1
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
2
|
Zhang YW, Shi YC, Huang W, Zhang SB. Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale. PHYSIOLOGIA PLANTARUM 2024; 176:e14575. [PMID: 39394938 DOI: 10.1111/ppl.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
Both Dendrobium nobile and D. officinale are widely used medicinal plants in China and their major medicinal components are alkaloids and polysaccharides, respectively. It is still unclear why these two closely related orchids synthesize and accumulate different chemical components. Here, we investigated the molecular mechanisms underlying polysaccharide and alkaloid biosynthesis in D. nobile and D. officinale through transcriptome and metabolomic analysis at different growth stages. A total of 1267 metabolites were identified in the juvenile and mature stages of the two species. D. nobile accumulated a large number of alkaloids, benzenoids/phenylpropanoids, flavonoids, and terpenoids during the transition from juvenile to mature plants. In contrast, D. officinale accumulated a small number of those metabolites and an absence of flavonoids. The correlation analysis of polysaccharide contents with the differentially expressed genes suggested that the differential expression of GH1, GH3, and GH9 might be related to the difference in polysaccharide contents between the two Dendrobium species. Meanwhile, the difference in the biosynthesis of dendrobine, the main component of alkaloids in D. nobile, was involved in the differential expression of HMGCR, DXR, DXS, ISPH and eight CYP450s. These findings provided new insights into understanding the biosynthetic mechanisms of the main medicinal components in Dendrobium species.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Cen Shi
- Platform for Plant Multi-dimensional Imaging and Diversity Analysis, Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| |
Collapse
|
3
|
Qian X, Sarsaiya S, Dong Y, Yu T, Chen J. Recent Advances and New Insights in Genome Analysis and Transcriptomic Approaches to Reveal Enzymes Associated with the Biosynthesis of Dendrobine-Type Sesquiterpenoid Alkaloids (DTSAs) from the Last Decade. Molecules 2024; 29:3787. [PMID: 39202866 PMCID: PMC11356883 DOI: 10.3390/molecules29163787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dendrobium species, which are perennial herbs widely distributed in tropical and subtropical regions, are notable for their therapeutic properties attributed to various bioactive compounds, including dendrobine-type sesquiterpenoid alkaloids (DTSAs). The objective of this review article is to provide a comprehensive overview of recent advances in the biosynthesis of DTSAs, including their extraction from Dendrobium species and endophytes, elucidation of associated genes through genomic and transcriptomic sequencing in both Dendrobium spp. and endophytes, exploration of the biosynthetic pathways of DTSAs, and drawing conclusions and outlining future perspectives in this field. Alkaloids, predominantly nitrogen-containing compounds found in medicinal orchids, include over 140 types discovered across more than 50 species. DTSAs, identified in 37 picrotoxane alkaloids, have a distinctive five-membered nitrogen heterocyclic ring. This review highlights endophytic fungi as alternative sources of DTSAs, emphasizing their potential in pharmaceutical applications when plant-derived compounds are scarce or complex. Genomic and transcriptomic sequencing of Dendrobium spp. and their endophytes has identified key genes involved in DTSAs biosynthesis, elucidating pathways such as the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways. Genes encoding enzymes, such as acetyl-CoA C-acetyltransferase and diphosphomevalonate decarboxylase, are positively associated with dendrobine production. Despite significant advancements, the complexity of terpenoid biosynthesis in different subcellular compartments remains a challenge. Future research should focus on leveraging high-quality genomic data and omics technologies to further understand and manipulate the biosynthetic pathways of DTSAs and enhance their medicinal use.
Collapse
Affiliation(s)
- Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Surendra Sarsaiya
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| | - Yuanyuan Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tuifan Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Chen W, Sun Q, Wang J, Wu Y, Zhu B, Qin L. Colonization by the endophytic fungus Phyllosticta fallopiae combined with the element Si promotes the growth of Dendrobium nobile. Int J Biol Macromol 2024; 274:133343. [PMID: 38925191 DOI: 10.1016/j.ijbiomac.2024.133343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Endophytic fungi can promote plant growth and development, particularly of Orchidaceae species. Previously, we found that the endophytic fungus Phyllosticta fallopiae DN14, collected from Dendrobium nobile growing on rocks in a wild habitat, significantly promoted growth of its host plant D. nobile, an important herb in Chinese traditional medicine that contains the bioactive component dendrobine. Phyllosticta was positively correlated with FW and dendrobine content of D. nobile and with Si content of the epiphytic matrix. Si is also highly beneficial for the growth and productivity of many plants. Here, we co-cultured D. nobile with P. fallopiae DN14 in half-strength Murashige and Skoog medium with and without various concentrations of Si to investigate the effects of DN14 and Si on plant fresh weight and dendrobine content. We also explored the effects of DN14 infection and colonization on host plant growth, Si accumulation and transport, and expression of key genes, as well as the interaction between DN14 and Si. The combination of DN14 and Si promoted the lignification of D. nobile roots, stems, and leaves and markedly increased the thickening of xylem cell walls. Co-culture with DN14 increased transport of Si from roots to stems and from stems to leaves. Transcriptome sequencing and qRT-PCR analyses showed that enhancement of D. nobile growth by DN14 and Si may involve upregulation of plant hormone-related genes (AUX/IAA and MYC) and lignin biosynthesis genes (HCT, PAL1, and PAL2). Insoluble Si promoted the growth of DN14, perhaps through downregulation of genes (e.g., FBP, MPI, RPIAD) related to carbohydrate metabolism, and DN14 in turn promoted the transformation of insoluble Si into soluble Si for plant uptake. These findings demonstrate that endophytic fungi and Si can improve the growth of D. nobile and therefore show promise as organic amendments for commercial cultivation.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Qingmei Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jingxuan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yutong Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
5
|
Zhao R, Yan S, Hu Y, Rao D, Li H, Chun Z, Zheng S. Metabolic and Transcriptomic Profile Revealing the Differential Accumulating Mechanism in Different Parts of Dendrobium nobile. Int J Mol Sci 2024; 25:5356. [PMID: 38791394 PMCID: PMC11121218 DOI: 10.3390/ijms25105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Dendrobium nobile is an important orchid plant that has been used as a traditional herb for many years. For the further pharmaceutical development of this resource, a combined transcriptome and metabolome analysis was performed in different parts of D. nobile. First, saccharides, organic acids, amino acids and their derivatives, and alkaloids were the main substances identified in D. nobile. Amino acids and their derivatives and flavonoids accumulated strongly in flowers; saccharides and phenols accumulated strongly in flowers and fruits; alkaloids accumulated strongly in leaves and flowers; and a nucleotide and its derivatives and organic acids accumulated strongly in leaves, flowers, and fruits. Simultaneously, genes for lipid metabolism, terpenoid biosynthesis, and alkaloid biosynthesis were highly expressed in the flowers; genes for phenylpropanoids biosynthesis and flavonoid biosynthesis were highly expressed in the roots; and genes for other metabolisms were highly expressed in the leaves. Furthermore, different members of metabolic enzyme families like cytochrome P450 and 4-coumarate-coA ligase showed differential effects on tissue-specific metabolic accumulation. Members of transcription factor families like AP2-EREBP, bHLH, NAC, MADS, and MYB participated widely in differential accumulation. ATP-binding cassette transporters and some other transporters also showed positive effects on tissue-specific metabolic accumulation. These results systematically elucidated the molecular mechanism of differential accumulation in different parts of D. nobile and enriched the library of specialized metabolic products and promising candidate genes.
Collapse
Affiliation(s)
- Ruoxi Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| | - Shou Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
- Hejiang Public Inspection and Testing Center, Sichuan Quality Supervision and Inspection Center for Se-rich and Zn-rich Products, Luzhou 646200, China
| | - Yadong Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| | - Dan Rao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Hongjie Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| |
Collapse
|
6
|
Li Z, Lin Y, Song F, Zheng R, Huang Q. Isolation and characterization of Paenibacillus peoriae JC-3jx from Dendrobium nobile. Biotechniques 2024; 76:192-202. [PMID: 38469872 DOI: 10.2144/btn-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Dendrobium is a rich source of high-value natural components. Endophytic fungi are well studied, yet bacteria research is limited. In this study, endophytic bacteria from Dendrobium nobile were isolated using an improved method, showing inhibition of pathogens and growth promotion. JC-3jx, identified as Paenibacillus peoriae, exhibited significant inhibitory activity against tested fungi and bacteria, including Escherichia coli. JC-3jx also promoted corn seed rooting and Dendrobium growth, highlighting its excellent biocontrol and growth-promoting potential.
Collapse
Affiliation(s)
- ZhiPing Li
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - Yuan Lin
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - FeiFei Song
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - RuoNan Zheng
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - QinGeng Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350108, PR China
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan, 500112, PR China
| |
Collapse
|
7
|
Leng C, Hou M, Xing Y, Chen J. Perspective and challenges of mycorrhizal symbiosis in orchid medicinal plants. CHINESE HERBAL MEDICINES 2024; 16:172-179. [PMID: 38706832 PMCID: PMC11064572 DOI: 10.1016/j.chmed.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
The family Orchidaceae is of the most diverse taxon in the plant kingdom, and most of its members are highly valuable herbal medicines. Orchids have a unique mycorrhizal symbiotic relationship with specific fungi for carbohydrate and nutrient supplies in their whole lifecycle. The large-scale cultivation of the medicinal plant Gastodia elata is a successful example of using mycorrhizal symbiotic technology. In this review, we adopted G. elata and Dendrobium officinale as examples to describe the characteristics of orchid mycorrhiza and mycorrhizal benefits for host plants' growth and health (e.g. biotic and abiotic stress and secondary metabolite accumulation). The challenges in applying mycorrhizal technology to the cultivation of orchid medicinal plants in the future were also discussed. This review aims to serve as a theoretical guide for the cultivation of mycorrhizal technology in medicinal orchid plants.
