1
|
Cheng Z, Sun Y, Shen Y, Wu X, Pan L, Wu H, Bai Y, Zhao C, Ma J, Huang W. A single mutation at position 214 of influenza B hemagglutinin enhances cross-neutralization. Emerg Microbes Infect 2025; 14:2467770. [PMID: 39960410 PMCID: PMC11849025 DOI: 10.1080/22221751.2025.2467770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
High variability of influenza B virus (IBV) hemagglutinin (HA) impairs the cross- neutralization ability of vaccines, leading to reduce efficacy. We identified significant differences in cross-neutralization between IBV strains B/Wyoming/06/2014 and B/Brisbane/60/2008, which differ in only three amino acid residues. The 214 T point mutation was found to dramatically enhance cross-neutralization (>10-fold). Antibody-based reverse validation also revealed that this mutation significantly increased the neutralization capacity (500-62,500-fold). Furthermore, monitoring revealed that the mutation rate at this site has reached its highest level in nearly 20 years, with a prevalence exceeding 80% in sequences submitted from certain regions. Our findings provide new evidence for the selection of vaccine strains with improved cross- neutralization effects, which will aid the development of broad-spectrum vaccines by modifying minimal antigenic epitopes.
Collapse
Affiliation(s)
- Ziqi Cheng
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yeqing Sun
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yanru Shen
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Xi Wu
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Ling Pan
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Hao Wu
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yunbo Bai
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Wei P, Cai R, Zhang L, Zhang J, Zhang Z, Zhu A, Li H, Zhuang Z, Chen L, Chen J, Zhang Y, Xiong X, Qu B, Zhuo J, Tang T, Zhang Y, Chen L, Zhong Q, Lin Z, Xing X, Li F, Hu Q, Dai J, Shi Y, Zhao J, Zhao J, Wang Y. In vivo determination of protective antibody thresholds for SARS-CoV-2 variants using mouse models. Emerg Microbes Infect 2025; 14:2459140. [PMID: 39851259 PMCID: PMC11809195 DOI: 10.1080/22221751.2025.2459140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Neutralizing antibody titres have been shown to correlate with immune protection against COVID-19 and can be used to estimate vaccine effectiveness. Numerous studies have explored the relationship between neutralizing antibodies and protection. However, there remains a lack of quantitative data directly assessing the minimum effective protective neutralizing antibody titre in in vivo. In this study, we utilized eight cohorts of participants with diverse immune backgrounds for evaluation of protective antibody response. To precisely assess the lower threshold of neutralizing antibody titres required for effective protection against SARS-CoV-2 infections, we employed plasma adoptive transfer from different cohorts into mice. This study demonstrated that neutralizing titres in the plasma of recipient mice correlated well with those in human donors, and a positive linear correlation was observed between the human and mouse recipients of transferred plasma neutralizing titre. A pseudotyped virus neutralizing titres greater than 7 was identified as the minimum threshold necessary to reduce viral titres in infected mice, establishing a crucial baseline for effective protection. Furthermore, despite the variability in immune backgrounds, these diverse cohorts' plasma exhibited a similar neutralizing antibody threshold necessary for protection. This finding has significant implications for vaccine design and the assessment of immune competence.
Collapse
Affiliation(s)
- Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Ruoxi Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lu Zhang
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Jingjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiantao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xinyi Xiong
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Bin Qu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lei Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qier Zhong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhiwei Lin
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Xindan Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jun Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Yongxia Shi
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Wu Q, Wu H, Hu Y, Zheng X, Chang F, Liu Y, Pan Z, Wang Q, Tang F, Qian J, Li Y, Huang B, Chen K, Xu J, Wang Y, Xie X, Zhao P, Wu X, Qu X, Li YP. Immune evasion of Omicron variants JN.1, KP.2, and KP.3 to the polyclonal and monoclonal antibodies from COVID-19 convalescents and vaccine recipients. Antiviral Res 2025; 235:106092. [PMID: 39864525 DOI: 10.1016/j.antiviral.2025.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The Omicron BA.2.86 subvariants, JN.1, KP.2, and KP.3, have become predominant globally, raising concerns about their immune evasion from vaccines and monoclonal antibody (mAb) treatments. These variants harbor more receptor-binding domain (RBD) mutations than the XBB and EG.5 sub-lineages, which are already known to compromise vaccine and therapeutic efficacy. We evaluated sera from individuals vaccinated with inactivated vaccines, with or without breakthrough infections, as well as COVID-19 convalescents. Our results showed a substantial decrease in serum neutralizing activity against the JN.1, KP.2, XBB.1.5, and EG.5.1 variants compared to BA.2. Additionally, we developed 19 neutralizing antibodies from memory B cells, with some retaining efficacy against earlier Omicron variants. However, potency was notably diminished against newer subvariants like BF.7, BQ.1, XBB.1.5, and BA.2.86. Of mAbs, those isolated from COVID-19 convalescents, particularly SA-3, exhibited exceptional potency across ten variants from BA.2 to KP.2, with IC50 values ranging from 0.006 to 2.546 μg/mL. However, SA-3 had lost neutralizing activity against the KP.3 due to the Q493E mutation, but the KP.3 became susceptible to neutralization by the other mAb, SA-6. In contrast, SA-6 was unable to neutralize KP.2 because of the presence of R346T mutation. Our findings underscore the importance of continuous surveillance of viral evolution and the need for updated vaccines and therapeutics to combat the ongoing evolution of SARS-CoV-2, particularly in the context of emerging variants that escape both vaccine-induced immunity and monoclonal antibody treatments.
Collapse
Affiliation(s)
- Qian Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Hairuo Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China; Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang 422099, China; Xinning Country People's Hospital, Shaoyang 422099, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuezhou Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Huang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Keqiu Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Xu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Xiangping Xie
- The Central Hospital of Shaoyang, Shaoyang 422099, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, Hengyang Medical School, University of South China, No. 30, Jiefang Road, Shigu District, Hengyang 421000, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Li D, Hu C, Su J, Du S, Zhang Y, Ni W, Ren L, Hao Y, Feng Y, Jin C, Wang S, Dai X, Wang Z, Zhu B, Xiao J, Shao Y. Function and structure of broadly neutralizing antibodies against SARS-CoV-2 Omicron variants isolated from prototype strain infected convalescents. J Transl Med 2025; 23:212. [PMID: 39985112 PMCID: PMC11844185 DOI: 10.1186/s12967-025-06162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/22/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The ongoing emergence of evolving SARS-CoV-2 variants poses great threaten to the efficacy of authorized monoclonal antibody-based passive immunization or treatments. Developing potent broadly neutralizing antibodies (bNabs) against SARS-CoV-2 and elucidating their potential evolutionary pathways are essential for battling the coronavirus disease 2019 (COVID-19) pandemic. METHODS Broadly neutralizing antibodies were isolated using single cell sorting from three COVID-19 convalescents infected with prototype SARS-CoV-2 strain. Their neutralizing activity against diverse SARS-CoV-2 strains were tested in vitro and in vivo, respectively. The structures of antibody-antigen complexes were resolved using crystallization or Cryo-EM method. Antibodyomics analyses were performed using the non-bias deep sequencing results of BCR repertoires. RESULTS We obtained a series of RBD-specific monoclonal antibodies with highly neutralizing potency against a variety of pseudotyped and live SARS-CoV-2 variants, including five global VOCs and some Omicron subtypes such as BA.1, BA.2, BA.4/5, BF.7, and XBB. 2YYQH9 and LQLD6HL antibody cocktail also displayed good therapeutic and prophylactic efficacy in an XBB.1.16 infected hamster animal model. Cryo-EM and crystal structural analyses revealed that broadly neutralizing antibodies directly blocked the binding of ACE2 by almost covering the entire receptor binding motif (RBM) and largely avoided mutated RBD residues in the VOCs, demonstrating their broad and potent neutralizing activity. In addition, antibodyomics assays indicate that the germline frequencies of RBD-specific antibodies increase after an inactivated vaccine immunization. Moreover, the CDR3 frequencies of Vκ/λ presenting high amino acid identity with the broadly neutralizing antibodies were higher than those of VH. CONCLUSIONS These data suggest that current identified broadly neutralizing antibodies could serve as promising drug candidates for COVID-19 and can be used for reverse vaccine design against future pandemics.
Collapse
Affiliation(s)
- Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Junwei Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuo Du
- Changping Laboratory, Beijing, 102206, China
| | - Ying Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100091, China
| | - Wanqi Ni
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yanling Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yi Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinxian Dai
- National Vaccine and Serum Institute, Beijing, 101111, China
- China National Biotec Group Company Limited, Beijing, 100024, China
| | - Zheng Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Junyu Xiao
- Changping Laboratory, Beijing, 102206, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100091, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100091, China.
| | - Yiming Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Changping Laboratory, Beijing, 102206, China.
| |
Collapse
|
5
|
Liu C, Park YJ, Ma CB, Stuart C, Gen R, Sun YC, Yang X, Lin MY, Xiong Q, Si JY, Liu P, Veesler D, Yan H. ACE2 utilization of HKU25 clade MERS-related coronaviruses with broad geographic distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639017. [PMID: 40027745 PMCID: PMC11870458 DOI: 10.1101/2025.02.19.639017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a well-established receptor for several MERS-related coronaviruses (MERSr-CoVs) isolated from humans, camels, pangolins, and bats (1-6). However, the receptor usage of many genetically diverse bat MERSr-CoVs with broad geographical distributions remains poorly understood. Recent studies have identified angiotensin-converting enzyme 2 (ACE2) as an entry receptor for multiple merbecovirus clades. Here, using viral antigen and pseudovirus-based functional assays, we demonstrate that several bat merbecoviruses from the HKU25 clade previously thought to utilize DPP4 (7), employ ACE2 as their functional receptor. Cryo-electron microscopy analysis revealed that HsItaly2011 and VsCoV-a7 recognize ACE2 with a binding mode sharing similarity with that of HKU5 but involving remodeled interfaces and distinct ortholog selectivity, suggesting a common evolutionary origin of ACE2 utilization for these two clades of viruses. EjCoV-3, a strain closely related to the DPP4-using MERSr-CoV BtCoV-422, exhibited relatively broad ACE2 ortholog tropism and could utilize human ACE2 albeit suboptimally. Despite differences in entry mechanisms and spike proteolytic activation compared to MERS-CoV, these viruses remain sensitive to several broadly neutralizing antibodies and entry inhibitors. These findings redefine our understanding of the evolution of receptor usage among MERSr-CoVs and highlight the versatility of ACE2 as a functional receptor for diverse coronaviruses. Significance Recent studies unexpectedly revealed that several merbecoviruses convergently evolved ACE2 receptor usage with distinct binding modes across three continents, challenging the dogma that DPP4 is their primary receptor. Here, we demonstrate that HKU25 clade MERS-related coronaviruses broadly distributed across Eurasia utilize ACE2 as host receptor through a binding mode shared with HKU5, challenging prior findings. These findings reveal a prevalence of ACE2 usage in diverse MERS-related coronaviruses in bats and show that EjCoV-3 is preadapted to use human ACE2, suggesting a potential for spillover. Our data provide a blueprint of host receptor barrier determinants which will facilitate global surveillance and development of countermeasures against these poorly characterized merbecoviruses.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Young-Jun Park
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| | - Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Cameron Stuart
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Risako Gen
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Yu-Cheng Sun
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Xiao Yang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Mei-Yi Lin
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Jun-Yu Si
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - David Veesler
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| |
Collapse
|
6
|
Tian S, Si J, Zhang L, Zeng J, Zhang X, Huang C, Li G, Lei C, Zhou X, Geng R, Zhou P, Yan H, Rossiter SJ, Zhao H. Comparative genomics provides insights into chromosomal evolution and immunological adaptation in horseshoe bats. Nat Ecol Evol 2025:10.1038/s41559-025-02638-2. [PMID: 39920351 DOI: 10.1038/s41559-025-02638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Horseshoe bats are natural hosts of zoonotic viruses, yet the genetic basis of their antiviral immunity is poorly understood. Here we generated two new chromosomal-level genome assemblies for horseshoe bat species (Rhinolophus) and three close relatives, and show that, during their diversification, horseshoe bats underwent extensive chromosomal rearrangements and gene expansions linked to segmental duplications. These expansions have generated new adaptive variations in type I interferons and the interferon-stimulated gene ANXA2R, which potentially enhance antiviral states, as suggested by our functional assays. Genome-wide selection screens, including of candidate introgressed regions, uncover numerous putative molecular adaptations linked to immunity, including in viral receptors. By expanding taxon coverage to ten horseshoe bat species, we identify new variants of the SARS-CoV-2 receptor ACE2, and report convergent functionally important residues that could explain wider patterns of susceptibility across mammals. We conclude that horseshoe bats have numerous signatures of adaptation, including some potentially related to immune response to viruses, in genomic regions with diverse and multiscale mutational changes.
