1
|
Wei J, Hong H, Wang X, Lei X, Ye M, Liu Z. Nanopore-based sensors for DNA sequencing: a review. NANOSCALE 2024; 16:18732-18766. [PMID: 39295590 DOI: 10.1039/d4nr01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Nanopore sensors, owing to their distinctive structural properties, can be used to detect biomolecular translocation events. These sensors operate by monitoring variations in electric current amplitude and duration, thereby enabling the calibration and distinction of various biomolecules. As a result, nanopores emerge as a potentially powerful tool in the field of deoxyribonucleic acid (DNA) sequencing. However, the interplay between testing bandwidth and noise often leads to the loss of part of the critical translocation signals, presenting a substantial challenge for the precise measurement of biomolecules. In this context, innovative detection mechanisms have been developed, including optical detection, tunneling current detection, and nanopore field-effect transistor (FET) detection. These novel detection methods are based on but beyond traditional nanopore techniques and each of them has unique advantages. Notably, nanopore FET sensors stand out for their high signal-to-noise ratio (SNR) and high bandwidth measurement capabilities, overcoming the limitations typically associated with traditional solid-state nanopore (SSN) technologies and thus paving the way for new avenues to biomolecule detection. This review begins by elucidating the fundamental detection principles, development history, applications, and fabrication methods for traditional SSNs. It then introduces three novel detection mechanisms, with a particular emphasis on nanopore FET detection. Finally, a comprehensive analysis of the advantages and challenges associated with both SSNs and nanopore FET sensors is performed, and then insights into the future development trajectories for nanopore FET sensors in DNA sequencing are provided. This review has two main purposes: firstly, to provide researchers with a preliminary understanding of advancements in the nanopore field, and secondly, to offer a comprehensive analysis of the fabrication techniques, transverse current detection principles, challenges, and future development trends in the field of nanopore FET sensors. This comprehensive analysis aims to help give researchers in-depth insights into cutting-edge advancements in the field of nanopore FET sensors.
Collapse
Affiliation(s)
- Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Xing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Xin Lei
- School of Chemistry, Beihang University, Beijing, 100084, China
| | - Minjie Ye
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Nozawa H, Nagae F, Ogihara S, Hirano R, Yamazaki H, Iizuka R, Akatsu M, Kujirai T, Takada S, Kurumizaka H, Uemura S. Nucleosomal DNA unwinding pathway through canonical and non-canonical histone disassembly. Commun Biol 2024; 7:1144. [PMID: 39277674 PMCID: PMC11401932 DOI: 10.1038/s42003-024-06856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The nucleosome including H2A.B, a mammalian-specific H2A variant, plays pivotal roles in spermatogenesis, embryogenesis, and oncogenesis, indicating unique involvement in transcriptional regulation distinct from canonical H2A nucleosomes. Despite its significance, the exact regulatory mechanism remains elusive. This study utilized solid-state nanopores to investigate DNA unwinding dynamics, applying local force between DNA and histones. Comparative analysis of canonical H2A and H2A.B nucleosomes demonstrated that the H2A.B variant required a lower voltage for complete DNA unwinding. Furthermore, synchronization analysis and molecular dynamics simulations indicate that the H2A.B variant rapidly unwinds DNA, causing the H2A-H2B dimer to dissociate from DNA immediately upon disassembly of the histone octamer. In contrast, canonical H2A nucleosomes unwind DNA at a slower rate, suggesting that the H2A-H2B dimer undergoes a state of stacking at the pore. These findings suggest that nucleosomal DNA in the H2A.B nucleosomes undergoes a DNA unwinding process involving histone octamer disassembly distinct from that of canonical H2A nucleosomes, enabling smoother unwinding. The integrated approach of MD simulations and nanopore measurements is expected to evolve into a versatile tool for studying molecular interactions, not only within nucleosomes but also through the forced dissociation of DNA-protein complexes.
Collapse
Affiliation(s)
- Hikaru Nozawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fritz Nagae
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rina Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Niigata, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Munetaka Akatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Ivanov YD, Ableev AN, Vinogradova AV, Nevedrova ED, Shumov ID, Ziborov VS, Kozlov AF, Ivanova IA, Vaulin NV, Lebedev DV, Bukatin AS, Mukhin IS, Ponomarenko EA, Archakov AI. Registration of activity of a single molecule of horseradish peroxidase using a detector based on a solid-state nanopore. BIOMEDITSINSKAIA KHIMIIA 2024; 70:349-355. [PMID: 39324199 DOI: 10.18097/pbmc20247005349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This work demonstrates the use of a solid-state nanopore detector to monitor the activity of a single molecule of a model enzyme, horseradish peroxidase (HRP). This detector includes a measuring cell, which is divided into cis- and trans- chambers by a silicon nitride chip (SiN structure) with a nanopore of 5 nm in diameter. To entrap a single HRP molecule into the nanopore, an electrode had been placed into the cis-chamber; HRP solution was added into this chamber after application of a negative voltage. The reaction of the HRP substrate, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), oxidation by the enzyme molecule was performed in the presence of hydrogen peroxide. During this reaction, the functioning of a single HRP molecule, entrapped in the nanopore, was monitored by recording the time dependence of the ion current flowing through the nanopore. The approach proposed in our work is applicable for further studies of functioning of various enzymes at the level of single molecules, and this is an important step in the development of single-molecule enzymology.
Collapse
Affiliation(s)
- Yu D Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Ableev
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - I D Shumov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V S Ziborov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A F Kozlov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I A Ivanova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N V Vaulin
- Alferov University, St. Petersburg, Russia; Institute for Analytical Instrumentation, St. Petersburg, Russia
| | - D V Lebedev
- Alferov University, St. Petersburg, Russia; Institute for Analytical Instrumentation, St. Petersburg, Russia
| | - A S Bukatin
- Alferov University, St. Petersburg, Russia; Institute for Analytical Instrumentation, St. Petersburg, Russia
| | - I S Mukhin
- Alferov University, St. Petersburg, Russia; Institute for Analytical Instrumentation, St. Petersburg, Russia
| | | | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
5
|
Charron M, Roelen Z, Wadhwa D, Tabard-Cossa V. Improved Conductance Blockage Modeling of Cylindrical Nanopores, from 2D to Thick Membranes. NANO LETTERS 2024; 24:10527-10533. [PMID: 39146027 DOI: 10.1021/acs.nanolett.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The ionic current blockage from a nanopore sensor is a fundamental metric for characterizing its dimensions and identifying molecules translocating through it. Yet, most analytical models predicting the conductance of a nanopore in both open and obstructed states remain inaccurate. Here, using an oblate spheroidal coordinate framework to study the electrical response of nanopore access regions, we reveal that the widely used model from Kowalczyk et al. significantly overestimates access region contributions when blocked by a cylindrical object, like DNA. To address this, we present an improved analytical model for the obstructed access resistance, which we establish as highly accurate through finite-element simulations, especially for ultrathin membranes and long narrow channels. Equipped with an improved nanopore conductance model, this work provides tools for more accurate calculation of the pore size and for the expected blockade from DNA, of high practical value for many biosensing applications.
