1
|
Cao X, Xu F, Zhao H, Zhang J, Liu C. An extra honey polyphenols-rich diet ameliorates the high-fat diet induced chronic kidney disease via modulating gut microbiota in C57BL/6 mice. Ren Fail 2024; 46:2367700. [PMID: 38938191 PMCID: PMC467112 DOI: 10.1080/0886022x.2024.2367700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Honey is not equivalent to sugar and possess a worldwide health promoting effects such as antioxidant, antibacterial, anti-inflammatory, and hepatoprotective activities. Nevertheless, the potential impacts of honey on high-fat diet induced chronic kidney disease (CKD) and gut microbiota remain to be explored. Herein a high-fat diet was used to induce a mouse CKD model, and analysis was conducted on liver, kidney, spleen indices, tissue morphology, biochemical parameters, CKD related genes, and gut microbial diversity. The results indicated that significant inhibitory effects on renal damage caused by a high-fat diet in mice and improvement in disease symptoms were observed upon honey treatment. Significant changes were also found in serum TC, TG, UA, and BUN as well as the inflammation-related protein TNF-α and IL-6 levels in renal tissues. Gene expression analysis revealed that honey intake closely relates to gut microbiota diversity, which can regulate the composition of gut microbiota, increase microbial diversity, especially Bifidobacteriales and S24_7 and promote the synthesis of short chain fatty acids (SCFAs). In summary, this study suggests that honey has both preventive and therapeutic effects on CKD, which may be associated with its ability to improve microbial composition, increase microbial diversity, and regulate SCFAs levels.
Collapse
Affiliation(s)
- Xirong Cao
- Ministry of Education, Key Laboratory of Surgical Critical Care and Life Support (Xi’an Jiaotong University), Xi’an, Shaanxi, China
- Department of SICU, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fangrui Xu
- School of Food Science and Technology, Northwest University, Xi’an, China
| | - Haoan Zhao
- School of Food Science and Technology, Northwest University, Xi’an, China
| | - Jingyao Zhang
- Ministry of Education, Key Laboratory of Surgical Critical Care and Life Support (Xi’an Jiaotong University), Xi’an, Shaanxi, China
- Department of SICU, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chang Liu
- Ministry of Education, Key Laboratory of Surgical Critical Care and Life Support (Xi’an Jiaotong University), Xi’an, Shaanxi, China
- Department of Hepatobiliary, Pancreatic and Liver Transplantation Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Jelveh Moghaddam E, Pourmand G, Ahmadi Badi S, Yarmohammadi H, Soltanipur M, Mahalleh M, Rezaei M, Mirhosseini SM, Siadat SD. Gut microbiota alterations in renal transplant recipients and the risk of urinary tract infection and delayed graft function: A preliminary prospective study. Urologia 2024; 91:781-787. [PMID: 39193826 DOI: 10.1177/03915603241276742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND The implication of gut microbiota in the gut-kidney axis affects the pathophysiology of chronic kidney disease (CKD). Gut microbiota composition changes during CKD. We aimed to determine the relative frequency of important gut microbiota members in end-stage renal disease (ERSD) patients before and after renal transplantation compared to healthy subjects. METHODS Fifteen kidney transplant patients and 10 healthy subjects were recruited in this case-control prospective study. Fecal samples were taken sequentially from all patients before kidney transplantation, 1 week, and 1 month after it. The relative frequency of Lactobacillus spp., Bifidobacterium spp., Akkermansia muciniphila, Bacteroides fragilis, Escherichia coli, and Faecalibacterium pruasnitzii were determined through quantitative PCR. The obtained data was statistically analyzed by Stata software (Stata Corporation, USA). RESULTS The mean log number of all bacteria was significantly higher in healthy individuals than kidney transplant recipients (p < 0.001) except for Lactobacillus where the mean levels were almost identical in the two groups (p = 0.67). Moreover, 20% (3) of patients developed a urinary tract infection. Besides, 2 (13.33%) patients were diagnosed with delayed graft function. There were no statistically significant differences regarding changing trends in bacteria log number of Akkermansia muciniphila (p = 0.12), Bacteroid fragilis (p = 0.75), Bifidobacterium (p = 0.99), Escherichia coli (p = 0.5), Faecalibacterium (p = 0.98), and Lactobacilli (p = 0.93) between patients with and without delayed graft function (DGF). CONCLUSION Gut microbiota composition in patients with ESRD was significantly different from those without it. However, the microbiota profile did not significantly differ in patients with and without DGF.
Collapse
Affiliation(s)
- Erfan Jelveh Moghaddam
- Department of Urology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Pourmand
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Yarmohammadi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Masood Soltanipur
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Mahalleh
- Department of Urology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rezaei
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Młynarska E, Budny E, Saar M, Wojtanowska E, Jankowska J, Marciszuk S, Mazur M, Rysz J, Franczyk B. Does the Composition of Gut Microbiota Affect Chronic Kidney Disease? Molecular Mechanisms Contributed to Decreasing Glomerular Filtration Rate. Int J Mol Sci 2024; 25:10429. [PMID: 39408756 PMCID: PMC11477184 DOI: 10.3390/ijms251910429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic kidney disease (CKD) is a very prevalent and insidious disease, particularly with initially poorly manifested symptoms that progressively culminate in the manifestation of an advanced stage of the condition. The gradual impairment of kidney function, particularly decreased filtration capacity, results in the retention of uremic toxins and affects numerous molecular mechanisms within the body. The dysbiotic intestinal microbiome plays a crucial role in the accumulation of protein-bound uremic toxins such as p-cresol (pC), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) through the ongoing fermentation process. The described phenomenon leads to an elevated level of oxidative stress and inflammation, subsequently resulting in tissue damage and complications, particularly an increase in cardiovascular risk, representing the predominant cause of mortality in chronic kidney disease (CKD). Therefore, exploring methods to reduce uremic toxins is currently a pivotal therapeutic strategy aimed at reducing the risk of organ damage in patients with chronic kidney disease (CKD). This review aims to summarize recent discoveries on modifying the composition of the intestinal microbiota through the introduction of special probiotic and synbiotic supplements for CKD therapy. The potential to connect the gut microbiota with CKD opens the possibility for further extensive research in this area, which could lead to the incorporation of synbiotics and probiotics into the fundamental treatment and prevention of CKD.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Maciej Saar
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Ewa Wojtanowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Justyna Jankowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Szymon Marciszuk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Marcin Mazur
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| |
Collapse
|
4
|
Chen Y, Huang J, Wang H, Cui H, Liang Z, Huang D, Deng X, Du B, Li P. Polysaccharides from Sacha Inchi shell reduces renal fibrosis in mice by modulating the TGF-β1/Smad pathway and intestinal microbiota. Int J Biol Macromol 2024; 280:136039. [PMID: 39332559 DOI: 10.1016/j.ijbiomac.2024.136039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Renal fibrosis is a common pathway involved in the progression of various chronic kidney to end-stage diseases, posing a substantial global public health challenge in the search for effective and safe treatments. This study investigated the effects and mechanisms of sacha inchi shell polysaccharide (SISP) on renal fibrosis induced by a high-salt diet (HSD) in mice. By analysing kidney-related protein pathways and the structure of gut microbiota, we found that SISP significantly reduced urinary protein levels induced by a HSD from 41.08 to 22.95 μg/mL and increased urinary creatinine from 787.43 to 1294.50 μmol/L. It reduced renal interstitial collagen fibres by 11.30 %, thereby improving the kidney function. SISP lowered the mRNA expression of TGF-B1, fibronectin, α-SMA, Smad2/3, and TGFBRII, leading to decreased protein levels of TGF-β1, p-Smad2/3, p-TGFβRII, fibronectin, α-SMA, p-Smad2/3/Smad2/3, and p-TGFβRII/TGFβRII. These changes blocked downstream transcription in the TGF-β1/Smad signalling pathway, thereby attenuating renal fibrosis in HSD mice. In addition, SISP altered the intestinal flora imbalance in HSD mice by reducing the relative abundance of the genera, Akkermansia, Faecalibaculum, and unidentified_Ruminococcaceae, and reversing the decline in the levels of the genera, Lactobacillus and Bacteroides. In conclusion, SISP is a promising nutraceutical for renal fibrosis management.