Collapse
Affiliation(s)
- Shilin Tian
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Novogene Bioinformatics Institute, Beijing, China
| | - Junyu Si
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiaming Zeng
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangyi Zhang
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Huang
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Caoqi Lei
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rong Geng
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Peng Zhou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Huabin Zhao
- State Key Laboratory of Virology and Biosafety, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Ma CB, Liu C, Park YJ, Tang J, Chen J, Xiong Q, Lee J, Stewart C, Asarnow D, Brown J, Tortorici MA, Yang X, Sun YH, Chen YM, Yu X, Si JY, Liu P, Tong F, Huang ML, Li J, Shi ZL, Deng Z, Veesler D, Yan H. Multiple independent acquisitions of ACE2 usage in MERS-related coronaviruses. Cell 2025:S0092-8674(24)01474-0. [PMID: 39922191 DOI: 10.1016/j.cell.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
The angiotensin-converting enzyme 2 (ACE2) receptor is shared by various coronaviruses with distinct receptor-binding domain (RBD) architectures, yet our understanding of these convergent acquisition events remains elusive. Here, we report that two bat MERS-related coronaviruses (MERSr-CoVs) infecting Pipistrellus nathusii (P.nat)-MOW15-22 and PnNL2018B-use ACE2 as their receptor, with narrow ortholog specificity. Cryoelectron microscopy structures of the MOW15-22/PnNL2018B RBD-ACE2 complexes unveil an unexpected and entirely distinct binding mode, mapping >45 Å away from that of any other known ACE2-using coronaviruses. Functional profiling of ACE2 orthologs from 105 mammalian species led to the identification of host tropism determinants, including an ACE2 N432-glycosylation restricting viral recognition, and the design of a soluble P.nat ACE2 mutant with potent viral neutralizing activity. Our findings reveal convergent acquisition of ACE2 usage for merbecoviruses found in European bats, underscoring the extraordinary diversity of ACE2 recognition modes among coronaviruses and the promiscuity of this receptor.
Collapse
Affiliation(s)
- Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jingjing Tang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Xiao Yang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jun-Yu Si
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Fei Tong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jing Li
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zheng-Li Shi
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China.
| | - Zengqin Deng
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430207, China.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
8
|
Du S, Yang L, Chen X, Chen Y, Weng L, Huang H, Pang S. Engineering mRNA vaccine with broad-spectrum protection against SARS-cov-2 variants. Biochem Biophys Res Commun 2025; 746:151224. [PMID: 39742790 DOI: 10.1016/j.bbrc.2024.151224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Herd immunity through mass vaccination is an effective method for preventing infectious diseases. However, the emerging SARS-CoV-2 variants, with their frequent mutations, largely evade the immune response and protection induced by COVID-19 vaccines. Here, we designed messenger RNAs encoding mutant epitopes of the spike protein shared among various COVID-19 variants. These mRNAs were encapsulated in lipid nanoparticles to formulate a vaccine named 'mPANVAX@COVID'. Post-vaccination, this approach elicited effective immunity against multiple SARS-CoV-2 variants, including Delta and Omicron, and demonstrated good safety. This study suggests a novel direction for the design of broadly protective vaccines.
Collapse
Affiliation(s)
- Shuang Du
- Shenzhen Shenxin Biotechnology Co., Ltd., 518052, China
| | - Liu Yang
- Nanjing Shenxin Biotechnology Co., Ltd., 211800, China
| | | | - Yonghao Chen
- Shenzhen Shenxin Biotechnology Co., Ltd., 518052, China
| | - Liang Weng
- Shenzhen Shenxin Biotechnology Co., Ltd., 518052, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, 211109, China.
| | - Silin Pang
- Nanjing Shenxin Biotechnology Co., Ltd., 211800, China.
| |
Collapse
|
9
|
Halfmann PJ, Patel RS, Loeffler K, Yasuhara A, Van De Velde LA, Yang JE, Chervin J, Troxell C, Huang M, Zheng N, Wright ER, Thomas PG, Wilson PC, Kawaoka Y, Kane RS. Multivalent S2 subunit vaccines provide broad protection against Clade 1 sarbecoviruses in female mice. Nat Commun 2025; 16:462. [PMID: 39774966 PMCID: PMC11706982 DOI: 10.1038/s41467-025-55824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit. This vaccine alone, or as a cocktail with a SARS-CoV-2 S2 subunit vaccine, protects female transgenic K18-hACE2 mice from challenges with Omicron subvariant XBB as well as several sarbecoviruses identified as having pandemic potential including the bat sarbecovirus WIV1, BANAL-236, and a pangolin sarbecovirus. Challenge studies in female Fc-γ receptor knockout mice reveal that antibody-based cellular effector mechanisms play a role in protection elicited by these vaccines. These results demonstrate that our S2-based vaccines provide broad protection against clade 1 sarbecoviruses and offer insight into the mechanistic basis for protection.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Raj S Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lee-Ann Van De Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Jordan Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Chloe Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Min Huang
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Naiying Zheng
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan.
| | - Ravi S Kane
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Li J, Xu J, Liu Y, Chen L, Yu L, Xiao X, Wang Q. Factors influencing antibody response after COVID-19 recombinant protein vaccination in adults: A cross-sectional observational study, in Chongqing, China. Hum Vaccin Immunother 2024; 20:2389602. [PMID: 39171541 PMCID: PMC11346555 DOI: 10.1080/21645515.2024.2389602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The factors affecting the antibody responses to the ZF2001 vaccine remain unknown. To address this, we conducted a cross-sectional serological study in the real world. Adults with no prior SARS-CoV-2 infection history and received three doses of ZF2001 vaccine were invited to our study in the early stages of the COVID-19 epidemic in Chongqing between 7 April 2021 and 17 November 2021. A questionnaire survey was conducted to obtain demographic characteristics, health information, and the frequency of lifestyles at the time of enrollment. A total of 266 eligible subjects aged 18 to 86 years, with a median age of 56.00 (IQR: 34-66) participated. 68.80% of them were female. Hypertension (13.16%) and diabetes (6.02%) were common comorbidities. Serum samples were collected at one month after the third dose of ZF2001 vaccination, and serological testing was conducted using the Pseudovirus-Based Neutralization Assay. The chi-square test was employed to compare seropositivity rates, and the Mann-Whitney U test or the Kruskal-Wallis test was used to analyze the neutralizing antibodies level in stratified groups. Subsequently, univariate and multivariate linear regression analyses were conducted to identify the influencing factors. We observed that seropositivity rates was 76.32%, with 95% confidence interval (95%CI) 70.85%-81.03%, and geometric mean titer (GMT) was 120.26, with 95%CI 100.38-144.08. Age, diabetes, and frequently of alcohol were negative associations with antibody response (β = -0.2021, 95% CI: -0.2507 to -0.1535, β = -0.2873, 95% CI: -0.5590 to -0.0155, β = -0.2082, 95% CI: -0.3419 to-0.0746, P < 0.0001, P = 0.0384, P = 0.0024). Conversely, the -interval between 1 and 2 dose and frequently of tea were positive associations with antibody response (β = 0.1369, 95% CI: 0.0463 to 0.2275, β = 0.0830, 95% CI: 0.0106 to 0.1554, P = 0.0032, P = 0.0247). Overall, the ZF2001 vaccine-induced antibody response was influenced by a multifactor that may provide a reference for the development of personalized antigen vaccines and vaccination strategies in the future.
Collapse
Affiliation(s)
- Jianqiao Li
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Jiawei Xu
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yu Liu
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Lei Chen
- Expand Program on Immunization, Yuzhong District Center for Disease Control and Prevention, Chongqing, China
| | - Linling Yu
- Expand Program on Immunization, Yubei District Center for Disease Control and Prevention, Chongqing, China
| | - Xiao Xiao
- Expand Program on Immunization, Jiulongpo District Center for Disease Control and Prevention, Chongqing, China
| | - Qing Wang
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| |
Collapse
|
11
|
Liu K, Hong B, He ST, Du S, Ke J, Tian L, Tao T, Zhang Y, Li K, Chang H, Li M, An X, Song L, Zhang Z, Liu L, Pan H, Fan H, Tong Y. The potential mechanisms and material basis of Fuzheng Jiedu decoction broad-spectrum inhibiting coronaviruses. Virol Sin 2024:S1995-820X(24)00208-6. [PMID: 39736321 DOI: 10.1016/j.virs.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025] Open
Abstract
Traditional Chinese medicine has unique advantages in preventing and treating COVID-19, and Fuzheng Jiedu decoction (FZJDD) was reported to be effective against COVID-19 in clinical trials. To investigate the potential mechanisms and material basis of FZJDD against SARS-CoV-2, we performed SARS-CoV-2 target protein inhibition analyses and a metabolite full spectrum analysis of FZJDD. Interestingly, FZJDD was found to block the binding of SARS-CoV-2 Spike protein with the receptor ACE2 and inhibit the activity of SARS-CoV-2 3CLpro. Moreover, FZJDD can regulate the TNF and the MAPK signaling pathway to inhibit the inflammatory response and alleviate the "cytokine storm". A total of 298 compounds were identified in FZJDD, among them, caffeic acid and octyl gallate were found to be the potential therapeutic agents of FZJDD. Importantly, FZJDD can broadly inhibit coronavirus infection, including SADS-CoV and porcine epidemic diarrhea virus (PEDV) live viruses, SARS-CoV, MERS-CoV, and SARS-CoV-2 mutant pseudotyped viruses, which might be ascribed to the broad-spectrum anti-coronavirus activity of caffeic acid and octyl gallate. In conclusion, this study reveals the mechanisms and material basis of FZJDD against SARS-CoV-2 and identifies the broad-spectrum anti-coronavirus activity of FZJDD for the first time. Our data provide empirical evidence for the development and application of FZJDD.