Collapse
Affiliation(s)
- Martin Charron
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Zachary Roelen
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Deekshant Wadhwa
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Vincent Tabard-Cossa
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
6
|
Kizer ME, R. Dwyer J. Editors' Choice-Perspective-Deciphering the Glycan Kryptos by Solid-State Nanopore Single-Molecule Sensing: A Call for Integrated Advancements Across Glyco- and Nanopore Science. ECS SENSORS PLUS 2024; 3:020604. [PMID: 38799647 PMCID: PMC11125560 DOI: 10.1149/2754-2726/ad49b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Glycans, or complex carbohydrates, are information-rich biopolymers critical to many biological processes and with considerable importance in pharmaceutical therapeutics. Our understanding, though, is limited compared to other biomolecules such as DNA and proteins. The greater complexity of glycan structure and the limitations of conventional chemical analysis methods hinder glycan studies. Auspiciously, nanopore single-molecule sensors-commercially available for DNA sequencing-hold great promise as a tool for enabling and advancing glycan analysis. We focus on two key areas to advance nanopore glycan characterization: molecular surface coatings to enhance nanopore performance including by molecular recognition, and high-quality glycan chemical standards for training.
Collapse
Affiliation(s)
- Megan E. Kizer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States of America
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island, 02881, United States of America
| |
Collapse
|
7
|
Tian R, Ma W, Wang L, Xie W, Wang Y, Yin Y, Weng T, He S, Fang S, Liang L, Wang L, Wang D, Bai J. The combination of DNA nanostructures and materials for highly sensitive electrochemical detection. Bioelectrochemistry 2024; 157:108651. [PMID: 38281367 DOI: 10.1016/j.bioelechem.2024.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Due to the wide range of electrochemical devices available, DNA nanostructures and material-based technologies have been greatly broadened. They have been actively used to create a variety of beautiful nanostructures owing to their unmatched programmability. Currently, a variety of electrochemical devices have been used for rapid sensing of biomolecules and other diagnostic applications. Here, we provide a brief overview of recent advances in DNA-based biomolecular assays. Biosensing platform such as electrochemical biosensor, nanopore biosensor, and field-effect transistor biosensors (FET), which are equipped with aptamer, DNA walker, DNAzyme, DNA origami, and nanomaterials, has been developed for amplification detection. Under the optimal conditions, the proposed biosensor has good amplification detection performance. Further, we discussed the challenges of detection strategies in clinical applications and offered the prospect of this field.
Collapse
Affiliation(s)
- Rong Tian
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Wenhao Ma
- Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Lue Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Xie
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Yunjiao Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Yajie Yin
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Ting Weng
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Shixuan He
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Shaoxi Fang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Liyuan Liang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Liang Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Deqiang Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Jingwei Bai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
8
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Cheng P, Zhao C, Pan Q, Xiong Z, Chen Q, Miao X, He Y. Detection of Biomolecules Using Solid-State Nanopores Fabricated by Controlled Dielectric Breakdown. SENSORS (BASEL, SWITZERLAND) 2024; 24:2420. [PMID: 38676038 PMCID: PMC11053845 DOI: 10.3390/s24082420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Nanopore sensor technology is widely used in biomolecular detection due to its advantages of low cost and easy operation. In a variety of nanopore manufacturing methods, controlled dielectric breakdown has the advantages of a simple manufacturing process and low cost under the premise of ensuring detection performance. In this paper, we have made enhancements to the applied pulses in controlled dielectric breakdown and utilized the improved dielectric breakdown technique to fabricate silicon nitride nanopores with diameters of 5 to 15 nm. Our improved fabrication method offers the advantage of precise control over the nanopore diameter (±0.4 nm) and enhances the symmetry of the nanopore. After fabrication, we performed electrical characterization on the nanopores, and the IV characteristics exhibited high linearity. Subsequently, we conducted detection experiments for DNA and protein using the prepared nanopores to assess the detection performance of the nanopores fabricated using our method. In addition, we also give a physical model of molecule translocation through the nanopores to give a reasonable explanation of the data processing results.
Collapse
Affiliation(s)
| | | | | | | | - Qi Chen
- Hubei Yangtze Memory Laboratories, School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
10
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
11
|
Fang S, Zeng D, He S, Li Y, Pang Z, Wang Y, Liang L, Weng T, Xie W, Wang D. Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown. SENSORS (BASEL, SWITZERLAND) 2024; 24:2109. [PMID: 38610321 PMCID: PMC11013984 DOI: 10.3390/s24072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
The sensitivity and accuracy of nanopore sensors are severely hindered by the high noise associated with solid-state nanopores. To mitigate this issue, the deposition of organic polymer materials onto silicon nitride (SiNx) membranes has been effective in obtaining low-noise measurements. Nonetheless, the fabrication of nanopores sub-10 nm on thin polymer membranes remains a significant challenge. This work proposes a method for fabricating nanopores on polymethyl methacrylate (PMMA) membrane by the local high electrical field controlled breakdown, exploring the impact of voltage and current on the breakdown of PMMA membranes and discussing the mechanism underlying the breakdown voltage and current during the formation of nanopores. By improving the electric field application method, transient high electric fields that are one-seven times higher than the breakdown electric field can be utilized to fabricate nanopores. A comparative analysis was performed on the current noise levels of nanopores in PMMA-SiNx composite membranes and SiNx nanopores with a 5 nm diameter. The results demonstrated that the fast fabrication of nanopores on PMMA-SiNx membranes exhibited reduced current noise compared to SiNx nanopores. This finding provides evidence supporting the feasibility of utilizing this technology for efficiently fabricating low-noise nanopores on polymer composite membranes.
Collapse
Affiliation(s)
- Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Delin Zeng
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yadong Li
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| | - Zichen Pang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.F.); (S.H.); (Y.W.); (L.L.); (T.W.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (D.Z.); (Y.L.); (Z.P.)
| |
Collapse
|
12
|
Zhao Y, Su Z, Zhang X, Wu D, Wu Y, Li G. Recent advances in nanopore-based analysis for carbohydrates and glycoconjugates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1454-1467. [PMID: 38415741 DOI: 10.1039/d3ay02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Saccharides are not only the basic constituents and nutrients of living organisms, but also participate in various life activities, and play important roles in cell recognition, immune regulation, development, cancer, etc. The analysis of carbohydrates and glycoconjugates is a necessary means to study their transformations and physiological roles in living organisms. Existing detection techniques can hardly meet the requirements for the analysis of carbohydrates and glycoconjugates in complex matrices as they are expensive, involve complex derivatization, and are time-consuming. Nanopore sensing technology, which is amplification-free and label-free, and is a high-throughput process, provides a new solution for the identification and sequencing of carbohydrates and glycoconjugates. This review highlights recent advances in novel nanopore-based single-molecule sensing technologies for the detection of carbohydrates and glycoconjugates and discusses the advantages and challenges of nanopore sensing technologies. Finally, current issues and future perspectives are discussed with the aim of improving the performance of nanopores in complex media diagnostic applications, as well as providing a new direction for the quantification of glycan chains and the study of glycan chain properties and functions.
