exclusively present in only one of two biological replicates. Furthermore, all mismatch types-not only C>T-are highly enriched in WT samples, inconsistent with an acetylation signature. We demonstrate that the originally observed enrichment in mutations in one of the WT samples is due to its low complexity, resulting in the technical amplification of all classes of mismatch counts. Removal of duplicate reads abolishes the skewed mismatch patterns. These analyses account for the irreproducible mismatch patterns across samples while failing to find evidence for acetylation of RedaC:T sites.
Collapse
Affiliation(s)
- Joseph Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel.
| |
Collapse
|
14
|
Albihlal WS, Chan WY, van Werven FJ. Budding yeast as an ideal model for elucidating the role of N 6-methyladenosine in regulating gene expression. Yeast 2024; 41:148-157. [PMID: 38238962 DOI: 10.1002/yea.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
N6-methyladenosine (m6A) is a highly abundant and evolutionarily conserved messenger RNA (mRNA) modification. This modification is installed on RRACH motifs on mRNAs by a hetero-multimeric holoenzyme known as m6A methyltransferase complex (MTC). The m6A mark is then recognised by a group of conserved proteins known as the YTH domain family proteins which guide the mRNA for subsequent downstream processes that determine its fate. In yeast, m6A is installed on thousands of mRNAs during early meiosis by a conserved MTC and the m6A-modified mRNAs are read by the YTH domain-containing protein Mrb1/Pho92. In this review, we aim to delve into the recent advances in our understanding of the regulation and roles of m6A in yeast meiosis. We will discuss the potential functions of m6A in mRNA translation and decay, unravelling their significance in regulating gene expression. We propose that yeast serves as an exceptional model organism for the study of fundamental molecular mechanisms related to the function and regulation of m6A-modified mRNAs. The insights gained from yeast research not only expand our knowledge of mRNA modifications and their molecular roles but also offer valuable insights into the broader landscape of eukaryotic posttranscriptional regulation of gene expression.
Collapse
Affiliation(s)
- Waleed S Albihlal
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Wei Yee Chan
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Folkert J van Werven
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| |
Collapse
|
15
|
Shachar R, Dierks D, Garcia-Campos MA, Uzonyi A, Toth U, Rossmanith W, Schwartz S. Dissecting the sequence and structural determinants guiding m6A deposition and evolution via inter- and intra-species hybrids. Genome Biol 2024; 25:48. [PMID: 38360609 PMCID: PMC10870504 DOI: 10.1186/s13059-024-03182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant mRNA modification, and controls mRNA stability. m6A distribution varies considerably between and within species. Yet, it is unclear to what extent this variability is driven by changes in genetic sequences ('cis') or cellular environments ('trans') and via which mechanisms. RESULTS Here we dissect the determinants governing RNA methylation via interspecies and intraspecies hybrids in yeast and mammalian systems, coupled with massively parallel reporter assays and m6A-QTL reanalysis. We find that m6A evolution and variability is driven primarily in 'cis', via two mechanisms: (1) variations altering m6A consensus motifs, and (2) variation impacting mRNA secondary structure. We establish that mutations impacting RNA structure - even when distant from an m6A consensus motif - causally dictate methylation propensity. Finally, we demonstrate that allele-specific differences in m6A levels lead to allele-specific changes in gene expression. CONCLUSIONS Our findings define the determinants governing m6A evolution and diversity and characterize the consequences thereof on gene expression regulation.
Collapse
Affiliation(s)
- Ran Shachar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - David Dierks
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | | | - Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, 1090, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, 1090, Austria
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel.
| |
Collapse
|
16
|
Guo Z, Duan D, Tang W, Zhu J, Bush WS, Zhang L, Zhu X, Jin F, Feng H. magpie: A power evaluation method for differential RNA methylation analysis in N6-methyladenosine sequencing. PLoS Comput Biol 2024; 20:e1011875. [PMID: 38346081 PMCID: PMC10890765 DOI: 10.1371/journal.pcbi.1011875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, novel biotechnologies to quantify RNA modifications became an increasingly popular choice for researchers who study epitranscriptome. When studying RNA methylations such as N6-methyladenosine (m6A), researchers need to make several decisions in its experimental design, especially the sample size and a proper statistical power. Due to the complexity and high-throughput nature of m6A sequencing measurements, methods for power calculation and study design are still currently unavailable. In this work, we propose a statistical power assessment tool, magpie, for power calculation and experimental design for epitranscriptome studies using m6A sequencing data. Our simulation-based power assessment tool will borrow information from real pilot data, and inspect various influential factors including sample size, sequencing depth, effect size, and basal expression ranges. We integrate two modules in magpie: (i) a flexible and realistic simulator module to synthesize m6A sequencing data based on real data; and (ii) a power assessment module to examine a set of comprehensive evaluation metrics.
Collapse
Affiliation(s)
- Zhenxing Guo
- School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, China
| | - Daoyu Duan
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Julia Zhu
- Hathaway Brown School, Shaker Heights, Ohio, United States of America
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fulai Jin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
17
|
Guca E, Alarcon R, Palo MZ, Santos L, Alonso-Gil S, Davyt M, de Lima LHF, Boissier F, Das S, Zagrovic B, Puglisi JD, Hashem Y, Ignatova Z. N 6-methyladenosine in 5' UTR does not promote translation initiation. Mol Cell 2024; 84:584-595.e6. [PMID: 38244546 PMCID: PMC10909339 DOI: 10.1016/j.molcel.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.
