1
|
Tan Q, Wang J, Hao Y, Yang S, Cao B, Pan W, Cao M. Elf1 Deficiency Impairs Macrophage Development in Zebrafish Model Organism. Int J Mol Sci 2025; 26:2537. [PMID: 40141178 PMCID: PMC11942252 DOI: 10.3390/ijms26062537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The Ets (E-twenty-six) family of transcription factors plays a critical role in hematopoiesis and myeloid differentiation. However, the specific functions of many family members in these processes remain largely underexplored and poorly understood. Here, we identify Elf1 (E74-like factor 1), an Ets family member, as a critical regulator of macrophage development in the zebrafish model organism, with minimal impact on neutrophil differentiation. Through morpholino knockdown screening and CRISPR/Cas9-mediated gene editing, we demonstrate that Elf1 is critical for macrophage development and tissue injury responses. Specific overexpression of dominant-negative Elf1 (DN-Elf1) in macrophages demonstrated a cell-autonomous effect on macrophage infiltration. Furthermore, the overexpression of cxcr4b, a gene downstream of Elf1 regulation and essential for cell migration and injury response, significantly rescued this defect, indicating Elf1 as a key regulator of macrophage function. Our findings shed light on the roles of Elf1 in macrophage development and injury response and also highlight zebrafish as a powerful model for immunity research.
Collapse
Affiliation(s)
- Qianli Tan
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Q.T.); (W.P.)
| | - Jing Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Yimei Hao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Shizeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Biao Cao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Weijun Pan
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Q.T.); (W.P.)
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Mengye Cao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| |
Collapse
|
2
|
Joly P, Labsy R, Silvin A. Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae034. [PMID: 40073104 DOI: 10.1093/jimmun/vkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 03/14/2025]
Abstract
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration. Monocytes' infiltration and differentiation into monocyte-derived macrophages (MDMs) in the brain contribute to this diversity. Microbiota's role in brain diseases has been recently highlighted, revealing how microbial signals, such as metabolites, influence microglia and MDMs. In this brief review, we describe how these signals can influence microglia through their sensome and shape MDMs from their development in the bone marrow to their differentiation in the brain. Monocytes could then be a crucial player in the constitution of a dysbiotic gut-brain axis in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Paul Joly
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Reyhane Labsy
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| |
Collapse
|
3
|
Abellanas MA, Purnapatre M, Burgaletto C, Schwartz M. Monocyte-derived macrophages act as reinforcements when microglia fall short in Alzheimer's disease. Nat Neurosci 2025; 28:436-445. [PMID: 39762659 DOI: 10.1038/s41593-024-01847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2024] [Indexed: 03/12/2025]
Abstract
The central nervous system (CNS) is endowed with its own resident innate immune cells, the microglia. They constitute approximately 10% of the total cells within the CNS parenchyma and act as 'sentinels', sensing and mitigating any deviation from homeostasis. Nevertheless, under severe acute or chronic neurological injury or disease, microglia are unable to contain the damage, and the reparative activity of monocyte-derived macrophages (MDMs) is required. The failure of the microglia under such conditions could be an outcome of their prolonged exposure to hostile stimuli, leading to their exhaustion or senescence. Here, we describe the conditions under which the microglia fall short, focusing mainly on the context of Alzheimer's disease, and shed light on the functions performed by MDMs. We discuss whether and how MDMs engage in cross-talk with the microglia, why their recruitment is often inadequate, and potential ways to augment their homing to the brain in a well-controlled manner.
Collapse
Affiliation(s)
- Miguel A Abellanas
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Chiara Burgaletto
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Kim HS, Jee SA, Einisadr A, Seo Y, Seo HG, Jang BS, Park HH, Chung WS, Kim BG. Detrimental influence of Arginase-1 in infiltrating macrophages on poststroke functional recovery and inflammatory milieu. Proc Natl Acad Sci U S A 2025; 122:e2413484122. [PMID: 39951507 PMCID: PMC11848331 DOI: 10.1073/pnas.2413484122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Poststroke inflammation critically influences functional outcomes following ischemic stroke. Arginase-1 (Arg1) is considered a marker for anti-inflammatory macrophages, associated with the resolution of inflammation and promotion of tissue repair in various pathological conditions. However, its specific role in poststroke recovery remains to be elucidated. This study investigates the functional impact of Arg1 expressed in macrophages on poststroke recovery and inflammatory milieu. We observed a time-dependent increase in Arg1 expression, peaking at 7 d after photothrombotic stroke in mice. Cellular mapping analysis revealed that Arg1 was predominantly expressed in LysM-positive infiltrating macrophages. Using a conditional knockout (cKO) mouse model, we examined the role of Arg1 expressed in infiltrating macrophages. Contrary to its presumed beneficial effects, Arg1 cKO in LysM-positive macrophages significantly improved skilled forelimb motor function recovery after stroke. Mechanistically, Arg1 cKO attenuated fibrotic scar formation, enhanced peri-infarct remyelination, and increased synaptic density while reducing microglial synaptic elimination in the peri-infarct cortex. Gene expression analysis of fluorescence-activated single cell sorting (FACS)-sorted CD45low microglia revealed decreased transforming growth factor-β (TGF-β) signaling and proinflammatory cytokine activity in peri-infarct microglia from Arg1 cKO animals. In vitro coculture experiments demonstrated that Arg1 activity in macrophages modulates microglial synaptic phagocytosis, providing evidence for macrophage-microglia interaction. These findings present unique insights into the function of Arg1 in central nervous system injury and highlight an interaction between infiltrating macrophages and resident microglia in shaping the poststroke inflammatory milieu. Our study identifies Arg1 in macrophages as a potential therapeutic target for modulating poststroke inflammation and improving functional recovery.
Collapse
Affiliation(s)
- Hyung Soon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Seung Ah Jee
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Ariandokht Einisadr
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hyo Gyeong Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Byeong Seong Jang
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- Center for Vascular Biology, Institute for Basic Science, Daejeon34126, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon16499, Republic of Korea
| |
Collapse
|
5
|
Dietz A, Senf K, Neuhaus EM. Stem cell expression of CXCR4 regulates tissue composition in the vomeronasal organ. J Cell Sci 2025; 138:jcs263451. [PMID: 39639824 PMCID: PMC11828470 DOI: 10.1242/jcs.263451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024] Open
Abstract
The vomeronasal organ (VNO) detects signaling molecules that often prompt innate behaviors, such as aggression and reproduction. Vomeronasal sensory neurons, classified into apical and basal lineages based on receptor expression, have a limited lifespan and are continuously replaced from a common stem cell niche. Using a combination of single-cell RNA sequencing data, immunofluorescence staining and lineage tracing, we identified CXCR4 expression in proliferative stem cells and the basal neuronal lineage. Mice with a conditional knockout of Cxcr4 showed an increased number of SOX2-positive proliferative stem cells and enhanced basal neuronal lineage maturation. In addition, computational gene perturbation analysis revealed 87 transcription factors that might contribute to neurogenesis, among which was SOX2. Conditional knockout of Cxcr4 did not only disturb neuronal maturation, but also affected non-neuronal cell types, resulting in a decrease of basal lamina lining quiescent stem cells and an increase in sustentacular support cells. Together, these findings enhance our understanding how a common pool of stem cells can give rise to different cell types of the VNO, highlighting the distinct role of CXCR4 in this process.