Collapse
Affiliation(s)
- Yan Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
13
|
Liu R, Liu Z, Li J, Qiu Y. Low-cost and convenient fabrication of polymer micro/nanopores with the needle punching process and their applications in nanofluidic sensing. BIOMICROFLUIDICS 2024; 18:024103. [PMID: 38571910 PMCID: PMC10987195 DOI: 10.1063/5.0203512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Solid-state micro/nanopores play an important role in the sensing field because of their high stability and controllable size. Aiming at problems of complex processes and high costs in pore manufacturing, we propose a convenient and low-cost micro/nanopore fabrication technique based on the needle punching method. The thin film is pierced by controlling the feed of a microscale tungsten needle, and the size variations of the micropore are monitored by the current feedback system. Based on the positive correlation between the micropore size and the current threshold, the size-controllable preparation of micropores is achieved. The preparation of nanopores is realized by the combination of needle punching and chemical etching. First, a conical defect is prepared on the film with the tungsten needle. Then, nanopores are obtained by unilateral chemical etching of the film. Using the prepared conical micropores, resistive-pulse detection of nanoparticles is performed. Significant ionic current rectification is also obtained with our conical nanopores. It is proved that the properties of micro/nanopores prepared by our method are comparable to those prepared by the track-etching method. The simple and controllable fabrication process proposed here will advance the development of low-cost micro/nanopore sensors.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yinghua Qiu
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Bandara YMNDY, Karawdeniya BI, Dutt S, Kluth P, Tricoli A. Nanopore Fabrication Made Easy: A Portable, Affordable Microcontroller-Assisted Approach for Tailored Pore Formation via Controlled Breakdown. Anal Chem 2024; 96:2124-2134. [PMID: 38277343 DOI: 10.1021/acs.analchem.3c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
With growing interest in solid-state nanopore sensing─a single-molecule technique capable of profiling a host of analyte classes─establishing facile and scalable approaches for fabricating molecular-size pores is becoming increasingly important. The introduction of nanopore fabrication by controlled breakdown (CBD) has transformed the economics and accessibility of nanopore fabrication. Here, we introduce the design of an Arduino-based, portable USB-powered CBD device, with an estimated cost of <150 USD, which is ≈10-100× cheaper than most commercial solutions, capable of fabricating single nanopores conducive for single molecule sensing experiments. We demonstrate the facile fabrication of 60 tailored nanopores (∼2.6-12.6 nm) with ∼80% of the pores within 1 nm of the target diameter. Selected pores were then tested with double-stranded DNA, the canonical molecular ruler, demonstrating their performance for single-molecule sensing applications. The device is constructed with off-the-shelf readily available components and controlled using a highly customizable MATLAB application, which has capabilities encompassing pore fabrication, pore enlargement, and current-voltage acquisition for pore size estimation. When combined with a portable amplifier, this device also provides a fully portable sensing platform, an important step toward portable solid-state nanopore sensing applications.
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Nanotechnology Research Laboratory, Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Buddini I Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Shankar Dutt
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- Nanotechnology Research Laboratory, School of Biomedical Engineering, Faculty of Engineering, University of Sydney, NSW 2008, Australia
| |
Collapse
|
15
|
Stuber A, Schlotter T, Hengsteler J, Nakatsuka N. Solid-State Nanopores for Biomolecular Analysis and Detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:283-316. [PMID: 38273209 DOI: 10.1007/10_2023_240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Zhan L, Zhang Z, Zheng F, Liu W, Zhang Y, Sha J, Chen Y. Ion Concentration-Dependent Surface Charge Density Inside a Nanopore. J Phys Chem Lett 2023; 14:11536-11542. [PMID: 38095320 DOI: 10.1021/acs.jpclett.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Surface charges shape the electrical double layer (EDL) structure at solid-liquid interfaces, critically influencing the performance of energy storage and micro/nanofluidic devices. However, accurately measuring surface charge density in nanoconfined spaces continues to be a challenge. Here, we introduce a methodology via solid-state nanopores that can investigate the dependence of surface charge density on salt concentrations and nanopore diameters. Measurements, complemented by a theoretical model, reveal that the surface charge density decreases as both the salt concentration in bulk solutions and the nanopore sizes are reduced. Notably, when the salt concentration in the bulk solution drops below 10-3 M, protons dominate ion conductance in a nanopore, resulting in a constant surface charge density. This study introduces an effective approach to surface charge characterization and may serve in the design of electrokinetically driven nanofluidic systems.
Collapse
Affiliation(s)
- Lijian Zhan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Zhenyu Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
17
|
H H, Mallajosyula SS. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55095-55108. [PMID: 37965826 DOI: 10.1021/acsami.3c12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Graphene has garnered remarkable attention in recent years as an attractive nanopore membrane for rapid and accurate sequencing of DNA. The inherent characteristics of graphene offer exquisite experimental control over pore dimensions, encompassing both the width (pore diameter) and height. Despite these promising prospects, the practical deployment of pristine graphene nanopores for DNA sequencing has encountered a formidable challenge in the form of pore clogging, which is primarily attributed to hydrophobic interactions. However, a comprehensive understanding of the atomistic origins underpinning this clogging phenomenon and the nuanced impact of individual nucleobase identities on clogging dynamics remain an underexplored domain. Elucidating the atomistic intricacies governing pore clogging is pivotal to devising strategies for its mitigation and advancing our understanding of graphene nanopore behavior. We harness Drude polarizable simulations to systematically dissect the nucleobase-dependent mechanisms that play a pivotal role in nanopore clogging. We unveil nucleobase-specific interactions that illuminate the multifaceted roles played by both hydrophobic and electrostatic forces in driving nanopore clogging events. Notably, the Drude simulations also unveil the bias-dependent translocation dynamics and its pivotal role in alleviating pore clogging─a facet that remains significantly underestimated in conventional additive (nonpolarizable) simulations. Our findings underscore the indispensability of incorporating polarizability to faithfully capture the intricate dynamics governing graphene nanopore translocation phenomena, thus deepening our insights into this crucial field.
Collapse
Affiliation(s)
- Hemanth H
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sairam S Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
18
|
Zhu R, Qin F, Zheng X, Fang S, Ding J, Wang D, Liang L. Single-molecule lipopolysaccharides identification and the interplay with biomolecules via nanopore readout. Biosens Bioelectron 2023; 240:115641. [PMID: 37657310 DOI: 10.1016/j.bios.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Lipopolysaccharides (LPS) are the major constituent on the cell envelope of all gram-negative bacteria. They are ubiquitous in air, and are toxic inflammatory stimulators for urinary disorders and sepsis. The reported optical, thermal, and electrochemical sensors via the intermolecular interplay of LPS with proteins and aptamers are generally complicated methods. We demonstrate the single-molecule nanopore approach for LPS identification in distinct bacteria as well as the serotypes discrimination. With a 4 nm nanopore, we achieve a detection limit of 10 ng/mL. Both the antibiotic polymyxin B (PMB) and DNA aptamer display specific binding to LPS. The identification of LPS in both human serum and tap water show good performance with nanopore platforms. Our work shows a highly-sensitive and easy-to-handle scheme for clinical and environmental biomarkers determination and provides a promising screening tool for early warning of contamination in water and medical supplies.
Collapse
Affiliation(s)
- Rui Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China; Chongqing Jiaotong University, Chongqing, 400014, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Jianjun Ding
- Southwest University, Chongqing, 400715, PR China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
19
|
Yin YD, Chen FF, Hu J, Yang L, Song XT, Wu GR, Xu M, Gu ZY. Solid-State Nanopore Distinguishes Ferritin and Apo-Ferritin with Identical Exteriors through Amplified Flexibility at Single-Molecule Level. Anal Chem 2023; 95:16496-16504. [PMID: 37916987 DOI: 10.1021/acs.analchem.3c02041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Protein identification and discrimination at the single-molecule level are big challenges. Solid-state nanopores as a sensitive biosensor have been used for protein analysis, although it is difficult to discriminate proteins with similar structures in the traditional discrimination method based on the current blockage fraction. Here, we select ferritin and apo-ferritin as the model proteins that exhibit identical exterior and different interior structures and verify the practicability of their discrimination with flexibility features by the strategy of gradually decreasing the nanopore size. We show that the larger nanopore (relative to the protein size) has no obvious effect on discriminating two proteins. Then, the comparable-sized nanopore plays a key role in discriminating two proteins based on the dwell time and fraction distribution, and the conformational changes of both proteins are also studied with this nanopore. Finally, in the smaller nanopore, the protein molecules are trapped rather than translocated, where two proteins are obviously discriminated through the current fluctuation caused by the vibration of proteins. This strategy has potential in the discrimination of other important similar proteins.