Collapse
Affiliation(s)
- Ewelina Guca
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Rodrigo Alarcon
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Michael Z Palo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo H F de Lima
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Department of Exact and Biological Sciences, Federal University of São João Del Rei, Sete Lagoas Campus, Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Fanny Boissier
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
18
|
Maestri S, Furlan M, Mulroney L, Coscujuela Tarrero L, Ugolini C, Dalla Pozza F, Leonardi T, Birney E, Nicassio F, Pelizzola M. Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing. Brief Bioinform 2024; 25:bbae001. [PMID: 38279646 PMCID: PMC10818168 DOI: 10.1093/bib/bbae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal eukaryotic mRNA modification, and is involved in the regulation of various biological processes. Direct Nanopore sequencing of native RNA (dRNA-seq) emerged as a leading approach for its identification. Several software were published for m6A detection and there is a strong need for independent studies benchmarking their performance on data from different species, and against various reference datasets. Moreover, a computational workflow is needed to streamline the execution of tools whose installation and execution remains complicated. We developed NanOlympicsMod, a Nextflow pipeline exploiting containerized technology for comparing 14 tools for m6A detection on dRNA-seq data. NanOlympicsMod was tested on dRNA-seq data generated from in vitro (un)modified synthetic oligos. The m6A hits returned by each tool were compared to the m6A position known by design of the oligos. In addition, NanOlympicsMod was used on dRNA-seq datasets from wild-type and m6A-depleted yeast, mouse and human, and each tool's hits were compared to reference m6A sets generated by leading orthogonal methods. The performance of the tools markedly differed across datasets, and methods adopting different approaches showed different preferences in terms of precision and recall. Changing the stringency cut-offs allowed for tuning the precision-recall trade-off towards user preferences. Finally, we determined that precision and recall of tools are markedly influenced by sequencing depth, and that additional sequencing would likely reveal additional m6A sites. Thanks to the possibility of including novel tools, NanOlympicsMod will streamline the benchmarking of m6A detection tools on dRNA-seq data, improving future RNA modification characterization.
Collapse
Affiliation(s)
- Simone Maestri
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Logan Mulroney
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, U.K
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Lucia Coscujuela Tarrero
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Camilla Ugolini
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Fabio Dalla Pozza
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, U.K
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Teng H, Stoiber M, Bar-Joseph Z, Kingsford C. Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574484. [PMID: 38260359 PMCID: PMC10802372 DOI: 10.1101/2024.01.06.574484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Direct nanopore-based RNA sequencing can be used to detect post-transcriptional base modifications, such as m6A methylation, based on the electric current signals produced by the distinct chemical structures of modified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present Xron, a hybrid encoder-decoder framework that delivers a direct methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation-based experimental data in two steps. First, we generate data with more diverse modification combinations through in silico cross-linking. Second, we use this dataset to train an end-to-end neural network basecaller followed by fine-tuning on immunoprecipitation-based experimental data with label-smoothing. The trained neural network basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome assembly.
Collapse
Affiliation(s)
- Haotian Teng
- Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 15213, USA
| | | | - Ziv Bar-Joseph
- Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 15213, USA
| | - Carl Kingsford
- Computational Biology Department, Carnegie Mellon Univeristy, Pittsburgh PA 15213, USA
| |
Collapse
|
20
|
Liang Z, Ye H, Ma J, Wei Z, Wang Y, Zhang Y, Huang D, Song B, Meng J, Rigden DJ, Chen K. m6A-Atlas v2.0: updated resources for unraveling the N6-methyladenosine (m6A) epitranscriptome among multiple species. Nucleic Acids Res 2024; 52:D194-D202. [PMID: 37587690 PMCID: PMC10768109 DOI: 10.1093/nar/gkad691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
N 6-Methyladenosine (m6A) is one of the most abundant internal chemical modifications on eukaryote mRNA and is involved in numerous essential molecular functions and biological processes. To facilitate the study of this important post-transcriptional modification, we present here m6A-Atlas v2.0, an updated version of m6A-Atlas. It was expanded to include a total of 797 091 reliable m6A sites from 13 high-resolution technologies and two single-cell m6A profiles. Additionally, three methods (exomePeaks2, MACS2 and TRESS) were used to identify >16 million m6A enrichment peaks from 2712 MeRIP-seq experiments covering 651 conditions in 42 species. Quality control results of MeRIP-seq samples were also provided to help users to select reliable peaks. We also estimated the condition-specific quantitative m6A profiles (i.e. differential methylation) under 172 experimental conditions for 19 species. Further, to provide insights into potential functional circuitry, the m6A epitranscriptomics were annotated with various genomic features, interactions with RNA-binding proteins and microRNA, potentially linked splicing events and single nucleotide polymorphisms. The collected m6A sites and their functional annotations can be freely queried and downloaded via a user-friendly graphical interface at: http://rnamd.org/m6a.
Collapse
Affiliation(s)
- Zhanmin Liang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350004, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Haokai Ye
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, Liverpool, UK
| | - Jiongming Ma
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350004, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, Liverpool, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Yue Wang
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Department of Computer Science, University of Liverpool, Liverpool L69 7ZB, UK
| | - Yuxin Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350004, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, Liverpool, UK
| | - Daiyun Huang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Department of Computer Science, University of Liverpool, Liverpool L69 7ZB, UK
| | - Bowen Song
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, Liverpool, UK
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, Liverpool, UK
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350004, China
| |
Collapse
|
21
|
Zhang M, Xiao Y, Jiang Z, Yi C. Quantifying m 6A and Ψ Modifications in the Transcriptome via Chemical-Assisted Approaches. Acc Chem Res 2023; 56:2980-2991. [PMID: 37851547 DOI: 10.1021/acs.accounts.3c00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Since the discovery of the first chemically modified RNA nucleotide in 1951, more than 170 types of chemical modifications have been characterized in RNA so far. Since the discovery of the reversible and dynamic nature of N6-methyladenosine (m6A) in mRNA modification, researchers have identified about ten modifications in eukaryotic mRNA; together with modifications on the noncoding RNAs, the term "epitranscriptome" has been coined to describe the ensemble of various chemical RNA modifications. The past decade has witnessed the discovery of many novel molecular functions of mRNA modifications, demonstrating their crucial roles in gene expression regulation. As the most abundant modifications in mRNA, the study of m6A and Ψ has been facilitated by innovative high-throughput sequencing technologies, which can be based on antibodies, enzymes, or novel chemistry. Among them, chemical-assisted methods utilize selective chemistry that can discriminate modified versus unmodified nucleotides, enabling the transcriptome-wide mapping of m6A and Ψ modifications and functional studies.Our group has developed several sequencing technologies to investigate these epitranscriptomic marks including m6A, Ψ, m1A, and m6Am. Among them, we have recently developed two methods for absolute quantification of m6A and Ψ in