Collapse
Affiliation(s)
- André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747 Jena, Germany
| |
Collapse
|
6
|
Amann L, Fell A, Monaco G, Sankowski R, Wu HZQ, Jordão MJC, Borst K, Fliegauf M, Masuda T, Ardura-Fabregat A, Paterson N, Nent E, Cook J, Staszewski O, Mossad O, Falk T, Louveau A, Smirnov I, Kipnis J, Lämmermann T, Prinz M. Extrasinusoidal macrophages are a distinct subset of immunologically active dural macrophages. Sci Immunol 2024; 9:eadh1129. [PMID: 39705337 DOI: 10.1126/sciimmunol.adh1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/26/2024] [Indexed: 12/22/2024]
Abstract
Although macrophages in the meningeal compartments of the central nervous system (CNS) have been comprehensively characterized under steady state, studying their contribution to physiological and pathological processes has been hindered by the lack of specific targeting tools in vivo. Recent findings have shown that the dural sinus and its adjacent lymphatic vessels act as a neuroimmune interface. However, the cellular and functional heterogeneity of extrasinusoidal dural macrophages outside this immune hub is not fully understood. Therefore, we comprehensively characterized these cells using single-cell transcriptomics, fate mapping, confocal imaging, clonal analysis, and transgenic mouse lines. Extrasinusoidal dural macrophages were distinct from leptomeningeal and CNS parenchymal macrophages in terms of their origin, expansion kinetics, and transcriptional profiles. During autoimmune neuroinflammation, extrasinusoidal dural macrophages performed efferocytosis of apoptotic granulocytes. Our results highlight a previously unappreciated myeloid cell diversity and provide insights into the brain's innate immune system.
Collapse
Affiliation(s)
- Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Fell
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Huang Zie Quann Wu
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Katharina Borst
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Fliegauf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Alberto Ardura-Fabregat
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Neil Paterson
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Elisa Nent
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James Cook
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Omar Mossad
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Falk
- Department of Computer Sciences, University of Freiburg, Freiburg, Germany
| | - Antoine Louveau
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Igor Smirnov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
8
|
Xu Z, Yang F, Zheng L. Uncovering the dual roles of peripheral immune cells and their connections to brain cells in stroke and post-stroke stages through single-cell sequencing. Front Neurosci 2024; 18:1443438. [PMID: 39633897 PMCID: PMC11614781 DOI: 10.3389/fnins.2024.1443438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease that affects the blood vessels and the blood supply to the brain, making it the second leading cause of death worldwide. Studies suggest that immune cells play a dual role during the inflammatory and recovery phases of stroke. However, in-depth investigations of specific cell subtypes and their differentiation trajectories remain to be elucidated. In this review, we highlight the application of single-cell RNA sequencing (scRNA-seq) for the unbiased identification of cell heterogeneity in brain and peripheral blood mononuclear cells (PBMCs) during and after a stroke. Our goal is to explore the phenotypic landscape of cells with different roles in this context. Specifically, we provide an overview of the roles, cell surface markers, immune cell-released cytokines, and intercellular interactions identified in major immune cells during and after stroke, as identified by different technologies. Additionally, we summarize the connection between immune cells in peripheral blood and the brain via their differentiation trajectories. By synthesizing the application of scRNA-seq in the combined analysis of PBMCs and brain tissue at higher sampling frequencies, we aim to unveil the dual role of peripheral immune cells, which could facilitate the development of new treatment strategies for ischemic stroke.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Neurology, Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lifang Zheng
- Department of Neurology, Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
| |
Collapse
|
9
|
Korayem OH, Ahmed AE, Meabed MH, Magdy DM, Abdelghany WM. Potential protective association of the AA genotype and a allele of CXCR4 rs2228014 polymorphism with COVID-19 severity in adult egyptians. BMC Infect Dis 2024; 24:1158. [PMID: 39407172 PMCID: PMC11479566 DOI: 10.1186/s12879-024-09602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/09/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND By the end of December 2019, a new coronavirus, termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged, and the cause of the disease was named coronavirus disease 2019 (COVID-19). Several genetic factors have been implicated in diverse responses to SARS-CoV-2 infection, such as the C-X-C chemokine receptor 4 (CXCR4) rs2228014 polymorphism, which has been previously studied in various diseases but has not been explored in the context of COVID-19 severity. The current study aimed to assess the association between the rs2228014 polymorphism in the CXCR4 gene and the severity of COVID-19, which has not been previously reported. METHOD This cross-sectional study analyzed 300 adult Egyptian COVID-19 patients (156 with mild or moderate and 144 with severe or critical symptoms) admitted to Assiut University Quarantine Hospital from June to September 2022 during the omicron variant. The rs2228014 polymorphism in the CXCR4 gene was detected using real-time PCR with a TaqMan assay probe. Receiver operating characteristic (ROC) curve analysis was used to determine the best cutoff values for C-reactive protein (CRP) that can be used to estimate the severity of COVID-19. P values less than 0.05 were considered to indicate statistical significance. RESULTS No significant differences in the allelic or genotypic frequencies of CXCR4 rs2228014 were detected between the severity groups. However, the exclusive presence of the AA genotype in mild or moderate cases suggests its potential protective role. Additionally, significant differences in myalgia presentation, leukocyte counts and antibiotic use, were observed among different genotypes. Statistical data showed that the severity of COVID-19 could be predicted at a cutoff value of CRP > 30 mg/L, with a sensitivity of 74.3% and a specificity of 42.9%. CONCLUSION The present findings suggest a potential protective role of the AA genotype and A allele of CXCR4 rs2228014 against severe COVID-19. Additionally, factors such as lack of vaccination and comorbidities such as hypertension, renal disease, and diabetes mellitus were associated with increased disease severity.
Collapse
Affiliation(s)
- Osama H Korayem
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Amr E Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed H Meabed
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa M Magdy
- Department of Chest Disease and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Wafaa M Abdelghany
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Maduka CV, Makela AV, Tundo A, Ural E, Stivers KB, Kuhnert MM, Alhaj M, Hoque Apu E, Ashammakhi N, Hankenson KD, Narayan R, Elisseeff JH, Contag CH. Regulating the proinflammatory response to composite biomaterials by targeting immunometabolism. Bioact Mater 2024; 40:64-73. [PMID: 38948254 PMCID: PMC11214186 DOI: 10.1016/j.bioactmat.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Composite biomaterials comprising polylactide (PLA) and hydroxyapatite (HA) are applied in bone, cartilage and dental regenerative medicine, where HA confers osteoconductive properties. However, after surgical implantation, adverse immune responses to these composites can occur, which have been attributed to size and morphology of HA particles. Approaches to effectively modulate these adverse immune responses have not been described. PLA degradation products have been shown to alter immune cell metabolism (immunometabolism), which drives the inflammatory response. Accordingly, to modulate the inflammatory response to composite biomaterials, inhibitors were incorporated into composites comprised of amorphous PLA (aPLA) and HA (aPLA + HA) to regulate glycolytic flux. Inhibition at specific steps in glycolysis reduced proinflammatory (CD86+CD206-) and increased pro-regenerative (CD206+) immune cell populations around implanted aPLA + HA. Notably, neutrophil and dendritic cell (DC) numbers along with proinflammatory monocyte and macrophage populations were decreased, and Arginase 1 expression among DCs was increased. Targeting immunometabolism to control the proinflammatory response to biomaterial composites, thereby creating a pro-regenerative microenvironment, is a significant advance in tissue engineering where immunomodulation enhances osseointegration and angiogenesis, which could lead to improved bone regeneration.