Collapse
Affiliation(s)
- Yun-Dong Yin
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang-Fang Chen
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Hu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lei Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xi-Tong Song
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guo-Rong Wu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
20
|
Dutt S, Shao H, Karawdeniya B, Bandara YMNDY, Daskalaki E, Suominen H, Kluth P. High Accuracy Protein Identification: Fusion of Solid-State Nanopore Sensing and Machine Learning. SMALL METHODS 2023; 7:e2300676. [PMID: 37718979 DOI: 10.1002/smtd.202300676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Proteins are arguably one of the most important class of biomarkers for health diagnostic purposes. Label-free solid-state nanopore sensing is a versatile technique for sensing and analyzing biomolecules such as proteins at single-molecule level. While molecular-level information on size, shape, and charge of proteins can be assessed by nanopores, the identification of proteins with comparable sizes remains a challenge. Here, solid-state nanopore sensing is combined with machine learning to address this challenge. The translocations of four similarly sized proteins is assessed using amplifiers with bandwidths (BWs) of 100 kHz and 10 MHz, the highest bandwidth reported for protein sensing, using nanopores fabricated in <10 nm thick silicon nitride membranes. F-values of up to 65.9% and 83.2% (without clustering of the protein signals) are achieved with 100 kHz and 10 MHz BW measurements, respectively, for identification of the four proteins. The accuracy of protein identification is further enhanced by classifying the signals into different clusters based on signal attributes, with F-value and specificity of up to 88.7% and 96.4%, respectively, for combinations of four proteins. The combined use of high bandwidth instruments, advanced clustering and machine learning methods allows label-free identification of proteins with high accuracy.
Collapse
Affiliation(s)
- Shankar Dutt
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Hancheng Shao
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Buddini Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Y M Nuwan D Y Bandara
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Elena Daskalaki
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT, 2601, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT, 2601, Australia
- Eccles Institute of Neuroscience, College of Health and Medicine, Australian National University, Canberra, ACT, 2601, Australia
| | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
21
|
Ivanov YD, Ableev AN, Shumov ID, Ivanova IA, Vaulin NV, Lebedev DV, Bukatin AS, Mukhin IS, Archakov AI. Registration of Functioning of a Single Horseradish Peroxidase Macromolecule with a Solid-State Nanopore. Int J Mol Sci 2023; 24:15636. [PMID: 37958620 PMCID: PMC10647385 DOI: 10.3390/ijms242115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023] Open
Abstract
Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia; (A.N.A.); (I.D.S.); (I.A.I.); (A.I.A.)
| | - Alexander N. Ableev
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia; (A.N.A.); (I.D.S.); (I.A.I.); (A.I.A.)
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia; (A.N.A.); (I.D.S.); (I.A.I.); (A.I.A.)
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia; (A.N.A.); (I.D.S.); (I.A.I.); (A.I.A.)
| | - Nikita V. Vaulin
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3, Khlopina st., St. Petersburg 194021, Russia; (N.V.V.); (D.V.L.); (A.S.B.); (I.S.M.)
- Institute for Analytical Instrumentation RAS, 31-33 Lit. A, Ivana Chernykh St., St. Petersburg 198095, Russia
| | - Denis V. Lebedev
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3, Khlopina st., St. Petersburg 194021, Russia; (N.V.V.); (D.V.L.); (A.S.B.); (I.S.M.)
- Institute for Analytical Instrumentation RAS, 31-33 Lit. A, Ivana Chernykh St., St. Petersburg 198095, Russia
- Institute of Chemistry, Saint Petersburg State University, 7/9, Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anton S. Bukatin
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3, Khlopina st., St. Petersburg 194021, Russia; (N.V.V.); (D.V.L.); (A.S.B.); (I.S.M.)
- Institute for Analytical Instrumentation RAS, 31-33 Lit. A, Ivana Chernykh St., St. Petersburg 198095, Russia
| | - Ivan S. Mukhin
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3, Khlopina st., St. Petersburg 194021, Russia; (N.V.V.); (D.V.L.); (A.S.B.); (I.S.M.)
- Higher School of Engineering Physics, Peter the Great Polytechnic University, 26, Polytehnicheskaya St., St. Petersburg 194021, Russia
| | - Alexander I. Archakov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia; (A.N.A.); (I.D.S.); (I.A.I.); (A.I.A.)
| |
Collapse
|
22
|
Stuber A, Douaki A, Hengsteler J, Buckingham D, Momotenko D, Garoli D, Nakatsuka N. Aptamer Conformational Dynamics Modulate Neurotransmitter Sensing in Nanopores. ACS NANO 2023; 17:19168-19179. [PMID: 37721359 PMCID: PMC10569099 DOI: 10.1021/acsnano.3c05377] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Aptamers that undergo conformational changes upon small-molecule recognition have been shown to gate the ionic flux through nanopores by rearranging the charge density within the aptamer-occluded orifice. However, mechanistic insight into such systems where biomolecular interactions are confined in nanoscale spaces is limited. To understand the fundamental mechanisms that facilitate the detection of small-molecule analytes inside structure-switching aptamer-modified nanopores, we correlated experimental observations to theoretical models. We developed a dopamine aptamer-functionalized nanopore sensor with femtomolar detection limits and compared the sensing behavior with that of a serotonin sensor fabricated with the same methodology. When these two neurotransmitters with comparable mass and equal charge were detected, the sensors showed an opposite electronic behavior. This distinctive phenomenon was extensively studied using complementary experimental techniques such as quartz crystal microbalance with dissipation monitoring, in combination with theoretical assessment by the finite element method and molecular dynamic simulations. Taken together, our studies demonstrate that the sensing behavior of aptamer-modified nanopores in detecting specific small-molecule analytes correlates with the structure-switching mechanisms of individual aptamers. We believe that such investigations not only improve our understanding of the complex interactions occurring in confined nanoscale environments but will also drive further innovations in biomimetic nanopore technologies.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Ali Douaki
- Instituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Julian Hengsteler
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Denis Buckingham
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Dmitry Momotenko
- Department
of Chemistry, Carl von Ossietzky University
of Oldenburg, Oldenburg D-26129, Germany
| | - Denis Garoli
- Instituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nako Nakatsuka
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
23
|
Sheetz BS, Dwyer JR. Probing nanopore surface chemistry through real-time measurements of nanopore conductance response to pH changes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:104101. [PMID: 37812049 PMCID: PMC10568641 DOI: 10.1063/5.0155611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/05/2023] [Indexed: 10/10/2023]
Abstract
We developed a flow cell apparatus and method for streamlined, real-time measurements of nanopore conductance (G) in response to pH changes. By time-resolving the measurements of interfacial kinetics, we were able to probe nanopore surface coating presence and properties more thoroughly than in our previous work. Nanopores have emerged as a prominent tool for single-molecule sensing, characterization, and sequencing of DNA, proteins, and carbohydrates. Nanopore surface chemistry affects analyte passage, signal characteristics, and sensor lifetime through a range of electrostatic, electrokinetic, and chemical phenomena, and optimizing nanopore surface chemistry has become increasingly important. Our work makes nanopore surface chemistry characterizations more accessible as a complement to routine single-pH conductance measurements used to infer nanopore size. We detail the design and operation of the apparatus and discuss the trends in G and capacitance. Characteristic G vs pH curves matching those obtained in previous work could be obtained with the addition of time-resolved interfacial kinetic information. We characterized native and chemically functionalized (carboxylated) silicon nitride (SiNx) nanopores, illustrating how the method can inform of thin film compositions, interfacial kinetics, and nanoscale chemical phenomena.