the transcriptome based on chemical reactivity to distinguish and measure the two modifications. In GLORI, we used glyoxal and nitrite to mediate efficient deamination of regular adenosine, while m6A remained unaffected, thereby enabling efficient and unbiased detection of single-base resolution and absolute quantification of m6A modification. In CeU-seq and PRAISE, we used different chemistry to achieve selective labeling and detection of transcriptome-wide Ψ. CeU-seq is based on an azido-derivatized carbodiimide compound, while PRAISE utilizes the unique activity of bisulfite to Ψ. PRAISE results in the formation of ring-opening Ψ-bisulfite adduct and quantitatively detects Ψ as 1-2 nt deletion signatures during sequencing. The resulting base-resolution and stoichiometric information expanded our understanding to the profiles of RNA modifications in the transcriptome. In particular, the quantitative information on RNA methylome is critical for characterizing the dynamic and reversible nature of RNA modifications, for instance, under environmental stress or during development. Additionally, base-resolution and stoichiometric information can greatly facilitate the analysis and characterization of functional modification sites that are important for gene expression regulation, especially when one modification type may have multiple or even opposing functions within a specific transcript. Together, the quantitative profiling methods provide the modification stoichiometry information, which is critical to study the regulatory roles of RNA modifications.In this Account, we will focus on the quantitative sequencing technologies of m6A and Ψ developed in our group, review recent advances in chemical-assisted reactions for m6A and Ψ detection, and discuss the challenges and future opportunities of transcriptome-wide mapping technologies for RNA modifications.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ye Xiao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhe Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Zhang Y, Guo X, Chen Z, Guo R. Low m6A modification-mediated upregulation of PLAC8 promotes trophoblast cell invasion and migration in preeclampsia. Eur J Med Res 2023; 28:466. [PMID: 37885015 PMCID: PMC10605972 DOI: 10.1186/s40001-023-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The main symptoms of preeclampsia (PE), a specific ailment that develops during pregnancy, are proteinuria and hypertension. The pathological root of the onset and progression of PE is widely regarded as abnormal placental trophoblast cell function. This study aimed to look into the character and mechanism of Placenta-specific 8 (PLAC8) in trophoblast cell invasion and migration. METHODS Expressions of PLAC8 and AlkB homologue 5 (ALKBH5) were examined by western blot and quantitative real-time PCR. The m6A level of PLAC8 mRNA was detected by methylated RNA Immunoprecipitation. Using Transwell experiments, cell invasion and migration were examined. The enzyme-linked immunosorbent assay was utilized to analyze the MMP-2 and MMP-9 secretion levels. RNA pull-down and RNA immunoprecipitation were conducted to detect the binding between ALKBH5 and PLAC8. RESULTS In PE tissue and hypoxia-treated HTR-8/SVneo cells, levels of ALKBH5 and PLAC8 were increased, and PLAC8 m6A methylation levels were decreased. There was a positive correlation between PLAC8 and ALKBH5 expression in clinical tissues. In addition, overexpressing PLAC8 promoted HTR-8/SVneo cell migration and invasion, and so as the levels of MMP-2 and MMP-9; while interference with PLAC8 reduced the migration and invasion of hypoxia-treated HTR-8/SVneo cells, and so as the levels of MMP-2 and MMP-9. Moreover, the PLAC8 mRNA's m6A modification site was GAACU (Position 1449, Site 2). Increased levels of MMP-2 and MMP-9, as well as migration and invasion of HTR-8/SVneo cells exposed to hypoxia, were all facilitated by the m6A Site2 mutation. Furthermore, ALKBH5 could bind to PLAC8, reduce its m6A modification, and promote its expression. CONCLUSION High-expressed ALKBH5 inhibits the m6A level of PLAC8 mRNA and promotes PLAC8 expression, while PLAC8 overexpression can promote hypoxia-induced invasion and migration of HTR-8/Svneo cells, indicating its potential protective function in PE.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, Henan, 450000, China
| | - Xiaoguang Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Zhimin Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, Henan, 450000, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
23
|
He M, Li Z, Xie X. The Roles of N6-Methyladenosine Modification in Plant-RNA Virus Interactions. Int J Mol Sci 2023; 24:15608. [PMID: 37958594 PMCID: PMC10649972 DOI: 10.3390/ijms242115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic post-transcriptional RNA modification. Recently, its role in viruses has led to the study of viral epitranscriptomics. m6A has been observed in viral genomes and alters the transcriptomes of both the host cell and virus during infection. The effects of m6A modifications on host plant mRNA can either increase the likelihood of viral infection or enhance the resistance of the host to the virus. However, to date, the regulatory mechanisms of m6A in viral infection and host immune responses have not been fully elucidated. With the development of sequencing-based biotechnologies, the study of m6A in plant viruses has received increasing attention. In this mini review, we summarize the positive and negative consequences of m6A modification in different RNA viral infections. Given its increasingly important roles in multiple viruses, m6A represents a new potential target for antiviral defense.
Collapse
Affiliation(s)
- Min He
- Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xin Xie
- Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
24
|
Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ 2023:10.1038/s41418-023-01213-1. [PMID: 37658169 DOI: 10.1038/s41418-023-01213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Collapse
Affiliation(s)
- Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiao Shu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
25
|
Jansens RJ, Olarerin-George A, Verhamme R, Mirza A, Jaffrey S, Favoreel HW. Alphaherpesvirus-mediated remodeling of the cellular transcriptome results in depletion of m6A-containing transcripts. iScience 2023; 26:107310. [PMID: 37575180 PMCID: PMC10415716 DOI: 10.1016/j.isci.2023.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The mechanisms by which viruses regulate host mRNAs during infection are still poorly understood. Several host transcripts that encode proteins that contribute to the anti-viral response contain the N6-methyladenosine nucleotide (m6A). In this study, we investigated if and how viruses from different (sub) families specifically affect m6A-containing host transcripts. Systematic analysis of host transcriptomes after infection with diverse types of viruses showed that m6A-methylated transcripts are selectively downregulated during infection with Sendai virus, African swine fever virus and the alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). Focusing on PRV and HSV-1, we found that downregulation of m6A-methylated transcripts depends on the YTHDF family of m6A-binding proteins, and correlates with localization of these proteins to enlarged P-bodies. Knockdown of YTHDF proteins in primary cells reduced PRV protein expression and increased expression of antiviral interferon-stimulated genes, suggesting that virus-induced depletion of host m6A-containing transcripts constitutes an immune evasion strategy.
Collapse
Affiliation(s)
- Robert J.J. Jansens
- Department of Translational Physiology, Infectiology and Public Health
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Anthony Olarerin-George
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Ruth Verhamme
- Department of Translational Physiology, Infectiology and Public Health
| | - Aashiq Mirza
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Samie Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | | |
Collapse
|
26
|
Liu XH, Liu Z, Ren ZH, Chen HX, Zhang Y, Zhang Z, Cao N, Luo GZ. Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation. Epigenetics Chromatin 2023; 16:32. [PMID: 37568210 PMCID: PMC10416456 DOI: 10.1186/s13072-023-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood. RESULTS We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts. CONCLUSION Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Xue-Hong Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhun Liu
- Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hong-Xuan Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China
| | - Zhang Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China.