Collapse
Affiliation(s)
- Chima V. Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Ashley V. Makela
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony Tundo
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Evran Ural
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Katlin B. Stivers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Maxwell M. Kuhnert
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, 37917, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ramani Narayan
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christopher H. Contag
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48864, USA
| |
Collapse
|
11
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
12
|
Maduka CV, Schmitter-Sánchez AD, Makela AV, Ural E, Stivers KB, Pope H, Kuhnert MM, Habeeb OM, Tundo A, Alhaj M, Kiselev A, Chen S, Donneys A, Winton WP, Stauff J, Scott PJH, Olive AJ, Hankenson KD, Narayan R, Park S, Elisseeff JH, Contag CH. Immunometabolic cues recompose and reprogram the microenvironment around implanted biomaterials. Nat Biomed Eng 2024; 8:1308-1321. [PMID: 39367264 DOI: 10.1038/s41551-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Circulating monocytes infiltrate and coordinate immune responses in tissues surrounding implanted biomaterials and in other inflamed tissues. Here we show that immunometabolic cues in the biomaterial microenvironment govern the trafficking of immune cells, including neutrophils and monocytes, in a manner dependent on the chemokine receptor 2 (CCR2) and the C-X3-C motif chemokine receptor 1 (CX3CR1). This affects the composition and activation states of macrophage and dendritic cell populations, ultimately orchestrating the relative composition of pro-inflammatory, transitory and anti-inflammatory CCR2+, CX3CR1+ and CCR2+ CX3CR1+ immune cell populations. In amorphous polylactide implants, modifying immunometabolism by glycolytic inhibition drives a pro-regenerative microenvironment principally by myeloid cells. In crystalline polylactide implants, together with arginase-1-expressing myeloid cells, T helper 2 cells and γδ+ T cells producing interleukin-4 substantially contribute to shaping the metabolically reprogrammed pro-regenerative microenvironment. Our findings inform the premise that local metabolic states regulate inflammatory processes in the biomaterial microenvironment.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| | - Axel D Schmitter-Sánchez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Evran Ural
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Katlin B Stivers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hunter Pope
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Mohammed Alhaj
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Shoue Chen
- School of Packaging, Michigan State University, East Lansing, MI, USA
| | - Alexis Donneys
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Olive
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramani Narayan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
Li Z, Li X, Guo H, Zhang Z, Ge Y, Dong F, Zhang F, Zhang F. Identification and analysis of key immunity-related genes in experimental ischemic stroke. Heliyon 2024; 10:e36837. [PMID: 39263122 PMCID: PMC11388793 DOI: 10.1016/j.heliyon.2024.e36837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
The regulation of the immune system and the occurrence of inflammation are vital factors in the pathophysiology of ischemic stroke. This study aims to screen target molecules which play key roles in alleviating the brain injury following ischemic stroke via regulating neuroinflammation. Several bioinformatics methods were used to identify immune-related genes in ischemic stroke. A total of 218 genes were identified as differentially expressed genes within the GSE97537 dataset. By performing GO, KEGG, and GSEA analyses, DEGs were mainly enriched in pathways related to immunity and inflammation. By utilizing the MCODE plugin in conjunction with Cytoscape software, a total of six crucial genes were identified, including C1qb, C1qc, Fcer1g, Fcgr3a, Tyrobp, and CD14. Based on the above crucial genes, 13 miRNAs were predicted. Furthermore, 71 potential drugs with therapeutic properties that target the crucial genes were screened, including lovastatin, ASPIRIN, and PREDNISOLONE. Moreover, the results of RT-qPCR showed that compared with Sham group, the expressions of C1qb, C1qc, Fcer1g, Fcgr3a, Tyrobp, and CD14 in MCAO group were significantly increased, which was consistent with the expression trend of validation dataset and training dataset. In conclusion, immune-related genes may play a key role in ischemic stroke. In addition, six crucial genes were identified as potential biomarkers and 71 promising drugs were screened to treat ischemic stroke patients.
Collapse
Affiliation(s)
- Zekun Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Xiaohan Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Hongmin Guo
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Zibo Zhang
- Metabolic Diseases and Cancer Research Center, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yihao Ge
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education and Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| |
Collapse
|
14
|
Gaire S, An J, Yang H, Lee KA, Dumre M, Lee EJ, Park SM, Joe EH. Systemic inflammation attenuates the repair of damaged brains through reduced phagocytic activity of monocytes infiltrating the brain. Mol Brain 2024; 17:47. [PMID: 39075534 PMCID: PMC11288066 DOI: 10.1186/s13041-024-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/19/2024] [Indexed: 07/31/2024] Open
Abstract
In this study, we examined how systemic inflammation affects repair of brain injury. To this end, we created a brain-injury model by stereotaxic injection of ATP, a damage-associated molecular pattern component, into the striatum of mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS-ip). An analysis of magnetic resonance images showed that LPS-ip reduced the initial brain injury but slowed injury repair. An immunostaining analysis using the neuronal marker, NeuN, showed that LPS-ip delayed removal of dead/dying neurons, despite the fact that LPS-ip enhanced infiltration of monocytes, which serve to phagocytize dead cells/debris. Notably, infiltrating monocytes showed a widely scattered distribution. Bulk RNAseq analyses showed that LPS-ip decreased expression of genes associated with phagocytosis, with PCR and immunostaining of injured brains confirming reduced levels of Cd68 and Clec7a, markers of phagocytic activity, in monocytes. Collectively, these results suggest that systemic inflammation affects properties of blood monocytes as well as brain cells, resulting in delay in clearing damaged cells and activating repair processes.
Collapse
Affiliation(s)
- Sushil Gaire
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Jiawei An
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Haijie Yang
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Keon Ah Lee
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Manisha Dumre
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Eun Jeong Lee
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Brain Science, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Sang-Myun Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
| |
Collapse
|
15
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
16
|
Dietz A, Senf K, Neuhaus EM. ACKR3 in olfactory glia cells shapes the immune defense of the olfactory mucosa. Glia 2024; 72:1183-1200. [PMID: 38477581 DOI: 10.1002/glia.24527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.
Collapse
Affiliation(s)
- André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eva M Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
17
|
Patir A, Barrington J, Szymkowiak S, Brezzo G, Straus D, Alfieri A, Lefevre L, Liu Z, Ginhoux F, Henderson NC, Horsburgh K, Ramachandran P, McColl BW. Phenotypic and spatial heterogeneity of brain myeloid cells after stroke is associated with cell ontogeny, tissue damage, and brain connectivity. Cell Rep 2024; 43:114250. [PMID: 38762882 DOI: 10.1016/j.celrep.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.