Collapse
Affiliation(s)
- Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Shi-Ting He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Siying Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayi Ke
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Tao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yihan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kelin Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Han Chang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Liu F, Yu Y, Tong J, Wu J, Lu Q, Liu R, Cao L, Ma X, Zhu J, Wang T, Liu S, Liang Z, Wu X, Li T, Zhao C, Nie J, Wang Y, Huang W, Gao W. Omicron JN.1 escape neutralization by omicron subvariants infection in elderly individuals. Vaccine 2024:126658. [PMID: 39732559 DOI: 10.1016/j.vaccine.2024.126658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/28/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Affiliation(s)
- Fan Liu
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | | | - Jincheng Tong
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Qiong Lu
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Ruixin Liu
- Peking Union Medical College Hospital, Beijing, China
| | - LinLin Cao
- Peking University People's Hospital, Beijing, China
| | - Xiaolu Ma
- Peking University People's Hospital, Beijing, China
| | - Jihong Zhu
- Peking University People's Hospital, Beijing, China
| | | | - Shuo Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziteng Liang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuelian Wu
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Tao Li
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chenyan Zhao
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jianhui Nie
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | | | - Weijin Huang
- National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Weibo Gao
- Peking University People's Hospital, Beijing, China.
| |
Collapse
|
13
|
Ma E, Guo X, Hu M, Wang P, Wang X, Wei C, Cheng G. A predictive language model for SARS-CoV-2 evolution. Signal Transduct Target Ther 2024; 9:353. [PMID: 39710752 DOI: 10.1038/s41392-024-02066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Modeling and predicting mutations are critical for COVID-19 and similar pandemic preparedness. However, existing predictive models have yet to integrate the regularity and randomness of viral mutations with minimal data requirements. Here, we develop a non-demanding language model utilizing both regularity and randomness to predict candidate SARS-CoV-2 variants and mutations that might prevail. We constructed the "grammatical frameworks" of the available S1 sequences for dimension reduction and semantic representation to grasp the model's latent regularity. The mutational profile, defined as the frequency of mutations, was introduced into the model to incorporate randomness. With this model, we successfully identified and validated several variants with significantly enhanced viral infectivity and immune evasion by wet-lab experiments. By inputting the sequence data from three different time points, we detected circulating strains or vital mutations for XBB.1.16, EG.5, JN.1, and BA.2.86 strains before their emergence. In addition, our results also predicted the previously unknown variants that may cause future epidemics. With both the data validation and experiment evidence, our study represents a fast-responding, concise, and promising language model, potentially generalizable to other viral pathogens, to forecast viral evolution and detect crucial hot mutation spots, thus warning the emerging variants that might raise public health concern.
Collapse
Affiliation(s)
- Enhao Ma
- School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China
| | - Xuan Guo
- School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangqiao Rd., Guangming District, Shenzhen, Guangdong, 518000, China.
| | - Mingda Hu
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Xin Wang
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai District, Beijing, 100071, China.
| | - Gong Cheng
- School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangqiao Rd., Guangming District, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
14
|
Alam MM, Salauddin A, Moni S, Limon MBH, Musarrat R, Bosu S, Hossain ME, Rahman MZ, Rahman M. Cross-neutralization of Influenza A by SARS-CoV-2 specific neutralizing antibodies and polyclonal plasma: Is pre-exposure to SARS-CoV-2 protective against Influenza A? Heliyon 2024; 10:e40638. [PMID: 39654774 PMCID: PMC11626022 DOI: 10.1016/j.heliyon.2024.e40638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
According to sparse information from various countries, the seasonal influenza virus circulation has drastically decreased during the COVID-19 pandemic. Here, we show the cross-reactivity of anti-SARS-CoV-2 antibodies against influenza viruses. Plasma samples were collected from 311 SARS-CoV-2 infected individuals. The samples were tested for antibody titers against SARS-CoV-2 by ELISA and seasonal influenza virus strains (influenza A/H1N1, A/H3N2, B/Yamagata, and B/Victoria) using a Hemagglutination Inhibition Assay (HAI). In addition, SARS-CoV-2 antibody-positive but Influenza antibody-negative samples (n = 16) were investigated to determine the SARS-CoV-2 antibody-neutralizing potential against influenza viruses by microneutralization (MN) assay. The SARS-CoV-2 genomes were sequenced using Illumina next-generation sequencing, and an in-silico protein structural analysis was performed to identify epitope and antibody binding similarities between SARS-CoV-2 and influenza viruses. Among 16 samples that didn't contain antibodies against Influenza A strains (H1N1 and H3N2), five showed high (MN titer≥20), and six showed moderate (MN titer≥10) capability to neutralize Influenza A. Subsequent in-silico analysis revealed that most efficient binding (>8 kcal/mol) was found between the antibodies of SARS-CoV-2 delta variant (ΔG) with influenza A/H1N1 HA (Hemagglutinin), A/H3N2 HA, A/H1N1 NA (Neuraminidase), and A/H3N2 NA glycoproteins with -12.4, -9.3, -10.1, and -11.7 kcal/mol, respectively. This investigation revealed that neutralizing antibodies of the delta variant cross-reacted with the Influenza A virus, which might protect against influenza viruses and reduce and shift the seasonal influenza circulation during the COVID-19 pandemic. Our findings warrant further study to explain the probable mechanisms of this cross-reactivity.
Collapse
Affiliation(s)
- Mohammad Mamun Alam
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Asma Salauddin
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Sayra Moni
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Md Belayet Hasan Limon
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Raisha Musarrat
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Sagar Bosu
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Mohammad Enayet Hossain
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Mohammed Ziaur Rahman
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| | - Mustafizur Rahman
- Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, (icddr,b), Bangladesh
| |
Collapse
|
15
|
Wang N, Fan H, Wang Y, Shu C, Lin Q, Hu P, Wang N, Zhang D. The hybrid immunity defined by weaker immune imprinting of people living with HIV has a stronger neutralizing response against Omicron variants. A suggested explanation for fewer symptoms in people living with HIV after SARS-CoV-2 variants breakthrough infection. Life Sci 2024; 358:123197. [PMID: 39481835 DOI: 10.1016/j.lfs.2024.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS Human immunodeficiency virus(HIV) co-infection may cause different immune imprinting, which leads to different hybrid immunity and clinical manifestations of coronavirus disease 2019. This study aims to evaluate the immune imprinting from wild-type(WT) vaccination in people living with HIV(PLWH) and analyze its effect on hybrid immunity and clinical manifestations. MATERIALS AND METHODS We enrolled 118 PLWH to compared the differences of BA.5-specific immune response in different immune modes. 20 vaccinated healthy individuals(HC) and 30 vaccinated PLWH were matched to compare the differences of the status of Omicron infection, serum neutralizing antibody levels against WT and BA.5, and specific lymphocytes expression, separately. KEY FINDINGS Hybrid immunity had a higher level of BA.5 IgG than either vaccine immunity only or natural immunity only in PLWH but didn't have a higher level of BA.5-specific lymphocytes responses. PLWH had fewer symptoms than HC after breakthrough infection. The neutralizing inhibition rate of PLWH was higher for BA.5 and lower for WT, while the neutralizing inhibition rate of HC was higher for WT and lower for BA.5. The difference value of specific B lymphocytes/memory B cells/follicular helper T cells of PLWH was greater than that of HC. SIGNIFICANCE Hybrid immunity of PLWH has a higher level of Omicron-specific IgG without a higher level of Omicron-specific lymphocytes due to immune imprinting. However, there is a stronger neutralizing ability against variants of PLWH due to the weaker immune imprinting of PLWH than that of healthy people, which may lead to fewer symptoms in PLWH after breakthrough infection.
Collapse
Affiliation(s)
- Ni Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huimin Fan
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yixuan Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang Shu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Lin
- Department of Infectious Diseases, The people's hospital of Jiulongpo district, Chongqing, China.
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Na Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Dazhi Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Niu X, Li Z, Wang J, Jian F, Yu Y, Song W, Yisimayi A, Du S, Zhang Z, Wang Q, Wang J, An R, Wang Y, Wang P, Sun H, Yu L, Yang S, Xiao T, Gu Q, Shao F, Wang Y, Xiao J, Cao Y. Omicron-specific ultra-potent SARS-CoV-2 neutralizing antibodies targeting the N1/N2 loop of Spike N-terminal domain. Emerg Microbes Infect 2024; 13:2412990. [PMID: 39361729 PMCID: PMC11520098 DOI: 10.1080/22221751.2024.2412990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
A multitude of functional mutations continue to emerge on the N-terminal domain (NTD) of the spike protein in SARS-CoV-2 Omicron subvariants. Understanding the immunogenicity of Omicron NTD and the properties of antibodies elicited by it is crucial for comprehending the impact of NTD mutations on viral fitness and guiding vaccine design. In this study, we find that most of NTD-targeting antibodies isolated from individuals with BA.5/BF.7 breakthrough infection (BTI) are ancestral (wild-type or WT)-reactive and non-neutralizing. Surprisingly, we identified five ultra-potent neutralizing antibodies (NAbs) that can only bind to Omicron but not WT NTD. Structural analysis revealed that they bind to a unique epitope on the N1/N2 loop of NTD and interact with the receptor-binding domain (RBD) via the light chain. These Omicron-specific NAbs achieve neutralization through ACE2 competition and blockage of ACE2-mediated S1 shedding. However, BA.2.86 and BA.2.87.1, which carry insertions or deletions on the N1/N2 loop, can evade these antibodies. Together, we provided a detailed map of the NTD-targeting antibody repertoire in the post-Omicron era, demonstrating their vulnerability to NTD mutations enabled by its evolutionary flexibility, despite their potent neutralization. These results revealed the function of the indels in the NTD of BA.2.86/JN.1 sublineage in evading neutralizing antibodies and highlighted the importance of considering the immunogenicity of NTD in vaccine design.
Collapse
Affiliation(s)
- Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
| | - Zhiqiang Li
- Changping Laboratory, Beijing, People’s Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
| | - Jing Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
| | - Yuanling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Shuo Du
- Changping Laboratory, Beijing, People’s Republic of China
| | - Zhiying Zhang
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, People’s Republic of China
| | - Qianran Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Jing Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Ran An
- Changping Laboratory, Beijing, People’s Republic of China
| | - Yao Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Peng Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Haiyan Sun
- Changping Laboratory, Beijing, People’s Republic of China
| | - Lingling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
| | - Qingqing Gu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Fei Shao
- Changping Laboratory, Beijing, People’s Republic of China
| | - Youchun Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Junyu Xiao
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Xu JW, Wang BS, Gao P, Huang HT, Wang FY, Qiu W, Zhang YY, Xu Y, Gou JB, Yu LL, Liu X, Wang RJ, Zhu T, Hou LH, Wang Q. Safety and immunogenicity of heterologous boosting with orally administered aerosolized bivalent adenovirus type-5 vectored COVID-19 vaccine and B.1.1.529 variant adenovirus type-5 vectored COVID-19 vaccine in adults 18 years and older: a randomized, double blinded, parallel controlled trial. Emerg Microbes Infect 2024; 13:2281355. [PMID: 37933089 PMCID: PMC11025474 DOI: 10.1080/22221751.2023.2281355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/04/2023] [Indexed: 11/08/2023]
Abstract
Vaccination strategies that can induce a broad spectrum immune response are important to enhance protection against SARS-CoV-2 variants. We conducted a randomized, double-blind and parallel controlled trial to evaluate the safety and immunogenicity of the bivalent (5×1010viral particles) and B.1.1.529 variant (5×1010viral particles) adenovirus type-5 (Ad5) vectored COVID-19 vaccines administrated via inhalation. 451 eligible subjects aged 18 years and older who had been vaccinated with three doses inactivated COVID-19 vaccines were randomly assigned to inhale one dose of either B.1.1.529 variant Ad5 vectored COVID-19 vaccine (Ad5-nCoVO-IH group, N=150), bivalent Ad5 vectored COVID-19 vaccine (Ad5-nCoV/O-IH group, N=151), or Ad5 vectored COVID-19 vaccine (5×1010viral particles; Ad5-nCoV-IH group, N=150). Adverse reactions reported by 37 (24.67%) participants in the Ad5-nCoVO-IH group, 28 (18.54%) in the Ad5-nCoV/O-IH group, and 26 (17.33%) in the Ad5-nCoV-IH group with mainly mild to moderate dry mouth, oropharyngeal pain, headache, myalgia, cough, fever and fatigue. No serious adverse events related to the vaccine were reported. Investigational vaccines were immunogenic, with significant difference in the GMTs of neutralizing antibodies against Omicron BA.1 between Ad5-nCoV/O-IH (43.70) and Ad5-nCoV-IH (29.25) at 28 days after vaccination (P=0.0238). The seroconversion rates of neutralizing antibodies against BA.1 in Ad5-nCoVO-IH, Ad5-nCoV/O-IH, and Ad5-nCoV-IH groups were 56.00%, 59.60% and 48.67% with no significant difference among the groups. Overall, the investigational vaccines were demonstrated to be safe and well tolerated in adults, and was highly effective in inducing mucosal immunities in addition to humoral and cellular immune responses defending against SARS-CoV-2 variants.Trial registration: Chictr.org identifier: ChiCTR2200063996.
