1
|
Ramou I, Janvier S, Druwé S, Sys C, Dekeyzer L, Claes P, Pardon E, Menet C, Steyaert J. Expression and purification of an activated orexin receptor 1- G-protein complex. Protein Expr Purif 2025; 228:106660. [PMID: 39761735 DOI: 10.1016/j.pep.2025.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Orexin receptors constitute a family of class A G-protein coupled receptors. There are two subtypes of orexin receptors, namely OX1R and OX2R. OX1R and OX2R are widely distributed in the central nervous system and are the targets for the peptide neurotransmitters orexin-A and orexin-B. Orexins are involved in a plethora of key physiological functions such as regulation of the sleep/wake cycle, feeding behavior, energy homeostasis, and cognition. Dysfunction of the orexin system has been linked to various pathological conditions, such as narcolepsy, insomnia, obesity, addiction, cognitive impairment, and depression. The active state structure of OX2R has been elucidated, while the active state structure of OX1R remains unresolved. Here, we describe a method for the expression and purification of an activated OX1R bound to its native peptide ligand, orexin-A, in complex with a Dominant Negative Gsq protein and Nb35. The proteins were expressed in Hi5 insect cells and subsequently purified via two consecutive affinity chromatography steps, followed by a final polishing Size Exclusion Chromatography step. This study could stimulate further research into the activation mechanisms of OX1R and the structural determination of its active state structure.
Collapse
Affiliation(s)
- Ioanna Ramou
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Steven Janvier
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | | | | | | | | | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | | | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium.
| |
Collapse
|
2
|
Cola RB, Niethammer SN, Rajamannar P, Gresch A, Bhat MA, Assoumou K, Williams ET, Hauck P, Hartrampf N, Benke D, Stoeber M, Levkowitz G, Melzer S, Patriarchi T. Probing PAC1 receptor activation across species with an engineered sensor. eLife 2024; 13:RP96496. [PMID: 39145773 PMCID: PMC11326774 DOI: 10.7554/elife.96496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1P78A, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (ΔF/F0 = 1100%), excellent ligand selectivity, and rapid activation kinetics (τON = 1.15 s). To showcase the utility of this tool for in vitro applications, we thoroughly characterized and compared its expression, brightness and performance between PAClight1P78A-transfected and stably expressing cells. Demonstrating its use in animal models, we show robust expression and fluorescence responses upon exogenous ligand application ex vivo and in vivo in mice, as well as in living zebrafish larvae. Thus, the new GPCR-based sensor can be used for a wide range of applications across the life sciences empowering both basic research and drug development efforts.
Collapse
Affiliation(s)
- Reto B Cola
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Salome N Niethammer
- Medical University of Vienna, Center for Brain Research, Department for Neuronal Cell Biology, Vienna, Austria
| | - Preethi Rajamannar
- Department of Molecular Neuroscience & Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Kevin Assoumou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Patrick Hauck
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Nina Hartrampf
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Gil Levkowitz
- Department of Molecular Neuroscience & Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melzer
- Medical University of Vienna, Center for Brain Research, Department for Neuronal Cell Biology, Vienna, Austria
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Shihoya W, Iwama A, Sano FK, Nureki O. Cryo-EM advances in GPCR structure determination. J Biochem 2024; 176:1-10. [PMID: 38498911 DOI: 10.1093/jb/mvae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute a prominent superfamily in humans and are categorized into six classes (A-F) that play indispensable roles in cellular communication and therapeutics. Nonetheless, their structural comprehension has been limited by challenges in high-resolution data acquisition. This review highlights the transformative impact of cryogenic electron microscopy (cryo-EM) on the structural determinations of GPCR-G-protein complexes. Specific technologies, such as nanobodies and mini-G-proteins, stabilize complexes and facilitate structural determination. We discuss the structural alterations upon receptor activation in different GPCR classes, revealing their diverse mechanisms. This review highlights the robust foundation for comprehending GPCR function and pave the way for future breakthroughs in drug discovery and therapeutic targeting.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Iwama A, Kise R, Akasaka H, Sano FK, Oshima HS, Inoue A, Shihoya W, Nureki O. Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103. Nat Commun 2024; 15:4769. [PMID: 38897996 PMCID: PMC11187126 DOI: 10.1038/s41467-024-49030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroglutamylated RF-amide peptide (QRFP) is a peptide hormone with a C-terminal RF-amide motif. QRFP selectively activates a class A G-protein-coupled receptor (GPCR) GPR103 to exert various physiological functions such as energy metabolism and appetite regulation. Here, we report the cryo-electron microscopy structure of the QRFP26-GPR103-Gq complex at 3.19 Å resolution. QRFP26 adopts an extended structure bearing no secondary structure, with its N-terminal and C-terminal sides recognized by extracellular and transmembrane domains of GPR103 respectively. This movement, reminiscent of class B1 GPCRs except for orientation and structure of the ligand, is critical for the high-affinity binding and receptor specificity of QRFP26. Mutagenesis experiments validate the functional importance of the binding mode of QRFP26 by GPR103. Structural comparisons with closely related receptors, including RY-amide peptide-recognizing GPCRs, revealed conserved and diversified peptide recognition mechanisms, providing profound insights into the biological significance of RF-amide peptides. Collectively, this study not only advances our understanding of GPCR-ligand interactions, but also paves the way for the development of novel therapeutics targeting metabolic and appetite disorders and emergency medical care.