Collapse
Affiliation(s)
- Chunyan Leng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyan Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yongmei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Cheng Y, Liu Y, Li X, Liu G, Li Z, Liu B, Gao N. Transcriptome analysis of the mechanism of endophytic fungus CHS3 promoting saikosaponin d synthesis in Bupleurum scorzonerifolium Willd. suspension cells. Fitoterapia 2024; 173:105778. [PMID: 38128620 DOI: 10.1016/j.fitote.2023.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Saikosaponin d (SSd) is the main component of Bupleuri Radix, a famous traditional Chinese herbal medicine, with high medicinal value. An endophytic fungus (CHS3) was isolated from Bupleurum scorzonerifolium Willd. in the early stage of our research, and we found that CHS3 could promote the accumulation of SSd in Bupleurum scorzonerifolium Willd. suspension cells (BSS cells). It is of practical significance to identify the mechanism that CHS3 promoted the accumulation of SSd and increased the production of SSd in suspension cells. To search the influence of CHS3 on SSd synthesis in the BSS cells, we co-cultured CHS3 with the BSS cells and compared the SSd content in BSS cells before and after co-culture using high-performance liquid chromatography (HPLC). Then the Illumina HiSeq 2500 was performed to detect the transcriptome of the BSS cells before and after co-culture and analyzed for the KEGG enrichment. The expression of genes involved in SSd synthesis was finally corroborated by qPCR analysis. Among which 11 key genes in connection with SSd synthesis were increased in BSS cells of co-cultured group compared with the BSS cells of the control group. In conclusion, CHS3 could promote the accumulation of SSd in BSS cells, and the molecular mechanism was related to its ability to regulate the MVA pathway, the calcium signaling pathway, and the AMPK signaling pathway by upregulating the expressions of ANT, CypD, CaM, AMPK, AATC, HMGS, HMGR, MVK, MVD, SS, and SE.
Collapse
Affiliation(s)
- Yupeng Cheng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yuanzhen Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Xinhong Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Guangjie Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhongmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Bo Liu
- School of Pharmaceutical engineering, Heilongjiang Agricultural Reclamation Vocational College, Harbin 150025, China.
| | - Ning Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
9
|
Zhao M, Zhao Y, Yang Z, Ming F, Li J, Kong D, Wang Y, Chen P, Wang M, Wang Z. Metabolic Pathway Engineering Improves Dendrobine Production in Dendrobium catenatum. Int J Mol Sci 2023; 25:397. [PMID: 38203567 PMCID: PMC10778673 DOI: 10.3390/ijms25010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The sesquiterpene alkaloid dendrobine, widely recognized as the main active compound and a quality control standard of medicinal orchids in the Chinese Pharmacopoeia, demonstrates diverse biological functions. In this study, we engineered Dendrobium catenatum as a chassis plant for the production of dendrobine through the screening and pyramiding of key biosynthesis genes. Initially, previously predicted upstream key genes in the methyl-D-erythritol 4-phosphate (MEP) pathway for dendrobine synthesis, including 4-(Cytidine 5'-Diphospho)-2-C-Methyl-d-Erythritol Kinase (CMK), 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase (DXR), 2-C-Methyl-d-Erythritol 4-Phosphate Cytidylyltransferase (MCT), and Strictosidine Synthase 1 (STR1), and a few downstream post-modification genes, including Cytochrome P450 94C1 (CYP94C1), Branched-Chain-Amino-Acid Aminotransferase 2 (BCAT2), and Methyltransferase-like Protein 23 (METTL23), were chosen due to their deduced roles in enhancing dendrobine production. The seven genes (SG) were then stacked and transiently expressed in the leaves of D. catenatum, resulting in a dendrobine yield that was two-fold higher compared to that of the empty vector control (EV). Further, RNA-seq analysis identified Copper Methylamine Oxidase (CMEAO) as a strong candidate with predicted functions in the post-modification processes of alkaloid biosynthesis. Overexpression of CMEAO increased dendrobine content by two-fold. Additionally, co-expression analysis of the differentially expressed genes (DEGs) by weighted gene co-expression network analysis (WGCNA) retrieved one regulatory transcription factor gene MYB61. Overexpression of MYB61 increased dendrobine levels by more than two-fold in D. catenatum. In short, this work provides an efficient strategy and prospective candidates for the genetic engineering of D. catenatum to produce dendrobine, thereby improving its medicinal value.
Collapse
Affiliation(s)
- Meili Zhao
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Zhenyu Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jian Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Demin Kong
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Yu Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Peng Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Zhicai Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (M.Z.); (Z.Y.); (J.L.); (D.K.); (Y.W.); (P.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| |
Collapse
|
10
|
Gong D, Li B, Wu B, Fu D, Li Z, Wei H, Guo S, Ding G, Wang B. The Integration of the Metabolome and Transcriptome for Dendrobium nobile Lindl. in Response to Methyl Jasmonate. Molecules 2023; 28:7892. [PMID: 38067620 PMCID: PMC10707931 DOI: 10.3390/molecules28237892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides contained within D. nobile are very important active components, which mainly have antiviral, anti-tumor, and immunity improvement effects. However, the changes in the compounds and functional genes of D. nobile induced by methyl jasmonate (MeJA) are not clearly understood. In this study, the metabolome and transcriptome of D. nobile were analyzed after exposure to MeJA. A total of 377 differential metabolites were obtained through data analysis, of which 15 were related to polysaccharide pathways and 35 were related to terpenoids and alkaloids pathways. Additionally, the transcriptome sequencing results identified 3256 differentially expressed genes that were discovered in 11 groups. Compared with the control group, 1346 unigenes were differentially expressed in the samples treated with MeJA for 14 days (TF14). Moreover, the expression levels of differentially expressed genes were also significant at different growth and development stages. According to GO and KEGG annotations, 189 and 99 candidate genes were identified as being involved in terpenoid biosynthesis and polysaccharide biosynthesis, respectively. In addition, the co-expression analysis indicated that 238 and 313 transcription factors (TFs) may contribute to the regulation of terpenoid and polysaccharide biosynthesis, respectively. Through a heat map analysis, fourteen terpenoid synthetase genes, twenty-three cytochrome P450 oxidase genes, eight methyltransferase genes, and six aminotransferase genes were identified that may be related to dendrobine biosynthesis. Among them, one sesquiterpene synthase gene was found to be highly expressed after the treatment with MeJA and was positively correlated with the content of dendrobine. This study provides important and valuable metabolomics and transcriptomic information for the further understanding of D. nobile at the metabolic and molecular levels and provides candidate genes and possible intermediate compounds for the dendrobine biosynthesis pathway, which lays a certain foundation for further research on and application of Dendrobium.
Collapse
Affiliation(s)
- Daoyong Gong
- College of Bioengineering, Chongqing University, Chongqing 400045, China;
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (B.W.); (H.W.); (S.G.); (G.D.)
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (B.W.); (H.W.); (S.G.); (G.D.)
| | - Bin Wu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (B.W.); (H.W.); (S.G.); (G.D.)
| | - Deru Fu
- Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY 10003, USA;
| | - Zesheng Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, China;
| | - Haobo Wei
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (B.W.); (H.W.); (S.G.); (G.D.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (B.W.); (H.W.); (S.G.); (G.D.)
| | - Gang Ding
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (B.W.); (H.W.); (S.G.); (G.D.)
| | - Bochu Wang
- College of Bioengineering, Chongqing University, Chongqing 400045, China;
| |
Collapse
|
11
|
Chen W, Wang J, Song J, Sun Q, Zhu B, Qin L. Exogenous and Endophytic Fungal Communities of Dendrobium nobile Lindl. across Different Habitats and Their Enhancement of Host Plants' Dendrobine Content and Biomass Accumulation. ACS OMEGA 2023; 8:12489-12500. [PMID: 37033800 PMCID: PMC10077458 DOI: 10.1021/acsomega.3c00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Both the biosynthesis and array of bioactive and medicinal compounds in plants can be influenced by interactions with endophytic and exogenous fungi. However, the composition of endophytic and exogenous fungal communities associated with many medicinal plants is unknown, and the mechanism by which these fungi stimulate the secondary metabolism of host plants is unclear. In this study, we conducted a correlative analysis between endophytic and exogenous fungi and dendrobine and biomass accumulation in Dendrobium nobile across five Chinese habitats: wild Danxia rock, greenhouse-associated large Danxia stone, broken Danxia stone, broken coarse sandstone, and wood spile. Across habitats, fungal communities exhibited significant differences. The abundances of Phyllosticta, Trichoderma, and Hydropus were higher in wild habitats than in greenhouse habitats. Wild habitats were host to a higher diversity and richness of exogenous fungi than were greenhouse habitats. However, there was no significant difference in endophytic fungal diversity between habitats. The differences between the fungal communities' effects on the dendrobine content and biomass of D. nobile were attributable to the composition of endophytic and exogenous fungi. Exogenous fungi had a greater impact than endophytic fungi on the accumulation of fresh weight (FW) and dendrobine in D. nobile. Furthermore, D. nobile samples with higher exogenous fungal richness and diversity exhibited higher dendrobine content and FW. Phyllosticta was the only genus to be significantly positively correlated with both FW and dendrobine content. A total of 86 strains of endophytic fungi were isolated from the roots, stems, and leaves of D. nobile, of which 8 strains were found to be symbiotic with D. nobile tissue-cultured seedlings. The strain DN14 (Phyllosticta fallopiae) was found to promote not only biomass accumulation (11.44%) but also dendrobine content (33.80%) in D. nobile tissue-cultured seedlings. The results of this study will aid in the development of strategies to increase the production of dendrobine in D. nobile. This work could also facilitate the screening of beneficial endophytic and exogenous fungal probiotics for use as biofertilizers in D. nobile.