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
27
|
Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m 6A modification in cancer. Nat Rev Clin Oncol 2023; 20:507-526. [PMID: 37221357 DOI: 10.1038/s41571-023-00774-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
N6-Methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, has been extensively and increasingly studied over the past decade. Dysregulation of RNA m6A modification and its associated machinery, including writers, erasers and readers, is frequently observed in various cancer types, and the dysregulation profiles might serve as diagnostic, prognostic and/or predictive biomarkers. Dysregulated m6A modifiers have been shown to function as oncoproteins or tumour suppressors with essential roles in cancer initiation, progression, metastasis, metabolism, therapy resistance and immune evasion as well as in cancer stem cell self-renewal and the tumour microenvironment, highlighting the therapeutic potential of targeting the dysregulated m6A machinery for cancer treatment. In this Review, we discuss the mechanisms by which m6A modifiers determine the fate of target RNAs and thereby influence protein expression, molecular pathways and cell phenotypes. We also describe the state-of-the-art methodologies for mapping global m6A epitranscriptomes in cancer. We further summarize discoveries regarding the dysregulation of m6A modifiers and modifications in cancer, their pathological roles, and the underlying molecular mechanisms. Finally, we discuss m6A-related prognostic and predictive molecular biomarkers in cancer as well as the development of small-molecule inhibitors targeting oncogenic m6A modifiers and their activity in preclinical models.
Collapse
Affiliation(s)
- Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
- Gehr Family Center for Leukemia Research & City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
| |
Collapse
|
28
|
Rücklé C, Körtel N, Basilicata MF, Busch A, Zhou Y, Hoch-Kraft P, Tretow K, Kielisch F, Bertin M, Pradhan M, Musheev M, Schweiger S, Niehrs C, Rausch O, Zarnack K, Keller Valsecchi CI, König J. RNA stability controlled by m 6A methylation contributes to X-to-autosome dosage compensation in mammals. Nat Struct Mol Biol 2023; 30:1207-1215. [PMID: 37202476 PMCID: PMC10442230 DOI: 10.1038/s41594-023-00997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.
Collapse
Affiliation(s)
| | - Nadine Körtel
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - M Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | | | - Marco Bertin
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Susann Schweiger
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
29
|
Ensinck I, Maman A, Albihlal WS, Lassandro M, Salzano G, Sideri T, Howell SA, Calvani E, Patel H, Bushkin G, Ralser M, Snijders AP, Skehel M, Casañal A, Schwartz S, van Werven FJ. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. eLife 2023; 12:RP87860. [PMID: 37490041 PMCID: PMC10393049 DOI: 10.7554/elife.87860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
N6-methyladenosine (m6A), the most abundant mRNA modification, is deposited in mammals/insects/plants by m6A methyltransferase complexes (MTC) comprising a catalytic subunit and at least five additional proteins. The yeast MTC is critical for meiosis and was known to comprise three proteins, of which two were conserved. We uncover three novel MTC components (Kar4/Ygl036w-Vir1/Dyn2). All MTC subunits, except for Dyn2, are essential for m6A deposition and have corresponding mammalian MTC orthologues. Unlike the mammalian bipartite MTC, the yeast MTC is unipartite, yet multifunctional. The mRNA interacting module, comprising Ime4, Mum2, Vir1, and Kar4, exerts the MTC's m6A-independent function, while Slz1 enables the MTC catalytic function in m6A deposition. Both functions are critical for meiotic progression. Kar4 also has a mechanistically separate role from the MTC during mating. The yeast MTC constituents play distinguishable m6A-dependent, MTC-dependent, and MTC-independent functions, highlighting their complexity and paving the path towards dissecting multi-layered MTC functions in mammals.
Collapse
Affiliation(s)
| | - Alexander Maman
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | | | | | | | | | | | | | - Guy Bushkin
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Markus Ralser
- The Francis Crick InstituteLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Department of BiochemistryBerlinGermany
| | | | - Mark Skehel
- The Francis Crick InstituteLondonUnited Kingdom
| | | | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | |
Collapse
|
30
|
Li Y, Sun Y, Yang W, Yang L, Su M, Fang L, Zheng J, Yuan R, Liang W. A novel photoelectrochemical strategy for sequence-spot bispecific analysis of N 6-methyladenosine modification based on proximity ligation-triggered cascade amplification. Anal Chim Acta 2023; 1265:341287. [PMID: 37230570 DOI: 10.1016/j.aca.2023.341287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
N6-methyladenosine (m6A) modification as the most prevalent mammalian RNA internal modification has been considered as the invasive biomarkers in clinical diagnosis and biological mechanism researches. It is still challenged to explore m6A functions due to technical limitations on base- and location-resolved m6A modification. Herein, we firstly proposed a sequence-spot bispecific photoelectrochemical (PEC) strategy based on in situ hybridization mediated proximity ligation assay for m6A RNA characterization with high sensitivity and accuracy. Firstly, the target m6A methylated RNA could be transferred to the exposed cohesive terminus of H1 based on the special self-designed auxiliary proximity ligation assay (PLA) with sequence-spot bispecific recognition. The exposed cohesive terminus of H1 could furtherly trigger the next catalytic hairpin assembly (CHA) amplification and in situ exponential nonlinear hyperbranched hybridization chain reaction for highly sensitive monitoring of m6A methylated RNA. Compared with conventional technologies, the proposed sequence-spot bispecific PEC strategy for m6A methylation of special RNA based on proximity ligation-triggered in situ nHCR performed improved sensitivity and selectivity with a detection limit of 53 fM, providing new insights into highly sensitive monitoring m6A methylation of RNA in bioassay, disease diagnosis and RNA mechanism.