Collapse
Affiliation(s)
- Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hidetaka S Oshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
5
|
Meireles FATP, Antunes D, Temerozo JR, Bou-Habib DC, Caffarena ER. PACAP key interactions with PAC1, VPAC1, and VPAC2 identified by molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:3128-3144. [PMID: 37216328 DOI: 10.1080/07391102.2023.2213349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deborah Antunes
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Ernesto Raul Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Corum MR, Venkannagari H, Hryc CF, Baker ML. Predictive modeling and cryo-EM: A synergistic approach to modeling macromolecular structure. Biophys J 2024; 123:435-450. [PMID: 38268190 PMCID: PMC10912932 DOI: 10.1016/j.bpj.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Over the last 15 years, structural biology has seen unprecedented development and improvement in two areas: electron cryo-microscopy (cryo-EM) and predictive modeling. Once relegated to low resolutions, single-particle cryo-EM is now capable of achieving near-atomic resolutions of a wide variety of macromolecular complexes. Ushered in by AlphaFold, machine learning has powered the current generation of predictive modeling tools, which can accurately and reliably predict models for proteins and some complexes directly from the sequence alone. Although they offer new opportunities individually, there is an inherent synergy between these techniques, allowing for the construction of large, complex macromolecular models. Here, we give a brief overview of these approaches in addition to illustrating works that combine these techniques for model building. These examples provide insight into model building, assessment, and limitations when integrating predictive modeling with cryo-EM density maps. Together, these approaches offer the potential to greatly accelerate the generation of macromolecular structural insights, particularly when coupled with experimental data.
Collapse
Affiliation(s)
- Michael R Corum
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Harikanth Venkannagari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Corey F Hryc
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas.
| |
Collapse
|
7
|
Oshima HS, Sano FK, Akasaka H, Iwama A, Shihoya W, Nureki O. Optimizing cryo-EM structural analysis of G i-coupling receptors via engineered G t and Nb35 application. Biochem Biophys Res Commun 2024; 693:149361. [PMID: 38128244 DOI: 10.1016/j.bbrc.2023.149361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Cryo-EM single particle analysis has recently facilitated the high-resolution structural determination of numerous GPCR-G complexes. Diverse methodologies have been devised with this trend, and in the case of GPCR-Gi complexes, scFv16, an antibody that recognizes the intricate interface of the complex, has been mainly implemented to stabilize the complex. However, owing to their flexibility and heterogeneity, structural determinations of GPCR-Gi complexes remain both challenging and resource-intensive. By employing eGαt, which exhibits binding affinity to modified nanobody Nb35, the cryo-EM structure of Rhodopsin-eGαt complex was previously reported. Using this modified G protein, we determined the structure of the ETB-eGt complex bound to the modified Nb35. The determined structure of ETB receptor was the same as the previously reported ETB-Gi complex, and the resulting dataset demonstrated significantly improved anisotropy. This modified G protein will be utilized for the structural determination of other GPCR-Gi complexes.
Collapse
Affiliation(s)
- Hidetaka S Oshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
He Z, Chen M, Luo Z. Identification of immune-related genes and integrated analysis of immune-cell infiltration in melanoma. Aging (Albany NY) 2024; 16:911-927. [PMID: 38217549 PMCID: PMC10817386 DOI: 10.18632/aging.205427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE This study was conducted to screen out immune-related genes in connection with the prognosis of melanoma, construct a prognosis model and explore the relevant mechanisms. METHODS AND MATERIALS 1973 genes associated with immune system were derived from the Immport database, and RNA-seq data of melanoma and information of patients were searched from the Xena database. Cox univariate analysis, Lasso analysis and Cox multivariate analysis were used to screen out six genes to construct the model. Then the risk scores were estimated for patients based on our constructed prognosis model. Estimate was used to affirm that the model was about immune infiltration, and CIBERSORT was used to screen out immune cells associated with prognosis. TIDE was applied to predict the efficacy of immunotherapy. Finally, GSE65904 and GSE19234 were used to confirm the effectiveness of the model. RESULTS ADCYAP1R1, GPI, NTS might cause poor prognosis while IFITM1, KIR2DL4, LIF were more likely conductive to prognosis of melanoma patients and a model of prognosis was constructed on the basis of these six genes. The effectiveness of the model has been proven by the ROC curve, and the miRNAs targeting the screened genes were found out, suggesting that the immune system might impact on the prognosis of melanoma by T cell CD8+, T cell CD4+ memory and NK cells. CONCLUSIONS In this study, the screened six genes were associated with the prognosis of melanoma, which was conductive to clinical prognostic prediction and individualized treatment strategy.