Collapse
Affiliation(s)
- Anirudh Patir
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Jack Barrington
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stefan Szymkowiak
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Gaia Brezzo
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Dana Straus
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Alessio Alfieri
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Lucas Lefevre
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Barry W McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
18
|
Lu K, Ni W, Yue J, Cheng Y, Du J, Li Y, Tong X, Chen GB, Wang Y. Flow cytometry-based peripheral blood analysis as an easily friendly tool for prognostic monitoring of acute ischemic stroke: a multicenter study. Front Immunol 2024; 15:1402724. [PMID: 38835783 PMCID: PMC11148238 DOI: 10.3389/fimmu.2024.1402724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Background and objective Acute ischemic stroke (AIS) is a leading cause of mortality, severe neurological and long-term disability world-wide. Blood-based indicators may provide valuable information on identified prognostic factors. However, currently, there is still a lack of peripheral blood indicators for the prognosis of AIS. We aimed to identify the most promising prognostic indicators and establish prognostic models for AIS. Methods 484 subjects enrolled from four centers were analyzed immunophenotypic indicators of peripheral blood by flow cytometry. Least absolute shrinkage and selection operator (LASSO) regression was applied to minimize the potential collinearity and over-fitting of variables measured from the same subject and over-fitting of variables. Univariate and multivariable Cox survival analysis of differences between and within cohorts was performed by log-rank test. The areas under the receiving operating characteristic (ROC) curves were used to evaluate the selection accuracy of immunophenotypic indicators in identifying AIS subjects with survival risk. The prognostic model was constructed using a multivariate Cox model, consisting of 402 subjects as a training cohort and 82 subjects as a testing cohort. Results In the prospective study, 7 immunophenotypic indicators of distinct significance were screened out of 72 peripheral blood immunophenotypic indicators by LASSO. In multivariate cox regression, CTL (%) [HR: 1.18, 95% CI: 1.03-1.33], monocytes/μl [HR: 1.13, 95% CI: 1.05-1.21], non-classical monocytes/μl [HR: 1.09, 95% CI: 1.02-1.16] and CD56high NK cells/μl [HR: 1.13, 95% CI: 1.05-1.21] were detected to decrease the survival probability of AIS, while Tregs/μl [HR:0.97, 95% CI: 0.95-0.99, p=0.004], BM/μl [HR:0.90, 95% CI: 0.85-0.95, p=0.023] and CD16+NK cells/μl [HR:0.93, 95% CI: 0.88-0.98, p=0.034] may have the protective effect. As for indicators' discriminative ability, the AUC for CD56highNK cells/μl attained the highest of 0.912. In stratification analysis, the survival probability for AIS subjects with a higher level of Tregs/μl, BM/μl, CD16+NK cells/μl, or lower levels of CD56highNK cells/μl, CTL (%), non-classical monocytes/μl, Monocytes/μl were more likely to survive after AIS. The multivariate Cox model showed an area under the curve (AUC) of 0.805, 0.781 and 0.819 and 0.961, 0.924 and 0.982 in the training and testing cohort, respectively. Conclusion Our study identified 7 immunophenotypic indicators in peripheral blood may have great clinical significance in monitoring the prognosis of AIS and provide a convenient and valuable predictive model for AIS.
Collapse
Affiliation(s)
- Kang Lu
- Department of Medical Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wanmao Ni
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Clinical Research Center, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Guo-Bo Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Helbing DL, Haas F, Cirri E, Rahnis N, Dau TTD, Kelmer Sacramento E, Oraha N, Böhm L, Lajqi T, Fehringer P, Morrison H, Bauer R. Impact of inflammatory preconditioning on murine microglial proteome response induced by focal ischemic brain injury. Front Immunol 2024; 15:1227355. [PMID: 38655254 PMCID: PMC11036884 DOI: 10.3389/fimmu.2024.1227355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Preconditioning with lipopolysaccharide (LPS) induces neuroprotection against subsequent cerebral ischemic injury, mainly involving innate immune pathways. Microglia are resident immune cells of the central nervous system (CNS) that respond early to danger signals through memory-like differential reprogramming. However, the cell-specific molecular mechanisms underlying preconditioning are not fully understood. To elucidate the distinct molecular mechanisms of preconditioning on microglia, we compared these cell-specific proteomic profiles in response to LPS preconditioning and without preconditioning and subsequent transient focal brain ischemia and reperfusion, - using an established mouse model of transient focal brain ischemia and reperfusion. A proteomic workflow, based on isolated microglia obtained from mouse brains by cell sorting and coupled to mass spectrometry for identification and quantification, was applied. Our data confirm that LPS preconditioning induces marked neuroprotection, as indicated by a significant reduction in brain infarct volume. The established brain cell separation method was suitable for obtaining an enriched microglial cell fraction for valid proteomic analysis. The results show a significant impact of LPS preconditioning on microglial proteome patterns by type I interferons, presumably driven by the interferon cluster regulator proteins signal transducer and activator of transcription1/2 (STAT1/2).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
- German Center for Mental Health (DZPG), Site Halle-Jena-Magdeburg, Jena, Germany
| | - Fabienne Haas
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | | | - Nova Oraha
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Leopold Böhm
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Pascal Fehringer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Cheng M, Chen S, Li K, Wang G, Xiong G, Ling R, Zhang C, Zhang Z, Han H, Chen Z, Wang X, Liang Y, Tian G, Zhou R, Zhu Y, Ma J, Liu J, Lin S, Xu H, Chen D, Li Y, Peng L. CD276-dependent efferocytosis by tumor-associated macrophages promotes immune evasion in bladder cancer. Nat Commun 2024; 15:2818. [PMID: 38561369 PMCID: PMC10985117 DOI: 10.1038/s41467-024-46735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.
Collapse
Affiliation(s)
- Maosheng Cheng
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang Li
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gan Xiong
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518057, China
| | - Caihua Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhihui Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Han
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaochen Wang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Liang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guoli Tian
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Zhu
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jieyi Ma
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahong Liu
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China
| | - Shuibin Lin
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Demeng Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yang Li
- Department of Genetics, School of Life Sciences, Anhui Medical University, Hefei, 230031, China.
| | - Liang Peng
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
21
|
Kayvanjoo AH, Splichalova I, Bejarano DA, Huang H, Mauel K, Makdissi N, Heider D, Tew HM, Balzer NR, Greto E, Osei-Sarpong C, Baßler K, Schultze JL, Uderhardt S, Kiermaier E, Beyer M, Schlitzer A, Mass E. Fetal liver macrophages contribute to the hematopoietic stem cell niche by controlling granulopoiesis. eLife 2024; 13:e86493. [PMID: 38526524 PMCID: PMC11006421 DOI: 10.7554/elife.86493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/23/2024] [Indexed: 03/26/2024] Open
Abstract
During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.