Collapse
Affiliation(s)
- Yan Li
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China; Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Yumeng Sun
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Weiguo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lan Yang
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China
| | - Mingli Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Ruo Yuan
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
31
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
32
|
Zhu W, Zhao R, Guan X, Wang X. The emerging roles and mechanism of N6-methyladenosine (m 6A) modifications in urologic tumours progression. Front Pharmacol 2023; 14:1192495. [PMID: 37284313 PMCID: PMC10239868 DOI: 10.3389/fphar.2023.1192495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BC), and renal cell cancer (RCC) are the most common urologic tumours in males. N6-methyladenosine (m6A), adenosine N6 methylation, is the most prevalent RNA modification in mammals. Increasing evidence suggests that m6A plays a crucial role in cancer development. In this review, we comprehensively analyzed the influence of m6A methylation on Prostate cancer, bladder cancer, and renal cell cancer and the relationship between the expression of relevant regulatory factors and their development and occurrence, which provides new insights and approaches for the early clinical diagnosis and targeted therapy of urologic malignancies.
Collapse
|
33
|
Tang J, Chen S, Jia G. Detection, regulation, and functions of RNA N 6-methyladenosine modification in plants. PLANT COMMUNICATIONS 2023; 4:100546. [PMID: 36627844 DOI: 10.1016/j.xplc.2023.100546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 05/11/2023]
Abstract
N6-Methyladenosine (m6A) is the most abundant internal chemical modification in eukaryotic mRNA and plays important roles in gene expression regulation, including transcriptional and post-transcriptional regulation. m6A is a reversible modification that is installed, removed, and recognized by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers), respectively. Recently, the breadth of research on m6A in plants has expanded, and the vital roles of m6A in plant development, biotic and abiotic stress responses, and crop trait improvement have been investigated. In this review, we discuss recent developments in research on m6A and highlight the detection methods, distribution, regulatory proteins, and molecular and biological functions of m6A in plants. We also offer some perspectives on future investigations, providing direction for subsequent research on m6A in plants.
Collapse
Affiliation(s)
- Jun Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuyan Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
34
|
Ensinck I, Sideri T, Modic M, Capitanchik C, Vivori C, Toolan-Kerr P, van Werven FJ. m6A-ELISA, a simple method for quantifying N6-methyladenosine from mRNA populations. RNA (NEW YORK, N.Y.) 2023; 29:705-712. [PMID: 36759126 PMCID: PMC10159001 DOI: 10.1261/rna.079554.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 05/06/2023]
Abstract
N6-methyladenosine (m6A) is a widely studied and abundant RNA modification. The m6A mark regulates the fate of RNAs in various ways, which in turn drives changes in cell physiology, development, and disease pathology. Over the last decade, numerous methods have been developed to map and quantify m6A sites genome-wide through deep sequencing. Alternatively, m6A levels can be quantified from a population of RNAs using techniques such as liquid chromatography-mass spectrometry or thin layer chromatography. However, many methods for quantifying m6A levels involve extensive protocols and specialized data analysis, and often only a few samples can be handled in a single experiment. Here, we developed a simple method for determining relative m6A levels in mRNA populations from various sources based on an enzyme-linked immunosorbent-based assay (m6A-ELISA). We have optimized various steps of m6A-ELISA, such as sample preparation and the background signal resulting from the primary antibody. We validated the method using mRNA populations from budding yeast and mouse embryonic stem cells. The full protocol takes less than a day, requiring only 25 ng of mRNA. The m6A-ELISA protocol is quick, cost-effective, and scalable, making it a valuable tool for determining relative m6A levels in samples from various sources that could be adapted to detect other mRNA modifications.
Collapse
Affiliation(s)
- Imke Ensinck
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Miha Modic
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Dementia Research Institute at KCL, London SE5 9RX, United Kingdom
- National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | | | - Claudia Vivori
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | | |
Collapse
|
35
|
Shen L, Ma J, Li P, Wu Y, Yu H. Recent advances in the plant epitranscriptome. Genome Biol 2023; 24:43. [PMID: 36882788 PMCID: PMC9990323 DOI: 10.1186/s13059-023-02872-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/12/2023] [Indexed: 03/09/2023] Open
Abstract
Chemical modifications of RNAs, known as the epitranscriptome, are emerging as widespread regulatory mechanisms underlying gene regulation. The field of epitranscriptomics advances recently due to improved transcriptome-wide sequencing strategies for mapping RNA modifications and intensive characterization of writers, erasers, and readers that deposit, remove, and recognize RNA modifications, respectively. Herein, we review recent advances in characterizing plant epitranscriptome and its regulatory mechanisms in post-transcriptional gene regulation and diverse physiological processes, with main emphasis on N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We also discuss the potential and challenges for utilization of epitranscriptome editing in crop improvement.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| | - Jinqi Ma
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Ping Li
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Yujin Wu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
36
|
Liu C, Sun H, Yi Y, Shen W, Li K, Xiao Y, Li F, Li Y, Hou Y, Lu B, Liu W, Meng H, Peng J, Yi C, Wang J. Absolute quantification of single-base m 6A methylation in the mammalian transcriptome using GLORI. Nat Biotechnol 2023; 41:355-366. [PMID: 36302990 DOI: 10.1038/s41587-022-01487-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/24/2022] [Indexed: 12/22/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in mammalian cells and the best-studied epitranscriptomic mark. Despite the development of various tools to map m6A, a transcriptome-wide method that enables absolute quantification of m6A at single-base resolution is lacking. Here we use glyoxal and nitrite-mediated deamination of unmethylated adenosines (GLORI) to develop an absolute m6A quantification method that is conceptually similar to bisulfite-sequencing-based quantification of DNA 5-methylcytosine. We apply GLORI to quantify the m6A methylomes of mouse and human cells and reveal clustered m6A modifications with differential distribution and stoichiometry. In addition, we characterize m6A dynamics under stress and examine the quantitative landscape of m6A modification in gene expression regulation. GLORI is an unbiased, convenient method for the absolute quantification of the m6A methylome.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yunpeng Yi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, China
| | - Weiguo Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ye Xiao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuchen Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Wenqing Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
37
|
Shi J, Zhang P, Dong X, Yuan J, Li Y, Li S, Cheng S, Ping Y, Dai X, Dong J. METTL3 knockdown promotes temozolomide sensitivity of glioma stem cells via decreasing MGMT and APNG mRNA stability. Cell Death Dis 2023; 9:22. [PMID: 36683086 PMCID: PMC9868123 DOI: 10.1038/s41420-023-01327-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Chemo-resistance hinders the therapeutic efficacy of temozolomide (TMZ) in treating glioblastoma multiforme (GBM). Recurrence of GBM even after combination of maximal tumor resection, concurrent radio-chemotherapy, and systemic TMZ applocation is inevitable and attributed to the high therapeutic resistance of glioma stem cells (GSCs), which can survive, evolve, and initiate tumor tissue remodeling, the underlying mechanisms of GSCs chemo-resistance, have not been fully elucidated up-to-now. Emerging evidence showed that METTL3-mediated N6-methyladenosine (m6A) modification contributed to the self-renew and radio-resistance in GSCs, however, its role on maintenance of TMZ resistance of GSCs has not been clarified and need further investigations. We found that the cell viability and half-maximal inhibitory concentration (IC50) of GSCs against TMZ significantly decreased after GSCs underwent serum-induced differentiation to adherent growth of tumor cells. Besides, METTL3 expression and total m6A modification declined dramatically in consistence with GSCs differentiation. Knockdown of METTL3 weakened self-renew, proliferation and TMZ IC50 of GSCs, whereas enhanced TMZ induced γH2AX level, indicating upregulation of double-strand DNA damage. We also found that mRNA stability of two critical DNA repair genes (MGMT and APNG) was regulated by METTL3-mediated m6A modification. In conclusion, we speculated that METTL3-mediated m6A modification of MGMT and APNG mRNAs played crucial roles on suppression of TMZ sensitivity of GSCs, which suggest a potential new therapeutic target of METTL3 against GBM.