Collapse
Affiliation(s)
- Jia-Wei Xu
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Bu-Sen Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Gao
- Logistics University of Chinese People’s Armed Police Force, Tianjin, People’s Republic of China
| | - Hai-Tao Huang
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Fei-Yu Wang
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Wei Qiu
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Yuan-Yuan Zhang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Yu Xu
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Jin-Bo Gou
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Lin-Ling Yu
- Expanded Program on Immunization, Yubei District Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Xuan Liu
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Rui-Jie Wang
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Li-Hua Hou
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Qing- Wang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Cabrera-Alvargonzalez JJ, Davina-Nunez C, Rey-Cao S, Rodriguez Calviño L, Silva-Bea S, Gonzalez-Alonso E, Carballo-Fernandez R, Lameiro Vilariño C, Cortizo-Vidal S, Valiño-Prieto P, Rodriguez-Perez M, Pérez Castro S, López Miragaya I, Fernández-Nogueira A, Del Campo-Perez V, Regueiro-Garcia B. Comparative analysis of eleven SARS-CoV-2 immunoassays and neutralisation data: time to enhance standardisation and correlation of protection. Infect Dis (Lond) 2024; 56:1067-1079. [PMID: 39046827 DOI: 10.1080/23744235.2024.2382263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND To infer a reliable SARS-CoV-2 antibody protection level from a serological test, an appropriate quantitative threshold and solid equivalence across serological tests are needed. Additionally, tests should show a solid correlation with neutralising assays and with the protection observed in large population cohorts even against emerging variants. OBJECTIVES We studied convalescent and vaccinated populations using 11 commercial antibody assays. Results were compared to evaluate discrepancies across tests. Neutralisation capacity was measured in a subset of the samples with a lentiviral-based assay. METHODS Serum from convalescent (n = 121) and vaccinated individuals (n = 471, 260 with Comirnaty, 110 with Spikevax, and 96 with Vaxzevria) was assessed using 11 different assays, including two from Abbott, Euroimmun, Liaison, Roche, and Vircell, and one from Siemens. A spike protein-lentiviral vector with a fluorescent reporter was used for neutralisation assay of serum from convalescent (n = 26) and vaccinated (n = 39) individuals. RESULTS Positivity ranged between 81.3 and 94.3% after infection and 99.4 and 99.7% after vaccination, depending on the assay. Both cohorts showed a high level of qualitative agreement across tests (Fleiss' kappa = 0.598 and 0.719 for convalescent and vaccinated respectively). Spikevax vaccine recipients showed the highest level of antibodies in all tests. Effectiveness of each test predicting SARS-CoV-2 neutralising capacity depended on assay type and target, with CLIA and anti-S being more effective than ELISA and anti-N assays, respectively. CONCLUSIONS High-throughput immunoassays are good predictors of neutralising capacity. Updated targets and better standardisation would be required to find an effective correlate of protection, especially to account for antibodies against new variants.
Collapse
Affiliation(s)
- Jorge-Julio Cabrera-Alvargonzalez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Carlos Davina-Nunez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Faculty of Biology, Universidade de Vigo, Vigo, Spain
| | - Sonia Rey-Cao
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Leticia Rodriguez Calviño
- Clinical Analysis Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sergio Silva-Bea
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | - Elena Gonzalez-Alonso
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | | | - Carmen Lameiro Vilariño
- Preventive Medicine Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sandra Cortizo-Vidal
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Pilar Valiño-Prieto
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Miriam Rodriguez-Perez
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sonia Pérez Castro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Isabel López Miragaya
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Arturo Fernández-Nogueira
- Clinical Analysis Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Victor Del Campo-Perez
- Preventive Medicine Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Benito Regueiro-Garcia
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| |
Collapse
|
19
|
Nowak R, Gazecka M, Hoffmann M, Kierzek R, Pöhlmann S, Zmora P. TMPRSS2-specific antisense oligonucleotides inhibit host cell entry of emerging viruses. Virology 2024; 600:110218. [PMID: 39276670 DOI: 10.1016/j.virol.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Emerging viruses, such as novel influenza A viruses (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose a constant threat to animal and human health. Identification of host cell factors necessary for viral replication but dispensable for cellular survival might reveal novel, attractive targets for therapeutic intervention. Proteolytic activation of IAV hemagglutinin (HA) and SARS-CoV-2 spike protein (S) by the type II transmembrane serine protease (TTSPs), e.g. TMPRSS2 is sought to be critical for viral spread and pathogenesis. Here, we investigated the secondary structure of TMPRSS2 mRNA coding sequence and designed TMPRSS2-specific antisense oligonucleotides (ASOs). Several of these ASOs markedly reduced the TMPRSS2 expression and decreased IAV infection and SARS-CoV-2 entry into cells.
Collapse
Affiliation(s)
- Rafal Nowak
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Monika Gazecka
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Pawel Zmora
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
20
|
Yisimayi A, Song W, Wang J, Jian F, Yu Y, Chen X, Xu Y, An R, Wang Y, Wang J, Sun H, Wang P, Yu L, Shao F, Jin R, Shen Z, Wang Y, Cao Y. Prolonged Omicron-specific B cell maturation alleviates immune imprinting induced by SARS-CoV-2 inactivated vaccine. Emerg Microbes Infect 2024; 13:2412623. [PMID: 39360822 PMCID: PMC11486138 DOI: 10.1080/22221751.2024.2412623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
SARS-CoV-2 ancestral strain-induced immune imprinting poses great challenges to updating vaccines for new variants. Studies showed that repeated Omicron exposures could override immune imprinting induced by inactivated vaccines but not mRNA vaccines, a disparity yet to be understood. Here, we analyzed the immune imprinting alleviation in inactivated vaccine (CoronaVac) cohorts after a long-term period following breakthrough infections (BTI). We observed in CoronaVac-vaccinated individuals who experienced BA.5/BF.7 BTI, the proportion of Omicron-specific memory B cells (MBCs) substantially increased after an extended period post-Omicron BTI, with their antibodies displaying enhanced somatic hypermutation and neutralizing potency. Consequently, the neutralizing antibody epitope distribution encoded by MBCs post-BA.5/BF.7 BTI after prolonged maturation closely mirrors that in BA.5/BF.7-infected unvaccinated individuals. Together, these results indicate the activation and expansion of Omicron-specific naïve B cells generated by first-time Omicron exposure helped to alleviate CoronaVac-induced immune imprinting, and the absence of this process should have caused the persistent immune imprinting seen in mRNA vaccine recipients.
Collapse
Affiliation(s)
- Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| | - Jing Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| | - Yuanling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Xiaosu Chen
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ran An
- Changping Laboratory, Beijing, People’s Republic of China
| | - Yao Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Jing Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Haiyan Sun
- Changping Laboratory, Beijing, People’s Republic of China
| | - Peng Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Lingling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Fei Shao
- Changping Laboratory, Beijing, People’s Republic of China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, People’s Republic of China
| | - Youchun Wang
- Changping Laboratory, Beijing, People’s Republic of China
- Institute of Medical Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. Cell Rep 2024; 43:114922. [PMID: 39504245 PMCID: PMC11804229 DOI: 10.1016/j.celrep.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iden A Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Jeremy S Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Zhang Y, Tian C, Yu X, Yu G, Han X, Wang Y, Zhou H, Zhang S, Li M, Yang T, Sun Y, Tai W, Yin Q, Zhao G. Lung-Selective Delivery of mRNA-Encoding Anti-MERS-CoV Nanobody Exhibits Neutralizing Activity Both In Vitro and In Vivo. Vaccines (Basel) 2024; 12:1315. [PMID: 39771977 PMCID: PMC11680347 DOI: 10.3390/vaccines12121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic virus causing severe respiratory illness, with limited treatment options that are mostly supportive. The success of mRNA technology in COVID-19 vaccines has opened avenues for antibody development against MERS-CoV. mRNA-based antibodies, expressed in vivo, offer rapid adaptability to viral mutations while minimizing long-term side effects. This study aimed to develop a lung-targeted lipid nanoparticle (LNP) system for mRNA-encoding neutralizing nanobodies against MERS-CoV, proposing a novel therapeutic strategy. Methods: An mRNA-encoding nanobody NbMS10 (mRNA-NbMS10) was engineered for enhanced stability and reduced immunogenicity. This mRNA was encapsulated in lung-selective LNPs using microfluidics to form the LNP-mRNA-NbMS10 system. Efficacy was assessed through in vitro assays and in vivo mouse studies, focusing on antigen-binding, neutralization, and sustained nanobody expression in lung tissues. Results: The LNP-mRNA-NbMS10 system expressed the nanobody in vitro, showing strong antigen-binding and significant MERS-CoV pseudovirus neutralization. In vivo studies confirmed selective lung mRNA delivery, with high nanobody expression sustained for up to 24 h, confirming lung specificity and prolonged antiviral activity. Conclusions: Extensive in vitro and in vivo evaluations demonstrate the LNP-mRNA-NbMS10 system's potential as a scalable, cost-effective, and adaptable alternative to current MERS-CoV therapies. This innovative platform offers a promising solution for preventing and treating respiratory infections, and countering emerging viral threats.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China;
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030031, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (G.Y.)
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (G.Y.)
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haisheng Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
| | - Shuai Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tiantian Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yali Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guangyu Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
23
|
Lyu C, He Z, Hu X, Wang S, Qin M, Zhu L, Li Y, Yang F, Jiao Z, Zhang X, Lu G, Wang E, Hu Y, Zhai Y, Wang Y, Huang W, Wang D, Cui Y, Pang X, Liu X, Kamiya H, Ma G, Wei W. Lysosomal "TRAP": a neotype modality for clearance of viruses and variants. Nat Commun 2024; 15:10155. [PMID: 39578473 PMCID: PMC11584657 DOI: 10.1038/s41467-024-54505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
The binding of viruses to host-entry factor receptors is an essential step for viral infection. Many studies have shown that macrophages can internalize viruses and degrade them in lysosomes for clearance in vivo. Inspired by these natural behaviors and using SARS-CoV-2 as a testbed, we harvest lysosomes from activated macrophages and anchor the protein-receptor ACE2 as bait, thus constructing a lysosomal "TRAP" (lysoTRAP) that selectively captures, internalizes, and eventually degrades SARS-CoV-2. Through experiments with cells, female mice, female hamsters, and human lung organoids, we demonstrate that lysoTRAP effectively clears SARS-CoV-2. Importantly, unlike therapeutic agents targeting SARS-CoV-2 spike protein, lysoTRAP remains effective against nine pseudotyped variants and the authentic Omicron variant, demonstrating its resistance to SARS-CoV-2 mutations. In addition to the protein-receptor ACE2, we also extend lysoTRAP with the saccharide-receptor sialic acid and verify its excellent antiviral effect against H1N1, highlighting the flexibility of our "TRAP" platform in fighting against various viruses.