Collapse
Affiliation(s)
- Yanlan Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyuan Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huaixu Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haohui Cui
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zizhao Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Darong Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Deng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Qiao S, Yang J, Yang L. Association between Urinary Flora and Urinary Stones. Urol Int 2024:1-8. [PMID: 39236682 DOI: 10.1159/000540990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Urinary system stones are a common clinical disease, with significant differences in incidence and recurrence rates between different countries and regions. The etiology and pathogenesis of urinary system stones have not been fully elucidated, but many studies have found that some bacteria and fungi that are difficult to detect in urine constitute a unique urinary microbiome. This special urinary microbiome is closely related to the occurrence and development of urinary system stones. By analyzing the urinary microbiome and its metabolic products, early diagnosis and treatment of urinary system stones can be carried out. SUMMARY This article reviews the relationship between the urinary microbiome and urinary system stones, discusses the impact of the microbiome on the formation of urinary system stones and its potential therapeutic value, with the aim of providing a reference for the early diagnosis, prevention, and treatment of urinary system stones. KEY MESSAGES (i) Urinary stones are a common and recurrent disease, and there is no good way to prevent them. (ii) With advances in testing technology, studies have found that healthy human urine also contains various types of bacteria. (iii) Is there a potential connection between the urinary microbiota and urinary stones, and if so, can understanding these connections offer fresh perspectives and strategies for the diagnosis, treatment, and prevention of urinary stones?
Collapse
Affiliation(s)
- Sihang Qiao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China,
| | - Jianwei Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
7
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
8
|
Atzeni A, Díaz-López A, Cacho AH, Babio N, García-Gavilán JF, Cornejo-Pareja I, Belzer C, Fitó M, Tinahones FJ, Salas-Salvadó J. Gut microbiota dynamics and association with chronic kidney disease: A longitudinal study within the PREDIMED-Plus trial. Life Sci 2024; 351:122863. [PMID: 38908788 DOI: 10.1016/j.lfs.2024.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
AIMS Chronic kidney disease (CKD) represents a global health concern, disproportionately affecting the elderly with heightened cardiovascular risk. The emerging focus on the gut microbiota's role in CKD pathophysiology represents a pivotal area in nephrology; however, the evidence on this topic is limited. This observational prospective study, in the framework of the PREDIMED-Plus trial, investigates associations between gut microbiota composition and the 1-year trajectory of CKD in 343 participants aged 55-75 years with high cardiovascular risk. MATERIALS AND METHODS Kidney function was assessed at baseline and at 1-year of follow-up through the estimated glomerular filtration rate based on cystatin C (eGFR-CysC) and CKD defined by eGFR-CysC <60 mL/min/1.73 m2. Participants were grouped based on their 1-year CKD trajectory: Group 1 maintained normal status or improved from CKD to normal, while Group 2 maintained CKD or worsened from normal to CKD. Fecal microbiota composition was assessed through 16S sequencing. KEY FINDINGS We observed differences in gut microbiota composition between CKD trajectory groups. Notably, the baseline relative abundance of Lachnoclostridium and Lachnospira, both butyrate-producing genera, was lower in participants maintaining or progressing to CKD. Longitudinally, a decrease in Lachnospira abundance was associated with CKD progression. The improved Chao1 index after 1-year follow-up suggests a link between enhanced microbial richness and stable/better kidney function. SIGNIFICANCE The findings underscore the potential of gut microbiota analysis in non-invasively monitoring CKD, especially in older populations, and hint at future interventions targeting gut microbiota to manage CKD progression. Further research is needed for causal relationships and generalizability.
Collapse
Affiliation(s)
- Alessandro Atzeni
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Andrés Díaz-López
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, Reus, Spain
| | - Adrián Hernández Cacho
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Nancy Babio
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús F García-Gavilán
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Cornejo-Pareja
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Jordi Salas-Salvadó
- Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Huang L, Wu W, Wang X. Analysis of the microecological mechanism of diabetic kidney disease based on the theory of "gut-kidney axis": A systematic review. Open Life Sci 2024; 19:20220909. [PMID: 39119482 PMCID: PMC11306963 DOI: 10.1515/biol-2022-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes mellitus, as well as the leading cause of end-stage renal disease. Intestinal microbiota has emerged as a crucial regulator of its occurrence and development. Dysbiosis of the intestinal microbiota can disrupt the intestinal mucosal barrier, abnormal immunological response, reduction in short-chain fatty acid metabolites, and elevation of uremic toxins, all closely related to the occurrence and development of DKD. However, the underlying mechanisms of how intestinal microbiota and its metabolites influence the onset and progression of DKD has not been fully elucidated. In the current review, we will try to summarize the microecological mechanism of DKD by focusing on three aspects: the intestinal microbiota and its associated metabolites, and the "gut-kidney axis," and try to summarize therapies targeted at managing the intestinal microbiota, expecting to provide theoretical basis for the subsequent study of the relationship between intestinal homeostasis and DKD, and will open an emerging perspective and orientation for DKD treatment.