Collapse
Affiliation(s)
- Jia Shi
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China ,grid.452253.70000 0004 1804 524XDepartment of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Peng Zhang
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuchen Dong
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Yuan
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongdong Li
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suwen Li
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yifang Ping
- grid.410570.70000 0004 1760 6682Department of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xingliang Dai
- grid.412679.f0000 0004 1771 3402Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Dong
- grid.452666.50000 0004 1762 8363Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
scm 6A-seq reveals single-cell landscapes of the dynamic m 6A during oocyte maturation and early embryonic development. Nat Commun 2023; 14:315. [PMID: 36658155 PMCID: PMC9852475 DOI: 10.1038/s41467-023-35958-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
N6-methyladenosine (m6A) has been demonstrated to regulate RNA metabolism and various biological processes, including gametogenesis and embryogenesis. However, the landscape and function of m6A at single cell resolution have not been extensively studied in mammalian oocytes or during pre-implantation. In this study, we developed a single-cell m6A sequencing (scm6A-seq) method to simultaneously profile the m6A methylome and transcriptome in single oocytes/blastomeres of cleavage-stage embryos. We found that m6A deficiency leads to aberrant RNA clearance and consequent low quality of Mettl3Gdf9 conditional knockout (cKO) oocytes. We further revealed that m6A regulates the translation and stability of modified RNAs in metaphase II (MII) oocytes and during oocyte-to-embryo transition, respectively. Moreover, we observed m6A-dependent asymmetries in the epi-transcriptome between the blastomeres of two-cell embryo. scm6A-seq thus allows in-depth investigation into m6A characteristics and functions, and the findings provide invaluable single-cell resolution resources for delineating the underlying mechanism for gametogenesis and early embryonic development.
Collapse
|
39
|
Uzonyi A, Dierks D, Nir R, Kwon OS, Toth U, Barbosa I, Burel C, Brandis A, Rossmanith W, Le Hir H, Slobodin B, Schwartz S. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol Cell 2023; 83:237-251.e7. [PMID: 36599352 DOI: 10.1016/j.molcel.2022.12.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we propose that m6A deposition is not selective. Instead, it is exclusion based: m6A consensus motifs are methylated by default, unless they are within a window of ∼100 nt from a splice junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture, allows in silico recapitulation of experimentally measured m6A profiles. We provide evidence that exclusion from splice junctions is mediated by the exon junction complex (EJC), potentially via physical occlusion, and that previously observed associations between exon-intron architecture and mRNA decay are mechanistically mediated via m6A. Our findings establish a mechanism coupling nuclear mRNA splicing and packaging with the covalent installation of m6A, in turn controlling cytoplasmic decay.
Collapse
Affiliation(s)
- Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - David Dierks
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Cindy Burel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7630031, Israel
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel; Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| |
Collapse
|
40
|
Li Y, Tian W, Zhang H. RNA Modifications in Hematologic Malignancies. Cancer Treat Res 2023; 190:181-207. [PMID: 38113002 DOI: 10.1007/978-3-031-45654-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemical modifications on macromolecules such as DNA, RNA and proteins play important roles in almost all biological processes. The revival of RNA modification research began with the discovery of RNA modification machineries, and with the development of better techniques for characterizing and profiling these modifications at the transcriptome-wide level. Hematopoietic system is maintained by hematopoietic stem cells that possess efficient self-renewal capacity and the potential of differentiation into all lineages of blood cells, and the imbalance of this homeostasis frequently causes hematologic malignancies such as leukemia. Recent studies reveal that dysregulated RNA modifications play essential roles in hematologic malignancies. Herein, we summarize recent advances in some major RNA modifications, the detection methods, roles and mechanisms of these RNA modifications in hematologic malignancies.
Collapse
Affiliation(s)
- Yashu Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, No.185, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Wen Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, No.185, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Haojian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, No.185, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, P. R. China.