Collapse
Affiliation(s)
- Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Zhanlong He
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Xiaoming Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanyan Li
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhouguang Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Erqiang Wang
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Yaling Hu
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Yu Zhai
- Sinovac Life Sciences Co., Ltd., Beijing, 100085, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, 100191, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, 100191, China
| | - Xiangzheng Liu
- Department of thoracic surgery, Peking University First Hospital, Beijing, 100034, China
| | - Hidehiro Kamiya
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Liu H, Liu T, Wang A, Liang C, Zhu X, Zhou J, Chen Y, Liu Y, Qi Y, Chen W, Zhang G. A Novel Cell- and Virus-Free SARS-CoV-2 Neutralizing Antibody ELISA Based on Site-Specific Labeling Technology. Anal Chem 2024; 96:18437-18444. [PMID: 39506608 DOI: 10.1021/acs.analchem.4c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the global spread of coronavirus disease 2019 (COVID-19), creating an urgent need for updated methods to evaluate immune responses to vaccines and therapeutic strategies. In this study, we introduce a novel cell-free, virus-free SARS-CoV-2 neutralizing antibody ELISA (NAb-ELISA), which is based on competitive inhibition of the receptor binding domain (RBD) of spike protein binding to the angiotensin-converting enzyme 2 (ACE2) receptor. In this method, site-specific biotinylated hACE2-Fc-Avi recombinant protein is immobilized onto a 96-well plate for capture, and the RBD-Fc-vHRP recombinant proteins serve as detection probes. Evaluation of sera from wild type (WT) or Delta RBD-immunized mice using the NAb-ELISA and pseudovirus neutralization tests (pVNTs) demonstrated strong correlations between assays (R2 = 0.91 and 0.90 for the WT and Delta groups, respectively). Additionally, the NAb-ELISA successfully detected cross-neutralizing activity in sera, though with slightly lower correlation to pVNT (R2 = 0.70-0.83). By employing NAb-ELISA instead of an indirect ELISA for hybridoma screening, five monoclonal antibodies (mAbs) with neutralizing activities against WT, Delta, and BA.2 pseudoviruses were obtained. This assay offers a straightforward, rapid, and safe approach to characterizing vaccine-induced antibody responses and mAb neutralization activity. Notably, the NAb-ELISA platform can be quickly adapted to assess neutralizing antibody responses against emerging mutant strains, addressing the rapid mutation of the virus.
Collapse
Affiliation(s)
- Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Tiantian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| | - Wenjing Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
- Longhu Laboratory, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
25
|
Wang L, Wan J, He W, Wang Z, Wu Q, Zhou M, Fu ZF, Zhao L. IL-7 promotes mRNA vaccine-induced long-term immunity. J Nanobiotechnology 2024; 22:716. [PMID: 39550592 PMCID: PMC11568559 DOI: 10.1186/s12951-024-02993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, improving the immunogenicity and durability of mRNA vaccines remains a challenge. To elicit optimal immune responses, integrating antigen-encoded mRNA and immunostimulatory adjuvants into a single formulation is a promising approach to enhancing the efficacy of mRNA vaccines. Here, we report an adjuvant strategy to enhance the efficacy of mRNA vaccines by co-loading mRNA encoding the antigen (rabies virus glycoprotein, RABV-G) and mRNA encoding IL-7 into lipid nanoparticles, achieving co-delivery to the same antigen-presenting cells. A single immunization with G&IL-7 mRNA vaccine elicited robust humoral immune responses in mice and conferred complete protection against RABV challenge. Notably, the high levels of neutralizing antibody induced by the G&IL-7 mRNA vaccine were maintained for at least 6 months, providing mice with long-term significant and complete protection against RABV. Additionally, IL-7 also enhanced antibody responses against the SARS-CoV-2. These data demonstrate that IL-7 is a potent mRNA vaccine adjuvant that can provide the required immune stimulation in various mRNA vaccine formulations.
Collapse
Affiliation(s)
- Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenna He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Scantamburlo F, Masgras I, Ciscato F, Laquatra C, Frigerio F, Cinquini F, Pavoni S, Triveri A, Frasnetti E, Serapian SA, Colombo G, Rasola A, Moroni E. Design and Test of Molecules that Interfere with the Recognition Mechanisms between the SARS-CoV-2 Spike Protein and Its Host Cell Receptors. J Chem Inf Model 2024; 64:8274-8282. [PMID: 39440601 DOI: 10.1021/acs.jcim.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The disruptive impact of the COVID-19 pandemic has led the scientific community to undertake an unprecedented effort to characterize viral infection mechanisms. Among these, interactions between the viral glycosylated Spike and the human receptors ACE2 and TMPRSS2 are key to allowing virus invasion. Here, we report and test a fully rational methodology to design molecules that are capable of perturbing the interactions between these critical players in SARS-CoV-2 pathogenicity. To this end, we computationally identify substructures on the fully glycosylated Spike protein that are not intramolecularly optimized and are thus prone to being stabilized by forming complexes with ACE2 and TMPRSS2. With the aim of competing with the Spike-mediated cell entry mechanisms, we have engineered the predicted putative interaction regions in the form of peptide mimics that could compete with Spike for interaction with ACE2 and/or TMPRSS2. Experimental models of viral entry demonstrate that the designed molecules are able to interfere with viral entry into ACE2/TMPRSS2 expressing cells, while they have no effects on the entry of control viral particles that do not harbor the Spike protein or on the entry of Spike-presenting viral particles into cells that do not display its receptors on their surface.
Collapse
Affiliation(s)
- Francesca Scantamburlo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131 Padova, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131 Padova, Italy
| | - Claudio Laquatra
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D Eni SpA, Via Maritano 27, 20097 San Donato Milanese (Mi), Italy
- Upstream & Technical Services-TECS/STES-Eni Spa, Via Emilia 1, 20097 San Donato Milanese (Mi), Italy
| | - Fabrizio Cinquini
- Upstream & Technical Services-TECS/STES-Eni Spa, Via Emilia 1, 20097 San Donato Milanese (Mi), Italy
| | - Silvia Pavoni
- Department of Physical Chemistry, R&D Eni SpA, Via Maritano 27, 20097 San Donato Milanese (Mi), Italy
- Upstream & Technical Services-TECS/STES-Eni Spa, Via Emilia 1, 20097 San Donato Milanese (Mi), Italy
| | - Alice Triveri
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Elena Frasnetti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC CNR, Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
27
|
Chang F, Wu Q, Hu Y, Pan Z, Liu YC, Li YZ, Bostina M, Liu W, Zhao P, Qu X, Li YP. Engineered bispecific antibodies with enhanced breadth and potency against SARS-CoV-2 variants and SARS-related coronaviruses. Med Microbiol Immunol 2024; 213:24. [PMID: 39520579 DOI: 10.1007/s00430-024-00809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The concern of COVID-19 persists due to the continuous emergence of variants and the potential spillover of animal coronaviruses. The broad-spectrum neutralizing antibodies play a pivotal role in the prevention and treatment of coronavirus (CoV) infections. Here, we constructed 18 bi-specific antibodies (bsAbs) using 9 antibodies isolated from COVID-19 convalescents and vaccinated individuals, designed as dual variable domain immunoglobulin (DVD-Ig). A bsAb 5-HI showed a high binding capability to the S1 subunit of spike and exhibited breadth and potency against pseudotyped SARS-CoV-2 variants of concerns (VOCs) and SARS-related-CoVs (SARSr-CoVs), with half maximal effective concentration (EC50) of 0.028-3.444 nM and 50% inhibitory concentration (IC50) of 0.008-0.800 nM. In addition, it retained neutralization potency against the peudotyped virus of recently prevalent JN.1 strain (IC50, 12.74 nM). We found that the parental antibodies showed weak or no binding to the receptor binding domain (RBD) of the SARS-CoV, EG.5.1, and JN.1. However, the 5-HI maintained the binding with RBD and prevented the binding between hACE2 and RBD (IC50 for the RBD of SARS-CoV, 1.067 nM; EG.5.1, 0.423 nM; JN.1, 0.223 nM). In neutralization assays with the authentic virus, we found that the 5-HI effectively neutralized Omicron variants XBB.1.5 (IC50, 0.308 nM), EG.5.1 (IC50, 0.129 nM), and JN.1 (IC50, 13.692 nM), while its parental antibodies showed weakened or no neutralization. Therefore, the 5-HI represents a promising candidate for further development in the treatment and prevention of ongoing evolved SARS-CoV-2 VOCs and other SARSr-CoVs that potentially emerge in the future.
Collapse
Affiliation(s)
- Fangfang Chang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yabin Hu
- Translational Medicine Institute, Hengyang Medical School, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yong-Chen Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue-Zhou Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, China.
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Wu J, Jiang M, Li J, Hu X, Long Q, Song S, Ye H, He Y, Ma X, Yu W, Chen X, Zhao L, Wu F, Chen X, Zheng J, Wang M, Zheng B, Yang S, Bu L, Chen Q, Li K, Zheng Y, Gao Z. Heterogeneity of SARS-CoV-2 immune responses after the nationwide Omicron wave in China. Microbiol Spectr 2024; 12:e0111724. [PMID: 39287459 PMCID: PMC11536994 DOI: 10.1128/spectrum.01117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
It remains unclear how previous infections and vaccinations influenced and shaped heterogeneous immune responses against Omicron and its variants in diverse populations in China. After the national wave of Omicron in early 2023, we evaluated serum levels of neutralizing antibodies (nAbs) against Omicron (B.1.1.529) and its variants (BA.5, BF.7, and CH1.1) in 33 COVID-19 convalescents and 40 uninfected vaccinees, using vesicular stomatitis virus-based pseudovirus neutralizing assay. In addition, we followed 34 Delta convalescent patients to compare their immune responses against Omicron before (late 2021) and after the Omicron wave (early 2023). NAbs at the acute phase of the disease were investigated in 50 Omicron inpatients, including 24 vaccinated and 26 unvaccinated patients. Among them, nasal mucosal IgA levels were measured in 42 subjects. Compared to vaccination, breakthrough infections significantly increased the breadth and magnitude of serum nAbs and mucosal IgA levels against Omicron variants. Exposure to Omicron but not Delta elicited stronger pan-Omicron responses. In Omicron inpatients, nAbs continued to rise as vaccination doses increased. However, in both vaccinees and convalescents, a fourth dose vaccination did not elicit higher nAbs against Omicron. Furthermore, nAbs against Omicron variants lasted longer than nAbs against WT SARS-CoV-2. Breakthrough infections of Omicron variants elicited specific immune responses against Omicron compared to vaccination and Delta infection. Although repeated vaccination revealed limited impacts on serum nAbs, populations at high risk of hospitalization may still benefit from continued vaccination.IMPORTANCEThe study described the specific humoral immunity against Omicron and its variants (BA.5, BF.7, and CH1.1) in diverse populations, including Delta-positive convalescent patients, Omicron-infected patients with a previous or current confirmed Delta infection, Omicron-positive patients, and healthy controls. In addition, we followed Delta convalescents for 1 year to evaluate the effect of a booster vaccine, breakthrough infection, and reinfection. Nasal mucosal IgA levels against SARS-CoV-2 were also examined. The findings of this study demonstrated the varied responses of individuals in different states following the outbreak of Omicron, highlighting the potential advantages of ongoing immunization for groups that are more vulnerable and have a greater likelihood of being hospitalized.