Collapse
Affiliation(s)
- Lili Huang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan430061, China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Xiaoqin Wang
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| |
Collapse
|
10
|
Li J, Wei Z, Lou F, Zhang X, Duan J, Luo C, Hu X, Tu P, Liu L, Zhong R, Chen L, Du X, Zhang H. Disrupted Microbiota of Colon Results in Worse Immunity and Metabolism in Low-Birth-Weight Jinhua Newborn Piglets. Microorganisms 2024; 12:1371. [PMID: 39065139 PMCID: PMC11278573 DOI: 10.3390/microorganisms12071371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a possible solution linked to probiotics. In this experiment, the differences in organs indexes, colonic morphology, short chain fatty acid (SCFA) concentrations, microbiome, and transcriptome were detected between piglets in the standard-birth-weight group (SG) and low-birth-weight group (LG) to find potential evidence leading to low birth weight. We found that LG piglets had a lower liver index (p < 0.05), deeper colonic crypt depth (p < 0.05), fewer goblet cells (p < 0.05), and more inflammatory factor infiltration. In addition, differentially expressed genes (DEGs) were mainly enriched in B-cell immunity and glucose metabolism, and LG piglets had lower concentrations of SCFAs, especially butyrate and isobutyrate (p < 0.05). Finally, most of the significantly differentially abundant microbes were fewer in LG piglets, which affected DEG expressions and SCFA concentrations further resulting in worse energy metabolism and immunity. In conclusion, colonic disrupted microbiota may cause worse glucose metabolism, immunity, and SCFA production in LG piglets, and beneficial microbes colonized in SG piglets may benefit these harmful changes.
Collapse
Affiliation(s)
- Jiaheng Li
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- School of Agriculture and Food Science, University College Dublin, Belfeld, D04 V1W8 Dublin, Ireland
| | - Fangfang Lou
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Chengzeng Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xujin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Pingguang Tu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| |
Collapse
|
11
|
Gan L, Wang L, Li W, Zhang Y, Xu B. Metabolomic profile of secondary hyperparathyroidism in patients with chronic kidney disease stages 3-5 not receiving dialysis. Front Endocrinol (Lausanne) 2024; 15:1406690. [PMID: 39027473 PMCID: PMC11254665 DOI: 10.3389/fendo.2024.1406690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Secondary hyperparathyroidism (SHPT) is a common and serious complication of chronic kidney disease (CKD). Elucidating the metabolic characteristics of SHPT may provide a new theoretical basis for its prevention and treatment. This study aimed to perform a metabolomic analysis of SHPT in patients with CKD stages 3-5 not receiving dialysis. Methods A total of 76 patients with CKD, 85 patients with CKD-SHPT, and 67 healthy controls were enrolled in this study. CKD was diagnosed according to the criteria specified in the Kidney Disease Improving Global Outcomes 2012 guidelines. SHPT was diagnosed by experienced clinicians according to the Renal Disease Outcomes Quality Initiative Clinical Practice Guidelines. Serum renal function markers and the lipid profile were analyzed. Untargeted ultra performance liquid chromatography-tandem mass spectrometry was used to analyze the serum metabolites of patients with CKD and SHPT. Multivariate analysis of the data was performed using principal component analysis and partial least square discriminant analysis. Serum differential metabolites were identified and further characterized using databases. Pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes database. Correlations between differential metabolites and clinical parameters were determined using the Spearman correlation. Results The serum metabolomic profiles of patients with CKD with and without SHPT differed significantly. Differential metabolites were mainly enriched in the top four Kyoto Encyclopedia of Genes and Genomes pathways: phenylalanine, tyrosine, and tryptophan biosynthesis; sphingolipid metabolism; glycerophospholipid metabolism; and phenylalanine metabolism. In total, 31 differential metabolites were identified; of these, L-tryptophan and (R)-(+)-1-phenylethylamine were decreased, while other amino acids and their derivatives, uremia toxins, carnitine, and lipids, were increased significantly in patients with SHPT compared to those without. The 14 lipid metabolites were positively correlated with levels of Urea, serum creatinine, cystatin C, and triglycerides and negatively correlated with the estimated glomerular filtration rate and levels of total and high- and low-density lipoprotein cholesterol. Discussion Disturbed amino acid and lipid metabolism were more apparent in patients with SHPT than in those without. This metabolomic profile of SHPT may provide a therapeutic foundation for its future clinical management.
Collapse
Affiliation(s)
- Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Lijun Wang
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Wanyi Li
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yamei Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
12
|
Tan Y, An K, Su J. Review: Mechanism of herbivores synergistically metabolizing toxic plants through liver and intestinal microbiota. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109925. [PMID: 38643812 DOI: 10.1016/j.cbpc.2024.109925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Interspecific interactions are central to ecological research. Plants produce toxic plant secondary metabolites (PSMs) as a defense mechanism against herbivore overgrazing, prompting their gradual adaptation to toxic substances for tolerance or detoxification. P450 enzymes in herbivore livers bind to PSMs, whereas UDP-glucuronosyltransferase and glutathione S-transferase increase the hydrophobicity of the bound PSMs for detoxification. Intestinal microorganisms such as Bacteroidetes metabolize cellulase and other macromolecules to break down toxic components. However, detoxification is an overall response of the animal body, necessitating coordination among various organs to detoxify ingested PSMs. PSMs undergo detoxification metabolism through the liver and gut microbiota, evidenced by increased signaling processes of bile acids, inflammatory signaling molecules, and aromatic hydrocarbon receptors. In this context, we offer a succinct overview of how metabolites from the liver and gut microbiota of herbivores contribute to enhancing metabolic PSMs. We focused mainly on elucidating the molecular communication between the liver and gut microbiota involving endocrine, immune, and metabolic processes in detoxification. We have also discussed the potential for future alterations in the gut of herbivores to enhance the metabolic effects of the liver and boost the detoxification and metabolic abilities of PSMs.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
13
|
Pourafshar S, Sharma B, Allen J, Hoang M, Lee H, Dressman H, Tyson CC, Mallawaarachchi I, Kumar P, Ma JZ, Lin PH, Scialla JJ. Longitudinal Pilot Evaluation of the Gut Microbiota Comparing Patients With and Without Chronic Kidney Disease. J Ren Nutr 2024; 34:302-312. [PMID: 38286361 DOI: 10.1053/j.jrn.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE The gut microbiota contributes to metabolic diseases, such as diabetes and hypertension, but is poorly characterized in chronic kidney disease (CKD). DESIGN AND METHODS We enrolled 24 adults within household pairs, in which at least one member had self-reported kidney disease, diabetes, or hypertension. CKD was classified based on estimated glomerular filtration rate < 60 mL/min/1.73 m2 or urine-albumin-to-creatinine ratio of ≥ 30 mg/g. Participants collected stool and dietary recalls seasonally over a year. Gut microbiota was characterized using 16s rRNA and metagenomic sequencing. RESULTS Ten participants had CKD (42%) with a median (interquartile range) estimated glomerular filtration rate of 49 (44, 54) mL/min/1.73 m2. By 16s rRNA sequencing, there was moderate to high intraclass correlation (ICC = 0.63) for seasonal alpha diversity (Shannon index) within individuals and modest differences by season (P < .01). ICC was lower with metagenomics, which has resolution at the species level (ICC = 0.26). There were no differences in alpha or beta diversity by CKD with either method. Among 79 genera, Frisingicoccus, Tuzzerella, Faecalitalea, and Lachnoclostridium had lower abundance in CKD, while Collinsella, Lachnospiraceae_ND3007, Veillonella, and Erysipelotrichaceae_UCG_003 were more abundant in CKD (each nominal P < .05) using 16s rRNA sequencing. Higher Collinsella and Veillonella and lower Lachnoclostridium in CKD were also identified by metagenomics. By metagenomics, Coprococcus catus and Bacteroides stercoris were more and less abundant in CKD, respectively, at false discovery rate corrected P = .02. CONCLUSIONS We identified candidate taxa in the gut microbiota associated with CKD. High ICC in individuals with modest seasonal impacts implies that follow-up studies may use less frequent sampling.