| |
Collapse
|
41
|
Varier RA, Sideri T, Capitanchik C, Manova Z, Calvani E, Rossi A, Edupuganti RR, Ensinck I, Chan VWC, Patel H, Kirkpatrick J, Faull P, Snijders AP, Vermeulen M, Ralser M, Ule J, Luscombe NM, van Werven FJ. N6-methyladenosine (m6A) reader Pho92 is recruited co-transcriptionally and couples translation to mRNA decay to promote meiotic fitness in yeast. eLife 2022; 11:e84034. [PMID: 36422864 PMCID: PMC9731578 DOI: 10.7554/elife.84034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022] Open
Abstract
N6- methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae, which occurs solely during early meiosis. Here, we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3'end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Alice Rossi
- The Francis Crick InstituteLondonUnited Kingdom
| | - Raghu R Edupuganti
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University NijmegenNijmegenNetherlands
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Biomedical Research BuildingMiamiUnited States
| | | | | | | | | | - Peter Faull
- The Francis Crick InstituteLondonUnited Kingdom
- Biological Mass Spectrometry Facility, The University of Texas at AustinAustinUnited States
| | | | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University NijmegenNijmegenNetherlands
| | - Markus Ralser
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Biochemistry, Charité Universitätsmedizin BerlinBerlinGermany
| | - Jernej Ule
- The Francis Crick InstituteLondonUnited Kingdom
- Dementia Research Institute, King's College LondonLondonUnited Kingdom
| | - Nicholas M Luscombe
- The Francis Crick InstituteLondonUnited Kingdom
- Department of Genetics, Evolution and Environment, UCL Genetics InstituteLondonUnited Kingdom
- Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | | |
Collapse
|
42
|
Begik O, Mattick JS, Novoa EM. Exploring the epitranscriptome by native RNA sequencing. RNA (NEW YORK, N.Y.) 2022; 28:1430-1439. [PMID: 36104106 PMCID: PMC9745831 DOI: 10.1261/rna.079404.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chemical RNA modifications, collectively referred to as the "epitranscriptome," are essential players in fine-tuning gene expression. Our ability to analyze RNA modifications has improved rapidly in recent years, largely due to the advent of high-throughput sequencing methodologies, which typically consist of coupling modification-specific reagents, such as antibodies or enzymes, to next-generation sequencing. Recently, it also became possible to map RNA modifications directly by sequencing native RNAs using nanopore technologies, which has been applied for the detection of a number of RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). However, the signal modulations caused by most RNA modifications are yet to be determined. A global effort is needed to determine the signatures of the full range of RNA modifications to avoid the technical biases that have so far limited our understanding of the epitranscriptome.
Collapse
Affiliation(s)
- Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Barcelona 08002, Spain
| |
Collapse
|
43
|
m6A RNA methylation regulator-related signatures exhibit good prognosis prediction ability for head and neck squamous cell carcinoma. Sci Rep 2022; 12:16358. [PMID: 36175504 PMCID: PMC9523032 DOI: 10.1038/s41598-022-20873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has become the sixth most common malignant disease worldwide and is associated with high mortality, with an overall 5-year survival rate of less than 50%. Recent studies have demonstrated that aberrantly expressed m6A regulators are involved in multiple biological and pathological processes, including cancers, but the specific mechanisms of m6A regulators in HNSCC are not well elucidated. In this study, we adopted The Cancer Genome Atlas (TCGA)-HNSCC database and performed a consensus clustering analysis to classify the HNSCC samples. Least absolute shrinkage and selection operator (LASSO) regression was applied to construct an m6A signature-based HNSCC risk prediction model. Cell type identification based on estimating relative subsets of RNA transcripts (CIBERSORT) algorithms was adopted to evaluate the immune cell infiltration level in the tumor microenvironment. Based on the expression of m6A regulators in HNSCC, we identified two clusters, cluster 1 (C1) and cluster 2 (C2). C2 showed a better prognosis than C1 and was mainly enriched in the HIPPO, MYC, NOTCH, and NRF signaling pathways. We constructed an m6A signature-based risk score model and classified patients into high- and low-risk score subgroups. The high-risk-score group showed poor clinical characteristics, higher immune infiltration levels, higher chemokine and chemokine receptor expression levels, and lower immune checkpoint gene expression than the low-risk-score subgroup. In conclusion, our comprehensive analysis suggests that the m6A signature-based risk score might function as a good prognostic predictor. Our study may provide novel therapeutic clues and help predict the prognosis of HNSCC.
Collapse
|
44
|
Dagan Y, Yesharim Y, Bonneau AR, Frankovits T, Schwartz S, Reddien PW, Wurtzel O. m6A is required for resolving progenitor identity during planarian stem cell differentiation. EMBO J 2022; 41:e109895. [PMID: 35971838 PMCID: PMC9627665 DOI: 10.15252/embj.2021109895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Regeneration and tissue homeostasis require accurate production of missing cell lineages. Cell production is driven by changes to gene expression, which is shaped by multiple layers of regulation. Here, we find that the ubiquitous mRNA base-modification, m6A, is required for proper cell fate choice and cellular maturation in planarian stem cells (neoblasts). We mapped m6A-enriched regions in 7,600 planarian genes and found that perturbation of the m6A pathway resulted in progressive deterioration of tissues and death. Using single-cell RNA sequencing of >20,000 cells following perturbation of the m6A pathway, we identified an increase in expression of noncanonical histone variants, and that inhibition of the pathway resulted in accumulation of undifferentiated cells throughout the animal in an abnormal transcriptional state. Analysis of >1,000 planarian gene expression datasets revealed that the inhibition of the chromatin modifying complex NuRD had almost indistinguishable consequences, unraveling an unappreciated link between m6A and chromatin modifications. Our findings reveal that m6A is critical for planarian stem cell homeostasis and gene regulation in tissue maintenance and regeneration.
Collapse
Affiliation(s)
- Yael Dagan
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yarden Yesharim
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Ashley R Bonneau
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamar Frankovits
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Omri Wurtzel
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Zhou M, Dong M, Yang X, Gong J, Liao X, Zhang Q, Liu Z. The emerging roles and mechanism of m6a in breast cancer progression. Front Genet 2022; 13:983564. [PMID: 36035182 PMCID: PMC9399344 DOI: 10.3389/fgene.2022.983564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has continued to be the leading cause of cancer deaths in women, accompanied by highly molecular heterogeneity. N6-methyladenosine (m6A), a methylation that happens on adenosine N6, is the most abundant internal mRNA modification type in eukaryotic cells. Functionally, m6A methylation is a reversible modification process and is regulated by 3 enzymes with different functions, namely “writer”, “reader”, and “eraser”. Abnormal m6A modifications trigger the expression, activation, or inhibition of key signaling molecules in critical signaling pathways and the regulatory factors acting on them in BC. These m6A-related enzymes can not only be used as markers for accurate diagnosis, prediction of prognosis, and risk model construction, but also as effective targets for BC treatment. Here, we have emphasized the roles of different types of m6A-related enzymes reported in BC proliferation, invasion, and metastasis, as well as immune regulation. The comprehensive and in-depth exploration of the molecular mechanisms related to m6A will benefit in finding effective potential targets and effective stratified management of BC.