Collapse
Affiliation(s)
- Brian S. Sheetz
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
24
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
25
|
He L, Charron M, Mensing P, Briggs K, Adams J, de Haan H, Tabard-Cossa V. DNA origami characterized via a solid-state nanopore: insights into nanostructure dimensions, rigidity and yield. NANOSCALE 2023; 15:14043-14054. [PMID: 37580994 DOI: 10.1039/d3nr01873c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Due to their programmability via specific base pairing, self-assembled DNA origami structures have proven to be useful for a wide variety of applications, including diagnostics, molecular computation, drug delivery, and therapeutics. Measuring and characterizing these structures is therefore of great interest and an important part of quality control. Here, we show the extent to which DNA nanostructures can be characterized by a solid-state nanopore; a non-destructive, label-free, single-molecule sensor capable of electrically detecting and characterizing charged biomolecules. We demonstrate that in addition to geometrical dimensions, nanopore sensing can provide information on the mechanical properties, assembly yield, and stability of DNA nanostructures. For this work, we use a model structure consisting of a 3 helix-bundle (3HB), i.e. three interconnected DNA double helices using a M13 scaffold folded twice on itself by short DNA staple strands, and translocate it through solid-state nanopores fabricated by controlled breakdown. We present detailed analysis of the passage characteristics of 3HB structures through nanopores under different experimental conditions which suggest that segments of locally higher flexibility are present along the nanostructure contour that allow for the otherwise rigid 3HB to fold inside nanopores. By characterizing partially melted 3HB structures, we find that locally flexible segments are likely due to short staple oligomers missing from the fully assembled structure. The 3HB used herein is a prototypical example to establish nanopores as a sensitive, non-destructive, and label-free alternative to conventional techniques such as gel electrophoresis with which to characterize DNA nanostructures.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Philipp Mensing
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Jonathan Adams
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Hendrick de Haan
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | | |
Collapse
|
26
|
Roelen Z, Tabard-Cossa V. Synthesis of length-tunable DNA carriers for nanopore sensing. PLoS One 2023; 18:e0290559. [PMID: 37611030 PMCID: PMC10446168 DOI: 10.1371/journal.pone.0290559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Molecular carriers represent an increasingly common strategy in the field of nanopore sensing to use secondary molecules to selectively report on the presence of target analytes in solution, allowing for sensitive assays of otherwise hard-to-detect molecules such as small, weakly-charged proteins. However, existing carrier designs can often introduce drawbacks to nanopore experiments including higher levels of cost/complexity and carrier-pore interactions that lead to ambiguous signals and elevated clogging rates. In this work, we present a simple method of carrier production based on sticky-ended DNA molecules that emphasizes ease-of-synthesis and compatibility with nanopore sensing and analysis. In particular, our method incorporates the ability to flexibly control the length of the DNA carriers produced, enhancing the multiplexing potential of this carrier system through the separable nanopore signals they could generate for distinct targets. A proof-of-concept nanopore experiment is also presented, involving carriers produced by our method with multiple lengths and attached to DNA nanostructure targets, in order to validate the capabilities of the system. As the breadth of applications for nanopore sensors continues to expand, the availability of tools such as those presented here to help translate the outcomes of these applications into robust nanopore signals will be of major importance.
Collapse
Affiliation(s)
- Zachary Roelen
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
27
|
Saharia J, Bandara YMNDY, Karawdeniya BI, Dwyer JR, Kim MJ. Over One Million DNA and Protein Events Through Ultra-Stable Chemically-Tuned Solid-State Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300198. [PMID: 37026669 PMCID: PMC10524034 DOI: 10.1002/smll.202300198] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Stability, long lifetime, resilience against clogging, low noise, and low cost are five critical cornerstones of solid-state nanopore technology. Here, a fabrication protocol is described wherein >1 million events are obtained from a single solid-state nanopore with both DNA and protein at the highest available lowpass filter (LPF, 100 kHz) of the Axopatch 200B-the highest event count mentioned in literature. Moreover, a total of ≈8.1 million events are reported in this work encompassing the two analyte classes. With the 100 kHz LPF, the temporally attenuated population is negligible while with the more ubiquitous 10 kHz, ≈91% of the events are attenuated. With DNA experiments, the pores are operational for hours (typically >7 h) while the average pore growth is merely ≈0.16 ± 0.1 nm h-1 . The current noise is exceptionally stable with traces typically showing <10 pA h-1 increase in noise. Furthermore, a real-time method to clean and revive pores clogged with analyte with the added benefit of minimal pore growth during cleaning (< 5% of the original diameter) is showcased. The enormity of the data collected herein presents a significant advancement to solid-state pore performance and will be useful for future ventures such as machine learning where large amounts of pristine data are a prerequisite.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
- Department of Mechanical Engineering, The University of Texas Permian Basin, Odessa, TX 79762, USA
| | | | - Buddini I. Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601 Australia
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
| |
Collapse
|
28
|
Hong H, Wei J, Lei X, Chen H, Sarro PM, Zhang G, Liu Z. Study on the controllability of the fabrication of single-crystal silicon nanopores/nanoslits with a fast-stop ionic current-monitored TSWE method. MICROSYSTEMS & NANOENGINEERING 2023; 9:63. [PMID: 37206700 PMCID: PMC10188523 DOI: 10.1038/s41378-023-00532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023]
Abstract
The application of single-crystal silicon (SCS) nanopore structures in single-molecule-based analytical devices is an emerging approach for the separation and analysis of nanoparticles. The key challenge is to fabricate individual SCS nanopores with precise sizes in a controllable and reproducible way. This paper introduces a fast-stop ionic current-monitored three-step wet etching (TSWE) method for the controllable fabrication of SCS nanopores. Since the nanopore size has a quantitative relationship with the corresponding ionic current, it can be regulated by controlling the ionic current. Thanks to the precise current-monitored and self-stop system, an array of nanoslits with a feature size of only 3 nm was obtained, which is the smallest size ever reported using the TSWE method. Furthermore, by selecting different current jump ratios, individual nanopores of specific sizes were controllably prepared, and the smallest deviation from the theoretical value was 1.4 nm. DNA translocation measurement results revealed that the prepared SCS nanopores possessed the excellent potential to be applied in DNA sequencing.
Collapse
Affiliation(s)
- Hao Hong
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Xin Lei
- School of Chemistry, Beihang University, 100084 Beijing, China
| | - Haiyun Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, 100084 Beijing, China
| | - Pasqualina M. Sarro
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
29
|
Dong M, Nouri R, Tang Z, Guan W. Morphology around Nanopores Fabricated by Laser-Assisted Dielectric Breakdown and Its Impact on Ion and DNA Transport and Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24747-24755. [PMID: 37163692 DOI: 10.1021/acsami.3c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Laser-assisted controlled dielectric breakdown (LaCBD) has emerged as an alternative to conventional CBD-based nanopore fabrication due to its localization capability, facilitated by the photothermal-induced thinning down in the hot spot. Here, we reported the potential impact of the laser on forming debris around the nanopore region in LaCBD. The debris was clearly observable by scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. We found that debris formation is a unique phenomenon in LaCBD that is not observable in the conventional CBD approach. We also found that the LaCBD-induced debris is more evident when the laser power and voltage stress are higher. Moreover, the debris is asymmetrically distributed on the top and bottom sides of the membrane. We also found unexpected rectified ionic and molecular transport in those LaCBD nanopores with debris. Based on these observations, we developed and validated a model describing the debris formation kinetics in LaCBD by considering the generation, diffusion, drift, and gravity in viscous mediums. These findings indicate that while laser aids in nanopore localization, precautions should be taken due to the potential formation of debris and rectification of molecular transport. This study provides valuable insights into the kinetics of LaCBD and the characteristics of the LaCBD nanopore.