Collapse
Affiliation(s)
- Shirin Pourafshar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Binu Sharma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jenifer Allen
- Duke Clinical & Translational Science Institute, TransPop Group, Kannapolis, North Carolina
| | - Madeleine Hoang
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, Virginia
| | - Hannah Lee
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Crystal C Tyson
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Indika Mallawaarachchi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pankaj Kumar
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
14
|
Tian R, Wang X, Tang S, Zhao L, Hao Y, Li R, Zhou X. Gut microbiota mediates the protective effects of β-hydroxybutyrate against cisplatin-induced acute kidney injury. Biomed Pharmacother 2024; 175:116752. [PMID: 38761425 DOI: 10.1016/j.biopha.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
The gut microbiota has been reported to be perturbed by chemotherapeutic agents and to modulate side effects. However, the critical role of β-hydroxybutyrate (BHB) in the regulation of the gut microbiota and the pathogenesis of chemotherapeutic agents related nephrotoxicity remains unknown. We conducted a comparative analysis of the composition and function of gut microbiota in healthy, cisplatin-challenged, BHB-treated, and high-fat diet-treated mice using 16 S rDNA gene sequencing. To understand the crucial involvement of intestinal flora in BHB's regulation of cisplatin -induced nephrotoxicity, we administered antibiotics to deplete the gut microbiota and performed fecal microbiota transplantation (FMT) before cisplatin administration. 16 S rDNA gene sequencing analysis demonstrated that both endogenous and exogenous BHB restored gut microbiota dysbiosis and cisplatin-induced intestinal barrier disruption in mice. Additionally, our findings suggested that the LPS/TLR4/NF-κB pathway was responsible for triggering renal inflammation in the gut-kidney axis. Furthermore, the ablation of the gut microbiota ablation using antibiotics eliminated the renoprotective effects of BHB against cisplatin-induced acute kidney injury. FMT also confirmed that administration of BHB-treated gut microbiota provided protection against cisplatin-induced nephrotoxicity. This study elucidated the mechanism by which BHB affects the gut microbiota mediation of cisplatin-induced nephrotoxicity by inhibiting the inflammatory response, which may help develop novel therapeutic approaches that target the composition of the microbiota.
Collapse
Affiliation(s)
- Ruixue Tian
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Xingru Wang
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Rongshan Li
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China; Shanxi Kidney Disease Institute, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Xiaoshuang Zhou
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China; Shanxi Kidney Disease Institute, 29 Shuang Ta East Street, Taiyuan 030012, China.
| |
Collapse
|
15
|
Trandafir M, Pircalabioru GG, Savu O. Microbiota analysis in individuals with type two diabetes mellitus and end‑stage renal disease: A pilot study. Exp Ther Med 2024; 27:211. [PMID: 38590581 PMCID: PMC11000444 DOI: 10.3892/etm.2024.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic kidney disease (CKD) is a widespread health concern, which affects ~9.1% of the global population and 12-15% of individuals in upper-middle income countries. Notably, ~2% of patients with CKD progress to end-stage renal disease (ESRD), which leads to a substantial decline in the quality of life, an increased risk of mortality and significant financial burden. Patients with ESRD often still suffer from uremia and uremic syndromes, due to the accumulation of toxins between dialysis sessions and the inadequate removal of protein-bound toxins during dialysis. A number of these toxins are produced by the gut microbiota through the fermentation of dietary proteins or cholines. Furthermore, the gut microbial community serves a key role in maintaining metabolic and immune equilibrium in individuals. The present study aimed to investigate the gut microbiota patterns in individuals with type 2 diabetes mellitus (T2DM) and ESRD via quantitative PCR analysis of the 16S and 18S ribosomal RNA of selected members of the gut microbiota. Individuals affected by both T2DM and ESRD displayed distinctive features within their intestinal microbiota. Specifically, there were increased levels of Gammaproteobacteria observed in these patients, and all subjects exhibited a notably increased presence of Enterobacteriaceae compared with healthy individuals. This particular microbial community has established connections with the presence of inflammatory processes in the colon. Moreover, the elevated levels of Enterobacteriaceae may serve as an indicator of an imbalance in the intestinal microbiota, a condition known as dysbiosis. In addition, the Betaproteobacteria phylum was significantly more prevalent in the stool samples of patients with both T2DM and ESRD when compared with the control group. In conclusion, the present pilot study focused on gut microbiome alterations in T2DM and ESRD. Understanding the relationship between dysbiosis and CKD may identify new areas of research and therapeutic interventions aimed at modulating the gut microbiota to improve the health and outcomes of individuals with CKD and ESRD.
Collapse
Affiliation(s)
- Maria Trandafir
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Earth, Environmental and Life Sciences Division, Research Institute of University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- eBio-hub Research Center, National University of Science and Technology Politehnica Bucharest, 060811 Bucharest, Romania
| | - Octavian Savu
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- ‘N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 020042 Bucharest, Romania
| |
Collapse
|
16
|
Zhang Y, Zhong W, Liu W, Wang X, Lin G, Lin J, Fang J, Mou X, Jiang S, Huang J, Zhao W, Zheng Z. Uncovering specific taxonomic and functional alteration of gut microbiota in chronic kidney disease through 16S rRNA data. Front Cell Infect Microbiol 2024; 14:1363276. [PMID: 38707511 PMCID: PMC11066246 DOI: 10.3389/fcimb.2024.1363276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Wenting Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Gan Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Jiawen Lin
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junxuan Fang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiayuan Huang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
17
|
Huang HW, Chen MJ. Exploring the Preventive and Therapeutic Mechanisms of Probiotics in Chronic Kidney Disease through the Gut-Kidney Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8347-8364. [PMID: 38571475 PMCID: PMC11036402 DOI: 10.1021/acs.jafc.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Gut dysbiosis contributes to deterioration of chronic kidney disease (CKD). Probiotics are a potential approach to modulate gut microbiota and gut-derived metabolites to alleviate CKD progression. We aim to provide a comprehensive view of CKD-related gut dysbiosis and a critical perspective on probiotic function in CKD. First, this review addresses gut microbial alterations during CKD progression and the adverse effects associated with the changes in gut-derived metabolites. Second, we conduct a thorough examination of the latest clinical trials involving probiotic intervention to unravel critical pathways via the gut-kidney axis. Finally, we propose our viewpoints on limitations, further considerations, and future research prospects of probiotic adjuvant therapy in alleviating CKD progression. Enhancing our understanding of host-microbe interactions is crucial for gaining precise insights into the mechanisms through which probiotics exert their effects and identifying factors that influence the effectiveness of probiotics in developing strategies to optimize their use and enhance clinical outcomes.