Collapse
Affiliation(s)
- Amir Hossein Kayvanjoo
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Iva Splichalova
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - David Alejandro Bejarano
- Quantitative Systems Biology, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Hao Huang
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Katharina Mauel
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Nikola Makdissi
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - David Heider
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Hui Ming Tew
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Nora Reka Balzer
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Eric Greto
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI) and FAU Profile Center Immunomedicine (FAU I-MED), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum ErlangenErlangenGermany
- Exploratory Research Unit, Optical Imaging Centre ErlangenErlangenGermany
| | - Collins Osei-Sarpong
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
| | - Kevin Baßler
- Genomics & Immunoregulation, LIMES Institute, University of BonnBonnGermany
| | - Joachim L Schultze
- Genomics & Immunoregulation, LIMES Institute, University of BonnBonnGermany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of BonnBonnGermany
| | - Stefan Uderhardt
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI) and FAU Profile Center Immunomedicine (FAU I-MED), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum ErlangenErlangenGermany
- Exploratory Research Unit, Optical Imaging Centre ErlangenErlangenGermany
| | - Eva Kiermaier
- Immune and Tumor Biology, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Marc Beyer
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of BonnBonnGermany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| |
Collapse
|
22
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
23
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
24
|
Dalmau Gasull A, Glavan M, Samawar SKR, Kapupara K, Kelk J, Rubio M, Fumagalli S, Sorokin L, Vivien D, Prinz M. The niche matters: origin, function and fate of CNS-associated macrophages during health and disease. Acta Neuropathol 2024; 147:37. [PMID: 38347231 PMCID: PMC10861620 DOI: 10.1007/s00401-023-02676-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024]
Abstract
There are several cellular and acellular structural barriers associated with the brain interfaces, which include the dura, the leptomeninges, the perivascular space and the choroid plexus epithelium. Each structure is enriched by distinct myeloid populations, which mainly originate from erythromyeloid precursors (EMP) in the embryonic yolk sac and seed the CNS during embryogenesis. However, depending on the precise microanatomical environment, resident myeloid cells differ in their marker profile, turnover and the extent to which they can be replenished by blood-derived cells. While some EMP-derived cells seed the parenchyma to become microglia, others engraft the meninges and become CNS-associated macrophages (CAMs), also referred to as border-associated macrophages (BAMs), e.g., leptomeningeal macrophages (MnMΦ). Recent data revealed that MnMΦ migrate into perivascular spaces postnatally where they differentiate into perivascular macrophages (PvMΦ). Under homeostatic conditions in pathogen-free mice, there is virtually no contribution of bone marrow-derived cells to MnMΦ and PvMΦ, but rather to macrophages of the choroid plexus and dura. In neuropathological conditions in which the blood-brain barrier is compromised, however, an influx of bone marrow-derived cells into the CNS can occur, potentially contributing to the pool of CNS myeloid cells. Simultaneously, resident CAMs may also proliferate and undergo transcriptional and proteomic changes, thereby, contributing to the disease outcome. Thus, both resident and infiltrating myeloid cells together act within their microenvironmental niche, but both populations play crucial roles in the overall disease course. Here, we summarize the current understanding of the sources and fates of resident CAMs in health and disease, and the role of the microenvironment in influencing their maintenance and function.
Collapse
Affiliation(s)
- Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martina Glavan
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, USA
| | - Sai K Reddy Samawar
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Joe Kelk
- Laboratory of Stroke and Vascular Dysfunctions, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Marina Rubio
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Stefano Fumagalli
- Laboratory of Stroke and Vascular Dysfunctions, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de La Côte de Nacre, Caen, France
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
25
|
Deng Z, Loyher PL, Lazarov T, Li L, Shen Z, Bhinder B, Yang H, Zhong Y, Alberdi A, Massague J, Sun JC, Benezra R, Glass CK, Elemento O, Iacobuzio-Donahue CA, Geissmann F. The nuclear factor ID3 endows macrophages with a potent anti-tumour activity. Nature 2024; 626:864-873. [PMID: 38326607 PMCID: PMC10881399 DOI: 10.1038/s41586-023-06950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.
Collapse
Affiliation(s)
- Zihou Deng
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Li Li
- Graduate Center, City University of New York, New York, NY, USA
| | - Zeyang Shen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Zhong
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joan Massague
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher K Glass
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | | | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
26
|
Wen W, Cheng J, Tang Y. Brain perivascular macrophages: current understanding and future prospects. Brain 2024; 147:39-55. [PMID: 37691438 PMCID: PMC10766266 DOI: 10.1093/brain/awad304] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Brain perivascular macrophages are specialized populations of macrophages that reside in the space around cerebral vessels, such as penetrating arteries and venules. With the help of cutting-edge technologies, such as cell fate mapping and single-cell multi-omics, their multifaceted, pivotal roles in phagocytosis, antigen presentation, vascular integrity maintenance and metabolic regulation have more recently been further revealed under physiological conditions. Accumulating evidence also implies that perivascular macrophages are involved in the pathogenesis of neurodegenerative disease, cerebrovascular dysfunction, autoimmune disease, traumatic brain injury and epilepsy. They can act in either protective or detrimental ways depending on the disease course and stage. However, the underlying mechanisms of perivascular macrophages remain largely unknown. Therefore, we highlight potential future directions in research on perivascular macrophages, including the utilization of genetic mice and novel therapeutic strategies that target these unique immune cells for neuroprotective purposes. In conclusion, this review provides a comprehensive update on the current knowledge of brain perivascular macrophages, shedding light on their pivotal roles in central nervous system health and disease.
Collapse
Affiliation(s)
- Wenjie Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
27
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
28
|
Hansen JN. Morphometric Analyses of Macrophages. Methods Mol Biol 2024; 2713:519-541. [PMID: 37639145 DOI: 10.1007/978-1-0716-3437-0_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Cell morphology and motility drive the cellular capabilities to interact with the environment. For example, microglia, the longest known tissue-resident macrophages, show a highly branched process tree with which they continuously scan their environment. Computational image analysis allows to quantify morphology and/or motility from images of tissue-resident macrophages. Here, I describe a step-by-step protocol for analyzing the morphology (and motility) of macrophages with our recently described, freely available software MotiQ, which provides a broad band of parameters and thereby serves as a versatile tool for studies of morphology and motility.
Collapse
Affiliation(s)
- Jan N Hansen
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
29
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
30
|
Frumer GR, Shin SH, Jung S, Kim JS. Not just Glia-Dissecting brain macrophages in the mouse. Glia 2024; 72:5-18. [PMID: 37501579 DOI: 10.1002/glia.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Macrophages have emerged as critical cellular components of the central nervous system (CNS), promoting development, maintenance, and immune defense of the CNS. Here we will review recent advances in our understanding of brain macrophage heterogeneity, including microglia and border-associated macrophages, focusing on the mouse. Emphasis will be given to the discussion of strengths and limitations of the experimental approaches that have led to the recent insights and hold promise to further deepen our mechanistic understanding of brain macrophages that might eventually allow to harness their activities for the management of CNS pathologies.
Collapse
Affiliation(s)
- Gal Ronit Frumer
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
31
|
Mauel K, Mass E. Fate-Mapping of Hematopoietic Stem Cell-Derived Macrophages. Methods Mol Biol 2024; 2713:139-148. [PMID: 37639120 DOI: 10.1007/978-1-0716-3437-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are cells of the innate immune system, which contribute to the maintenance of tissue homeostasis and form the first line of defense against pathogens. Tissue-resident macrophages that originate from erythro-myeloid-progenitors in the yolk sac colonize the organs early during development and self-maintain in most organs throughout adulthood. Under homeostatic and pathological conditions, circulating monocytes infiltrate the tissue, where they differentiate into macrophages. However, particularly upon inflammation, phenotyping of these distinct macrophage populations using surface markers or antibody stainings is insufficient as their phenotypes converge, at least transiently. A well-established method for the developmental origin of different cell types is the use of in vivo fate-mapping models, where a fluorescent reporter will be expressed under the control of a cell type-specific promoter. Here, we describe the Cxcr4CreERT2; Rosa26LSL-tdTomato mouse fate-mapping model, which labels hematopoietic stem cells and, thus, also monocytes and monocyte-derived macrophages while most tissue-resident macrophages are not targeted.