Collapse
Affiliation(s)
- Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mingzheng Jiang
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoyi Hu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Fangfang Wu
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoyong Chen
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jianshi Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Minghui Wang
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binghan Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuoqi Yang
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Thoracic Surgery, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Liang Bu
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Thoracic Surgery, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qin Chen
- Department of Cardiovascular Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ke Li
- Department of Critical Care Medicine, School of Medicine, Xiamen University, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
29
|
Liu P, Huang ML, Guo H, McCallum M, Si JY, Chen YM, Wang CL, Yu X, Shi LL, Xiong Q, Ma CB, Bowen JE, Tong F, Liu C, Sun YH, Yang X, Chen J, Guo M, Li J, Corti D, Veesler D, Shi ZL, Yan H. Design of customized coronavirus receptors. Nature 2024; 635:978-986. [PMID: 39478224 DOI: 10.1038/s41586-024-08121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chun-Li Wang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fei Tong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Lee YJ, Easwaran M, Jung YS, Qian Y, Shin HJ. Enhanced Humoral and Cellular Immune Responses Elicited by Adenoviral Delivery of SARS-CoV-2 Receptor-Binding Motif Fused to Human Fc. Vaccines (Basel) 2024; 12:1247. [PMID: 39591150 PMCID: PMC11598816 DOI: 10.3390/vaccines12111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The receptor binding motif (RBM) of the SARS-CoV-2 spike protein is critical for viral entry into host cells. Development of a vaccine targeting this region is a promising strategy for COVID-19 prevention. To enhance the immunogenicity of SARS-CoV-2 vaccines, we developed an adenoviral vector expressing the RBM from the SARS-CoV-2 spike protein that fused to the human Fc (hFc) domain. Methods: The recombinant RBM_hFc fusion protein was successfully cloned into the pacAd5CMV-N-pA (pAd5) vector and expressed in HEK293 cells as a ~40 kDa protein. A recombinant adenovirus encoding RBM_hFc was subsequently generated and confirmed by cytopathic effect assay. Results: Western blot analysis verified the expression of RBM_hFc in the adenovirus (AdV). ELISA assays, validated for IgG detection, demonstrated a twofold increase in IgG antibody levels (M-1.090 at 450 nm; SD-±0.326; and 95% CI-0.250 [0.839 to 1.340]) in sera from BALB/c mice immunized with Ad/RBM_hFc, compared to the negative control group. Result suggests a robust humoral immune response induced by the Ad/RBM_hFc vaccine. Moreover, ELISpot assays demonstrated a tenfold increase in IFN-γ -producing cells (M-440 spot-forming cells; SD-±124.976; and 95% CI-75.522 [364.478 to 515.522]) in mice immunized with AdV/RBM_hFc compared to the negative control group. Result proved that AdV/RBM_hFc-stimulated a robust cellular immune response in animal model. Conclusions: Our findings indicate that the RBM_hFc fusion protein enhances both humoral and cellular immune responses. These results suggest the potential of adenoviral vectors carrying RBM_hFc as vaccine candidates. However, comprehensive evaluation of the protective efficacy of these adenoviral vectors will necessitate rigorous experimental studies.
Collapse
Affiliation(s)
- Yea-Jin Lee
- Laboratory of Infectious Disease, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.-S.J.); (Y.Q.)
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Foreign Expert Workshop, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.-S.J.); (Y.Q.)
| | - Hyun-Jin Shin
- Laboratory of Infectious Disease, College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| |
Collapse
|
31
|
Bean DJ, Liang YM, Sagar M. Recent Endemic Coronavirus Infection Associates With Higher SARS-CoV-2 Cross-Reactive Fc Receptor Binding Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619886. [PMID: 39484477 PMCID: PMC11527020 DOI: 10.1101/2024.10.23.619886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent documented infection with an endemic coronavirus (eCoV) associates with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2 naïve individuals classified into two groups, either with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2 naïve individuals with recent presumed eCoV infection, however, had higher levels of Fc receptor (FcR) binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. There was also a significant correlation between eCoV and SARS-CoV-2 FcR binding antibodies. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| |
Collapse
|
32
|
Zhao XJ, Li M, Zhang S, Li K, Wei WQ, Chen JJ, Xu Q, Lv CL, Liu T, Wang GL, Fang LQ. Epidemiological and immunological characteristics of middle-aged and elderly people in housing estates after Omicron BA.5 wave in Jinan, China. Heliyon 2024; 10:e38382. [PMID: 39398026 PMCID: PMC11467590 DOI: 10.1016/j.heliyon.2024.e38382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
A great number of COVID-19 patients was caused by Omicron BA.5 subvariant between December 2022 and January 2023 after the end of the zero-COVID-19 policy in China. In this study, we clarified the epidemiological and immunological characteristics of 457 enrolled middle-aged and elderly population in two housing estates after Omicron BA.5 wave. A total of 89.9 % (411/457) individuals have suffered Omicron BA.5 infection, among which 78.1 % (321/411) were symptomatic. The elderly patients were more likely to show fatigue and had longer symptomatic period than that of middle-aged patients post Omicron BA.5 infection. Omicron XBB and BA.2.86 subvariants extensively escaped the immunity elicited by Omicron BA.5 infection. The level of neutralizing antibody was mostly affected by vaccination doses rather than underlying disease status in these participants. It is very important to strengthen the epidemiological investigation and immune resistance assessment among elderly population for control of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ke Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Wang-Qian Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Si JY, Chen YM, Sun YH, Gu MX, Huang ML, Shi LL, Yu X, Yang X, Xiong Q, Ma CB, Liu P, Shi ZL, Yan H. Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness. Nat Commun 2024; 15:8869. [PMID: 39402048 PMCID: PMC11473667 DOI: 10.1038/s41467-024-53029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Our comprehensive understanding of the multi-species ACE2 adaptiveness of sarbecoviruses remains elusive, particularly for those with various receptor binding motif (RBM) insertions/deletions (indels). Here, we analyzed RBM sequences from 268 sarbecoviruses categorized into four RBM indel types. We examined the ability of 20 representative sarbecovirus Spike glycoproteins (S) and derivatives in utilizing ACE2 from various bats and several other mammalian species. We reveal that sarbecoviruses with long RBMs (type-I) can achieve broad ACE2 tropism, whereas viruses with single deletions in Region 1 (type-II) or Region 2 (type-III) exhibit narrower ACE2 tropism. Sarbecoviruses with double region deletions (type-IV) completely lost ACE2 usage, which is restricted by clade-specific residues within and outside RBM. Lastly, we propose the evolution of sarbecovirus RBM indels and illustrate how loop lengths, disulfide, and residue determinants shape multi-species ACE2 adaptiveness. This study provides profound insights into the mechanisms governing ACE2 usage and spillover risks of sarbecoviruses.
Collapse
Affiliation(s)
- Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meng-Xue Gu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
34
|
Du P, Li M, Wei G, Guo C, Li N. JN.1: enhanced immune evasion ability propels it to become the predominant strain in China, unlikely to trigger pandemic similar to late 2022. Front Public Health 2024; 12:1442291. [PMID: 39391153 PMCID: PMC11464334 DOI: 10.3389/fpubh.2024.1442291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Due to the widespread presence of susceptible populations, the pandemic caused by BA.5 subbranches swiftly disseminated China, impacting the majority of individuals within a span of 1 to 2 months. Subsequently, XBB and its subbranches became the dominant variants in China. Methods We tracked the immune landscape in the population after the SARS-CoV-2 pandemic in late 2022 in China. Results Our findings suggested that low levels of neutralizing antibodies against BA.5 subbranches before the pandemic might have contributed to the national outbreak at the end of 2022. The widespread breakthrough infections subsequently increased immunity to BA.5, XBB.1.5/1.9.1, and JN.1, inhibiting a new wave of large-scale infections caused by XBB subbranches in China. Additionally, JN.1 demonstrated enhanced immune evasion capabilities; however, Chinese residents had comparable levels of neutralizing antibodies against JN.1 as those observed for XBB.1.5 among confirmed cases at the end of 2022. Discussion We anticipate that JN.1 will replace XBB subbranches as the predominant epidemic variant in subsequent transmissions within China. However, it is unlikely to cause a large-scale spread comparable to that witnessed at the end of 2022, with transmission patterns potentially resembling those observed for XBB post-pandemic.
Collapse
Affiliation(s)
- Peng Du
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Meiyi Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guohui Wei
- Guangzhou National Laboratory, Guangzhou, China
| | - Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ning Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
36
|
Thimmiraju SR, Villar MJ, Kimata JT, Strych U, Bottazzi ME, Hotez PJ, Pollet J. Optimization of Cellular Transduction by the HIV-Based Pseudovirus Platform with Pan-Coronavirus Spike Proteins. Viruses 2024; 16:1492. [PMID: 39339968 PMCID: PMC11437443 DOI: 10.3390/v16091492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past three years, new SARS-CoV-2 variants have continuously emerged, evolving to a point where an immune response against the original vaccine no longer provided optimal protection against these new strains. During this time, high-throughput neutralization assays based on pseudoviruses have become a valuable tool for assessing the efficacy of new vaccines, screening updated vaccine candidates against emerging variants, and testing the efficacy of new therapeutics such as monoclonal antibodies. Lentiviral vectors derived from HIV-1 are popular for developing pseudo and chimeric viruses due to their ease of use, stability, and long-term transgene expression. However, the HIV-based platform has lower transduction rates for pseudotyping coronavirus spike proteins than other pseudovirus platforms, necessitating more optimized methods. As the SARS-CoV-2 virus evolved, we produced over 18 variants of the spike protein for pseudotyping with an HIV-based vector, optimizing experimental parameters for their production and transduction. In this article, we present key parameters that were assessed to improve such technology, including (a) the timing and method of collection of pseudovirus supernatant; (b) the timing of host cell transduction; (c) cell culture media replenishment after pseudovirus adsorption; and (d) the centrifugation (spinoculation) parameters of the host cell+ pseudovirus mix, towards improved transduction. Additionally, we found that, for some pseudoviruses, the addition of a cationic polymer (polybrene) to the culture medium improved the transduction process. These findings were applicable across variant spike pseudoviruses that include not only SARS-CoV-2 variants, but also SARS, MERS, Alpha Coronavirus (NL-63), and bat-like coronaviruses. In summary, we present improvements in transduction efficiency, which can broaden the dynamic range of the pseudovirus titration and neutralization assays.
Collapse
Affiliation(s)
- Syamala Rani Thimmiraju
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Jose Villar
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
37
|
Schwarzmüller M, Lozano C, Schanz M, Abela IA, Grosse-Holz S, Epp S, Curcio M, Greshake J, Rusert P, Huber M, Kouyos RD, Günthard HF, Trkola A. Decoupling HIV-1 antiretroviral drug inhibition from plasma antibody activity to evaluate broadly neutralizing antibody therapeutics and vaccines. Cell Rep Med 2024; 5:101702. [PMID: 39216479 PMCID: PMC11524982 DOI: 10.1016/j.xcrm.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.