Collapse
|
12
|
Comparative Transcriptome Analysis Provides Insights into the Molecular Mechanism Underlying the Effect of MeJA Treatment on the Biosynthesis of Saikosaponins in Bupleurum chinense DC. Life (Basel) 2023; 13:life13020563. [PMID: 36836920 PMCID: PMC9960380 DOI: 10.3390/life13020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bupleurum chinense DC. is a well-known traditional Chinese medicinal plant that produces saikosaponins (SSs), which possess hepatoprotective, antipyretic, and anti-inflammatory activities. Methyl jasmonate (MeJA) is a signalling phytohormone that can increase the accumulation of SSs in the root of Bupleurum plants. However, the molecular understanding of MeJA-mediated SS biosynthesis is not clear. Therefore, it is necessary to explore the molecular mechanism underlying the response of B. chinense DC. to MeJA in roots. In this study, we performed comparative transcriptome analysis of B. chinense DC. roots with different MeJA treatment times. In total, 104,057 unigenes were identified, of which 4053 were differentially expressed genes (DEGs). Most of the DEGs were downregulated after MeJA treatment, and GO enrichment analysis showed that they were mainly related to biological processes involved in stress responses and development. A total of 88 DEGs encoding enzymes known to be involved in the SS synthesis pathway were found, and most were significantly downregulated within 24 h. Based on the DEGs, 99 transcription factors (TFs) belonging to the AP2/ERF, WRKY, bZIP, ZFP, and bHLH families with different expression patterns were also identified. Further integrated analysis indicated that 20 DEGs involved in the SS synthesis pathway and 12 DEGs encoding TFs presented strong correlations with the SS contents, and these DEGs may be critical for the biosynthesis and regulation of SSs. These findings will be critical for further study of the response of B. chinense DC. to MeJA for SS biosynthesis.
Collapse
|
13
|
Tan D, Wang J, Cao L, Yang D, Lu Y, Wu D, Zhao Y, Wu X, Fan Q, Yang Z, Qin L, He Y. UDP-glycosyltransferases play a crucial role in the accumulation of alkaloids and sesquiterpene glycosides in Dendrobium nobile. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
14
|
Sesquiterpene glycosides from Dendrobium nobile and their chemotaxonomic significance. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2022.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Transcriptional and Physiological Analysis Reveal New Insights into the Regulation of Fertilization (N, P, K) on the Growth and Synthesis of Medicinal Components of Dendrobium denneanum. Int J Mol Sci 2023; 24:ijms24021522. [PMID: 36675032 PMCID: PMC9866100 DOI: 10.3390/ijms24021522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dendrobium denneanum is an important medicinal and ornamental plant. Its ornamental and medicinal values are affected by its vegetative growth conditions and chemical composition accumulation. This study adopted an orthogonal experimental design to treat D. denneanum with nine different levels of nitrogen (N), potassium (K), and phosphorus (P). The morphological indicators of the plant were positively correlated with the nitrogen concentration. The polysaccharide content was the highest at 1500 mg·L-1 nitrogen and 3000 mg·L-1 phosphorous and was 26.84% greater than the control. The flavonoid content increased by 36.2% at 500 mg·L-1 nitrogen, 2000 mg·L-1 phosphorous, and 300 mg·L-1 potassium. Principal component score analysis showed that nitrogen had the most significant impact on the various indicators of D. denneanum, followed by phosphorus and potassium. The comprehensive score showed that the T9 treatment (N: 1500 mg·L-1, P: 3000 mg·L-1, K: 500 mg·L-1) had the strongest effect on D. denneanum. Transcriptional analysis showed that compared with the control, the T9 treatment led to 2277 differentially expressed genes (1230 upregulated and 1047 downregulated). This includes fifteen genes enriched in the MAPK signaling pathway, five genes in phenylpropanoid biosynthesis, and two genes in flavonoid biosynthesis. These genes may be involved in regulating plant growth and the biosynthesis of polysaccharides and flavonoids. This study provides guidance for the optimal use of N, P, and K in the cultivation of D. denneanum.
Collapse
|
16
|
Liu Q, Huang Y, Linghu C, Xiao J, Gu R. Metabolic profiling, in-situ spatial distribution, and biosynthetic pathway of functional metabolites in Dendrobium nobile stem revealed by combining UPLC-QTOF-MS with MALDI-TOF-MSI. FRONTIERS IN PLANT SCIENCE 2023; 13:1125872. [PMID: 36714718 PMCID: PMC9878566 DOI: 10.3389/fpls.2022.1125872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
The stem of Dendrobium nobile Lindl. (Orchidaceae), called "Shihu" in traditional Chinese medicine, is a well-known medicinal and edible plant material in China. It is used as an antipyretic, analgesic, and tonic to nourish the stomach and Yin (i.e., to improve the production of body fluids). These therapeutic properties are attributed to its alkaloids, sesquiterpenoids, bibenzyls, fluorenones, and phenanthrenes. However, a comprehensive understanding of these metabolites and their spatial distribution in stems is lacking. In this study, ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was performed to obtain detailed metabolites information about D. nobile stems. Then, the spatial distributions of diverse metabolites, including alkaloids and sesquiterpenoids, were characterized and visualized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI). Based on the spatial and metabolic profiling data, sesquiterpene alkaloid dendrobine was chosen for the exhaustive study of a biosynthetic pathway in D. nobile. This is the first report on mass spectrometry imaging for Dendrobium species. As a result, critical bioactive metabolites such as 11 alkaloids, 10 sesquiterpenes, and 13 other metabolites were putatively identified and relatively quantified. The identified alkaloids were distributed in the parenchyma or vascular bundle, and sesquiterpenes were present in all regions of the stem with higher abundance in the vascular bundle and cuticle, or in the cuticle and epidermis. The biosynthetic pathway and accumulation pattern of dendrobine in D. nobile stem were also proposed. Our findings not only provided a critical methodology for the thorough understanding of physiological changes in metabolites and precise utilization of D. nobile stem, but also displayed an effective strategy for insight into the biosynthesis of bioactive metabolites in plants.
Collapse
Affiliation(s)
- Qingling Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Yuan Huang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chu Linghu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang, China
| | - Jianfen Xiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Ronghui Gu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
LI L, JIA X, QIN L. Advances in the study of key genes and transcription factors regulating the mevalonate synthesis pathway in Edible and medicinal plants. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.127922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Lei LI
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, China; Key Laboratory of Basic Pharmacology of Ministry of Education, China; Zunyi Medical University, China
| | - Xiaohuan JIA
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, China; Key Laboratory of Basic Pharmacology of Ministry of Education, China; Zunyi Medical University, China
| | - Lin QIN
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, China; Key Laboratory of Basic Pharmacology of Ministry of Education, China; Zunyi Medical University, China
| |
Collapse
|
18
|
Gong D, Wu B, Qin H, Fu D, Guo S, Wang B, Li B. Functional characterization of a farnesyl diphosphate synthase from Dendrobium nobile Lindl. AMB Express 2022; 12:129. [PMID: 36202944 PMCID: PMC9537409 DOI: 10.1186/s13568-022-01470-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Dendrobium nobile Lindl. has been used as a traditional Chinese medicine for a long time, in which the most important compound is dendrobine functioning in a variety of pharmacological activities. Farnesyl diphosphate synthase (FPPS) is one of the key enzymes in the biosynthetic pathway of dendrobine. In this work, we found the expression profiles of DnFPPS were correlated with the contents of dendrobine under the methyl jasmonate (MeJA) treatments at different time. Then, the cloning and functional identification of a novel FPPS from D. nobile. The full length of DnFPPS is 1231 bp with an open reading frame of 1047 bp encoding 348 amino acids. The sequence similarity analysis demonstrated that DnFPPS was in the high homology with Dendrobium huoshanense and Dendrobium catenatum and contained four conserved domains. Phylogenetic analysis showed that DnFPPS was the close to the DhFPPS. Then, DnFPPS was induced to express in Escherichia coli, purified, and identified by SDS-PAGE electrophoresis. Gas chromatography-mass spectrometry analysis indicated that DnFPPS could catalyze dimethylallyl pyrophosphate and isopentenyl pyrophosphate to produce farnesyl diphosphate. Taken together, a novel DnFPPS was cloned and functionally identified, which supplied a candidate gene for the biosynthetic pathway of dendrobine.
Collapse
Affiliation(s)
- Daoyong Gong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hongting Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dezhao Fu
- Beijing Asia-East Bio-pharmaceutical Co., Ltd, Beijing, 102200, People's Republic of China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Bochu Wang
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Biao Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
19
|
Shi QQ, Tang JJ, Gao JM. Picrotoxane sesquiterpenoids: chemistry, chemo- and bio-syntheses and biological activities. Nat Prod Rep 2022; 39:2096-2131. [PMID: 36106498 DOI: 10.1039/d2np00049k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to December 2021Picrotoxane sesquiterpenoids are a special category of natural products known to have a picrotoxane skeleton and are characterised by a highly oxidised cis-hydrindene core, lactone rings, and epoxide functionalities. Ever since the first picrotoxane was isolated from Menispermum cocculus in the early 19th century, these compounds have long attracted the attention of natural product chemists, synthetic chemists, and pharmacologists for their particular structures and powerful biological activities. This review extensively summarizes a total of 132 naturally occurring picrotoxane sesquiterpenoids, taking into account their distributions, structural classifications, chemical and bio-synthetic researches, and bioactivities. It provides a comprehensive and in-depth perspective for further investigation on picrotoxane sesquiterpenoids.
Collapse
Affiliation(s)
- Qiang-Qiang Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China.