Collapse
Affiliation(s)
- Mengying Zhou
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| |
Collapse
|
46
|
Scutenaire J, Plassard D, Matelot M, Villa T, Zumsteg J, Libri D, Séraphin B. The S. cerevisiae m6A-reader Pho92 promotes timely meiotic recombination by controlling key methylated transcripts. Nucleic Acids Res 2022; 51:517-535. [PMID: 35934316 PMCID: PMC9881176 DOI: 10.1093/nar/gkac640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
N6-Methyladenosine (m6A), one of the most abundant internal modification of eukaryotic mRNAs, participates in the post-transcriptional control of gene expression through recruitment of specific m6A readers. In Saccharomyces cerevisiae, the m6A methyltransferase Ime4 is expressed only during meiosis and its deletion impairs this process. To elucidate how m6A control gene expression, we investigated the function of the budding yeast m6A reader Pho92. We show that Pho92 is an early meiotic factor that promotes timely meiotic progression. High-throughput RNA sequencing and mapping of Pho92-binding sites following UV-crosslinking reveal that Pho92 is recruited to specific mRNAs in an m6A-dependent manner during the meiotic prophase, preceding their down-regulation. Strikingly, point mutations altering m6A sites in mRNAs targeted by Pho92 are sufficient to delay their down-regulation and, in one case, to slow down meiotic progression. Altogether, our results indicate that Pho92 facilitate the meiotic progression by accelerating the down-regulation of timely-regulated mRNAs during meiotic recombination.
Collapse
Affiliation(s)
- Jérémy Scutenaire
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France,Centre National de Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch, France,Institut National de Santé et de Recherche Médicale (INSERM) U1258, 67400 Illkirch, France,Université de Strasbourg, 67400 Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France,Centre National de Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch, France,Institut National de Santé et de Recherche Médicale (INSERM) U1258, 67400 Illkirch, France,Université de Strasbourg, 67400 Illkirch, France
| | - Mélody Matelot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France,Centre National de Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch, France,Institut National de Santé et de Recherche Médicale (INSERM) U1258, 67400 Illkirch, France,Université de Strasbourg, 67400 Illkirch, France
| | - Tommaso Villa
- Université de Paris Cité, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Domenico Libri
- Université de Paris Cité, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Bertrand Séraphin
- To whom correspondence should be addressed. Tel: +33 3 88 65 33 36; Fax: +33 3 88 65 32 01;
| |
Collapse
|
47
|
Liang W, Deng L, Mo C, Chen W, Sha Y, Shi J, Hou X, Zhang Y, Yang M, Ou M. Microarray and bioinformatic analysis reveal the parental genes of m6A modified circRNAs as novel prognostic signatures in colorectal cancer. Front Oncol 2022; 12:939790. [PMID: 35965538 PMCID: PMC9373052 DOI: 10.3389/fonc.2022.939790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Accumulating evidences have revealed that the abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer. It is noteworthy that m6A modification is widely existed in circRNAs and found its key biological functions in regulating circRNAs metabolism. However, the role of m6A modified circRNAs in colorectal cancer (CRC) remains unknown. To better understand the role of circRNAs in the pathogenesis of CRC, we focus on the relationship between m6A-modified circRNAs and their parental genes. Methods Arraystar m6A-circRNA epitranscriptomic microarray was used to identify differentially m6A modified circRNAs between CRC and the control group. In addition, TCGA-COAD and GSE106582 cohort were used to identify differentially expressed mRNAs. In this study, we screened the parental genes for which both circRNAs and mRNAs were down-regulated further to analyze, including gene expression, survival prognosis, enrichment analysis. Additionally, Western Blotting was used to further validate the role of the parental gene in CRC. Results We found that 1405 significantly downregulated circRNAs in CRC by our microarray data. Moreover, we obtained 113 parental genes for which both circRNAs and mRNAs were down-regulated to analyze the relationship with the prognosis of CRC based on TCGA-COAD cohort. And we identified nine potential prognostic genes, including ABCD3, ABHD6, GAB1, MIER1, MYOCD, PDE8A, RPS6KA5, TPM1 and WDR78. And low expression of these genes was associated with poor survival prognosis of the patients with CRC. In addition, we found that TPM1 is downregulated in CRC by western blotting experiment. And the calcium-signaling pathway may involve the process of the CRC progression. Conclusions We identified nine potential prognostic genes, after analyzed the relationship between the parental genes of m6A modified circRNAs and the progression of CRC. Above all, our study further validated TPM1 can serve as a potentail signature for CRC patients.
Collapse
Affiliation(s)
- Wenken Liang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Liyuan Deng
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chune Mo
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Chen
- Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yu Sha
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianling Shi
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yuping Zhang
- Department of general medicine, Guilin Medical University, Guilin, China
| | - Min Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Minglin Ou, ; ; Min Yang,
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Minglin Ou, ; ; Min Yang,
| |
Collapse
|
48
|
RNA m6A modification: Mapping methods, roles, and mechanisms in acute myeloid leukemia. BLOOD SCIENCE 2022; 4:116-124. [DOI: 10.1097/bs9.0000000000000131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
|
49
|
Murakami S, Jaffrey SR. Hidden codes in mRNA: Control of gene expression by m 6A. Mol Cell 2022; 82:2236-2251. [PMID: 35714585 DOI: 10.1016/j.molcel.2022.05.029] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
Information in mRNA has largely been thought to be confined to its nucleotide sequence. However, the advent of mapping techniques to detect modified nucleotides has revealed that mRNA contains additional information in the form of chemical modifications. The most abundant modified nucleotide is N6-methyladenosine (m6A), a methyl modification of adenosine. Although early studies viewed m6A as a dynamic and tissue-specific modification, it is now clear that the mRNAs that contain m6A and the location of m6A in those transcripts are largely universal and are influenced by gene architecture, i.e., the size and location of exons and introns. m6A can affect nuclear processes such as splicing and epigenetic regulation, but the major effect of m6A on mRNAs is to promote degradation in the cytoplasm. m6A marks a functionally related cohort of mRNAs linked to certain biological processes, including cell differentiation and cell fate determination. m6A is also enriched in other cohorts of mRNAs and can therefore affect their respective cellular processes and pathways. Future work will focus on understanding how the m6A pathway is regulated to achieve control of m6A-containing mRNAs.
Collapse
Affiliation(s)
- Shino Murakami
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Paramasivam A, Priyadharsini JV. The emerging role of m6A modification in autophagy regulation and its implications in human disease. Epigenomics 2022; 14:565-568. [PMID: 35387490 DOI: 10.2217/epi-2021-0531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Arumugam Paramasivam
- Centre for Cellular & Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 77, India
| | - Jayaseelan Vijayashree Priyadharsini
- Centre for Cellular & Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 77, India
| |
Collapse
|