Collapse
Affiliation(s)
- Zhenghao He
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Manli Chen
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Zhijun Luo
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| |
Collapse
|
9
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
10
|
Langer G, Scott J, Lind C, Otto C, Bothe U, Laux-Biehlmann A, Müller J, le Roy B, Irlbacher H, Nowak-Reppel K, Schlüter A, Davenport AJ, Slack M, Bäurle S. Discovery and In Vitro Characterization of BAY 2686013, an Allosteric Small Molecule Antagonist of the Human Pituitary Adenylate Cyclase-Activating Polypeptide Receptor. Mol Pharmacol 2023; 104:105-114. [PMID: 37348913 DOI: 10.1124/molpharm.122.000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
The human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R), a class B G-protein-coupled receptor (GPCR) identified almost 30 years ago, represents an important pharmacological target in the areas of neuroscience, oncology, and immunology. Despite interest in this target, only a very limited number of small molecule modulators have been reported for this receptor. We herein describe the results of a drug discovery program aiming for the identification of a potent and selective hPAC1-R antagonist. An initial high-throughput screening (HTS) screen of 3.05 million compounds originating from the Bayer screening library failed to identify any tractable hits. A second, completely revised screen using native human embryonic kidney (HEK)293 cells yielded a small number of hits exhibiting antagonistic properties (4.2 million compounds screened). BAY 2686013 (1) emerged as a promising compound showing selective antagonistic activity in the submicromolar potency range. In-depth characterization supported the hypothesis that BAY 2686013 blocks receptor activity in a noncompetitive manner. Preclinical, pharmacokinetic profiling indicates that BAY 2686013 is a valuable tool compound for better understanding the signaling and function of hPAC1-R. SIGNIFICANCE STATEMENT: Although the human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R) is of major significance as a therapeutic target with a well documented role in pain signaling, only a very limited number of small-molecule (SMOL) compounds are known to modulate its activity. We identified and thoroughly characterized a novel, potent, and selective SMOL antagonist of hPAC1-R (acting in an allosteric manner). These characteristics make BAY 2686013 an ideal tool for further studies.
Collapse
Affiliation(s)
- Gernot Langer
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - John Scott
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Christoffer Lind
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Christiane Otto
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Ulrich Bothe
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Alexis Laux-Biehlmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Jörg Müller
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Beau le Roy
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Horst Irlbacher
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Katrin Nowak-Reppel
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Anne Schlüter
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Adam J Davenport
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Mark Slack
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Stefan Bäurle
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| |
Collapse
|
11
|
Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE, Chen BK. The functional heterogeneity of PACAP: Stress, learning, and pathology. Neurobiol Learn Mem 2023; 203:107792. [PMID: 37369343 PMCID: PMC10527199 DOI: 10.1016/j.nlm.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.
Collapse
Affiliation(s)
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, United States
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, United States.
| |
Collapse
|
12
|
Kobayashi K, Kawakami K, Kusakizako T, Tomita A, Nishimura M, Sawada K, Okamoto HH, Hiratsuka S, Nakamura G, Kuwabara R, Noda H, Muramatsu H, Shimizu M, Taguchi T, Inoue A, Murata T, Nureki O. Class B1 GPCR activation by an intracellular agonist. Nature 2023; 618:1085-1093. [PMID: 37286611 PMCID: PMC10307627 DOI: 10.1038/s41586-023-06169-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and β-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than β-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.
Collapse
Affiliation(s)
- Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Preferred Networks, Tokyo, Japan
| | - Michihiro Nishimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sawada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Gaku Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Riku Kuwabara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroshi Noda
- Research Division, Chugai Pharmaceutical, Shizuoka, Japan
| | | | - Masaru Shimizu
- Research Division, Chugai Pharmaceutical, Shizuoka, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Vilardaga JP, Clark LJ, White AD, Sutkeviciute I, Lee JY, Bahar I. Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocr Rev 2023; 44:474-491. [PMID: 36503956 PMCID: PMC10461325 DOI: 10.1210/endrev/bnac032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling. These include transient signaling at the plasma membrane and sustained signaling from internalized PTH1R within early endosomes mediated by PTH. Here we discuss recent structural, cell signaling, and in vivo studies that unveil potential pharmacological outputs of the spatial versus temporal dimension of PTH1R signaling via cAMP. Notably, the combination of molecular dynamics simulations and elastic network model-based methods revealed how precise modulation of PTH signaling responses is achieved through structure-encoded allosteric coupling within the receptor and between the peptide hormone binding site and the G protein coupling interface. The implications of recent findings are now being explored for addressing key questions on how location bias in receptor signaling contributes to pharmacological functions, and how to drug a difficult target such as the PTH1R toward discovering nonpeptidic small molecule candidates for the treatment of metabolic bone and mineral diseases.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lisa J Clark
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alex D White
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Sano FK, Akasaka H, Shihoya W, Nureki O. Cryo-EM structure of the endothelin-1-ET B-G i complex. eLife 2023; 12:85821. [PMID: 37096326 PMCID: PMC10129325 DOI: 10.7554/elife.85821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
The endothelin ETB receptor is a promiscuous G-protein coupled receptor that is activated by vasoactive peptide endothelins. ETB signaling induces reactive astrocytes in the brain and vasorelaxation in vascular smooth muscle. Consequently, ETB agonists are expected to be drugs for neuroprotection and improved anti-tumor drug delivery. Here, we report the cryo-electron microscopy structure of the endothelin-1-ETB-Gi complex at 2.8 Å resolution, with complex assembly stabilized by a newly established method. Comparisons with the inactive ETB receptor structures revealed how endothelin-1 activates the ETB receptor. The NPxxY motif, essential for G-protein activation, is not conserved in ETB, resulting in a unique structural change upon G-protein activation. Compared with other GPCR-G-protein complexes, ETB binds Gi in the shallowest position, further expanding the diversity of G-protein binding modes. This structural information will facilitate the elucidation of G-protein activation and the rational design of ETB agonists.