Collapse
Affiliation(s)
- Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
30
|
Chen K, Muthukumar M. Substantial Slowing of Electrophoretic Translocation of DNA through a Nanopore Using Coherent Multiple Entropic Traps. ACS NANO 2023; 17:9197-9208. [PMID: 37146154 DOI: 10.1021/acsnano.2c12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
One of the major challenges in the technology of sequencing DNA using single-molecule electrophoresis through a nanopore is to control the translocation of the macromolecule across the pore in order to allow sufficient time for accurate sequence reading at limited recording bandwidths. If the translocation speed is too fast, the signatures of the bases passing through the sensing region of the nanopore overlap in time, presenting difficulties in accurately identifying the bases in a sequential manner. Even though several strategies, such as enzyme ratcheting, have been implemented to reduce the translocation speed, the challenge to achieve a substantial reduction in the translocation speed continues to be of paramount significance. Toward achieving this goal, we have fabricated a nonenzymatic hybrid device that can reduce the translocation speed of long DNAs by more than 2 orders of magnitude, in comparison with the current status of the art. This device is made of a tetra-PEG hydrogel that is chemically anchored to the donor side of a solid-state nanopore. The idea behind this device is based on the recent discovery of the topologically frustrated dynamical state of confined polymers, whereby the front hydrogel matter of the hybrid device provides multiple entropic traps for a single DNA molecule holding it back against the electrophoretic driving force that pulls the DNA through the solid-state nanopore portion of the device. As a demonstration of slowing DNA translocation by a factor of about 500, we find the average translocation time realized in the present hybrid device for 3 kbp DNA as 23.4 ms, whereas the corresponding time for the bare solid-state nanopore under otherwise identical conditions is 0.047 ms. Our measurements on 1 kbp DNA and λ-DNA show that such a slowing down of DNA translocation with our hybrid device is general. An additional feature of our hybrid device is its incorporation of all features of the conventional gel electrophoresis to separate different DNA sizes in a clump of DNAs and to streamline them in an orderly and slow manner into the nanopore. Our results suggest the high potential of our hydrogel-nanopore hybrid device in further advancing the single-molecule electrophoresis technology to accurately sequence very large biological polymers.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
31
|
Li J, Huang B, Wang Y, Li A, Wang Y, Pan Y, Chai J, Liu Z, Zhai Y. Light-Driven Conversion of Silicon Nitride Nanopore to Nanonet for Single-Protein Trapping Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210342. [PMID: 36823450 DOI: 10.1002/adma.202210342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The single-molecule technique for investigation of an unlabeled protein in solution is very attractive but with great challenges. Nanopore sensing as a label-free tool can be used for collecting the structural information of individual proteins, but currently offers only limited capabilities due to the fast translocation of the target. Here, a reliable and facile method is developed to convert the silicon nitride nanopore to a stable nanonet platform for single-entity sensing by electrophoretic or electroosmotic trapping. A nanonet is fabricated based on a material reorganization process caused by electron-beam and light-irradiation treatment. Using protein molecules as a model, it is revealed that the solid-state nanonet can produce collision and trapping flipping signals of the protein, which provides more structural information than traditional nanopore sensing. More importantly, thanks to the excellent stability of the solid-state silicon nitride nanonet, it is demonstrated that the ultraviolet-light-irradiation-induced structural-change process of an individual protein can be captured. The developed nanonet supplies a robust platform for single-entity studies but is not limited to proteins.
Collapse
Affiliation(s)
- Jing Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Bintong Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Yuanhao Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Aijia Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, P. R. China
- College of Life Sciences, Shanghai Institute for Advanced Study, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yangyang Pan
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jia Chai
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yueming Zhai
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
32
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
33
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Qiao L, Szuttor K, Holm C, Slater GW. Ratcheting Charged Polymers through Symmetric Nanopores Using Pulsed Fields: Designing a Low Pass Filter for Concentrating Polyelectrolytes. NANO LETTERS 2023; 23:1343-1349. [PMID: 36705546 DOI: 10.1021/acs.nanolett.2c04588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present a new concept for the separation of DNA molecules by contour length that combines a nanofluidic ratchet, nanopore translocation, and pulsed fields. Using Langevin dynamics simulations, we show that it is possible to design pulsed field sequences to ratchet captured semiflexible molecules in such a way that only short chains successfully translocate, effectively transforming the nanopore process into a low pass molecular filter. We also show that asymmetric pulses can significantly enhance the device efficiency. The process itself can be performed with many pores in parallel, and it should be possible to integrate it directly into nanopore sequencing devices, increasing its potential utility.
Collapse
Affiliation(s)
- Le Qiao
- Physics Department, University of Ottawa, Ottawa, OntarioK1N 6N5, Canada
| | - Kai Szuttor
- Institute for Computational Physics, University of Stuttgart, StuttgartD-70569, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, StuttgartD-70569, Germany
| | - Gary W Slater
- Physics Department, University of Ottawa, Ottawa, OntarioK1N 6N5, Canada
| |
Collapse
|
35
|
MacKenzie M, Argyropoulos C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. MICROMACHINES 2023; 14:459. [PMID: 36838159 PMCID: PMC9966803 DOI: 10.3390/mi14020459] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
There has been significant progress made in the field of nanopore biosensor development and sequencing applications, which address previous limitations that restricted widespread nanopore use. These innovations, paired with the large-scale commercialization of biological nanopore sequencing by Oxford Nanopore Technologies, are making the platforms a mainstay in contemporary research laboratories. Equipped with the ability to provide long- and short read sequencing information, with quick turn-around times and simple sample preparation, nanopore sequencers are rapidly improving our understanding of unsolved genetic, transcriptomic, and epigenetic problems. However, there remain some key obstacles that have yet to be improved. In this review, we provide a general introduction to nanopore sequencing principles, discussing biological and solid-state nanopore developments, obstacles to single-base detection, and library preparation considerations. We present examples of important clinical applications to give perspective on the potential future of nanopore sequencing in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Morgan MacKenzie
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Christos Argyropoulos
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Clinical & Translational Science Center, Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
36
|
Xia P, Laskar MAR, Wang C. Wafer-Scale Fabrication of Uniform, Micrometer-Sized, Triangular Membranes on Sapphire for High-Speed Protein Sensing in a Nanopore. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2656-2664. [PMID: 36598264 PMCID: PMC9852088 DOI: 10.1021/acsami.2c18983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultra-low-noise solid-state nanopores are attractive for high-accuracy single-molecule sensing. A conventional silicon platform introduces acute capacitive noise to the system, which seriously limits the recording bandwidth. Recently, we have demonstrated the creation of thin triangular membranes on an insulating crystal sapphire wafer to eliminate the parasitic device capacitance. Uniquely different from the previous triangular etching window designs, here hexagonal windows were explored to produce triangular membranes by aligning to the sapphire crystal within a large tolerance of alignment angles (10-35°). Interestingly, sapphire facet competition serves to suppress the formation of more complex polygons but creates stable triangular membranes with their area insensitive to the facet alignment. Accordingly, a new strategy was successfully established on a 2 in. sapphire wafer to produce chips with an average membrane side length of 4.7 μm, an area of <30 μm2 for 81% chips, or estimated calculated membrane capacitance as low as 0.06 pF. We finally demonstrated <4 μs high-speed and high-fidelity low-noise protein detection under 250 kHz high bandwidth.