Collapse
Affiliation(s)
- Hsiao-Wen Huang
- Department
of Animal Science and Technology, National
Taiwan University, No. 50, Ln. 155, Section 3, Keelung Road, Taipei 10673, Taiwan
| | - Ming-Ju Chen
- Department
of Animal Science and Technology, National
Taiwan University, No. 50, Ln. 155, Section 3, Keelung Road, Taipei 10673, Taiwan
- Center
for Biotechnology, National Taiwan University, No. 81, Changxing Street, Taipei 10672, Taiwan
| |
Collapse
|
18
|
Baghel K, Khan A, Kango N. Role of Synbiotics (Prebiotics and Probiotics) as Dietary Supplements in Type 2 Diabetes Mellitus Induced Health Complications. J Diet Suppl 2024; 21:677-708. [PMID: 38622882 DOI: 10.1080/19390211.2024.2340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Diabetes is a metabolic disorder whose prevalence has become a worrying condition in recent decades. Chronic diabetes can result in serious health conditions such as impaired kidney function, stroke, blindness, and myocardial infarction. Despite a variety of currently available treatments, cases of diabetes and its complications are on the rise. This review article provides a comprehensive account of the ameliorative effect of prebiotics and probiotics individually or in combination i.e. synbiotics on health complications induced by Type 2 Diabetes Mellitus (T2DM). Recent advances in the field underscore encouraging outcomes suggesting the consumption of synbiotics leads to favorable changes in the gut microbiota. These changes result in the production of bioactive metabolites such as short-chain fatty acids (crucial for lowering blood sugar levels), reducing inflammation, preventing insulin resistance, and encouraging the release of glucagon-like peptide-1 in the host. Notably, novel strategies supplementing synbiotics to support gut microbiota are gaining attraction as pivotal interventions in mitigating T2DM-induced health complications. Thus, by nurturing a symbiotic relationship between prebiotics and probiotics i.e. synbiotics, these interventions hold promise in reshaping the microbial landscape of the gut thereby offering a multifaceted approach to managing T2DM and its associated morbidities. Supporting the potential of synbiotics underscores a paradigm shift toward holistic and targeted interventions in diabetes management, offering prospects for improved outcomes and enhanced quality of life for affected individuals. Nevertheless, more research needs to be done to better understand the single and multispecies pre/pro and synbiotics in the prevention and management of T2DM-induced health complications.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Aamir Khan
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
19
|
Liu X, Mo J, Yang X, Peng L, Zeng Y, Zheng Y, Song G. Causal relationship between gut microbiota and chronic renal failure: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1356478. [PMID: 38633704 PMCID: PMC11021586 DOI: 10.3389/fmicb.2024.1356478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background Observational studies and some experimental investigations have indicated that gut microbiota are closely associated with the incidence and progression of chronic renal failure. However, the causal relationship between gut microbiota and chronic renal failure remains unclear. The present study employs a two-sample Mendelian randomization approach to infer the causal relationship between gut microbiota and chronic renal failure at the genetic level. This research aims to determine whether there is a causal effect of gut microbiota on the risk of chronic renal failure, aiming to provide new evidence to support targeted gut therapy for the treatment of chronic renal failure. Methods Employing genome-wide association study (GWAS) data from the public MiBioGen and IEU OpenGWAS platform, a two-sample Mendelian randomization analysis was conducted. The causal relationship between gut microbiota and chronic renal failure was inferred using five different methods: Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. The study incorporated sensitivity analyses that encompassed evaluations for pleiotropy and heterogeneity. Subsequently, the results of the Mendelian randomization analysis underwent a stringent correction for multiple testing, employing the False Discovery Rate method to enhance the validity of our findings. Results According to the results from the Inverse Variance Weighted method, seven bacterial genera show a significant association with the outcome variable chronic renal failure. Of these, Ruminococcus (gauvreauii group) (OR = 0.82, 95% CI = 0.71-0.94, p = 0.004) may act as a protective factor against chronic renal failure, while the genera Escherichia-Shigella (OR = 1.22, 95% CI = 1.08-1.38, p = 0.001), Lactococcus (OR = 1.1, 95% CI = 1.02-1.19, p = 0.013), Odoribacter (OR = 1.23, 95% CI = 1.03-1.49, p = 0.026), Enterorhabdus (OR = 1.14, 95% CI = 1.00-1.29, p = 0.047), Eubacterium (eligens group) (OR = 1.18, 95% CI = 1.02-1.37, p = 0.024), and Howardella (OR = 1.18, 95% CI = 1.09-1.28, p < 0.001) may be risk factors for chronic renal failure. However, after correction for multiple comparisons using False Discovery Rate, only the associations with Escherichia-Shigella and Howardella remain significant, indicating that the other genera have suggestive associations. Sensitivity analyses did not reveal any pleiotropy or heterogeneity. Conclusion Our two-sample Mendelian randomization study suggests that the genera Escherichia-Shigella and Howardella are risk factors for chronic renal failure, and they may serve as potential targets for future therapeutic interventions. However, the exact mechanisms of action are not yet clear, necessitating further research to elucidate their precise roles fully.
Collapse
Affiliation(s)
- Xingzheng Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinying Mo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuerui Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Peng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Youjia Zeng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yihou Zheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Gaofeng Song
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
20
|
Lee TH, Chen JJ, Wu CY, Lin TY, Hung SC, Yang HY. Immunosenescence, gut dysbiosis, and chronic kidney disease: Interplay and implications for clinical management. Biomed J 2024; 47:100638. [PMID: 37524304 PMCID: PMC10979181 DOI: 10.1016/j.bj.2023.100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Immunosenescence refers to the immune system changes observed in individuals over 50 years old, characterized by diminished immune response and chronic inflammation. Recent investigations have highlighted similar immune alterations in patients with reduced kidney function. The immune system and kidney function have been found to be closely interconnected. Studies have shown that as kidney function declines, both innate and adaptive immunity are affected. Chronic kidney disease (CKD) patients exhibit decreased levels of naive and regular T cells, as well as naive and memory B cells, while memory T cell counts increase. Furthermore, research suggests that CKD and end-stage kidney disease (ESKD) patients experience early thymic dysfunction and heightened homeostatic proliferation of naive T cells. In addition to reduced thymic T cell production, CKD patients display shorter telomeres in both CD4+ and CD8+ T cells. Declining kidney function induces uremic conditions, which alter the intestinal metabolic environment and promote pathogen overgrowth while reducing diversity. This dysbiosis-driven imbalance in the gut microbiota can result in elevated production of uremic toxins, which, in turn, enter the systemic circulation due to compromised gut barrier function under uremic conditions. The accumulation of gut-derived uremic toxins exacerbates local and systemic kidney inflammation. Immune-mediated kidney damage occurs due to the activation of immune cells in the intestine as a consequence of dysbiosis, leading to the production of cytokines and soluble urokinase-type plasminogen activator receptor (suPAR), thereby contributing to kidney inflammation. In this review, we delve into the fundamental mechanisms of immunosenescence in CKD, encompassing alterations in adaptive immunity, gut dysbiosis, and an overview of the clinical findings pertaining to immunosenescence.