Collapse
Affiliation(s)
- Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
16
|
Piper SJ, Deganutti G, Lu J, Zhao P, Liang YL, Lu Y, Fletcher MM, Hossain MA, Christopoulos A, Reynolds CA, Danev R, Sexton PM, Wootten D. Understanding VPAC receptor family peptide binding and selectivity. Nat Commun 2022; 13:7013. [PMID: 36385145 PMCID: PMC9668914 DOI: 10.1038/s41467-022-34629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.
Collapse
Affiliation(s)
- Sarah J. Piper
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Giuseppe Deganutti
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK
| | - Jessica Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Peishen Zhao
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Yi-Lynn Liang
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,Present Address: Confo TherapeuticsTechnologiepark 94, Ghent (Zwijnaarde), 9052 Belgium
| | - Yao Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Madeleine M. Fletcher
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.454018.c0000 0004 0632 8971Present Address: GlaxoSmithKline, Abbotsford, 3067 VIC Australia
| | - Mohammed Akhter Hossain
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Arthur Christopoulos
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Christopher A. Reynolds
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK ,grid.8356.80000 0001 0942 6946School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Radostin Danev
- grid.26999.3d0000 0001 2151 536XGraduate School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Patrick M. Sexton
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Denise Wootten
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| |
Collapse
|
17
|
Akasaka H, Tanaka T, Sano FK, Matsuzaki Y, Shihoya W, Nureki O. Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist. Nat Commun 2022; 13:5417. [PMID: 36109516 PMCID: PMC9477835 DOI: 10.1038/s41467-022-33121-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) is one of the six G protein-coupled receptors activated by the bioactive lipid, lysophosphatidic acid (LPA). LPA1 is a drug target for various diseases, including cancer, inflammation, and neuropathic pain. Notably, LPA1 agonists have potential therapeutic value for obesity and urinary incontinence. Here, we report a cryo-electron microscopy structure of the active human LPA1-Gi complex bound to ONO-0740556, an LPA analog with more potent activity against LPA1. Our structure elucidated the details of the agonist binding mode and receptor activation mechanism mediated by rearrangements of transmembrane segment 7 and the central hydrophobic core. A structural comparison of LPA1 and other phylogenetically-related lipid-sensing GPCRs identified the structural determinants for lipid preference of LPA1. Moreover, we characterized the structural polymorphisms at the receptor-G-protein interface, which potentially reflect the G-protein dissociation process. Our study provides insights into the detailed mechanism of LPA1 binding to agonists and paves the way toward the design of drug-like agonists targeting LPA1. LPA1 is one of the GPCRs that are drug targets for various diseases. Here the authors report a cryo-EM structure of the active human LPA1-Gi complex bound to an LPA analog with more potent activity against LPA1 and clarified the ligand recognition mechanism.
Collapse
|
18
|
Kobayashi K, Kawakami K, Kusakizako T, Miyauchi H, Tomita A, Kobayashi K, Shihoya W, Yamashita K, Nishizawa T, Kato HE, Inoue A, Nureki O. Endogenous ligand recognition and structural transition of a human PTH receptor. Mol Cell 2022; 82:3468-3483.e5. [PMID: 35932760 DOI: 10.1016/j.molcel.2022.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/07/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Endogenous parathyroid hormone (PTH) and PTH-related peptide (PTHrP) bind to the parathyroid hormone receptor 1 (PTH1R) and activate the stimulatory G-protein (Gs) signaling pathway. Intriguingly, the two ligands have distinct signaling and physiological properties: PTH evokes prolonged Gs activation, whereas PTHrP evokes transient Gs activation with reduced bone-resorption effects. The distinct molecular actions are ascribed to the differences in ligand recognition and dissociation kinetics. Here, we report cryoelectron microscopic structures of six forms of the human PTH1R-Gs complex in the presence of PTH or PTHrP at resolutions of 2.8 -4.1 Å. A comparison of the PTH-bound and PTHrP-bound structures reveals distinct ligand-receptor interactions underlying the ligand affinity and selectivity. Furthermore, five distinct PTH-bound structures, combined with computational analyses, provide insights into the unique and complex process of ligand dissociation from the receptor and shed light on the distinct durations of signaling induced by PTH and PTHrP.