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
20
|
Wang Z, Zhao M, Zhang X, Deng X, Li J, Wang M. Genome-wide identification and characterization of active ingredients related β-Glucosidases in Dendrobium catenatum. BMC Genomics 2022; 23:612. [PMID: 35999493 PMCID: PMC9400273 DOI: 10.1186/s12864-022-08840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dendrobium catenatum/D. officinale (here after D. catenatum), a well-known economically important traditional medicinal herb, produces a variety of bioactive metabolites including polysaccharides, alkaloids, and flavonoids with excellent pharmacological and clinical values. Although many genes associated with the biosynthesis of medicinal components have been cloned and characterized, the biosynthetic pathway, especially the downstream and regulatory pathway of major medicinal components in the herb, is far from clear. β-glucosidases (BGLUs) comprise a diverse group of enzymes that widely exist in plants and play essential functions in cell wall modification, defense response, phytohormone signaling, secondary metabolism, herbivore resistance, and scent release by hydrolyzing β-D-glycosidic bond from a carbohydrate moiety. The recent release of the chromosome-level reference genome of D. catenatum enables the characterization of gene families. Although the genome-wide analysis of the BGLU gene family has been successfully conducted in various plants, no systematic analysis is available for the D. catenatum. We previously isolated DcBGLU2 in the BGLU family as a key regulator for polysaccharide biosynthesis in D. catenatum. Yet, the exact number of DcBGLUs in the D. catenatum genome and their possible roles in bioactive compound production deserve more attention. RESULTS To investigate the role of BGLUs in active metabolites production, 22 BGLUs (DcBGLU1-22) of the glycoside hydrolase family 1 (GH1) were identified from D. catenatum genome. Protein prediction showed that most of the DcBGLUs were acidic and phylogenetic analysis classified the family into four distinct clusters. The sequence alignments revealed several conserved motifs among the DcBGLU proteins and analyses of the putative signal peptides and N-glycosylation site revealed that the majority of DcBGLU members dually targeted to the vacuole and/or chloroplast. Organ-specific expression profiles and specific responses to MeJA and MF23 were also determined. Furthermore, four DcBGLUs were selected to test their involvement in metabolism regulation. Overexpression of DcBGLU2, 6, 8, and 13 significantly increased contents of flavonoid, reducing-polysaccharide, alkaloid and soluble-polysaccharide, respectively. CONCLUSION The genome-wide systematic analysis identified candidate DcBGLU genes with possible roles in medicinal metabolites production and laid a theoretical foundation for further functional characterization and molecular breeding of D. catenatum.
Collapse
Affiliation(s)
- Zhicai Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China. .,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| | - Meili Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.,South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojie Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.,Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xuming Deng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Jian Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Meina Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen, 518114, China. .,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| |
Collapse
|
21
|
Jia Q, Wang L, Qian X, Jin H, Shu F, Sarsaiya S, Jin L, Chen J. Transcriptome Analysis of Dendrobine Biosynthesis in Trichoderma longibrachiatum MD33. Front Microbiol 2022; 13:890733. [PMID: 35979500 PMCID: PMC9376458 DOI: 10.3389/fmicb.2022.890733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrobine is a representative component of Dendrobium nobile, and its pharmacological effects have been extensively studied. Trichoderma longibrachiatum MD33 was isolated from the stem of Dendrobium nobile which can produce dendrobine. In order to understand the effect of Methyl Jasmonate (MeJA) on the production of dendrobine, transcriptome analysis was performed after MeJA treatment in the MD33 and control groups. The dendrobine production of MeJA (20 μmol/L) treatment group was 44.6% higher than that of control. In this study, the RNA sequencing technology was applied, a total of 444 differentially expressed genes (DEGs) in the control and MeJA treatment groups, including 226 up-regulated genes and 218 down-regulated genes. The Kyoto Encyclopedia of Genes and Genomes annotation showed that numbers of DEGs were associated with the putative alkaloid biosynthetic pathway in T Trichoderma longibrachiatum MD33. Several MVA pathway enzyme-coding genes (isopentenyl-diphosphate Delta-isomerase, iphosphomevalonate decarboxylase and farnesyl diphosphate synthase) were found to be differentially expressed, suggesting an active precursor supply for alkaloid biosynthesis after MeJA treatment, in other wise, dendrobine may synthesis through the MVA pathway in MD33. Numerous MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the dendrobine biosynthetic pathway of T. longibrachiatum MD33. Furthermore, several MeJA-induced transcription factors (TFs) encoding genes were identified, suggesting a complex genetic network affecting the dendrobine in T. longibrachiatum MD33. These findings reveal the regulation mechanism underlying the MeJA-induced accumulation of dendrobine in T. longibrachiatum MD33.
Collapse
Affiliation(s)
- Qi Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Lina Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hui Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fuxing Shu
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Zhan X, Qian Y, Mao B. Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in Dendrobium catenatum. Int J Mol Sci 2022; 23:ijms23126398. [PMID: 35742843 PMCID: PMC9223610 DOI: 10.3390/ijms23126398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/07/2022] Open
Abstract
Dendrobium catenatum is a widely cultivated Chinese orchid herb rich in abundant secondary metabolites, such as terpenes. However, terpene distribution and characterization of terpene biosynthesis-related genes remain unknown in D. catenatum. In this study, metabolic profiling was performed to analyze terpene distribution in the root, stem, leaf, and flower of D. catenatum. A total of 74 terpene compounds were identified and classified. Clustering analysis revealed that terpene compounds exhibited a tissue-specific accumulation, including monoterpenes in the flowers, sesquiterpenes in the stems, and triterpenes in the roots. Transcriptome analysis revealed that the ‘terpenoid backbone biosynthesis’ pathway was only significantly enriched in root vs. flower. The expression of terpene biosynthesis-related genes was spatiotemporal in the flowers. Prenylsynthase-terpene synthases (PS-TPSs) are the largest and core enzymes for generating terpene diversity. By systematic sequence analysis of six species, 318 PS-TPSs were classified into 10 groups and 51 DcaPS-TPSs were found in eight of them. Eighteen DcaPS-TPSs were regulated by circadian rhythm under drought stress. Most of the DcaPS-TPSs were influenced by cold stress and fungi infection. The cis-element of the majority of the DcaPS-TPS promoters was related to abiotic stress and plant development. Methyl jasmonate levels were significantly associated with DcaTPSs expression and terpene biosynthesis. These results provide insight into further functional investigation of DcaPS-TPSs and the regulation of terpene biosynthesis in Dendrobium.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Correspondence: (X.Z.); (B.M.)
| | - Yichun Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310000, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310000, China
- Correspondence: (X.Z.); (B.M.)
| |
Collapse
|
23
|
Lu A, Jiang Y, Wu J, Tan D, Qin L, Lu Y, Qian Y, Bai C, Yang J, Ling H, Shi J, Yang Z, He Y. Opposite trends of glycosides and alkaloids in Dendrobium nobile of different age based on UPLC-Q/TOF-MS combined with multivariate statistical analyses. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:619-634. [PMID: 35238089 PMCID: PMC9541022 DOI: 10.1002/pca.3115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Alkaloids and glycosides are the active ingredients of the herb Dendrobium nobile, which is used in traditional Chinese medicine. The pharmacological effects of alkaloids include neuroprotective effects and regulatory effects on glucose and lipid metabolism, while glycosides improve the immune system. The pharmacological activities of the above chemical components are significantly different. In practice, the stems of 3-year-old D. nobile are usually used as the main source of Dendrobii Caulis. However, it has not been reported whether this harvesting time is appropriate. OBJECTIVE The aim of this study was to compare the chemical characteristics of D. nobile in different growth years (1-3 years). METHODS In this study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) was employed to analyze the constituents of D. nobile. The relative abundance of each constituent was analyzed with multivariate statistical analyses to screen the characteristic constituents that contributed to the characterization and classification of D. nobile. Dendrobine, a component of D. nobile that is used for quality control according to the Chinese Pharmacopoeia, was assayed by gas chromatography. RESULTS As a result, 34 characteristic constituents (VIP > 2) were identified or tentatively identified as alkaloids and glycosides based on MS/MS data. Moreover, the content of alkaloids decreased over time, whereas the content of glycosides showed the opposite trend. The absolute quantification of dendrobine was consistent with the metabolomics results. CONCLUSION Our findings provide valuable information to optimize the harvest period and a reference for the clinical application of D. nobile.
Collapse
Affiliation(s)
- An‐jing Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Shanghai Standard Technology Co., LtdShanghaiChina
| | - Yuan Jiang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Jia Wu
- Shanghai Standard Technology Co., LtdShanghaiChina
| | - Dao‐peng Tan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Lin Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Yan‐liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Yong Qian
- Shanghai Standard Technology Co., LtdShanghaiChina
| | - Chao‐jun Bai
- Guangxi Shenli Pharmaceutical Co., Ltd. YulinGuangxiChina
| | - Ji‐yong Yang
- Chishui Xintian Chinese Medicine Industry Development Co., LtdZunyiGuizhouChina
| | - Hua Ling
- School of PharmacyGeorgia Campus ‐ Philadelphia College of Osteopathic MedicineSuwaneeGAUSA
| | - Jing‐shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Zhou Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Shanghai Standard Technology Co., LtdShanghaiChina
| | - Yu‐qi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
24
|
Li Q, Liu C, Huang C, Wang M, Long T, Liu J, Shi J, Shi J, Li L, He Y, Xu DL. Transcriptome and Metabonomics Analysis Revealed the Molecular Mechanism of Differential Metabolite Production of Dendrobium nobile Under Different Epiphytic Patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:868472. [PMID: 35656012 PMCID: PMC9152433 DOI: 10.3389/fpls.2022.868472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The cultivation medium of Dendrobium nobile has an effect on the contents of its main medicinal components, but the specific mechanism is still unclear. In this study, the callus, seedlings, rhizomes, and leaves of D. nobile were sequenced for the PacBio SMRT. The 2-year-old stems were selected for the Illumina sequencing and metabolome sequencing to analyze the genetic mechanism of metabolic differences under different epiphytic patterns. As a result, a total of 387 differential genes were obtained, corresponding to 66 differential metabolites. Different epiphytic patterns can induce a series of metabolic changes at the metabolome and transcriptome levels of D. nobile, including flavonoid metabolism, purine metabolism, terpenoid backbone biosynthesis, amino acid metabolism, and alpha-linolenic acid metabolic, and related regulatory genes include ALDH2B7, ADC, EPSPS-1, SHKA, DHAPS-1, GES, ACS1, SAHH, ACS2, CHLP, LOX2, LOX2.3, and CYP74B2. The results showed that the genetic mechanism of D. nobile under various epiphytic patterns was different. In theory, the content of metabolites under the epiphytic patterns of Danxia stone is higher, which is more suitable for field cultivation.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Chaobo Liu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ceyin Huang
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Mufei Wang
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Teng Long
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Jingyi Liu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Junhua Shi
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junli Shi
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Medicine, Zunyi Medical University, Zunyi, China
| | - De-Lin Xu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Song C, Ma J, Li G, Pan H, Zhu Y, Jin Q, Cai Y, Han B. Natural Composition and Biosynthetic Pathways of Alkaloids in Medicinal Dendrobium Species. FRONTIERS IN PLANT SCIENCE 2022; 13:850949. [PMID: 35599884 PMCID: PMC9121007 DOI: 10.3389/fpls.2022.850949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium is the second biggest genus in the Orchidaceae family, some of which have both ornamental and therapeutic values. Alkaloids are a group of active chemicals found in Dendrobium plants. Dendrobine has emerged specific pharmacological and therapeutic properties. Although Dendrobium alkaloids have been isolated and identified since the 1930s, the composition of alkaloids and their biosynthesis pathways, including metabolic intermediates, alkaloid transporters, concrete genes involved in downstream pathways, and associated gene clusters, have remained unresolved scientific issues. This paper comprehensively reviews currently identified and tentative alkaloids from the aspect of biogenic pathways or metabolic genes uncovered based on the genome annotations. The biosynthesis pathways of each class of alkaloids are highlighted. Moreover, advances of the high-throughput sequencing technologies in the discovery of Dendrobium alkaloid pathways have been addressed. Applications of synthetic biology in large-scale production of alkaloids are also described. This would serve as the basis for further investigation into Dendrobium alkaloids.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yanfang Zhu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| |
Collapse
|
26
|
Ghai D, Kaur A, Kahlon PS, Pawar SV, Sembi JK. A Walk Through the Maze of Secondary Metabolism in Orchids: A Transcriptomic Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:837563. [PMID: 35574139 PMCID: PMC9100589 DOI: 10.3389/fpls.2022.837563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Orchids have a huge reservoir of secondary metabolites making these plants of immense therapeutic importance. Their potential as curatives has been realized since times immemorial and are extensively studied for their medicinal properties. Secondary metabolism is under stringent genetic control in plants and several molecular factors are involved in regulating the production of the metabolites. However, due to the complex molecular networks, a complete understanding of the specific molecular cues is lacking. High-throughput omics technologies have the potential to fill up this lacuna. The present study deals with comparative analysis of high-throughput transcript data involving gene identification, functional annotation, and differential expression in more than 30 orchid transcriptome data sets, with a focus to elucidate the role of various factors in alkaloid and flavonoid biosynthesis. Comprehensive analysis of the mevalonate (MVA) pathway, methyl-d-erythritol 4-phosphate (MEP) pathway, and phenylpropanoid pathway provide specific insights to the potential gene targets for drug discovery. It is envisaged that a positive stimulation of these pathways through regulation of pivotal genes and alteration of specific gene expression, could facilitate the production of secondary metabolites and enable efficient tapping of the therapeutic potential of orchids. This further would lay the foundation for developing strategies for genetic and epigenetic improvement of these plants for development of therapeutic products.