Collapse
Affiliation(s)
- Pengkun Xia
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA
- Center for Photonics Innovation, Arizona State University, Tempe, AZ, 85281, USA
- Biodesign Center for Molecular Design & Biomimetics, Arizona State University, Tempe, AZ, 85281, USA
| | - Md Ashiqur Rahman Laskar
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA
- Center for Photonics Innovation, Arizona State University, Tempe, AZ, 85281, USA
- Biodesign Center for Molecular Design & Biomimetics, Arizona State University, Tempe, AZ, 85281, USA
| | - Chao Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA
- Center for Photonics Innovation, Arizona State University, Tempe, AZ, 85281, USA
- Biodesign Center for Molecular Design & Biomimetics, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
37
|
Xu T, Tu Y, Zhu Y, Shen Y, Yin K, Sun L. Nucleation and growth of stacking-dependent nanopores in bilayer h-BN. NANOSCALE 2022; 14:17182-17187. [PMID: 36385277 DOI: 10.1039/d2nr05311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The nucleation and growth of well-defined nanopores are presented under electron irradiation in h-BN bilayers with various stacking angles. The pores are initiated by the formation of boron vacancies in each basal layer, and then evolve into either triangular or hexagonal pores, which is dependent on the relative rotation between BN layers. The result may shed light on the rational design and fabrication of nanopores.
Collapse
Affiliation(s)
- Tao Xu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Yizhi Tu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Yatong Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Yuting Shen
- College of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
38
|
Xia Z, Scott A, Keneipp R, Chen J, Niedzwiecki DJ, DiPaolo B, Drndić M. Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging. ACS NANO 2022; 16:18648-18657. [PMID: 36251751 DOI: 10.1021/acsnano.2c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrate DNA translocations through silicon nitride pores formed by simple chemical etching on glass substrates using microscopic amounts of hydrofluoric acid. DNA translocations and transmission electron microscopy (TEM) prove the fabrication of nanopores and allow their characterization. From ionic measurements on 318 chips, we report the effective pore diameters ranging from zero (pristine membranes) and sub-nm to over 100 nm, within 50 μm diameter membranes. The combination of ionic conductance, DNA current blockades, TEM imaging, and electron energy loss spectroscopy (EELS) provides comprehensive information about the pore area and number, from single to few pores, and pore structure. We also show the formation of thinned membrane regions as precursors of pores. The average pore density, about 5 × 10-4 pores/μm2, allows pore number adjustment statistically (0, 1, or more). This simple and affordable chemical method for making solid-state nanopores accelerates their adoption for DNA sensing and characterization applications.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Andre Scott
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Rachael Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Brian DiPaolo
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown. Chem Asian J 2022; 17:e202200888. [DOI: 10.1002/asia.202200888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Indexed: 11/19/2022]
|
40
|
Ying YL, Hu ZL, Zhang S, Qing Y, Fragasso A, Maglia G, Meller A, Bayley H, Dekker C, Long YT. Nanopore-based technologies beyond DNA sequencing. NATURE NANOTECHNOLOGY 2022; 17:1136-1146. [PMID: 36163504 DOI: 10.1038/s41565-022-01193-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing. In this Review, we present an overview of the broad applications of nanopores in molecular sensing and sequencing, chemical catalysis and biophysical characterization. We highlight the prospects of applying nanopores for single-protein analysis and sequencing, single-molecule covalent chemistry, clinical sensing applications for single-molecule liquid biopsy, and the use of synthetic biomimetic nanopores as experimental models for natural systems. We suggest that nanopore technologies will continue to be explored to address a number of scientific challenges as control over pore design improves.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Zheng-Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Shengli Zhang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Alessio Fragasso
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Amit Meller
- Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
41
|
Abrao‐Nemeir I, Bentin J, Meyer N, Janot J, Torrent J, Picaud F, Balme S. Investigation of α-Synuclein and Amyloid-β(42)-E22Δ Oligomers Using SiN Nanopore Functionalized with L-Dopa. Chem Asian J 2022; 17:e202200726. [PMID: 36038502 PMCID: PMC9826174 DOI: 10.1002/asia.202200726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Solid-state nanopores are an emerging technology used as a high-throughput, label-free analytical method for the characterization of protein aggregation in an aqueous solution. In this work, we used Levodopamine to coat a silicon nitride nanopore surface that was fabricated through a dielectric breakdown in order to reduce the unspecific adsorption. The coating of inner nanopore wall by investigation of the translocation of heparin. The functionalized nanopore was used to investigate the aggregation of amyloid-β and α-synuclein, two biomarkers of degenerative diseases. In the first application, we demonstrate that the α-synuclein WT is more prone to form dimers than the variant A53T. In the second one, we show for the Aβ(42)-E22Δ (Osaka mutant) that the addition of Aβ(42)-WT monomers increases the polymorphism of oligomers, while the incubation with Aβ(42)-WT fibrils generates larger aggregates.
Collapse
Affiliation(s)
- Imad Abrao‐Nemeir
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jeremy Bentin
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Nathan Meyer
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France,Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jean‐Marc Janot
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Joan Torrent
- Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Fabien Picaud
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Sebastien Balme
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| |
Collapse
|
42
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
43
|
Tan X, Lv C, Chen H. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products. Crit Rev Food Sci Nutr 2022; 63:10866-10879. [PMID: 35687354 DOI: 10.1080/10408398.2022.2085238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety assurance systems are becoming more stringent in response to the growing food safety problems. Rapid, sensitive, and reliable detection technology is a prerequisite for the establishment of food safety assurance systems. Nanopore technology has been taken as one of the emerging technology capable of dealing with the detection of harmful contaminants as efficiently as possible due to the advantage of label-free, high-throughput, amplification-free, and rapid detection features. Start with the history of nanopore techniques, this review introduced the underlying knowledge of detection mechanism of nanopore-based sensing techniques. Meanwhile, sensing interfaces for the construction of nanopore sensors are comprehensively summarized. Moreover, this review covers the current advances of nanopore techniques in the application of food safety screening. Currently, the establishment of nanopore sensing devices is mainly based on the blocking current phenomenon. Sensing interfaces including biological nanopores, solid-state nanopores, DNA origami, and de novo designed nanopores can be used in the manufacture of sensing devices. Food harmful substances, including heavy metals, veterinary drugs, pesticide residues, food toxins, and other harmful substances can be quickly determined by nanopore-based sensors. Moreover, the combination of nanopore techniques with advanced materials has become one of the most effective methods to improve sensing properties.
Collapse
Affiliation(s)
- Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Das N, Chakraborty B, RoyChaudhuri C. A review on nanopores based protein sensing in complex analyte. Talanta 2022; 243:123368. [DOI: 10.1016/j.talanta.2022.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
45
|
Abrao-Nemeir I, Zaki O, Meyer N, Lepoitevin M, Torrent J, Janot JM, Balme S. Combining ionic diode, resistive pulse and membrane for detection and separation of anti-CD44 antibody. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Hagan JT, Gonzalez A, Shi Y, Han GGD, Dwyer JR. Photoswitchable Binary Nanopore Conductance and Selective Electronic Detection of Single Biomolecules under Wavelength and Voltage Polarity Control. ACS NANO 2022; 16:5537-5544. [PMID: 35286058 DOI: 10.1021/acsnano.1c10039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We fabricated photoregulated thin-film nanopores by covalently linking azobenzene photoswitches to silicon nitride pores with ∼10 nm diameters. The photoresponsive coatings could be repeatedly optically switched with deterministic ∼6 nm changes to the effective nanopore diameter and of ∼3× to the nanopore ionic conductance. The sensitivity to anionic DNA and a neutral complex carbohydrate biopolymer (maltodextrin) could be photoswitched "on" and "off" with an analyte selectivity set by applied voltage polarity. Photocontrol of nanopore state and mass transport characteristics is important for their use as ionic circuit elements (e.g., resistors and binary bits) and as chemically tuned filters. It expands single-molecule sensing capabilities in personalized medicine, genomics, glycomics, and, augmented by voltage polarity selectivity, especially in multiplexed biopolymer information storage schemes. We demonstrate repeatedly photocontrolled stable nanopore size, polarity, conductance, and sensing selectivity, by illumination wavelength and voltage polarity, with broad utility including single-molecule sensing of biologically and technologically important polymers.