Collapse
Affiliation(s)
- Tao Han Lee
- Nephrology Department, Chansn Hospital, Taoyuan, Taiwan
| | - Jia-Jin Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, And Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yun Lin
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
21
|
Wu K, Li Y, Ma K, Zhao W, Yao Z, Zheng Z, Sun F, Mu X, Liu Z, Zheng J. The microbiota and renal cell carcinoma. Cell Oncol (Dordr) 2024; 47:397-413. [PMID: 37878209 DOI: 10.1007/s13402-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/26/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for about 2% of cancer diagnoses and deaths worldwide. Recent studies emphasized the critical involvement of microbial populations in RCC from oncogenesis, tumor growth, and response to anticancer therapy. Microorganisms have been shown to be involved in various renal physiological and pathological processes by influencing the immune system function, metabolism of the host and pharmaceutical reactions. These findings have extended our understanding and provided more possibilities for the diagnostic or therapeutic development of microbiota, which could function as screening, prognostic, and predictive biomarkers, or be manipulated to prevent RCC progression, boost anticancer drug efficacy and lessen the side effects of therapy. This review aims to present an overview of the roles of microbiota in RCC, including pertinent mechanisms in microbiota-related carcinogenesis, the potential use of the microbiota as RCC biomarkers, and the possibility of modifying the microbiota for RCC prevention or treatment. According to these scientific findings, the clinical translation of microbiota is expected to improve the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaorong Li
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangli Ma
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixian Yao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junhua Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Kondo M, Torisu T, Nagasue T, Shibata H, Umeno J, Kawasaki K, Fujioka S, Matsuno Y, Moriyama T, Kitazono T. Duodenal microbiome in chronic kidney disease. Clin Exp Nephrol 2024; 28:263-272. [PMID: 38095826 DOI: 10.1007/s10157-023-02434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND The intestinal microbiome is involved in the pathogenesis of chronic kidney disease (CKD). Despite its importance, the microbiome of the small intestinal mucosa has been little studied due to sampling difficulties, and previous studies have mainly focused on fecal sources for microbiome studies. We aimed to characterize the small intestinal microbiome of CKD patients by studying the microbiome collected from duodenal and fecal samples of CKD patients and healthy controls. METHODS Overall, 28 stage 5 CKD patients and 21 healthy participants were enrolled. Mucosal samples were collected from the deep duodenum during esophagogastroduodenoscopy and fecal samples were also collected. The 16S ribosomal RNA gene sequencing using Qiime2 was used to investigate and compare the microbial structure and metagenomic function of the duodenal and fecal microbiomes. RESULTS The duodenal flora of CKD patients had decreased alpha diversity compared with the control group. On the basis of taxonomic composition, Veillonella and Prevotella were significantly reduced in the duodenal flora of CKD patients. The tyrosine and tryptophan metabolic pathways were enhanced in the urea toxin-related metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes database. CONCLUSION The small intestinal microbiome in CKD patients is significantly altered, indicating that increased intestinal permeability and production of uremic toxin may occur in the upper small intestine of CKD patients.
Collapse
Affiliation(s)
- Masahiro Kondo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Tomohiro Nagasue
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Shibata
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kawasaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shin Fujioka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
- International Medical Department, Kyushu University Hospital, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
23
|
Tsai CW, Huang HW, Lee YJ, Chen MJ. Investigating the Efficacy of Kidney-Protective Lactobacillus Mixture-Containing Pet Treats in Feline Chronic Kidney Disease and Its Possible Mechanism. Animals (Basel) 2024; 14:630. [PMID: 38396596 PMCID: PMC10886156 DOI: 10.3390/ani14040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Microbiota-based strategies are a novel auxiliary therapeutic and preventative way of moderating chronic kidney disease (CKD). Lactobacillus mixture (Lm) was previously demonstrated to exert a renal-protective function in the CKD mice model. The efficacy of probiotics in pet foods is a relatively new area of study, and thus verifying the potential health benefits is necessary. This study evaluated the efficacy of Lm treats in feline CKD and elucidated the mechanisms underlying host-microbe interactions. CKD cats (2 and 3 stages) were administrated probiotic pet treats daily (10 g) for 8 weeks. The results demonstrated that during the eight weeks of Lm administration, creatinine was reduced or maintained in all cats with CKD. Similarly, gut-derived uremic toxin (GDUT), indoxyl sulfate (IS), were potential clinical significance in IS after Lm treatment (confidence intervals = 90%). The life quality of the cats also improved. Feline gut microbiome data, metabolic functional pathway, and renal function indicator analyses revealed the possible mechanisms involved in modulating CKD feline microbial composition. Further regulation of the microbial functions in amino acid metabolism after Lm administration contributed to downregulating deleterious GDUTs. The current study provides potential adjuvant therapeutic insights into probiotic pet foods or treats for pets with CKD.
Collapse
Affiliation(s)
- Ching-Wen Tsai
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (C.-W.T.); (H.-W.H.)
| | - Hsiao-Wen Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (C.-W.T.); (H.-W.H.)
| | - Ya-Jane Lee
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei 106328, Taiwan;
- Department of Internal Medicine, National Taiwan University Veterinary Hospital, Taipei 106319, Taiwan
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (C.-W.T.); (H.-W.H.)
- Center for Biotechnology, National Taiwan University, Taipei 106038, Taiwan
| |
Collapse
|
24
|
Gao Q, Li D, Wang Y, Zhao C, Li M, Xiao J, Kang Y, Lin H, Wang N. Analysis of intestinal flora and cognitive function in maintenance hemodialysis patients using combined 16S ribosome DNA and shotgun metagenome sequencing. Aging Clin Exp Res 2024; 36:28. [PMID: 38334873 PMCID: PMC10857965 DOI: 10.1007/s40520-023-02645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment is widely prevalent in maintenance hemodialysis (MHD) patients, and seriously affects their quality of life. The intestinal flora likely regulates cognitive function, but studies on cognitive impairment and intestinal flora in MHD patients are lacking. METHODS MHD patients (36) and healthy volunteers (18) were evaluated using the Montreal Cognitive Function Scale, basic clinical data, and 16S ribosome DNA (rDNA) sequencing. Twenty MHD patients and ten healthy volunteers were randomly selected for shotgun metagenomic analysis to explore potential metabolic pathways of intestinal flora. Both16S rDNA sequencing and shotgun metagenomic sequencing were conducted on fecal samples. RESULTS Roseburia were significantly reduced in the MHD group based on both 16S rDNA and shotgun metagenomic sequencing analyses. Faecalibacterium, Megamonas, Bifidobacterium, Parabacteroides, Collinsella, Tyzzerella, and Phascolarctobacterium were positively correlated with cognitive function or cognitive domains. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included oxidative phosphorylation, photosynthesis, retrograde endocannabinoid signaling, flagellar assembly, and riboflavin metabolism. CONCLUSION Among the microbiota, Roseburia may be important in MHD patients. We demonstrated a correlation between bacterial genera and cognitive function, and propose possible mechanisms.