Collapse
Affiliation(s)
- Katharina Mauel
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
32
|
Liu F, Cheng X, Zhao C, Zhang X, Liu C, Zhong S, Liu Z, Lin X, Qiu W, Zhang X. Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke. Neurosci Bull 2024; 40:65-78. [PMID: 37755676 PMCID: PMC10774469 DOI: 10.1007/s12264-023-01109-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/27/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Fangxi Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Chang Liu
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhouyang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyu Lin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xiuchun Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
33
|
Liu C, Yao K, Tian Q, Guo Y, Wang G, He P, Wang J, Wang J, Zhang Z, Li M. CXCR4-BTK axis mediate pyroptosis and lipid peroxidation in early brain injury after subarachnoid hemorrhage via NLRP3 inflammasome and NF-κB pathway. Redox Biol 2023; 68:102960. [PMID: 37979447 PMCID: PMC10694315 DOI: 10.1016/j.redox.2023.102960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is critical for homeostasis of the adaptive and innate immune system in some CNS diseases. Bruton's tyrosine kinase (BTK) is an essential kinase that regulates inflammation in immune cells through multiple signaling pathways. This study aims to explore the effect of CXCR4 and BTK on neuroinflammation in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Our results showed that the expression of CXCR4 and p-BTK increased significantly at 24 h after SAH in vivo and in vitro. Ibrutinib improved neurological impairment, BBB disruption, cerebral edema, lipid peroxidation, neuroinflammation and neuronal death at 24 h after SAH. Inhibition of BTK phosphorylation promoted the in vitro transition of hemin-treated proinflammatory microglia to the anti-inflammatory state, inhibited the p-P65 expression and microglial pyroptosis. NLRP3 deficiency can significantly reduce pyroptosis in SAH mice. Moreover, CXCR4 inhibition can suppress NLRP3-mediated pyroptosis, NF-κB activation and NOX2 expression in vitro, and ibrutinib can abolish CXCR4-aggravated BBB damage and pyroptosis in EBI after SAH. The levels of CXCR4 in CSF of SAH patients is significantly increased, and it is positively correlated with GSDMD and IL-1β levels, and have a moderate diagnostic value for outcome at 6-month follow-up. Our findings revealed the effect of CXCR4 and P-BTK on NLRP3-mediated pyroptosis and lipid peroxidation after SAH in vivo and in vitro, and the potential diagnostic role of CXCR4 in CSF of SAH patients. Inhibition of CXCR4-BTK axis can significantly attenuate NLRP3-mediated pyroptosis and lipid peroxidation by regulating NF-κB activation in EBI after SAH.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Kun Yao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, PR China
| | - Zhan Zhang
- Department of Rehabilitation Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| |
Collapse
|
34
|
Liu PY, Li HQ, Dong MQ, Gu XY, Xu SY, Xia SN, Bao XY, Xu Y, Cao X. Infiltrating myeloid cell-derived properdin markedly promotes microglia-mediated neuroinflammation after ischemic stroke. J Neuroinflammation 2023; 20:260. [PMID: 37951917 PMCID: PMC10640761 DOI: 10.1186/s12974-023-02946-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Hui-Qin Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Meng-Qi Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Xin-Ya Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Si-Yi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Sheng-Nan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu, 210008, People's Republic of China.
- Nanjing Neurology Medical Center, Nanjing, Jiangsu, 210008, People's Republic of China.
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu, 210008, People's Republic of China.
- Nanjing Neurology Medical Center, Nanjing, Jiangsu, 210008, People's Republic of China.
| |
Collapse
|
35
|
Lecordier S, Menet R, Allain AS, ElAli A. Non-classical monocytes promote neurovascular repair in cerebral small vessel disease associated with microinfarctions via CX3CR1. J Cereb Blood Flow Metab 2023; 43:1873-1890. [PMID: 37340860 PMCID: PMC10676133 DOI: 10.1177/0271678x231183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Romain Menet
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Sophie Allain
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
36
|
Blank-Stein N, Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur J Immunol 2023; 53:e2250233. [PMID: 37467166 DOI: 10.1002/eji.202250233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.
Collapse
Affiliation(s)
- Nelli Blank-Stein
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
King JI, Melo-Gonzalez F, Malengier-Devlies B, Tachó-Piñot R, Magalhaes MS, Hodge SH, Romero Ros X, Gentek R, Hepworth MR. Bcl-2 supports survival and metabolic fitness of quiescent tissue-resident ILC3. Mucosal Immunol 2023; 16:658-670. [PMID: 37453568 PMCID: PMC10564625 DOI: 10.1016/j.mucimm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Group 3 innate lymphoid cells (ILC3) are potent effector cells with critical roles in enforcing immunity, barrier integrity and tissue homeostasis along the gastrointestinal tract. ILC3 are considered primarily tissue-resident cells, seeding the gastrointestinal tract during embryonic stages and early life. However, the mechanisms through which mature ILC3 are maintained within adult tissues are poorly understood. Here, we report that lymphoid tissue-inducer-like (LTi-like) ILC3 exhibit minimal turnover in the healthy adult intestinal tract, persist for extended periods of time, and display a quiescent phenotype. Strikingly, during enteric bacterial infection LTi-like ILC3 also exhibit negligible hematopoietic replenishment and remain non-proliferative, despite robustly producing cytokines. Survival of LTi-like ILC3 was found to be dependent upon the balance between the metabolic activity required to drive effector function and anti-apoptotic programs. Notably, the pro-survival protein B-cell lymphoma-2 (Bcl-2) was required for the survival of LTi-like ILC3 ex vivo but was rendered partially dispensable if mitochondrial respiration was inhibited. Together we demonstrate LTi-like ILC3 are a tissue-resident, quiescent population that persist independently of hematopoietic replenishment to survive within the intestinal microenvironment.
Collapse
Affiliation(s)
- James I King
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Felipe Melo-Gonzalez
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Bert Malengier-Devlies
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Roser Tachó-Piñot
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Marlene S Magalhaes
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne H Hodge
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Xavier Romero Ros
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
38
|
Pimentel‐Coelho PM. Monocytes in neonatal stroke and hypoxic‐ischemic encephalopathy: Pathophysiological mechanisms and therapeutic possibilities. NEUROPROTECTION 2023; 1:66-79. [DOI: 10.1002/nep3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractNeonatal arterial ischemic stroke (NAIS) and neonatal hypoxic‐ischemic encephalopathy (HIE) are common causes of neurological impairments in infants, for which treatment options are very limited. NAIS and HIE induce an innate immune response that involves the recruitment of peripheral immune cells, including monocytes, into the brain. Monocytes and monocyte‐derived cells have the potential to contribute to both harmful and beneficial pathophysiological processes, such as neuroinflammation and brain repair, but their roles in NAIS and HIE remain poorly understood. Furthermore, recent evidence indicates that monocyte‐derived macrophages can persist in the brain for several months following NAIS and HIE in mice, with possible long‐lasting consequences that are still unknown. This review provides a comprehensive overview of the mechanisms of monocyte infiltration and their potential functions in the ischemic brain, focusing on HIE and NAIS. Therapeutic strategies targeting monocytes and the possibility of using monocytes for cell‐based therapies are also discussed.