Collapse
Affiliation(s)
- James T Hagan
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Alejandra Gonzalez
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yuran Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jason R Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
47
|
Rand A, Zimny P, Nagel R, Telang C, Mollison J, Bruns A, Leff E, Reisner WW, Dunbar WB. Electronic Mapping of a Bacterial Genome with Dual Solid-State Nanopores and Active Single-Molecule Control. ACS NANO 2022; 16:5258-5273. [PMID: 35302746 PMCID: PMC9048701 DOI: 10.1021/acsnano.1c09575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
We present an electronic mapping of a bacterial genome using solid-state nanopore technology. A dual-nanopore architecture and active control logic are used to produce single-molecule data that enables estimation of distances between physical tags installed at sequence motifs within double-stranded DNA. Previously developed "DNA flossing" control logic generates multiple scans of each captured DNA. We extended this logic in two ways: first, to automate "zooming out" on each molecule to progressively increase the number of tags scanned during flossing, and second, to automate recapture of a molecule that exited flossing to enable interrogation of the same and/or different regions of the molecule. Custom analysis methods were developed to produce consensus alignments from each multiscan event. The combined multiscanning and multicapture method was applied to the challenge of mapping from a heterogeneous mixture of single-molecule fragments that make up the Escherichia coli (E. coli) chromosome. Coverage of 3.1× across 2355 resolvable sites of the E. coli genome was achieved after 5.6 h of recording time. The recapture method showed a 38% increase in the merged-event alignment length compared to single-scan alignments. The observed intertag resolution was 150 bp in engineered DNA molecules and 166 bp natively within fragments of E. coli DNA, with detection of 133 intersite intervals shorter than 200 bp in the E. coli reference map. We present results on estimating distances in repetitive regions of the E. coli genome. With an appropriately designed array, higher throughput implementations could enable human-sized genome and epigenome mapping applications.
Collapse
Affiliation(s)
- Arthur Rand
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Philip Zimny
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Roland Nagel
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Chaitra Telang
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Justin Mollison
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Aaron Bruns
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Emily Leff
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| | - Walter W. Reisner
- Department
of Physics, McGill University, 3600 Rue University, Montreal, QC, Canada H3A 2T8
| | - William B. Dunbar
- Nooma
Bio, 250 Natural Bridges
Drive, Santa Cruz, California 95060-5790, United States
| |
Collapse
|
48
|
Lin K, Chen C, Wang C, Lian P, Wang Y, Xue S, Sha J, Chen Y. Fabrication of solid-state nanopores. NANOTECHNOLOGY 2022; 33:272003. [PMID: 35349996 DOI: 10.1088/1361-6528/ac622b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanopores are valuable single-molecule sensing tools that have been widely applied to the detection of DNA, RNA, proteins, viruses, glycans, etc. The prominent sensing platform is helping to improve our health-related quality of life and accelerate the rapid realization of precision medicine. Solid-state nanopores have made rapid progress in the past decades due to their flexible size, structure and compatibility with semiconductor fabrication processes. With the development of semiconductor fabrication techniques, materials science and surface chemistry, nanopore preparation and modification technologies have made great breakthroughs. To date, various solid-state nanopore materials, processing technologies, and modification methods are available to us. In the review, we outline the recent advances in nanopores fabrication and analyze the virtues and limitations of various membrane materials and nanopores drilling techniques.
Collapse
Affiliation(s)
- Kabin Lin
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Congsi Wang
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Peiyuan Lian
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Yan Wang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Song Xue
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
49
|
Briggs K, Bouhamidi MY, He L, Tabard-Cossa V. Efficient Simulation of Arbitrary Multicomponent First-Order Binding Kinetics for Improved Assay Design and Molecular Assembly. ACS MEASUREMENT SCIENCE AU 2022; 2:139-146. [PMID: 35479104 PMCID: PMC9026241 DOI: 10.1021/acsmeasuresciau.1c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Traditional enzyme-linked immunosorbent assay (ELISA), long the workhorse for specific target protein detection using microplate wells, is nearing its fundamental limit of sensitivity. New opportunities in health care call for in vitro diagnostic tests with ultrahigh sensitivity. Magnetic bead-based sandwich immunoassay formats have been developed that can reach unprecedented sensitivities, orders of magnitude better than are allowed for by the rate constants for a single ligand-receptor interaction. However, these ultrahigh sensitivity assays are vulnerable to a host of confounding factors, including nonspecific binding from background molecules and loss of low-abundance target to tube walls and during wash steps. Moreover, the optimization of workflow is often time-consuming and expensive. In this work, we present a simulation tool that allows users to graphically define arbitrary binding assays, including fully reversible first-order binding kinetics, timed addition of extra components, and timed wash steps. The tool is freely available as a user-friendly webapp. The framework is lightweight and fast, allowing for inexpensive simulation and visualization of arbitrarily complex assay schemes, including but not limited to digital immunoassays, DNA hybridization, and enzyme kinetics, for validation and optimization of assay designs without requiring any programming knowledge from the user. We demonstrate some of these capabilities and provide practical guidance on assay simulation design.
Collapse
|
50
|
Wu J, Liang L, Zhang M, Zhu R, Wang Z, Yin Y, Yin B, Weng T, Fang S, Xie W, Wang L, Wang D. Single-Molecule Identification of the Conformations of Human C-Reactive Protein and Its Aptamer Complex with Solid-State Nanopores. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12077-12088. [PMID: 35234028 DOI: 10.1021/acsami.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human C-reactive protein (CRP) is an established inflammatory biomarker and was proved to be potentially relevant to disease pathology and cancer progression. A large body of methodologies have been reported for CRP analysis, including electrochemical/optical biosensors, aptamer, or antibody-based detection. Although the detection limit is rather low until pg/uL, most of which are time-consuming and relatively expensive, and few of them provided CRP single-molecule information. This work demonstrated the nanopore-based approach for the characterization of CRP conformation under versatile conditions. With an optimized pore of 14 nm in diameter, we achieved the detection limit as low as 0.3 ng/μL, voltage polarity significantly influences the electro-osmotic force and CRP translocation behavior, and the pentameric conformation of CRP may dissociate into pro-inflammatory CRP isoforms and monomeric CRP at bias potential above 300 mV. CRP tends to translocate through nanopores faster along with the increase in pH values, due to more surface charge on both CRP and pore inner wall and stronger electro-osmotic force. The CRP could specifically bind with its aptamer of different concentrations to form complexes, and the complexes exhibited distinguishable nanopore translocation behavior compared with CRP alone. The variation of the molar ratio of aptamer significantly influences the orientation of CRP translocation. The plasma test under physiological conditions displayed the ability of the nanopore system on the CRP identification with a concentration of 3 ng/μL.
Collapse
Affiliation(s)
- Ji Wu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Mingkun Zhang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Rui Zhu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Zhong Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Bohua Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| |
Collapse
|