Collapse
Affiliation(s)
- Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hirotake Miyauchi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kan Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hideaki E Kato
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Komaba Institute for Science, the University of Tokyo, Meguro, Tokyo 153-8505, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
19
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
20
|
McKay K, Hamilton NB, Remington JM, Schneebeli ST, Li J. Essential Dynamics Ensemble Docking for Structure-Based GPCR Drug Discovery. Front Mol Biosci 2022; 9:879212. [PMID: 35847975 PMCID: PMC9277106 DOI: 10.3389/fmolb.2022.879212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
The lack of biologically relevant protein structures can hinder rational design of small molecules to target G protein-coupled receptors (GPCRs). While ensemble docking using multiple models of the protein target is a promising technique for structure-based drug discovery, model clustering and selection still need further investigations to achieve both high accuracy and efficiency. In this work, we have developed an original ensemble docking approach, which identifies the most relevant conformations based on the essential dynamics of the protein pocket. This approach is applied to the study of small-molecule antagonists for the PAC1 receptor, a class B GPCR and a regulator of stress. As few as four representative PAC1 models are selected from simulations of a homology model and then used to screen three million compounds from the ZINC database and 23 experimentally validated compounds for PAC1 targeting. Our essential dynamics ensemble docking (EDED) approach can effectively reduce the number of false negatives in virtual screening and improve the accuracy to seek potent compounds. Given the cost and difficulties to determine membrane protein structures for all the relevant states, our methodology can be useful for future discovery of small molecules to target more other GPCRs, either with or without experimental structures.
Collapse
|
21
|
Li J, Remington JM, Liao C, Parsons RL, Schneebeli S, Braas KM, May V, Brewer M. GPCR Intracellular Loop Regulation of Beta-Arrestin-Mediated Endosomal Signaling Dynamics. J Mol Neurosci 2022; 72:1358-1373. [PMID: 35538393 PMCID: PMC9311399 DOI: 10.1007/s12031-022-02016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are currently appreciated to be routed to diverse cellular platforms to generate both G protein-dependent and -independent signals. The latter has been best studied with respect to β-arrestin-associated receptor internalization and trafficking to signaling endosomes for extracellular signal-regulated kinase (ERK) activation. However, how GPCR structural and conformational variants regulate endosomal ERK signaling dynamics, which can be central in neural development, plasticity, and disease processes, is not well understood. Among class B GPCRs, the PACAP-selective PAC1 receptor is unique in the expression of variants that can contain intracellular loop 3 (ICL3) cassette inserts. The nervous system expresses preferentially the PAC1Null (no insert) and PAC1Hop (28-amino acid Hop insert) receptor variants. Our molecular modeling and signaling studies revealed that the PAC1Null and PAC1Hop receptor variants can associate with β-arrestin differentially, resulting in enhanced receptor internalization and ERK activation for the PAC1Hop variant. The study amplifies our understandings of GPCR intracellular loop structure/function relationships with the first example of how the duration of endosomal ERK activation can be guided by ICL3. The results provide a framework for how changes in GPCR variant expression can impact developmental and homeostatic processes and may be contributory to maladaptive neuroplasticity underlying chronic pain and stress-related disorders.
Collapse
Affiliation(s)
- Jianing Li
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA.
| | - Jacob M Remington
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Chenyi Liao
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Rodney L Parsons
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Severin Schneebeli
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| |
Collapse
|
22
|
Laeremans T, Sands ZA, Claes P, De Blieck A, De Cesco S, Triest S, Busch A, Felix D, Kumar A, Jaakola VP, Menet C. Accelerating GPCR Drug Discovery With Conformation-Stabilizing VHHs. Front Mol Biosci 2022; 9:863099. [PMID: 35677880 PMCID: PMC9170359 DOI: 10.3389/fmolb.2022.863099] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
The human genome encodes 850 G protein-coupled receptors (GPCRs), half of which are considered potential drug targets. GPCRs transduce extracellular stimuli into a plethora of vital physiological processes. Consequently, GPCRs are an attractive drug target class. This is underlined by the fact that approximately 40% of marketed drugs modulate GPCRs. Intriguingly 60% of non-olfactory GPCRs have no drugs or candidates in clinical development, highlighting the continued potential of GPCRs as drug targets. The discovery of small molecules targeting these GPCRs by conventional high throughput screening (HTS) campaigns is challenging. Although the definition of success varies per company, the success rate of HTS for GPCRs is low compared to other target families (Fujioka and Omori, 2012; Dragovich et al., 2022). Beyond this, GPCR structure determination can be difficult, which often precludes the application of structure-based drug design approaches to arising HTS hits. GPCR structural studies entail the resource-demanding purification of native receptors, which can be challenging as they are inherently unstable when extracted from the lipid matrix. Moreover, GPCRs are flexible molecules that adopt distinct conformations, some of which need to be stabilized if they are to be structurally resolved. The complexity of targeting distinct therapeutically relevant GPCR conformations during the early discovery stages contributes to the high attrition rates for GPCR drug discovery programs. Multiple strategies have been explored in an attempt to stabilize GPCRs in distinct conformations to better understand their pharmacology. This review will focus on the use of camelid-derived immunoglobulin single variable domains (VHHs) that stabilize disease-relevant pharmacological states (termed ConfoBodies by the authors) of GPCRs, as well as GPCR:signal transducer complexes, to accelerate drug discovery. These VHHs are powerful tools for supporting in vitro screening, deconvolution of complex GPCR pharmacology, and structural biology purposes. In order to demonstrate the potential impact of ConfoBodies on translational research, examples are presented of their role in active state screening campaigns and structure-informed rational design to identify de novo chemical space and, subsequently, how such matter can be elaborated into more potent and selective drug candidates with intended pharmacology.