Collapse
Affiliation(s)
- Devina Ghai
- Department of Botany, Panjab University, Chandigarh, India
| | - Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Parvinderdeep S. Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sandip V. Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
27
|
Xu Q, Niu SC, Li KL, Zheng PJ, Zhang XJ, Jia Y, Liu Y, Niu YX, Yu LH, Chen DF, Zhang GQ. Chromosome-Scale Assembly of the Dendrobium nobile Genome Provides Insights Into the Molecular Mechanism of the Biosynthesis of the Medicinal Active Ingredient of Dendrobium. Front Genet 2022; 13:844622. [PMID: 35299950 PMCID: PMC8921531 DOI: 10.3389/fgene.2022.844622] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 01/07/2023] Open
Abstract
Orchids constitute approximately 10% of flowering plant species. However, only about 10 orchid genomes have been published. Metabolites are the main way through which orchids respond to their environment. Dendrobium nobile, belonging to Dendrobium, the second largest genus in Orchidaceae, has high ornamental, medicinal, and ecological value. D. nobile is the source of many popular horticultural varieties. Among the Dendrobium species, D. nobile has the highest amount of dendrobine, which is regarded as one of the criteria for evaluating medicinal quality. Due to lack of data and analysis at the genomic level, the biosynthesis pathways of dendrobine and other related medicinal ingredients in D. nobile are unknown. In this paper, we report a chromosome-scale reference genome of D. nobile to facilitate the investigation of its genomic characteristics for comparison with other Dendrobium species. The assembled genome size of D. nobile was 1.19 Gb. Of the sequences, 99.45% were anchored to 19 chromosomes. Furthermore, we identified differences in gene number and gene expression patterns compared with two other Dendrobium species by integrating whole-genome sequencing and transcriptomic analysis [e.g., genes in the polysaccharide biosynthesis pathway and upstream of the alkaloid (dendrobine) biosynthesis pathway]. Differences in the TPS and CYP450 gene families were also found among orchid species. All the above differences might contribute to the species-specific medicinal ingredient biosynthesis pathways. The metabolic pathway-related analysis will provide further insight into orchid responses to the environment. Additionally, the reference genome will provide important insights for further molecular elucidation of the medicinal active ingredients of Dendrobium and enhance the understanding of orchid evolution.
Collapse
Affiliation(s)
- Qing Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| | - Shan-Ce Niu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Kang-Li Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pei-Ji Zheng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Jing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yin Jia
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yun-Xia Niu
- School of Vocational Education, Tianjin University of Technology and Education, Tianjin, China
| | - Li-Hong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Duan-Fen Chen
- College of Horticulture, Hebei Agricultural University, Baoding, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| | - Guo-Qiang Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Laboratory for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, The National Orchid Conservation Center of China, Shenzhen, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| |
Collapse
|
28
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
29
|
Fang H, Zheng K, Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Can J Microbiol 2022; 68:353-366. [PMID: 35080442 DOI: 10.1139/cjm-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atractylodes macrocephala Koidz. (AMK) is widely used owing to its pharmacological activity in traditional Chinese medicine (TCM). Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK combined with the endophytic bacterial diversity analysis using high-throughput RNA-sequencing. 114,572 unigenes were annotated in six public databases. 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were up- and down-regulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to the terpenoid synthesis gene were downregulated in TYG rhizomes. 414,424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in OYG (773) and TYG (1201) rhizomes at OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. Comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, Cloacibacterium, etc. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was found to be correlated the low expression of terpene synthesis genes in TYG rhizomes assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanism underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.
Collapse
Affiliation(s)
- Huiyong Fang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, College of Pharmacy, China;
| | - Kaiyan Zheng
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Jianyun Zhang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, 050200.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China, 050200;
| | - Xian Gu
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yanyun Zhao
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, 118457, Shijiazhuang, Hebei, China.,Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China;
| | - Qian Wang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| |
Collapse
|
30
|
Wang SS, Liu JM, Sun J, Huang YT, Jin N, Li MM, Liang YT, Fan B, Wang FZ. Analysis of Endophytic Bacterial Diversity From Different Dendrobium Stems and Discovery of an Endophyte Produced Dendrobine-Type Sesquiterpenoid Alkaloids. Front Microbiol 2022; 12:775665. [PMID: 35069479 PMCID: PMC8767021 DOI: 10.3389/fmicb.2021.775665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
As the unique component of Dendrobium, dendrobine-type sesquiterpenoid alkaloids (DSAs) possess a variety of medicinal properties. It has been well documented that plant endophytes can in vitro synthesize secondary metabolites identical or similar to metabolites produced by their host plants. This study aimed to investigate the composition and distribution of endophytic bacteria of Dendrobium stems by Illumina MiSeq platform sequencing and cultivation-dependent methods and then to assess the potential for endophytic bacteria to produce DSAs. Results indicated that it was necessary to combine both cultivation-dependent and cultivation-independent methods to analyze the community structure of endophytic bacterial in plants comprehensively. The length of the Dendrobium stems influenced the endophytic bacterial community. The diversity and richness of endophytic bacteria in group J10_15cm of stems were the highest, which showed a significant difference from the other stem groups. However, there was no certain connection between the diversity and richness of endophytic bacteria and the content of dendrobine. It was most likely due to the influence of several specific endophytic bacteria genera, such as Sphingomonas and Rhodococcus. Athelia rolfsii, Myrothecium roridum, as pathogenic fungi, and Pectobacterium carotovorum subsp. actinidiae, as pathogenic bacteria of Dendrobium, were used to determine the antimicrobial activities. In these assays, six strains belonging to five genera showed antimicrobial activity against at least two phytopathogens. The strain BL-YJ10_15-29 (Paracoccus pueri THG-N2.35, 98.98%) showed the best antimicrobial activity against the three phytopathogens. In addition, 2 DSAs (6-hydroxydendrobine and nobilonine) were identified in the fermentation supernatant of the strain CM-YJ10_15-44 (Pseudomonas protegens CHA0, 99.24%), whereas the whole-genome analysis results further demonstrated that the precursors of the two DSAs [geranyl-PP and (E, E)-famesyl-PP] were synthesized mainly through the methyl-D-erythritol 4-phosphate pathway in this strain. This study provides new insight into the studies on the biosynthesis of DSAs and provides potential biocontrol bacteria.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia-Meng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Tao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuo Jin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min-Min Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Tian Liang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng-Zhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Qian X, Jin H, Chen Z, Dai Q, Sarsaiya S, Qin Y, Jia Q, Jin L, Chen J. Comparative Transcriptome Analysis of Genes Involved in Sesquiterpene Alkaloid Biosynthesis in Trichoderma longibrachiatum MD33 and UN32. Front Microbiol 2022; 12:800125. [PMID: 34975823 PMCID: PMC8714885 DOI: 10.3389/fmicb.2021.800125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Trichoderma longibrachiatum MD33, a sesquiterpene alkaloid-producing endophyte isolated from Dendrobium nobile, shows potential medical and industrial applications. To understand the molecular mechanisms of sesquiterpene alkaloids production, a comparative transcriptome analysis was performed on strain MD33 and its positive mutant UN32, which was created using Ultraviolet (UV) mutagenesis and nitrogen ion (N+) implantation. The alkaloid production of UN32 was 2.62 times more than that of MD33. One thousand twenty-four differentially expressed genes (DEGs), including 519 up-regulated and 505 down-regulated genes, were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 139 GO terms and 87 biosynthesis pathways. Dendrobine, arguably the main sesquiterpene alkaloid the strain MD33 produced, might start synthesis through the mevalonate (MVA) pathway. Several MVA pathway enzyme-coding genes (hydroxy-methylglutaryl-CoA synthase, mevalonate kinase, and farnesyl diphosphate synthase) were found to be differentially expressed, suggesting that physical mutagenesis can disrupt genome integrity and gene expression. Some backbone post-modification enzymes and transcript factors were either discovered, suggesting the sesquiterpene alkaloid metabolism in T. longibrachiatum is a complex genetic network. Our findings help to shed light on the underlying molecular regulatory mechanism of sesquiterpene alkaloids production in T. longibrachiatum.