Collapse
Affiliation(s)
- Qiuyi Gao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dianshi Li
- Centre for Empirical Legal Studies, Faculty of Law, University of Macau, Macau, China
| | - Yue Wang
- Department of Nephrology, Binzhou Medical University Affiliated Shengli Oilfield Central Hospital, Binzhou, China
| | - Chunhui Zhao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingshuai Li
- School of Graduate, Dalian Medical University, Dalian, China
| | - Jingwen Xiao
- School of Graduate, Dalian Medical University, Dalian, China
| | - Yan Kang
- School of Graduate, Dalian Medical University, Dalian, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Nan Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
25
|
Bao WH, Yang WL, Su CY, Lu XH, He L, Zhang AH. Relationship between gut microbiota and vascular calcification in hemodialysis patients. Ren Fail 2023; 45:2148538. [PMID: 36632746 PMCID: PMC9848239 DOI: 10.1080/0886022x.2022.2148538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Vascular calcification (VC) is an independent risk factor for cardiovascular mortality in end-stage renal disease (ESRD) patients. The pathogenesis of VC is complicated and unclear. Uremic toxins produced by gut microbiota can promote VC. This study aims to identify the differences in gut microbiota between the different VC groups and the main bacteria associated with VC in hemodialysis (HD) patients in an attempt to open up new preventive and therapeutic approaches and define the probable mechanism for VC in HD patients in the future. METHODS A total of 73 maintenance HD patients were enrolled in this cross-sectional study. According to the abdominal aortic calcification (AAC) scores, the participants were divided into the high AAC score group and the low AAC score group. High-throughput sequencing of the gut microbiota was performed and the results were evaluated by alpha diversity, beta diversity, species correlation, and model predictive analyses. RESULTS The prevalence of VC was 54.79% (40/73) in the study. The majority of phyla in the two groups were the same, including Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota. The microbial diversity in the high AAC score group had a decreasing trend (p = 0.050), and the species abundance was significantly lower (p = 0.044) than that in the low AAC score group. The HD patients with high AAC scores showed an increased abundance of Proteobacteria and decreased abundances of Bacteroidota and Synergistota at the phylum level; increased abundances of Escherichia-Shigella, Ruminococcus_gnavus_group, and Lactobacillus; and decreased abundances of Ruminococcus and Lachnospiraceae_NK4A136_group at the genus level (p<0.05). Escherichia-Shigella and Ruminococcus_gnavus_group were positively correlated with VC, and Ruminococcus, Adlercreutzia, Alistipes, and norank_f__Ruminococcaceae were negatively correlated with VC. Escherichia-Shigella had the greatest influence on VC in HD patients, followed by Ruminococcus and Butyricimonas. CONCLUSIONS Our results provide clinical evidence that there was a difference in gut microbiota between the different VC groups in HD patients. Escherichia-Shigella, a lipopolysaccharide (LPS)-producing bacterium, was positively correlated with VC and had the greatest influence on VC. Ruminococcus, a short-chain fatty acid (SCFA)-producing bacterium, was negatively correlated with VC and had the second strongest influence on VC in HD patients. The underlying mechanism is worth studying. These findings hint at a new therapeutic target.
Collapse
Affiliation(s)
- Wen-Han Bao
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Wen-Ling Yang
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Chun-Yan Su
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Xin-Hong Lu
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Lian He
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China,CONTACT Lian He Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Ai-Hua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, PR China,Ai-Hua Zhang Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, PR China
| |
Collapse
|
26
|
Cao M, Zheng S, Zhang W, Hu G. Progress in the study of nutritional status and selenium in dialysis patients. Ann Med 2023; 55:2197296. [PMID: 37038353 PMCID: PMC10101670 DOI: 10.1080/07853890.2023.2197296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/25/2023] [Indexed: 04/12/2023] Open
Abstract
Malnutrition is very common in patients with chronic kidney disease, especially in those on maintenance dialysis. Malnutrition is one of the major factors affecting survival and death of dialysis patients, and reducing their activity tolerance and immunity. There are numerous and interacting risk factors for malnutrition, such as reduced nutritional intake, increased energy expenditure, hormonal disorders, and inflammation. Selenium, in the form of selenoproteins, is involved in many physiological processes in the body and plays an important role in maintaining redox homeostasis. Oxidative stress and infection are very common in dialysis patients, and selenium levels in dialysis patients are significantly lower than those in the healthy population. It has been shown that there is a correlation between selenium levels in hemodialysis patients and their nutrition-related indicators, and that selenium supplementation may improve malnutrition in patients. However, further studies are needed to support this conclusion and there is a lack of basic research to further characterize the potential mechanisms by which selenium may improve malnutrition in dialysis patients. The purpose of this review is to provide a comprehensive overview of factors associated with malnutrition in dialysis patients and to describe the progress of research on nutritional status and selenium levels in dialysis patients.