Collapse
Affiliation(s)
| | - Cristina Lozano
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Silvan Grosse-Holz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Curcio
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Greshake
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
38
|
Tamming L, Duque D, Bavananthasivam J, Tran A, Lansdell C, Frahm G, Wu J, Fekete EE, Creskey M, Thulasi Raman SN, Laryea E, Zhang W, Pfeifle A, Gravel C, Stalker A, Hashem AM, Chen W, Stuible M, Durocher Y, Safronetz D, Cao J, Wang L, Sauve S, Rosu-Myles M, Zhang X, Johnston MJ, Li X. Lipid nanoparticle encapsulation of a Delta spike-CD40L DNA vaccine improves effectiveness against Omicron challenge in Syrian hamsters. Mol Ther Methods Clin Dev 2024; 32:101325. [PMID: 39309757 PMCID: PMC11416279 DOI: 10.1016/j.omtm.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The effectiveness of mRNA vaccines largely depends on their lipid nanoparticle (LNP) component. Herein, we investigate the effectiveness of DLin-KC2-DMA (KC2) and SM-102-based LNPs for the intramuscular delivery of a plasmid encoding B.1.617.2 (Delta) spike fused with CD40 ligand. LNP encapsulation of this CD40L-adjuvanted DNA vaccine with either LNP formulation drastically enhanced antibody responses, enabling neutralization of heterologous Omicron variants. The DNA-LNP formulations provided excellent protection from homologous challenge, reducing viral replication, and preventing histopathological changes in the pulmonary tissues. Moreover, the DNA-LNP vaccines maintained a high level of protection against heterologous Omicron BA.5 challenge despite a reduced neutralizing response. In addition, we observed that DNA-LNP vaccination led to the pulmonary downregulation of interferon signaling, interleukin-12 signaling, and macrophage response pathways following SARS-CoV-2 challenge, shedding some light on the mechanisms underlying the prevention of pulmonary injury. These results highlight the potential combination of molecular adjuvants with LNP-based vaccine delivery to induce greater and broader immune responses capable of preventing inflammatory damage and protecting against emerging variants. These findings could be informative for the future design of both DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Diana Duque
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Anh Tran
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Casey Lansdell
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Grant Frahm
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Jianguo Wu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Emily E.F. Fekete
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Marybeth Creskey
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Emmanuel Laryea
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Andrew Stalker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Michael Rosu-Myles
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Michael J.W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
39
|
Zhou D, Cheng R, Yao Y, Zhang G, Li X, Wang B, Wang Y, Yu F, Yang S, Liu H, Gao G, Peng Y, Chen M, Deng Z, Zhao H. An attachment glycoprotein nanoparticle elicits broadly neutralizing antibodies and protects against lethal Nipah virus infection. NPJ Vaccines 2024; 9:158. [PMID: 39217188 PMCID: PMC11365981 DOI: 10.1038/s41541-024-00954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic emergent paramyxovirus that can cause severe encephalitis and respiratory infections in humans, with a high fatality rate ranging from 40% to 75%. Currently, there are no approved human vaccines or antiviral drugs against NiV. Here, we designed a ferritin-based self-assembling nanoparticle displaying the NiV G head domain on the surface (NiV G-ferritin) and assessed immune responses elicited by the soluble NiV G head domain (NiV sG) or NiV G-ferritin. Immunization with NiV G-ferritin or NiV sG conferred complete protection against lethal NiV challenge without detection of viral RNA in Syrian golden hamsters. Compared to NiV sG, NiV G-ferritin induced significantly faster, broader, and higher serum neutralizing responses against three pathogenic henipaviruses (NiV-Malaysia, NiV-Bangladesh, and Hendra virus). Moreover, NiV G-ferritin induced a durable neutralizing immunity in mice as antisera potently inhibited NiV infection even after six months of the third immunization. Additionally, we isolated a panel of 27 NiV G-binding monoclonal antibodies (mAbs) from NiV G-ferritin immunized mice and found that these mAbs targeted four distinct antigenic sites on NiV G head domain with two sites that have not been defined previously. Notably, 25 isolated mAbs have potent neutralizing activity with 50% inhibitory concentrations less than 10 ng/mL against NiV pseudovirus. Collectively, these findings provide new insights into the immunogenicity of NiV G protein and reveal that NiV G-ferritin is a safe and highly effective vaccine candidate against Nipah virus infection.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rao Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Gan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingjie Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Silva BA, Miglietta E, Casabona JC, Wenker S, Eizaguirre MB, Alonso R, Casas M, Lázaro LG, Man F, Portuondo G, Lopez Bisso A, Zavala N, Casales F, Imhoff G, Steinberg DJ, López PA, Carnero Contentti E, Deri N, Sinay V, Hryb J, Chiganer E, Leguizamon F, Tkachuk V, Bauer J, Ferrandina F, Giachello S, Henestroza P, Garcea O, Pascuale CA, Heitrich M, Podhajcer OL, Vinzón S, D’Alotto-Moreno T, Benatar A, Rabinovich GA, Pitossi FJ, Ferrari CC. Do immunosuppressive treatments influence immune responses against adenovirus-based COVID-19 vaccines in patients with multiple sclerosis? An Argentine multicenter study. Front Immunol 2024; 15:1431403. [PMID: 39224589 PMCID: PMC11366620 DOI: 10.3389/fimmu.2024.1431403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction There are no reports in LATAM related to longitudinal humoral and cellular response to adenovirus based COVID-19 vaccines in people with Multiple Sclerosis (pwMS) under different disease modifying therapies (DMTs) and neutralization of the Omicron and Wuhan variants of SARS-COV-2. Methods IgG anti- SARS-COV-2 spike titer were measured in a cohort of 101 pwMS under fingolimod, dimethyl fumarate, cladribine and antiCD20, as well as 28 healthy controls (HC) were measured 6 weeks after vaccination with 2nd dose (Sputnik V or AZD1222) and 3nd dose (homologous or heterologous schedule). Neutralizing capacity was against Omicron (BA.1) and Wuhan (D614G) variants and pseudotyped particles and Cellular response were analyzed. Results Multivariate regression analysis showed anti-cd20 (β= -,349, 95% CI: -3655.6 - -369.01, p=0.017) and fingolimod (β=-,399, 95% CI: -3363.8 - -250.9, p=0.023) treatments as an independent factor associated with low antibody response (r2 adjusted=0.157). After the 2nd dose we found a correlation between total and neutralizing titers against D614G (rho=0.6; p<0.001; slope 0.8, 95%CI:0.4-1.3), with no differences between DMTs. Neutralization capacity was lower for BA.1 (slope 0.3, 95%CI:0.1-0.4). After the 3rd dose, neutralization of BA.1 improved (slope: 0.9 95%CI:0.6-1.2), without differences between DMTs. A fraction of pwMS generated anti-Spike CD4+ and CD8+ T cell response. In contrast, pwMS under antiCD20 generated CD8+TNF+IL2+ response without differences with HC, even in the absence of humoral response. The 3rd dose significantly increased the neutralization against the Omicron, as observed in the immunocompetent population. Discussion Findings regarding humoral and cellular response are consistent with previous reports.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Multiple Sclerosis Unit, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Esteban Miglietta
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Juan Cruz Casabona
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shirley Wenker
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Magdalena Casas
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | | | - Federico Man
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gustavo Portuondo
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Abril Lopez Bisso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Noelia Zavala
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Federico Casales
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gastón Imhoff
- Neurology Deparment, Sanatorio de los Arcos, Buenos Aires, Argentina
| | - Dra Judith Steinberg
- Neurology Deparment, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Norma Deri
- Multiple Sclerosis Unit, Instituto de Asistencia Integral en Diabetes y patologías crónicas (DIABAID), Buenos Aires, Argentina
| | - Vladimiro Sinay
- Multiple Sclerosis Deparment, Fundación Favaloro, Hospital Universitario, Buenos Aires, Argentina
| | - Javier Hryb
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Edson Chiganer
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Felisa Leguizamon
- Neurology Deparment, Hospital General de Agudos Dr. Teodoro Álvarez, Buenos Aires, Argentina
| | - Verónica Tkachuk
- Neurology Deparment, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Johana Bauer
- Asociación Esclerosis Múltiple Argentina, Buenos Aires, Argentina
| | | | - Susana Giachello
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Paula Henestroza
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Orlando Garcea
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Carla Antonela Pascuale
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Osvaldo L. Podhajcer
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sabrina Vinzón
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Tomas D’Alotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Alejandro Benatar
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Fernando J. Pitossi
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carina C. Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
41
|
Li Z, Hu P, Qu L, Yang M, Qiu M, Xie C, Yang H, Cao J, Yi L, Liu Z, Zou L, Lian H, Zeng H, Xu S, Hu P, Sun J, He J, Chen L, Yang Y, Li B, Sun L, Lu J. Molecular epidemiology and population immunity of SARS-CoV-2 in Guangdong (2022-2023) following a pivotal shift in the pandemic. Nat Commun 2024; 15:7033. [PMID: 39147778 PMCID: PMC11327343 DOI: 10.1038/s41467-024-51141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The SARS-CoV-2 Omicron variant sparked the largest wave of infections worldwide. Mainland China eased its strict COVID-19 measures in late 2022 and experienced two nationwide Omicron waves in 2023. Here, we investigated lineage distribution and virus evolution in Guangdong, China, 2022-2023 by comparing 5813 local viral genomes with the datasets from other regions of China and worldwide. Additionally, we conducted three large-scale serological surveys involving 1696 participants to measure their immune response to the BA.5 and XBB.1.9 before and after the corresponding waves. Our findings revealed the Omicron variants, mainly the BA.5.2.48 lineage, causing infections in over 90% of individuals across different age groups within a month. This rapid spread led to the establishment of widespread immunity, limiting the virus's ability to further adaptive mutation and dissemination. While similar immune responses to BA.5 were observed across all age groups after the initial wave, children aged 3 to 11 developed a stronger cross immune response to the XBB.1.9 strain, possibly explaining their lower infection rates in the following XBB.1 wave. Reinfection with Omicron XBB.1 variant triggered a more potent neutralizing immune response among older adults. These findings highlight the impact of age-specific immune responses on viral spread in potential future waves.
Collapse
Affiliation(s)
- Zhencui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Pei Hu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Lin Qu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Mingda Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Ming Qiu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Chunyan Xie
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Haiyi Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Jiadian Cao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Lian
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiling Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shaojian Xu
- Longhua District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Pengwei Hu
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jiufeng Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Jianfeng He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Liang Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Ying Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Baisheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Ren X, Sun J, Kuang W, Yu F, Wang B, Wang Y, Deng W, Xu Z, Yang S, Wang H, Hu Y, Deng Z, Ning YJ, Zhao H. A broadly protective antibody targeting glycoprotein Gn inhibits severe fever with thrombocytopenia syndrome virus infection. Nat Commun 2024; 15:7009. [PMID: 39147753 PMCID: PMC11327358 DOI: 10.1038/s41467-024-51108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus that causes severe viral hemorrhagic fever and thrombocytopenia syndrome with a fatality rate of up to 30%. No licensed vaccines or therapeutics are currently available for humans. Here, we develop seven monoclonal antibodies (mAbs) against SFTSV surface glycoprotein Gn. Mechanistic studies show that three neutralizing mAbs (S2A5, S1G3, and S1H7) block multiple steps during SFTSV infection, including viral attachment and membrane fusion, whereas another neutralizing mAb (B1G11) primarily inhibits the viral attachment step. Epitope binning and X-ray crystallographic analyses reveal four distinct antigenic sites on Gn, three of which have not previously been reported, corresponding to domain I, domain II, and spanning domain I and domain II. One of the most potent neutralizing mAbs, S2A5, binds to a conserved epitope on Gn domain I and broadly neutralizes infection of six SFTSV strains corresponding to genotypes A to F. A single dose treatment of S2A5 affords both pre- and post-exposure protection of mice against lethal SFTSV challenge without apparent weight loss. Our results support the importance of glycoprotein Gn for eliciting a robust humoral response and pave a path for developing prophylactic and therapeutic antibodies against SFTSV infection.
Collapse
Affiliation(s)
- Xuanxiu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jiawen Sun
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Kuang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingjie Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Xu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Yangbo Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
43
|
Du P, Li N, Tang S, Zhou Z, Liu Z, Wang T, Li J, Zeng S, Chen J. Development and evaluation of vaccination strategies for addressing the continuous evolution SARS-CoV-2 based on recombinant trimeric protein technology: Potential for cross-neutralizing activity and broad coronavirus response. Heliyon 2024; 10:e34492. [PMID: 39148990 PMCID: PMC11324815 DOI: 10.1016/j.heliyon.2024.e34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Given the significant decline in vaccine efficacy against Omicron, the development of novel vaccines with specific or broad-spectrum effectiveness is paramount. In this study, we formulated four monovalent vaccines based on recombinant spike trimer proteins, along with three bivalent vaccines, and five monovalent vaccines based on recombinant spike proteins. We evaluated the efficacy of different vaccination regimens in eliciting neutralizing antibodies in mice through pseudovirus neutralization assays. Following two doses of primary immunization with D614G, mice received subsequent immunizations with Omicron (BA.1, BA.2, BA.4/5) boosters individually, which led to the generation of broader and more potent cross-neutralizing activity compared to D614G boosters. Notably, the BA.4/5 booster exhibited superior efficacy. Following two doses of primary immunization with Omicron (BA.1, BA.2, BA.4/5), mice were subsequently immunized with one dose of D614G booster which resulted in broader neutralizing activity compared to one dose of Omicron (BA.1, BA.2, or BA.4/5). In unvaccinated mice, full-course immunization with different bivalent vaccines induced broad neutralizing activity against Omicron and pre-Omicron variants, with D614G&BA.4/5 demonstrating superior efficacy. However, compared to other variants, the neutralizing activity against XBB.1.5/1.9.1 is notably reduced. This observation emphasizes the necessity of timely updates to the vaccine antigen composition. Based on these findings and existing studies, we propose a vaccination strategy aimed at preserving the epitope repertoire to its maximum potential: (1) Individuals previously vaccinated or infected with pre-Omicron variants should inoculate a monovalent vaccine containing Omicron components; (2) Individuals who have only been vaccinated or infected with Omicron should be inoculated a monovalent vaccine containing pre-Omicron variants components; (3) Individuals without SARS-CoV-2 infection and vaccination should inoculate a bivalent vaccine comprising both pre-Omicron and Omicron components for primary immunization. Additionally, through cross-inoculation of SARS-CoV-2 D614G spike trimer protein and SARS-CoV-1 spike protein in mice, we preliminarily demonstrated the possibility of cross-reaction between different coronavirus vaccines to produce resistance to the pan-coronavirus.