Collapse
Affiliation(s)
- Pedro M. Pimentel‐Coelho
- Carlos Chagas Filho Biophysics Institute Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
39
|
Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 2023; 23:563-579. [PMID: 36922638 PMCID: PMC10017071 DOI: 10.1038/s41577-023-00848-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Sun L, Kienzler JC, Reynoso JG, Lee A, Shiuan E, Li S, Kim J, Ding L, Monteleone AJ, Owens GC, Phillips JJ, Everson RG, Nathanson D, Cloughesy TF, Li G, Liau LM, Hugo W, Kim W, Prins RM. Immune checkpoint blockade induces distinct alterations in the microenvironments of primary and metastatic brain tumors. J Clin Invest 2023; 133:e169314. [PMID: 37655659 PMCID: PMC10471177 DOI: 10.1172/jci169314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
In comparison with responses in recurrent glioblastoma (rGBM), the intracranial response of brain metastases (BrM) to immune checkpoint blockade (ICB) is less well studied. Here, we present an integrated single-cell RNA-Seq (scRNA-Seq) study of 19 ICB-naive and 9 ICB-treated BrM samples from our own and published data sets. We compared them with our previously published scRNA-Seq data from rGBM and found that ICB led to more prominent T cell infiltration into BrM than rGBM. These BrM-infiltrating T cells exhibited a tumor-specific phenotype and displayed greater activated/exhausted features. We also used multiplex immunofluorescence and spatial transcriptomics to reveal that ICB reduced a distinct CD206+ macrophage population in the perivascular space, which may modulate T cell entry into BrM. Furthermore, we identified a subset of progenitor exhausted T cells that correlated with longer overall survival in BrM patients. Our study provides a comprehensive immune cellular landscape of ICB's effect on metastatic brain tumors and offers insights into potential strategies for improving ICB efficacy for brain tumor patients.
Collapse
Affiliation(s)
- Lu Sun
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
| | - Jenny C. Kienzler
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Inflammation Research Group, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Alexander Lee
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
| | | | | | | | - Lizhong Ding
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Department of Medicine/Dermatology, UCLA, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | | | - Joanna J. Phillips
- Helen Diller Family Comprehensive Cancer Center and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Richard G. Everson
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - David Nathanson
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - Timothy F. Cloughesy
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Department of Neurology/Neuro-Oncology, UCLA, Los Angeles, California, USA
| | | | - Linda M. Liau
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - Willy Hugo
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Department of Medicine/Dermatology, UCLA, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Won Kim
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - Robert M. Prins
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
41
|
Forde AJ, Kolter J, Zwicky P, Baasch S, Lohrmann F, Eckert M, Gres V, Lagies S, Gorka O, Rambold AS, Buescher JM, Kammerer B, Lachmann N, Prinz M, Groß O, Pearce EJ, Becher B, Henneke P. Metabolic rewiring tunes dermal macrophages in staphylococcal skin infection. Sci Immunol 2023; 8:eadg3517. [PMID: 37566679 DOI: 10.1126/sciimmunol.adg3517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The skin needs to balance tolerance of colonizing microflora with rapid detection of potential pathogens. Flexible response mechanisms would seem most suitable to accommodate the dynamic challenges of effective antimicrobial defense and restoration of tissue homeostasis. Here, we dissected macrophage-intrinsic mechanisms and microenvironmental cues that tune macrophage signaling in localized skin infection with the colonizing and opportunistic pathogen Staphylococcus aureus. Early in skin infection, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by γδ T cells and hypoxic conditions within the dermal microenvironment diverted macrophages away from a homeostatic M-CSF- and hypoxia-inducible factor 1α (HIF-1α)-dependent program. This allowed macrophages to be metabolically rewired for maximal inflammatory activity, which requires expression of Irg1 and generation of itaconate, but not HIF-1α. This multifactorial macrophage rewiring program was required for both the timely clearance of bacteria and for the provision of local immune memory. These findings indicate that immunometabolic conditioning allows dermal macrophages to cycle between antimicrobial activity and protection against secondary infections.
Collapse
Affiliation(s)
- Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Florens Lohrmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
| | - Marleen Eckert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Vitka Gres
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Simon Lagies
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- 1 Core Competence Metabolomics, Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angelika S Rambold
- Department of Developmental Immunology, Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Joerg M Buescher
- Department of Immunometabolism, Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bernd Kammerer
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- 1 Core Competence Metabolomics, Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centre's BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology and Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centre's BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centre's BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
42
|
Zernecke A, Erhard F, Weinberger T, Schulz C, Ley K, Saliba AE, Cochain C. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc Res 2023; 119:1676-1689. [PMID: 36190844 PMCID: PMC10325698 DOI: 10.1093/cvr/cvac161] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/09/2022] [Accepted: 09/24/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Accumulation of mononuclear phagocytes [monocytes, macrophages, and dendritic cells (DCs)] in the vessel wall is a hallmark of atherosclerosis. Using integrated single-cell analysis of mouse and human atherosclerosis, we here aimed to refine the nomenclature of mononuclear phagocytes in atherosclerotic vessels and to compare their transcriptomic profiles in mouse and human disease. METHODS AND RESULTS We integrated 12 single-cell RNA-sequencing (scRNA-seq) datasets of immune cells isolated from healthy or atherosclerotic mouse aortas, and data from 11 patients (n = 4 coronary vessels, n = 7 carotid endarterectomy specimens) from two studies. Integration of mouse data identified subpopulations with discrete transcriptomic signatures within previously described populations of aortic resident (Lyve1), inflammatory (Il1b), as well as foamy (Trem2hi) macrophages. We identified unique transcriptomic features distinguishing aortic intimal resident macrophages from atherosclerosis-associated Trem2hi macrophages. Also, populations of Xcr1+ Type 1 classical DCs (cDC1), Cd209a+ cDC2, and mature DCs (Ccr7, Fscn1) with a 'mreg-DC' signature were detected. In humans, we uncovered macrophage and DC populations with gene expression patterns similar to those observed in mice. In particular, core transcripts of the foamy/Trem2hi signature (TREM2, SPP1, GPNMB, CD9) mapped to a specific population of macrophages in human lesions. Comparison of mouse and human data and direct cross-species data integration suggested transcriptionally similar macrophage and DC populations in mice and humans. CONCLUSIONS We refined the nomenclature of mononuclear phagocytes in mouse atherosclerotic vessels, and show conserved transcriptomic features of macrophages and DCs in atherosclerosis in mice and humans, emphasizing the relevance of mouse models to study mononuclear phagocytes in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Campus Großhadern Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Campus Großhadern Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Klaus Ley
- La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Josef Schneider Str. 2, 97080 Würzburg, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center Würzburg, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| |
Collapse
|
43
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
45
|
Yang Y, Zhang M, Li Z, He S, Ren X, Wang L, Wang Z, Shu S. Identification and cross-validation of autophagy-related genes in cardioembolic stroke. Front Neurol 2023; 14:1097623. [PMID: 37305740 PMCID: PMC10248509 DOI: 10.3389/fneur.2023.1097623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.