Collapse
Affiliation(s)
- Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Hui Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhuojun Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qingqing Dai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Yitong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| |
Collapse
|
32
|
Wang C, Tian M, Zhang Y. Characterization of microRNAs involved in asymbiotic germination of Bletilla striata (Orchidaceae) seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:163-173. [PMID: 34358730 DOI: 10.1016/j.plaphy.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Orchids are distributed worldwide, and some species have considerable economic value. Orchid seeds are minute in size, simple in structure, and deficient in nutrient reserves. Asymbiotic seed germination is an important propagation strategy for orchids. MicroRNAs (miRNAs) play an essential role in seed germination. However, few studies have examined miRNAs involved in seed germination in orchids. Here, we conducted comparative small RNA sequencing at five stages to characterize the miRNAs involved in asymbiotic seed germination in Bletilla striata. A total of 253 known and 125 novel miRNAs were identified. Of them, 71 known and 29 novel miRNAs showed distinct expression among the five stages. Quantitative PCR revealed negative correlations of expression between differentially expressed miRNAs (DE miRNAs) and their targets. Function annotation and enrichment analyses of the targets of DE miRNAs between adjacent stages indicate that miRNA-target regulations are involved in many important processes during germination, such as signaling, biosynthesis, and transport of plant hormones. Twenty-two miRNAs were inferred to participate in plant hormone-related processes. The contents of abscisic acid, gibberellin A3, indole-3-acetic acid, jasmonic acid, trans zeatin riboside, and N6-(Δ2-isopentenyl) adenine varied significantly among the five stages. Nine tested plant hormone-related miRNAs and their targets exhibited significant correlations with at least one plant hormone. 5'-RLM-RACE validated that a transcript encoding auxin response factor was cleaved by Bst-miR160e as predicted. For the first time, we characterized miRNAs associated with the asymbiotic seed germination of an orchid species, which will help understand the miRNA-mediated regulatory mechanism of seed germination in orchids.
Collapse
Affiliation(s)
- Caixia Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| | - Min Tian
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ying Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| |
Collapse
|
33
|
Gong DY, Chen XY, Guo SX, Wang BC, Li B. Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes. Appl Microbiol Biotechnol 2021; 105:6597-6606. [PMID: 34463801 DOI: 10.1007/s00253-021-11534-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Sesquiterpenes are one of the most diverse groups of secondary metabolites that have mainly been observed in terpenoids. It is a natural terpene containing 15 carbon atoms in the molecule and three isoprene units with chain, ring, and other skeleton structures. Sesquiterpenes have been shown to display multiple biological activities such as anti-inflammatory, anti-feedant, anti-microbial, anti-tumor, anti-malarial, and immunomodulatory properties; therefore, their therapeutic effects are essential. In order to overcome the problem of low-yielding sesquiterpene content in natural plants, regulating their biosynthetic pathways has become the focus of many researchers. In plant and microbial systems, many genetic engineering strategies have been used to elucidate biosynthetic pathways and high-level production of sesquiterpenes. Here, we will introduce the research progress and prospects of the biosynthesis of artemisinin, costunolide, parthenolide, and dendrobine. Furthermore, we explore the biosynthesis of dendrobine by evaluating whether the biosynthetic strategies of these sesquiterpene compounds can be applied to the formation of dendrobine and its intermediate compounds. KEY POINTS: • The development of synthetic biology has promoted the study of terpenoid metabolism and provided an engineering platform for the production of high-value terpenoid products. • Some possible intermediate compounds of dendrobine were screened out and the possible pathway of dendrobine biosynthesis was speculated. • The possible methods of dendrobine biosynthesis were explored and speculated.
Collapse
Affiliation(s)
- Dao-Yong Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xing-Yue Chen
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Bo-Chu Wang
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
34
|
Dendrobine Inhibits γ-Irradiation-Induced Cancer Cell Migration, Invasion and Metastasis in Non-Small Cell Lung Cancer Cells. Biomedicines 2021; 9:biomedicines9080954. [PMID: 34440158 PMCID: PMC8392411 DOI: 10.3390/biomedicines9080954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
The use of ionizing radiation (IR) during radiotherapy can induce malignant effects, such as metastasis, which contribute to poor prognoses in lung cancer patients. Here, we explored the ability of dendrobine, a plant-derived alkaloid from Dendrobium nobile, to improve the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). We employed Western blotting, quantitative real-time (qRT)-PCR, transwell migration assays, and wound-healing assays to determine the effects of dendrobine on the migration and invasion of A549 lung cancer cells in vitro. Dendrobine (5 mm) inhibited γ-irradiation-induced migration and invasion of A549 cells by suppressing sulfatase2 (SULF2) expression, thus inhibiting IR-induced signaling. To investigate the inhibitory effects of dendrobine in vivo, we established a mouse model of IR-induced metastasis by injecting BALB/c nude mice with γ-irradiated A549 cells via the tail vein. As expected, injection with γ-irradiated cells increased the number of pulmonary metastatic nodules in mice (0 Gy/DPBS, 9.8 ± 1.77; 2 Gy/DPBS, 20.87 ± 1.42), which was significantly reduced with dendrobine treatment (2 Gy/Dendrobine, 10.87 ± 0.71), by prevention of IR-induced signaling. Together, these findings demonstrate that dendrobine exerts inhibitory effects against γ-irradiation-induced invasion and metastasis in NSCLC cells in vitro and in vivo at non cytotoxic concentrations. Thus, dendrobine could serve as a therapeutic enhancer to overcome the malignant effects of radiation therapy in patients with NSCLC.
Collapse
|
35
|
Mou Z, Zhao Y, Ye F, Shi Y, Kennelly EJ, Chen S, Zhao D. Identification, Biological Activities and Biosynthetic Pathway of Dendrobium Alkaloids. Front Pharmacol 2021; 12:605994. [PMID: 33959002 PMCID: PMC8096351 DOI: 10.3389/fphar.2021.605994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Dendrobium is a genus of flowering plants belonging to the Orchidaceae family with more than 1,400 species. Many Dendrobium species have been used as medicinal plants in several Asian countries for thousands of years. Alkaloids were reported as the major biological markers due to their complex chemical compositions and various types. In this review, we summarized the structural types of alkaloids, their pharmacological activities, as well as the mechanisms of biological activities. More than sixty alkaloids were isolated and identified from the Dendrobium genus. Moreover, the pharmacological effects of Dendrobium alkaloids as hepatic lipid and gluconeogenesis regulation, as neuroprotection, and as anti-tumor, anti-inflammatory, anti-diabetes, and anti-virus factors were described. Besides, the total chemical synthesis of dendrobine is provided, while the biosynthetic pathway of dendrobine has been proposed based on the functions of associated genes. For applications of these invaluable herbs, more researches on the extraction of biological markers from compounds are needed. Further confirmation of the proposed biosynthetic pathways is anticipated as well.
Collapse
Affiliation(s)
- Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Fei Ye
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yana Shi
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.,Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
36
|
Chen X, Li Q, Xu X, Ding G, Guo S, Li B. Effects of the Endophytic Fungus MF23 on Dendrobium nobile Lindl. in an Artificial Primary Environment. ACS OMEGA 2021; 6:10047-10053. [PMID: 34056160 PMCID: PMC8153664 DOI: 10.1021/acsomega.0c06325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The quality of Dendrobium nobile Lindl. is related to its endophytic fungi. It has been reported that the mycorrhizal fungus MF23 helps to increase the content of dendrobine in Dendrobium, but few studies have explained the mechanism underlying this phenomenon. In a previous study, we verified the mechanism of symbiosis between MF23 and D. nobile on agar medium. The research carried out in this study on bark medium, similar to the natural environment, is of great importance because of its benefits for wide application. We found a significant effect, especially in the later period of cultivation, in which the highest dendrobine content in the experimental group was 0.147%, which is equivalent to 2.88 times that of the control group, and suggesting that MF23 promoted D. nobile in the natural environment, which verifies the application of the technique in field conditions. This result also implied that post-modification enzyme genes might play an important role in stimulating the biosynthesis of dendrobine.
Collapse
|
37
|
Guo K, Chen J, Niu Y, Lin X. Full-Length Transcriptome Sequencing Provides Insights into Flavonoid Biosynthesis in Fritillaria hupehensis. Life (Basel) 2021; 11:287. [PMID: 33800612 PMCID: PMC8066755 DOI: 10.3390/life11040287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
One of the most commonly utilized medicinal plants in China is Fritillaria hupehensis (Hsiao et K.C. Hsia). However, due to a lack of genomic resources, little is known about the biosynthesis of relevant compounds, particularly the flavonoid biosynthesis pathway. A PacBio RS II sequencing generated a total of 342,044 reads from the bulb, leaf, root, and stem, of which 316,438 were full-length (FL) non-redundant reads with an average length of 1365 bp and a N50 of 1888 bp. There were also 38,607 long non-coding RNAs and 7914 simple sequence repeats detected. To improve our understanding of processes implicated in regulating secondary metabolite biosynthesis in F. hupehensis tissues, we evaluated potential metabolic pathways. Overall, this study provides a repertoire of FL transcripts in F. hupehensis for the first time, and it will be a valuable resource for marker-assisted breeding and research into bioactive compounds for medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Kunyuan Guo
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China;
| | - Jie Chen
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China; (J.C.); (Y.N.)