Collapse
Affiliation(s)
- Peng Du
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ning Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shengjun Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhihai Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Taorui Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Jiahui Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Simiao Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Juan Chen
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China
| |
Collapse
|
44
|
Jiang XL, Song XD, Shi C, Yang GJ, Wang XJ, Zhang YW, Wu J, Zhao LX, Zhang MZ, Wang MM, Chen RR, He XJ, Dai EH, Gao HX, Shen Y, Dong G, Wang YL, Ma MJ. Variant-specific antibody response following repeated SARS-CoV-2 vaccination and infection. Cell Rep 2024; 43:114387. [PMID: 38896777 DOI: 10.1016/j.celrep.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.
Collapse
Affiliation(s)
- Xiao-Lin Jiang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan 250014, China
| | - Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan 056001, China; Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Chao Shi
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan 250012, China
| | - Xue-Jun Wang
- Bioinformatics Center of Academy of Military Medical Science, Beijing 100850, China
| | - Yu-Wei Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan 250014, China
| | - Jie Wu
- Department of Infectious Disease Control and Prevention, Binzhou Center for Disease Control and Prevention, Binzhou 256613, China
| | - Lian-Xiang Zhao
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ming-Ming Wang
- Bioinformatics Center of Academy of Military Medical Science, Beijing 100850, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Hui-Xia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Yuan Shen
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China.
| | - Gang Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yu-Ling Wang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China.
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan 250012, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
45
|
Liu B, Niu X, Deng Y, Zhang Z, Wang Y, Gao X, Liang H, Li Z, Wang Q, Cheng Y, Chen Q, Huang S, Pan Y, Su M, Lin X, Niu C, Chen Y, Yang W, Zhang Y, Yan Q, He J, Zhao J, Chen L, Xiong X. An unconventional VH1-2 antibody tolerates escape mutations and shows an antigenic hotspot on SARS-CoV-2 spike. Cell Rep 2024; 43:114265. [PMID: 38805396 DOI: 10.1016/j.celrep.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein continues to evolve antigenically, impacting antibody immunity. D1F6, an affinity-matured non-stereotypic VH1-2 antibody isolated from a patient infected with the SARS-CoV-2 ancestral strain, effectively neutralizes most Omicron variants tested, including XBB.1.5. We identify that D1F6 in the immunoglobulin G (IgG) form is able to overcome the effect of most Omicron mutations through its avidity-enhanced multivalent S-trimer binding. Cryo-electron microscopy (cryo-EM) and biochemical analyses show that three simultaneous epitope mutations are generally needed to substantially disrupt the multivalent S-trimer binding by D1F6 IgG. Antigenic mutations at spike positions 346, 444, and 445, which appeared in the latest variants, have little effect on D1F6 binding individually. However, these mutations are able to act synergistically with earlier Omicron mutations to impair neutralization by affecting the interaction between D1F6 IgG and the S-trimer. These results provide insight into the mechanism by which accumulated antigenic mutations facilitate evasion of affinity-matured antibodies.
Collapse
Affiliation(s)
- Banghui Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yijun Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Wang
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, China
| | - Yuanyi Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Shuangshuang Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingxian Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengzhen Su
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Science and Technology of China, Hefei, China
| | - Xiancheng Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Science and Technology of China, Hefei, China
| | - Yinglin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyi Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Ling Chen
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
46
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic immunity from prior SARS-CoV-2 infection but not COVID-19 vaccination associates with lower endemic coronavirus incidence. Sci Transl Med 2024; 16:eado7588. [PMID: 38865483 PMCID: PMC11565543 DOI: 10.1126/scitranslmed.ado7588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Immune responses from prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 vaccination mitigate disease severity, but they do not fully prevent subsequent infections, especially from genetically divergent strains. We examined the incidence of and immune differences against human endemic coronaviruses (eCoVs) as a proxy for response against future genetically heterologous coronaviruses (CoVs). We assessed differences in symptomatic eCoV and non-CoV respiratory disease incidence among those with known prior SARS-CoV-2 infection or previous COVID-19 vaccination but no documented SARS-CoV-2 infection or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not previous COVID-19 vaccination alone, associates with a lower incidence of subsequent symptomatic eCoV infection. There was no difference in non-CoV incidence, implying that the observed difference was eCoV specific. In a second cohort where both cellular and humoral immunity were measured, those with prior SARS-CoV-2 spike protein exposure had lower eCoV-directed neutralizing antibodies, suggesting that neutralization is not responsible for the observed decreased eCoV disease. The three groups had similar cellular responses against the eCoV spike protein and nucleocapsid antigens. However, CD8+ T cell responses to the nonstructural eCoV proteins nsp12 and nsp13 were higher in individuals with previous SARS-CoV-2 infection as compared with the other groups. This association between prior SARS-CoV-2 infection and decreased incidence of eCoV disease may therefore be due to a boost in CD8+ T cell responses against eCoV nsp12 and nsp13, suggesting that incorporation of nonstructural viral antigens in a future pan-CoV vaccine may improve vaccine efficacy.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
47
|
Shen X, Wang S, Hao Y, Fu Y, Ren L, Li D, Tang W, Li J, Chen R, Zhu M, Wang S, Liu Y, Shao Y. DNA vaccine prime and replicating vaccinia vaccine boost induce robust humoral and cellular immune responses against MERS-CoV in mice. Virol Sin 2024; 39:490-500. [PMID: 38768713 PMCID: PMC11279798 DOI: 10.1016/j.virs.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
As of December 2022, 2603 laboratory-identified Middle East respiratory syndrome coronavirus (MERS-CoV) infections and 935 associated deaths, with a mortality rate of 36%, had been reported to the World Health Organization (WHO). However, there are still no vaccines for MERS-CoV, which makes the prevention and control of MERS-CoV difficult. In this study, we generated two DNA vaccine candidates by integrating MERS-CoV Spike (S) gene into a replicating Vaccinia Tian Tan (VTT) vector. Compared to homologous immunization with either vaccine, mice immunized with DNA vaccine prime and VTT vaccine boost exhibited much stronger and durable humoral and cellular immune responses. The immunized mice produced robust binding antibodies and broad neutralizing antibodies against the EMC2012, England1 and KNIH strains of MERS-CoV. Prime-Boost immunization also induced strong MERS-S specific T cells responses, with high memory and poly-functional (CD107a-IFN-γ-TNF-α) effector CD8+ T cells. In conclusion, the research demonstrated that DNA-Prime/VTT-Boost strategy could elicit robust and balanced humoral and cellular immune responses against MERS-CoV-S. This study not only provides a promising set of MERS-CoV vaccine candidates, but also proposes a heterologous sequential immunization strategy worthy of further development.
Collapse
MESH Headings
- Animals
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/genetics
- Immunity, Cellular
- Antibodies, Viral/blood
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunity, Humoral
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Female
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Mice, Inbred BALB C
- CD8-Positive T-Lymphocytes/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Immunization, Secondary
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
Collapse
Affiliation(s)
- Xiuli Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuhui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanling Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuyu Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenqi Tang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ran Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Meiling Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Yiming Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
48
|
Qin H, Qiu H, Liu K, Hong B, Liu Y, Li C, Li M, An X, Song L, Robert E, Tong Y, Fan H, Wang R. Cold atmospheric plasma can effectively disinfect SARS-CoV-2 in the wastewater. EXPLORATION (BEIJING, CHINA) 2024; 4:20230012. [PMID: 38939868 PMCID: PMC11189572 DOI: 10.1002/exp.20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/01/2023] [Indexed: 06/29/2024]
Abstract
COVID-19 is currently pandemic and the detection of SARS-CoV-2 variants in wastewater is causing widespread concern. Herein, cold atmospheric plasma (CAP) is proposed as a novel wastewater disinfection technology that effectively inactivates SARS-CoV-2 transcription- and replication-competent virus-like particles, coronavirus GX_P2V, pseudotyped SARS-CoV-2 variants, and porcine epidemic diarrhoea virus in a large volume of water within 180 s (inhibition rate > 99%). Further, CAP disinfection did not adversely affect the viability of various human cell lines. It is identified that CAP produced peroxynitrite (ONOO-), ozone (O3), superoxide anion radicals (O2 -), and hydrogen peroxide (H2O2) as the major active substances for coronavirus disinfection. Investigation of the mechanism showed that active substances not only reacted with the coronavirus spike protein and affected its infectivity, but also destroyed the nucleocapsid protein and genome, thus affecting virus replication. This method provides an efficient and environmentally friendly strategy for the elimination of SARS-CoV-2 and other coronaviruses from wastewater.
Collapse
Affiliation(s)
- Hongbo Qin
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Hengju Qiu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Ke Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Bixia Hong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yuchen Liu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chun Li
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Mengzhe Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xiaoping An
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Lihua Song
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | | | - Yigang Tong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Ruixue Wang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
49
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
50
|
Lobaina Y, Chen R, Suzarte E, Ai P, Musacchio A, Lan Y, Chinea G, Tan C, Silva R, Guillen G, Yang K, Li W, Perera Y, Hermida L. A Nasal Vaccine Candidate, Containing Three Antigenic Regions from SARS-CoV-2, to Induce a Broader Response. Vaccines (Basel) 2024; 12:588. [PMID: 38932317 PMCID: PMC11209543 DOI: 10.3390/vaccines12060588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
A chimeric protein, formed by two fragments of the conserved nucleocapsid (N) and S2 proteins from SARS-CoV-2, was obtained as a recombinant construct in Escherichia coli. The N fragment belongs to the C-terminal domain whereas the S2 fragment spans the fibre structure in the post-fusion conformation of the spike protein. The resultant protein, named S2NDH, was able to form spherical particles of 10 nm, which forms aggregates upon mixture with the CpG ODN-39M. Both preparations were recognized by positive COVID-19 human sera. The S2NDH + ODN-39M formulation administered by the intranasal route resulted highly immunogenic in Balb/c mice. It induced cross-reactive anti-N humoral immunity in both sera and bronchoalveolar fluids, under a Th1 pattern. The cell-mediated immunity (CMI) was also broad, with positive response even against the N protein of SARS-CoV-1. However, neither neutralizing antibodies (NAb) nor CMI against the S2 region were obtained. As alternative, the RBD protein was included in the formulation as inducer of NAb. Upon evaluation in mice by the intranasal route, a clear adjuvant effect was detected for the S2NDH + ODN-39M preparation over RBD. High levels of NAb were induced against SARS-CoV-2 and SARS-CoV-1. The bivalent formulation S2NDH + ODN-39M + RBD, administered by the intranasal route, constitutes an attractive proposal as booster vaccine of sarbecovirus scope.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Edith Suzarte
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Yaqin Lan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Glay Chinea
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Ricardo Silva
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| | - Gerardo Guillen
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Wen Li
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| |
Collapse
|