Collapse
|
23
|
A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2. Nat Commun 2022; 13:2272. [PMID: 35477937 PMCID: PMC9046186 DOI: 10.1038/s41467-022-30041-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Class B1 of G protein-coupled receptors (GPCRs) comprises 15 members activated by physiologically important peptide hormones. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, including pulmonary arterial hypertension, autoimmune and psychiatric disorders, in which it is thus a valuable drug target. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics. Vasoactive intestinal polypeptide receptor 2 (VIP2R) is involved in immunity. Here, the authors report two cryo-EM structures of the VIP2R–Gs in complex with the endogenous peptide ligand PACAP27, revealing a unique interaction mode between PACAP27 and the receptor, stabilized by the N-terminal α-helix of VIP2R.
Collapse
|
24
|
Nureki I, Kobayashi K, Tanaka T, Demura K, Inoue A, Shihoya W, Nureki O. Cryo-EM structures of the β 3 adrenergic receptor bound to solabegron and isoproterenol. Biochem Biophys Res Commun 2022; 611:158-164. [PMID: 35489202 DOI: 10.1016/j.bbrc.2022.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
The β3-adrenergic receptor (β3AR) is the most essential drug target for overactive bladder and has therapeutic potentials for the treatments of type 2 diabetes and obesity. Here, we report the cryo-electron microscopy structures of the β3AR-Gs signaling complexes with the selective agonist, solabegron and the nonselective agonist, isoproterenol. Comparison of the isoproterenol-, mirabegron-, and solabegron-bound β3AR structures revealed that the extracellular loop 2 changes its conformation depending on the bound agonist and plays an essential role in solabegron binding. Moreover, β3AR has an intrinsically narrow exosite, regardless of the agonist type. This structural feature clearly explains why β3AR prefers mirabegron and solabegron, as the narrow exosite is suitable for binding with agonists with elongated shapes. Our study deepens the understanding of the binding characteristics of β3AR agonists and may pave the way for developing β3AR-selective drugs.
Collapse
Affiliation(s)
- Ikko Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kanae Demura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
25
|
Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022; 10:biomedicines10020406. [PMID: 35203615 PMCID: PMC8962308 DOI: 10.3390/biomedicines10020406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Jérôme Jeandriens
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Alain Couvineau
- UMR 1149 Inserm, Centre de Recherche sur l’Inflammation (CRI), Université de Paris, 75018 Paris, France;
| | - Swapnil Sanmukh
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
26
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
27
|
Cong Z, Liang YL, Zhou Q, Darbalaei S, Zhao F, Feng W, Zhao L, Xu HE, Yang D, Wang MW. Structural perspective of class B1 GPCR signaling. Trends Pharmacol Sci 2022; 43:321-334. [DOI: 10.1016/j.tips.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
|
28
|
Nagiri C, Kobayashi K, Tomita A, Kato M, Kobayashi K, Yamashita K, Nishizawa T, Inoue A, Shihoya W, Nureki O. Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity. Mol Cell 2021; 81:3205-3215.e5. [PMID: 34314699 DOI: 10.1016/j.molcel.2021.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/17/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
The β3-adrenergic receptor (β3AR) is predominantly expressed in adipose tissue and urinary bladder and has emerged as an attractive drug target for the treatment of type 2 diabetes, obesity, and overactive bladder (OAB). Here, we report the cryogenic electron microscopy structure of the β3AR-Gs signaling complex with the selective agonist mirabegron, a first-in-class drug for OAB. Comparison of this structure with the previously reported β1AR and β2AR structures reveals a receptor activation mechanism upon mirabegron binding to the orthosteric site. Notably, the narrower exosite in β3AR creates a perpendicular pocket for mirabegron. Mutational analyses suggest that a combination of both the exosite shape and the amino-acid-residue substitutions defines the drug selectivity of the βAR agonists. Our findings provide a molecular basis for βAR subtype selectivity, allowing the design of more-selective agents with fewer adverse effects.