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China; (J.C.); (Y.N.)
| | - Xianming Lin
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
38
|
Transcriptomic Analyses Shed Light on Critical Genes Associated with Bibenzyl Biosynthesis in Dendrobium officinale. PLANTS 2021; 10:plants10040633. [PMID: 33810588 PMCID: PMC8065740 DOI: 10.3390/plants10040633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
The Dendrobium plants (members of the Orchidaceae family) are used as traditional Chinese medicinal herbs. Bibenzyl, one of the active compounds in Dendrobium officinale, occurs in low amounts among different tissues. However, market demands require a higher content of thes compounds to meet the threshold for drug production. There is, therefore, an immediate need to dissect the physiological and molecular mechanisms underlying how bibenzyl compounds are biosynthesized in D. officinale tissues. In this study, the accumulation of erianin and gigantol in tissues were studied as representative compounds of bibenzyl. Exogenous application of Methyl-Jasmonate (MeJA) promotes the biosynthesis of bibenzyl compounds; therefore, transcriptomic analyses were conducted between D. officinale-treated root tissues and a control. Our results show that the root tissues contained the highest content of bibenzyl (erianin and gigantol). We identified 1342 differentially expressed genes (DEGs) with 912 up-regulated and 430 down-regulated genes in our transcriptome dataset. Most of the identified DEGs are functionally involved in the JA signaling pathway and the biosynthesis of secondary metabolites. We also identified two candidate cytochrome P450 genes and nine other enzymatic genes functionally involved in bibenzyl biosynthesis. Our study provides insights on the identification of critical genes associated with bibenzyl biosynthesis and accumulation in Dendrobium plants, paving the way for future research on dissecting the physiological and molecular mechanisms of bibenzyl synthesis in plants as well as guide genetic engineering for the improvement of Dendrobium varieties through increasing bibenzyl content for drug production and industrialization.
Collapse
|
39
|
Shan T, Zhou L, Li B, Chen X, Guo S, Wang A, Tian L, Liu J. The Plant Growth-Promoting Fungus MF23 ( Mycena sp.) Increases Production of Dendrobium officinale (Orchidaceae) by Affecting Nitrogen Uptake and NH 4 + Assimilation. FRONTIERS IN PLANT SCIENCE 2021; 12:693561. [PMID: 34552603 PMCID: PMC8451717 DOI: 10.3389/fpls.2021.693561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 05/21/2023]
Abstract
Dendrobium officinale Kimura et Migo is a traditional and scarce medicinal orchid in China. Mycorrhizal fungi could supply nitrogen (N) to orchids for seed germination and seedling recruitment. However, the N transport mechanism between orchids and the fungus is poorly understand. Early studies found that the fungus MF23 (Mycena sp.) could promote the growth of D. officinale. To better dissect the molecular interactions involved in N transport between D. officinale and MF23, transcriptome and metabolome analyses were conducted on conventional and mycorrhizal cultivations of D. officinale. Moreover, validation tests were carried out in the greenhouse to measure net fluxes of N O 3 - and N H 4 + of roots by a non-invasive micro-test technology (NMT), determine N assimilation enzyme activity by the ELISA, and analyze the expression level of differentially expressed genes (DEGs) of N transporters and DEGs involved in N metabolism by RT-qPCR. Combined transcriptome and metabolome analyses showed that MF23 may influence N metabolism in D. officinale. The expression of DoNAR2.1 (nitrate transporter-activating protein), DoAMT11 (ammonium transporter), DoATFs (amino acid transporters), DoOPTs (oligopeptide transporters), and DoGDHs (glutamate dehydrogenases) in symbiotic D. officinale was upregulated. NMT results showed a preference for N H 4 + in D. officinale and indicated that MF23 could promote the uptake of N O 3 - and N H 4 + , especially for N H 4 + . ELISA results showed that MF23 could increase the activity of glutamine synthetase (GS) and glutamate dehydrogenase. This study suggested that MF23 increases the production of D. officinale by affecting N uptake and N H 4 + assimilation capacity.
Collapse
|
40
|
Nie X, Chen Y, Li W, Lu Y. Anti-aging properties of Dendrobium nobile Lindl.: From molecular mechanisms to potential treatments. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112839. [PMID: 32268205 DOI: 10.1016/j.jep.2020.112839] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium Nobile Lindl. (DNL) is one of the central herbs in traditional Chinese medicine which mainly distributes in Guizhou, Yunnan, Guangxi and other sub-tropical areas south of the Yangtze River. In the past decades, it has been used to treat tumors, hyperglycemia, hyperlipidemia, and diseases of the nervous system that may be caused by aging. AIM OF THE REVIEW The purpose of this review is to summarize the anti-aging information of DNL from the molecular mechanism level, including classic theories related to aging, main chemical components, pharmacological research and anti-aging theory based on traditional Chinese medicine theory, for exploring the future development and clinical treatment. MATERIALS AND METHODS The information in this paper has been collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, Ph.D. and M.S. dissertations systematically. RESULTS In this paper, we have reviewed the several mechanisms underlying the potential effects of DNL on the prevention of aging, including the scavenging of free radicals for oxidation, delaying of DNA impairment, inhibition of apoptosis, and alteration of DNA methylation. Together with the theory of telomeres, this review also has summarized recent research progress in the use of DNL and its traditional efficacy. CONCLUSIONS We conclude that "strengthening Yin and benefiting the spirit", "thickening the intestine and stomach", "lightning the body and prolonging the life-span", and delaying aging, are key effects of DNL that can be used to combat age-related diseases (ARDs) such as Alzheimer's disease, hyperlipidemia, and diabetes. This review provides a reference for future study of ARDs and the clinical application of DNL.
Collapse
Affiliation(s)
- Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
41
|
Crepidtumines A and B, Two Novel Indolizidine Alkaloids from Dendrobium crepidatum. Sci Rep 2020; 10:9564. [PMID: 32533030 PMCID: PMC7293321 DOI: 10.1038/s41598-020-66552-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Abstract
Two new indolizidine alkaloids crepidatumines A (1) and B (2) together with the stereoisomer of dendrocrepidine B (3) and known analog dendrocrepine (4) were isolated from D. crepidatum. Their structures were determined by HR-ESI-MS, NMR, and Electronic Circular Dichroism (ECD) experiments together with comparison of analogues. Compound (1) possess a (5/6/6/5) tetra-hetero-cyclic ring, whereas compound (2) contains a tricyclic system with an unusual bridged ring, which are the first report in Nature. The biological evaluation revealed that dendrocrepine (4) displayed a potent hypoglycemic effect in vitro.
Collapse
|
42
|
Zhang Y, Li Y, Guo S. Effects of the mycorrhizal fungus Ceratobasidium sp. AR2 on growth and flavonoid accumulation in Anoectochilus roxburghii. PeerJ 2020; 8:e8346. [PMID: 31988802 PMCID: PMC6970008 DOI: 10.7717/peerj.8346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/04/2019] [Indexed: 12/02/2022] Open
Abstract
Background Anoectochilus roxburghii is a traditional Chinese medicine with potent medicinal activity owing to the presence of secondary metabolites, particularly flavonoids. A. roxburghii also maintains a symbiotic relationship with mycorrhizal fungi. Moreover, mycorrhizal fungi can induce metabolite synthesis in host plants. However, little is known about the role of mycorrhizal fungi in promoting the accumulation of flavonoid metabolites in A. roxburghii. Methods A. roxburghii and the isolated fungus Ceratobasidium sp. AR2 were cocultured. The portion of A. roxburghii above the medium treated with or without AR2 was studied by transcriptome and target metabolome analyses. Results AR2 promoted the growth and development of A. roxburghii. The contents of total flavonoid, rutin, isorhamnetin, and cyanidin-3-glucoside chloride were increased compared with those in uninoculated cultures. Transcriptome analysis suggested that 109 unigenes encoding key enzymes were potentially associated with changes in flavonoids. Quantitative real-time polymerase chain reaction of fourteen flavonoid-related unigenes showed that most flavonoid biosynthetic genes were significantly differentially expressed between inoculated and uninoculated plantlets. Conclusion The isolate AR2 could significantly promote the growth and development of A. roxburghii and the accumulation of flavonoids. Overall, our findings highlighted the molecular basis of the effects of mycorrhizal fungi on flavonoid biosynthesis in A. roxburghii and provided novel insights into methods to improve the yield and quality of A. roxburghii.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Zhang Y, Li Y, Chen X, Meng Z, Guo S. Combined Metabolome and Transcriptome Analyses Reveal the Effects of Mycorrhizal Fungus Ceratobasidium sp. AR2 on the Flavonoid Accumulation in Anoectochilus roxburghii during Different Growth Stages. Int J Mol Sci 2020; 21:ijms21020564. [PMID: 31952330 PMCID: PMC7013922 DOI: 10.3390/ijms21020564] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Anoectochilus roxburghii is a traditional Chinese herb with high medicinal value, with main bioactive constituents which are flavonoids. It commonly associates with mycorrhizal fungi for its growth and development. Moreover, mycorrhizal fungi can induce changes in the internal metabolism of host plants. However, its role in the flavonoid accumulation in A. roxburghii at different growth stages is not well studied. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in mycorrhizal A. roxburghii (M) and non-mycorrhizal A. roxburghii (NM) growth for six months. An association analysis revealed that flavonoid biosynthetic pathway presented significant differences between the M and NM. Additionally, the structural genes related to flavonoid synthesis and different flavonoid metabolites in both groups over a period of six months were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The results showed that Ceratobasidium sp. AR2 could increase the accumulation of five flavonol-glycosides (i.e., narcissin, rutin, isorhamnetin-3-O-beta-d-glucoside, quercetin-7-O-glucoside, and kaempferol-3-O-glucoside), two flavonols (i.e., quercetin and isorhamnetin), and two flavones (i.e., nobiletin and tangeretin) to some degrees. The qRT-PCR showed that the flavonoid biosynthetic genes (PAL, 4CL, CHS, GT, and RT) were significantly differentially expressed between the M and NM. Overall, our findings indicate that AR2 induces flavonoid metabolism in A. roxburghii during different growth stages, especially in the third month. This shows great potential of Ceratobasidium sp. AR2 for the quality improvement of A. roxburghii.