Collapse
Affiliation(s)
- Yufang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqing Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ren
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linmei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
46
|
Gao Y, Duan R, Li H, Jiang L, Tao T, Liu X, Zhu L, Li Z, Chen B, Zheng S, Lin X, Su W. Single-cell analysis of immune cells on gingiva-derived mesenchymal stem cells in experimental autoimmune uveitis. iScience 2023; 26:106729. [PMID: 37216113 PMCID: PMC10192653 DOI: 10.1016/j.isci.2023.106729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Gingiva-derived mesenchymal stem cells (GMSCs) have shown astonishing efficacy in the treatment of various autoimmune diseases. However, the mechanisms underlying these immunosuppressive properties remain poorly understood. Here, we generated a lymph node single-cell transcriptomic atlas of GMSC-treated experimental autoimmune uveitis mice. GMSC exerted profound rescue effects on T cells, B cells, dendritic cells, and monocytes. GMSCs rescued the proportion of T helper 17 (Th17) cells and increased the proportion of regulatory T cells. In addition to globally altered transcriptional factors (Fosb and Jund), we observed cell type-dependent gene regulation (e.g., Il17a and Rac1 in Th17 cells), highlighting the GMSCs' cell type-dependent immunomodulatory capacity. GMSCs strongly influenced the phenotypes of Th17 cells, suppressing the formation of the highly inflammatory CCR6-CCR2+ phenotype and enhancing the production of interleukin (IL) -10 in the CCR6+CCR2+ phenotype. Integration of the glucocorticoid-treated transcriptome suggests a more specific immunosuppressive effect of GMSCs on lymphocytes.
Collapse
Affiliation(s)
- Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Songguo Zheng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 51000, China
| |
Collapse
|
47
|
Li HJ, Li DQ, Zhang YL, Ding XF, Gao HT, Zhu Y, Liu J, Zhang LX, Chen J, Chen G, Yu Y. Modulation of gut microbiota alleviates cerebral ischemia/reperfusion injury in rats by inhibiting M1 polarization of microglia. Front Pharmacol 2023; 14:1123387. [PMID: 37229259 PMCID: PMC10203402 DOI: 10.3389/fphar.2023.1123387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Gut microbiota affects the gut-brain axis; hence, the modulation of the microbiota has been proposed as a potential therapeutic strategy for cerebral ischemia/reperfusion injury (CIRI). However, the role and mechanism of the gut microbiota in regulating microglial polarization during CIRI remain poorly understood. Herein, using a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model, we evaluated changes in the gut microbiota after CIRI and the potential effects of fecal microbiota transplant (FMT) on the brain. Rats underwent either MCAO/R or sham surgery, and then they received FMT (started 3 days later; continued for 10 days). 2,3,5-Triphenyltetrazolium chloride staining, neurological outcome scale, and Fluoro-Jade C staining showed that MCAO/R induced cerebral infarction, neurological deficits, and neuronal degeneration. In addition, immunohistochemistry or real-time PCR assay showed increased expression levels of M1-macrophage markers-TNF-α, IL-1β, IL-6, and iNOS-in the rats following MCAO/R. Our finding suggests that microglial M1 polarization is involved in CIRI. 16 S ribosomal RNA gene sequencing data revealed an imbalance in the gut microbiota of MCAO/R animals. In contrast, FMT reversed this MCAO/R-induced imbalance in the gut microbiota and ameliorated nerve injury. In addition, FMT prevented the upregulation in the ERK and NF-κB pathways, which reversed the M2-to-M1 microglial shift 10 days after MCAO/R injury in rats. Our primary data showed that the modulation of the gut microbiota can attenuate CIRI in rats by inhibiting microglial M1 polarization through the ERK and NF-κB pathways. However, an understanding of the underlying mechanism requires further study.
Collapse
Affiliation(s)
- Hai-Jun Li
- Department of Neurology, Taizhou Second People’s Hospital, Taizhou University, Taizhou, Zhejiang, China
| | - Dan-Qing Li
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Liang Zhang
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Xiao-Fei Ding
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Hai-Tao Gao
- Department of Hygiene Toxicology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya Zhu
- Department of Hygiene Toxicology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Liu
- Department of Neurology, Taizhou Second People’s Hospital, Taizhou University, Taizhou, Zhejiang, China
| | - Li-Xia Zhang
- Department of Neurology, Taizhou Second People’s Hospital, Taizhou University, Taizhou, Zhejiang, China
| | - Jie Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Guang Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Ying Yu
- Laboratory Department, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
48
|
Stephens R, Grainger JR, Smith CJ, Allan SM. Systemic innate myeloid responses to acute ischaemic and haemorrhagic stroke. Semin Immunopathol 2023; 45:281-294. [PMID: 36346451 PMCID: PMC9641697 DOI: 10.1007/s00281-022-00968-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.
Collapse
Affiliation(s)
- Ruth Stephens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
49
|
Li L, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmacother 2023; 161:114504. [PMID: 37002579 DOI: 10.1016/j.biopha.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Macrophages are potent immune effector cells in innate immunity and exert dual-effects in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) make up a significant portion of TME immune cells. Similar to M1/M2 macrophages, TAMs are also highly plastic, and their functions are regulated by cytokines, chemokines and other factors in the TME. The metabolic changes in TAMs are significantly associated with polarization towards a protumour or antitumour phenotype. The metabolites generated via TAM metabolic reprogramming in turn promote tumor progression and immune tolerance. In this review, we explore the metabolic reprogramming of TAMs in terms of energy, amino acid and fatty acid metabolism and the potential roles of these changes in immune suppression.
Collapse
Affiliation(s)
- Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
50
|
Hu Z, Chen G, Yan C, Li Z, Wu T, Li L, Zhang S. Autophagy affects hepatic fibrosis progression by regulating macrophage polarization and exosome secretion. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37186334 DOI: 10.1002/tox.23795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND In this study, the role of autophagy in hepatic fibrosis and its effects on macrophage polarization and exosomes (EVs) were verified by establishing hepatic fibrosis model and co-culture model, providing evidence for treatment. METHODS In this study, CCL4 was used to establish hepatic fibrosis model. The morphology and purity of exosomes (EVs) were verified by transmission electron microscopy, western blotting (WB), and nanoparticle tracing analysis (NTA). Real-time quantitative PCR (qRT-PCR), WB and enzyme-linked immunoadsorption (ELISA) were used to detect hepatic fibrosis markers, macrophage polarization markers and liver injury markers. Histopathological assays were used to verify the liver injury morphology in different groups. The cell co-culture model and hepatic fibrosis model were constructed to verify the expression of miR-423-5p. RESULTS Hepatic fibrosis model showed that CCL4 promoted early autophagy increase but inhibited autophagy flux in liver. mRFP-GFP-LC3 detection showed that both LPS group and Baf group inhibited autophagy flux. This inhibitory effect was reversed by Rap combination therapy. The M1/M2 markers of macrophage polarization were further tested, and it was found that LPS and Baf could promote M1 polarization and inhibit M2 polarization. Rap processing reverses this phenomenon. These data suggest that autophagy can regulate the polarization process of liver macrophages. WB and NTA showed that LPS induced EVs generation. In addition, LPS-induced EVs could promote HSC proliferation, cell cycle, migration, and the expression of fibrosis markers. Macrophage-EVs could affect the fibrosis process of stellate cells through the secretion of miR-423a-5p expression. The hepatic fibrosis model was further established to verify the regulation of autophagy and EVs on the fibrosis process. CONCLUSION This study was showed that autophagy could regulate fibrosis by promoting HSC activation by regulating macrophage polarization and exosome secretion.
Collapse
Affiliation(s)
- Zongqiang Hu
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Gang Chen
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuntao Yan
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhiqiang Li
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tao Wu
- Department of Infectious Diseases, First People's Hospital of Kunming City, Kunming, China
- Department of Infectious Diseases, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shengning Zhang
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|