Collapse
Affiliation(s)
- Chisae Nagiri
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiko Kato
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kan Kobayashi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
29
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 2021; 28:198-205. [PMID: 33449573 PMCID: PMC7957349 DOI: 10.1097/med.0000000000000617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in pharmacology, cell biology, and intracellular signaling in cancer. RECENT FINDINGS Recent studies provide new insights into the pharmacology, cell biology of the VIP/PACAP system and show they play important roles in a number of human cancers, as well as in tumor growth/differentiation and are providing an increased understanding of their signaling cascade that is suggesting new treatment targets/approaches. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both central nervous system disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches involving these peptides have been limited by lack of specific pharmacological tools, and exact signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling cascades mediating their cellular effects (using results primarily from the study of their effects in cancer) that will likely lead to novel targets and treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland 20892, USA
| |
Collapse
|
30
|
Liao C, Remington JM, May V, Li J. Molecular Basis of Class B GPCR Selectivity for the Neuropeptides PACAP and VIP. Front Mol Biosci 2021; 8:644644. [PMID: 33842547 PMCID: PMC8027070 DOI: 10.3389/fmolb.2021.644644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
The related neuropeptides PACAP and VIP, and their shared PAC1, VPAC1 and VPAC2 receptors, regulate a large array of physiological activities in the central and peripheral nervous systems. However, the lack of comparative and molecular mechanistic investigations hinder further understanding of their preferred binding selectivity and function. PACAP and VIP have comparable affinity at the VPAC1 and VPAC2 receptor, but PACAP is 400-1,000 fold more potent than VIP at the PAC1 receptor. A molecular understanding of the differing neuropeptide-receptor interactions and the details underlying the receptor transitions leading to receptor activation are much needed for the rational design of selective ligands. To these ends, we have combined structural information and advanced simulation techniques to study PACAP/VIP binding selectivity, full-length receptor conformation ensembles and transitions of the PACAP/VIP receptor variants and subtypes, and a few key interactions in the orthosteric-binding pocket. Our results reveal differential peptide-receptor interactions (at the atomistic detail) important for PAC1, VPAC1 and VPAC2 receptor ligand selectivity. Using microsecond-long molecular dynamics simulations and the Markov State Models, we have also identified diverse receptor conformational ensembles and microstate transition paths for each receptor, the potential mechanisms underlying receptor open and closed states, and the interactions and dynamics at the transmembrane orthosteric pocket for receptor activation. These analyses reveal important features in class B GPCR structure-dynamics-function relationships, which provide novel insights for structure-based drug discovery.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT, United States.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, China
| | - Jacob M Remington
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| | - Victor May
- Department of Neuroscience, University of Vermont, Burlington, VT, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| |
Collapse
|
31
|
Langer I, Latek D. Drug Repositioning For Allosteric Modulation of VIP and PACAP Receptors. Front Endocrinol (Lausanne) 2021; 12:711906. [PMID: 34867774 PMCID: PMC8637020 DOI: 10.3389/fendo.2021.711906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two neuropeptides that contribute to the regulation of intestinal motility and secretion, exocrine and endocrine secretions, and homeostasis of the immune system. Their biological effects are mediated by three receptors named VPAC1, VPAC2 and PAC1 that belong to class B GPCRs. VIP and PACAP receptors have been identified as potential therapeutic targets for the treatment of chronic inflammation, neurodegenerative diseases and cancer. However, pharmacological use of endogenous ligands for these receptors is limited by their lack of specificity (PACAP binds with high affinity to VPAC1, VPAC2 and PAC1 receptors while VIP recognizes both VPAC1 and VPAC2 receptors), their poor oral bioavailability (VIP and PACAP are 27- to 38-amino acid peptides) and their short half-life. Therefore, the development of non-peptidic small molecules or specific stabilized peptidic ligands is of high interest. Structural similarities between VIP and PACAP receptors are major causes of difficulties in the design of efficient and selective compounds that could be used as therapeutics. In this study we performed structure-based virtual screening against the subset of the ZINC15 drug library. This drug repositioning screen provided new applications for a known drug: ticagrelor, a P2Y12 purinergic receptor antagonist. Ticagrelor inhibits both VPAC1 and VPAC2 receptors which was confirmed in VIP-binding and calcium mobilization assays. A following analysis of detailed ticagrelor binding modes to all three VIP and PACAP receptors with molecular dynamics revealed its allosteric mechanism of action. Using a validated homology model of inactive VPAC1 and a recently released cryo-EM structure of active VPAC1 we described how ticagrelor could block conformational changes in the region of 'tyrosine toggle switch' required for the receptor activation. We also discuss possible modifications of ticagrelor comparing other P2Y12 antagonist - cangrelor, closely related to ticagrelor but not active for VPAC1/VPAC2. This comparison with inactive cangrelor could lead to further improvement of the ticagrelor activity and selectivity for VIP and PACAP receptor sub-types.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Binding Sites
- Computer Simulation
- Drug Evaluation, Preclinical/methods
- Drug Repositioning/methods
- Molecular Structure
- Protein Conformation/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/chemistry
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/chemistry
- Receptors, Vasoactive Intestinal Peptide, Type II/drug effects
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/chemistry
- Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Ticagrelor/chemistry
- Ticagrelor/pharmacology
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Dorota Latek,
| |
Collapse
|
32
|
Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. Biochem Biophys Res Commun 2020; 533:861-866. [DOI: 10.1016/j.bbrc.2020.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023]
|
33
|
A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. Cell Res 2020; 30:1098-1108. [PMID: 33239759 PMCID: PMC7785020 DOI: 10.1038/s41422-020-00442-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Glucagon-like peptides (GLP-1 and GLP-2) are two proglucagon-derived intestinal hormones that mediate distinct physiological functions through two related receptors (GLP-1R and GLP-2R) which are important drug targets for metabolic disorders and Crohn's disease, respectively. Despite great progress in GLP-1R structure determination, our understanding on the differences of peptide binding and signal transduction between these two receptors remains elusive. Here we report the electron microscopy structure of the human GLP-2R in complex with GLP-2 and a Gs heterotrimer. To accommodate GLP-2 rather than GLP-1, GLP-2R fine-tunes the conformations of the extracellular parts of transmembrane helices (TMs) 1, 5, 7 and extracellular loop 1 (ECL1). In contrast to GLP-1, the N-terminal histidine of GLP-2 penetrates into the receptor core with a unique orientation. The middle region of GLP-2 engages with TM1 and TM7 more extensively than with ECL2, and the GLP-2 C-terminus closely attaches to ECL1, which is the most protruded among 9 class B G protein-coupled receptors (GPCRs). Functional studies revealed that the above three segments of GLP-2 are essential for GLP-2 recognition and receptor activation, especially the middle region. These results provide new insights into the molecular basis of ligand specificity in class B GPCRs and may facilitate the development of more specific therapeutics.