Collapse
|
44
|
Cao H, Ji Y, Li S, Lu L, Tian M, Yang W, Li H. Extensive Metabolic Profiles of Leaves and Stems from the Medicinal Plant Dendrobium officinale Kimura et Migo. Metabolites 2019; 9:metabo9100215. [PMID: 31590300 PMCID: PMC6835975 DOI: 10.3390/metabo9100215] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Dendrobium officinale Kimura et Migo is a commercially and pharmacologically highly prized species widely used in Western Asian countries. In contrast to the extensive genomic and transcriptomic resources generated in this medicinal species, detailed metabolomic data are still missing. Herein, using the widely targeted metabolomics approach, we detect 649 diverse metabolites in leaf and stem samples of D. officinale. The majority of these metabolites were organic acids, amino acids and their derivatives, nucleotides and their derivatives, and flavones. Though both organs contain similar metabolites, the metabolite profiles were quantitatively different. Stems, the organs preferentially exploited for herbal medicine, contained larger concentrations of many more metabolites than leaves. However, leaves contained higher levels of polyphenols and lipids. Overall, this study reports extensive metabolic data from leaves and stems of D. officinale, providing useful information that supports ongoing genomic research and discovery of bioactive compounds.
Collapse
Affiliation(s)
- Hua Cao
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Yulu Ji
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Kunming 650201, Yunnan, China.
| | - Shenchong Li
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Lin Lu
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Min Tian
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Wei Yang
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| | - Han Li
- Institute of Flower Research, Yunnan Academy of Agricultural Sciences, No.2238, Beijing Road, Kunming 650200, Yunnan, China.
- National Engineering Technology Research Center for Ornamental Horticulture, No. 2238, Beijing Road, Kunming 650200, Yunnan, China.
| |
Collapse
|
45
|
Chen Y, Wang Y, Lyu P, Chen L, Shen C, Sun C. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. JOURNAL OF PLANT RESEARCH 2019. [PMID: 30903398 DOI: 10.1007/s10265-019-01099-6/1618-0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural and Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Liping Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
46
|
Chen Y, Wang Y, Lyu P, Chen L, Shen C, Sun C. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. JOURNAL OF PLANT RESEARCH 2019; 132:419-429. [PMID: 30903398 DOI: 10.1007/s10265-019-01099-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/25/2019] [Indexed: 05/12/2023]
Abstract
Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural and Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Liping Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
47
|
Song TH, Chen XX, Lee CKF, Sze SCW, Feng YB, Yang ZJ, Chen HY, Li ST, Zhang LY, Wei G, Shi J, Xu K, Ng TB, Zhu LL, Zhang KY. Dendrobine targeting JNK stress signaling to sensitize chemotoxicity of cisplatin against non-small cell lung cancer cells in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:18-27. [PMID: 30668397 DOI: 10.1016/j.phymed.2018.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 06/18/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Lung cancer is a leading cause of cancer-related death worldwide. Cisplatin-based chemotherapy is the standard treatment for lung cancer, but chemoresistance and adverse effects especially cardiotoxicity limit its efficacy. PURPOSE The efficacy of combination treatment of dendrobine, a plant alkaloid isolated from Dendrobium nobile, with cisplatin was examined as a possible anti-non-small cell lung cancer strategy. METHODS The cytotoxicity of dendrobine and cisplatin against A549 lung cancer cells was analyzed by MTT and colony formation assays. Apoptosis was measured by annexin V/PI double staining. Apoptosis-related proteins were assessed by western blotting and qPCR analysis. In vivo efficacy was determined using A549 xenograft in nude mice. JNK and Bim inhibition were achieved by siRNA knockdown and/or chemical inhibition. Cardiotoxicity was assessed by serum creatine phosphokinase activity assay. RESULTS Dendrobine induced apoptotic cell death through mitochondrial-mediated pathway. Combination treatment of dendrobine with cisplatin showed enhanced cytotoxicity through stimulation of JNK/p38 stress signaling pathways and, consequently, the induction of apoptosis involving pro-apoptotic proteins Bax and Bim. In addition, dendrobine attenuated the body weight reduction and cardiotoxicity induced by cisplatin in nude mice. CONCLUSION The combination treatment showed enhanced anticancer activity toward non-small cell lung cancer cells without aggravating the cardiotoxic effects of cisplatin suggesting that the combination strategy deserves further investigation for human lung cancer treatment.
Collapse
Affiliation(s)
- Tian-He Song
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Xiao-Xin Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Calvin Kai-Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Stephen Cho-Wing Sze
- Department of Biology, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Yi-Bin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Zhi-Jun Yang
- School of Chinese Medicine, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Hai-Yong Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Sheng-Tao Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Li-Yan Zhang
- Guiyang College of Traditional Chinese Medicine, 50 East Road, Guiyang, China
| | - Gang Wei
- Research & Development of New Drugs, Guangzhou University of Chinese Medicine, 232 Wai Huan Dong Road, Guangzhou, China
| | - Jun Shi
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Kai Xu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Tzi-Bun Ng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ling-Ling Zhu
- School of Chinese Medicine, Southern Medical University, 1383 North Guangzhou Road, Guangzhou, China.
| | - Kalin Yanbo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
48
|
Zheng SG, Hu YD, Zhao RX, Yan S, Zhang XQ, Zhao TM, Chun Z. Genome-wide researches and applications on Dendrobium. PLANTA 2018; 248:769-784. [PMID: 30066218 DOI: 10.1007/s00425-018-2960-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/21/2018] [Indexed: 05/10/2023]
Abstract
This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n = 38. Only a few of genetic studies were reported in Dendrobium. After revealing of genomic sequences, the techniques of transcriptomics, proteomics and metabolomics could be employed on Dendrobium easily. Some other molecular biological techniques, such as gene cloning, gene editing, genetic transformation and molecular marker developing, had also been applied on the basic research of Dendrobium, successively. As medicinal plants, insights into the biosynthesis of some medicinal components were the most important. As ornamental plants, regulation of flower related characteristics was the most important. More, knowledge of growth and development, environmental interaction, evolutionary analysis, breeding of new cultivars, propagation, and identification of species and herbs were also required for commercial usage. All of these studies were improved using genomic sequences and related technologies. To answer some key scientific issues in Dendrobium, quality formation, flowering, self-incompatibility and seed germination would be the focus of future research. And genome related technologies and studies would be helpful.
Collapse
Affiliation(s)
- Shi-Gang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ya-Dong Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ruo-Xi Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shou Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Xue-Qin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Ting-Mei Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
49
|
Wang F, Liu Q, Zhang J, Liu K, Li K, Liu G, Dong C. Comparative Transcriptome Analysis Between a Spontaneous Albino Mutant and Its Sibling Strain of Cordyceps militaris in Response to Light Stress. Front Microbiol 2018; 9:1237. [PMID: 29937763 PMCID: PMC6002663 DOI: 10.3389/fmicb.2018.01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
Albinism has been used for new variety screening in some edible mushrooms and the underlying mechanisms are fascinating. Albino fruiting body of Cordyceps militaris, a well-known edible fungus and model organism for Cordyceps, has the potential to be a nutraceutical or functional food due to its high content of metabolites and antioxidant activities. In this study, a spontaneous albino mutant strain (505) of C. militaris was obtained. In comparison to its normal sibling strain (498), the albino strain stably remained white in response to light and had significantly decreased conidia and carotenoid production but accumulated more cordycepin. Transcriptome analysis of both strains revealed that all the seven photoreceptors were expressed similarly in response to light. However, many more genes in the albino strain were differentially expressed in response to light than its sibling strain. The significantly enriched pathways in 498L vs. 505L were mainly associated with replication and repair. Some secondary metabolite backbone genes including those encoding DMAT, two NRPS-like proteins, three NPRS, and lanosterol synthase were differentially expressed in the albino when compared with that of the normal strains. Transcriptome and real-time quantitative PCR analyses indicated that some cytochrome P450s and methyltransferases might be related to the phenotypic differences observed between the two strains. This study compared the genome-wide transcriptional responses to light irradiation in a spontaneous albino mutant and its normal sibling strain of an edible fungus, and these findings potentially pave the way for further investigation of the pigment biosynthetic pathway.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuanbo Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guijun Liu
- Beijing Radiation Center, Beijing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Jiao C, Song C, Zheng S, Zhu Y, Jin Q, Cai Y, Lin Y. Metabolic Profiling of Dendrobium officinale in Response to Precursors and Methyl Jasmonate. Int J Mol Sci 2018; 19:ijms19030728. [PMID: 29510516 PMCID: PMC5877589 DOI: 10.3390/ijms19030728] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/14/2023] Open
Abstract
Alkaloids are the main active ingredients in the medicinal plant Dendrobium officinale. Based on the published genomic and transcriptomic data, a proposed terpenoid indole alkaloid (TIA) biosynthesis pathway may be present in D. officinale. In this study, protocorm-like bodies (PLBs) with a high-yielding production of alkaloids were obtained by the optimization of tryptophan, secologanin and methyl jasmonate (MeJA) treatment. The results showed that the total alkaloid content was 2.05 times greater than that of the control group when the PLBs were fed with 9 µM tryptophan, 6 µM secologanin and 100 µM MeJA after 36 days. HPLC analysis showed that strictosidine synthase (STR) activity also increased in the treated plants. A total of 78 metabolites were identified using gas chromatography-mass spectrometry (GC-MS) in combination with liquid chromatography-mass spectrometry (LC-MS) methods; 29 differential metabolites were identified according to the multivariate statistical analysis. Among them, carapanaubine, a kind of TIA, exhibited dramatically increased levels. In addition, a possible underlying process of the metabolic flux from related metabolism to the TIA biosynthetic pathway was enhanced. These results provide a comprehensive view of the metabolic changes related to alkaloid biosynthesis, especially TIA biosynthesis, in response to tryptophan, secologanin and MeJA treatment.
Collapse
Affiliation(s)
- Chunyan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Cheng Song
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Siyan Zheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yingpeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|