Collapse
|
34
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
35
|
Chang R, Zhang X, Qiao A, Dai A, Belousoff MJ, Tan Q, Shao L, Zhong L, Lin G, Liang YL, Ma L, Han S, Yang D, Danev R, Wang MW, Wootten D, Wu B, Sexton PM. Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. J Biol Chem 2020; 295:9313-9325. [PMID: 32371397 DOI: 10.1074/jbc.ra120.013793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Unimolecular dual agonists of the glucagon (GCG) receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) are a new class of drugs that are potentially superior to GLP-1R-specific agonists for the management of metabolic disease. The dual-agonist, peptide 15 (P15), is a glutamic acid 16 analog of GCG with GLP-1 peptide substitutions between amino acids 17 and 24 that has potency equivalent to those of the cognate peptide agonists at the GCGR and GLP-1R. Here, we have used cryo-EM to solve the structure of an active P15-GCGR-Gs complex and compared this structure to our recently published structure of the GCGR-Gs complex bound to GCG. This comparison revealed that P15 has a reduced interaction with the first extracellular loop (ECL1) and the top of transmembrane segment 1 (TM1) such that there is increased mobility of the GCGR extracellular domain and at the C terminus of the peptide compared with the GCG-bound receptor. We also observed a distinct conformation of ECL3 and could infer increased mobility of the far N-terminal His-1 residue in the P15-bound structure. These regions of conformational variance in the two peptide-bound GCGR structures were also regions that were distinct between GCGR structures and previously published peptide-bound structures of the GLP-1R, suggesting that greater conformational dynamics may contribute to the increased efficacy of P15 in activation of the GLP-1R compared with GCG. The variable domains in this receptor have previously been implicated in biased agonism at the GLP-1R and could result in altered signaling of P15 at the GCGR compared with GCG.
Collapse
Affiliation(s)
- Rulue Chang
- School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Zhang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Anna Qiao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai, China
| | - Matthew J Belousoff
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Qiuxiang Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Shao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Zhong
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangyao Lin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Lynn Liang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Limin Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuo Han
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai, China
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ming-Wei Wang
- School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The National Center for Drug Screening, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Denise Wootten
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Beili Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China .,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Eiden LE, Goosens KA, Jacobson KA, Leggio L, Zhang L. Peptide-Liganded G Protein-Coupled Receptors as Neurotherapeutics. ACS Pharmacol Transl Sci 2020; 3:190-202. [PMID: 32296762 DOI: 10.1021/acsptsci.0c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Peptide-liganded G protein-coupled receptors (GPCRs) are a growing fraction of GPCR drug targets, concentrated in two of the five major GPCR structural classes. The basic physiology and pharmacology of some within the rhodopsin class, for example, the enkephalin (μ opioid receptor, MOR) and angiotensin (ATR) receptors, and most in class B, all the members of which are peptide receptors, are well-known, whereas others are less so. Furthermore, with the notable exception of opioid peptide receptors, the ability to translate from peptide to "drug-like" (i.e., low-molecular-weight nonpeptide) molecules, with desirable oral absorption, brain penetrance, and serum stability, has met with limited success. Yet, peripheral peptide administration in patients with metabolic disorders is clinically effective, suggesting that "drug-like" molecules for peptide receptor targets may not always be required for disease intervention. Here, we consider recent developments in GPCR structure analysis, intracellular signaling, and genetic analysis of peptide and peptide receptor knockout phenotypes in animal models. These lines of research converge on a better understanding of how peptides facilitate adaptive behaviors in mammals. They suggest pathways to translate this burgeoning information into identified drug targets for neurological and psychiatric illnesses such as obesity, addiction, anxiety disorders, and neurodegenerative diseases. Advances centered on the peptide ligands oxytocin, vasopressin, GLP-1, ghrelin, PACAP, NPY, and their GPCRs are considered here. These represent the spectrum of progress across the "virtual pipeline", of peptide receptors associated with many established drugs, those of long-standing interest for which clinical application is still under development, and those just coming into focus through basic research.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Ki Ann Goosens
- Icahn School of Medicine, Mt. Sinai Hospital, New York, New York 10029, United States
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism/National Institute on Drug Abuse, Bethesda, Maryland 20892, United States
| | - Limei Zhang
- Department of Physiology, Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|