Collapse
Affiliation(s)
- Meiran Cao
- Department of Nephrology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Shuai Zheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Wenhua Zhang
- Department of Nephrology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Guicai Hu
- Department of Nephrology, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
27
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. Jiangtang Decoction Ameliorates Diabetic Kidney Disease Through the Modulation of the Gut Microbiota. Diabetes Metab Syndr Obes 2023; 16:3707-3725. [PMID: 38029001 PMCID: PMC10674671 DOI: 10.2147/dmso.s441457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to elucidate the impact of Jiangtang decoction (JTD) on diabetic kidney disease (DKD) and its association with alterations in the gut microbiota. Methods Using a diabetic mouse model (KK-Ay mice), daily administration of JTD for eight weeks was undertaken. Weekly measurements of body weight and blood glucose were performed, while kidney function, uremic toxins, inflammation factors, and fecal microbiota composition were assessed upon sacrifice. Ultra-structural analysis of kidney tissue was conducted to observe the pathological changes. Results The study findings demonstrated that JTD improve metabolism, kidney function, uremic toxins and inflammation, while also exerting a modulatory effect on the gut microbiota. Specifically, the genera Rikenella, Lachnoclostridium, and unclassified_c_Bacilli exhibited significantly increased abundance following JTD treatment, accompanied by reduced abundance of norank_f_Lachnospiraceae compared to the model group. Importantly, Rikenella and unclassified_c_Bacilli demonstrated negative correlations with urine protein levels. Lachnoclostridium and norank_f_Lachnospiraceae were positively associated with creatinine (Cr), indoxyl sulfate (IS) and interleukin (IL)-6. Moreover, norank_f_Lachnospiraceae exhibited positive associations with various indicators of DKD severity, including weight, blood glucose, urea nitrogen (UN), kidney injury molecule-1 (KIM-1) levels, trimethylamine-N-oxide (TMAO), p-cresyl sulfate (pCS), nucleotide-binding oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) and IL-17A production. Conclusion These findings suggested that JTD possess the ability to modulate the abundance of Rikenella, Lachnoclostridium, unclassified_c_Bacilli and norank_f_Lachnospiraceae within the gut microbiota. This modulation, in turn, influenced metabolic processes, kidney function, uremic toxin accumulation, and inflammation, ultimately contributing to the amelioration of DKD.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
28
|
Mo Z, Wang J, Meng X, Li A, Li Z, Que W, Wang T, Tarnue KF, Ma X, Liu Y, Yan S, Wu L, Zhang R, Pei J, Wang X. The Dose-Response Effect of Fluoride Exposure on the Gut Microbiome and Its Functional Pathways in Rats. Metabolites 2023; 13:1159. [PMID: 37999254 PMCID: PMC10672837 DOI: 10.3390/metabo13111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic activities within the gut microbiome are intimately linked to human health and disease, especially within the context of environmental exposure and its potential ramifications. Perturbations within this microbiome, termed "gut microbiome perturbations", have emerged as plausible intermediaries in the onset or exacerbation of diseases following environmental chemical exposures, with fluoride being a compound of particular concern. Despite the well-documented adverse impacts of excessive fluoride on various human physiological systems-ranging from skeletal to neurological-the nuanced dynamics between fluoride exposure, the gut microbiome, and the resulting dose-response relationship remains a scientific enigma. Leveraging the precision of 16S rRNA high-throughput sequencing, this study meticulously examines the ramifications of diverse fluoride concentrations on the gut microbiome's composition and functional capabilities within Wistar rats. Our findings indicate a profound shift in the intestinal microbial composition following fluoride exposure, marked by a dose-dependent modulation in the abundance of key genera, including Pelagibacterium, Bilophila, Turicibacter, and Roseburia. Moreover, discernible alterations were observed in critical functional and metabolic pathways of the microbiome, such as D-lyxose ketol-isomerase and DNA polymerase III subunit gamma/tau, underscoring the broad-reaching implications of fluoride exposure. Intriguingly, correlation analyses elucidated strong associations between specific bacterial co-abundance groups (CAGs) and these shifted metabolic pathways. In essence, fluoride exposure not only perturbs the compositional equilibrium of the gut microbiota but also instigates profound shifts in its metabolic landscape. These intricate alterations may provide a mechanistic foundation for understanding fluoride's potential toxicological effects mediated via gut microbiome modulation.
Collapse
Affiliation(s)
- Zhe Mo
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jian Wang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xinyue Meng
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Ailin Li
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Zhe Li
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Wenjun Que
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Tuo Wang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Korto Fatti Tarnue
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xu Ma
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Ying Liu
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Shirui Yan
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Lei Wu
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Rui Zhang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Junrui Pei
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xiaofeng Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
29
|
Ren F, Jin Q, Jin Q, Qian Y, Ren X, Liu T, Zhan Y. Genetic evidence supporting the causal role of gut microbiota in chronic kidney disease and chronic systemic inflammation in CKD: a bilateral two-sample Mendelian randomization study. Front Immunol 2023; 14:1287698. [PMID: 38022507 PMCID: PMC10652796 DOI: 10.3389/fimmu.2023.1287698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The association of gut microbiota (GM) and chronic kidney disease (CKD), and the relevancy of GM and chronic systemic inflammation in CKD, were revealed on the basis of researches on gut-kidney axis in previous studies. However, their causal relationships are still unclear. Objective To uncover the causal relationships between GM and CKD, as well as all known GM from eligible statistics and chronic systemic inflammation in CKD, we performed two-sample Mendelian randomization (MR) analysis. Materials and methods We acquired the latest and most comprehensive summary statistics of genome-wide association study (GWAS) from the published materials of GWAS involving GM, CKD, estimated glomerular filtration rate (eGFR), c-reactive protein (CRP) and urine albumin creatine ratio (UACR). Subsequently, two-sample MR analysis using the inverse-variance weighted (IVW) method was used to determine the causality of exposure and outcome. Based on it, additional analysis and sensitivity analysis verified the significant results, and the possibility of reverse causality was also assessed by reverse MR analysis during this study. Results At the locus-wide significance threshold, IVW method and additional analysis suggested that the protective factors for CKD included family Lachnospiraceae (P=0.049), genus Eubacterium eligens group (P=0.002), genus Intestinimonas (P=0.009), genus Streptococcu (P=0.003) and order Desulfovibrionales (P=0.001). Simultaneously, results showed that genus LachnospiraceaeUCG010 (P=0.029) was a risk factor for CKD. Higher abundance of genus Desulfovibrio (P=0.048) was correlated with higher eGFR; higher abundance of genus Parasutterella (P=0.018) was correlated with higher UACR; higher abundance of class Negativicutes (P=0.003), genus Eisenbergiella (P=0.021), order Selenomonadales (P=0.003) were correlated with higher CRP levels; higher abundance of class Mollicutes (0.024), family Prevotellaceae (P=0.030), phylum Tenericutes (P=0.024) were correlated with lower levels of CRP. No significant pleiotropy or heterogeneity was found in the results of sensitivity analysis, and no significant causality was found in reverse MR analysis. Conclusion This study highlighted associations within gut-kidney axis, and the causal relationships between GM and CKD, as well as GM and chronic systemic inflammation in CKD were also revealed. Meanwhile, we expanded specific causal gut microbiota through comprehensive searches. With further studies for causal gut microbiota, they may have the potential to be new biomarkers for targeted prevention of CKD and chronic systemic inflammation in CKD.
Collapse
Affiliation(s)
- Feihong Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiubai Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiyun Qian
- Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xuelei Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Liu X, Wang X, Zhang P, Fang Y, Liu Y, Ding Y, Zhang W. Intestinal homeostasis in the gut-lung-kidney axis: a prospective therapeutic target in immune-related chronic kidney diseases. Front Immunol 2023; 14:1266792. [PMID: 38022571 PMCID: PMC10646503 DOI: 10.3389/fimmu.2023.1266792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In recent years, the role of intestinal homeostasis in health has received increasing interest, significantly improving our understanding of the complex pathophysiological interactions of the gut with other organs. Microbiota dysbiosis, impaired intestinal barrier, and aberrant intestinal immunity appear to contribute to the pathogenesis of immune-related chronic kidney diseases (CKD). Meanwhile, the relationship between the pathological changes in the respiratory tract (e.g., infection, fibrosis, granuloma) and immune-related CKD cannot be ignored. The present review aimed to elucidate the new underlying mechanism of immune-related CKD. The lungs may affect kidney function through intestinal mediation. Communication is believed to exist between the gut and lung microbiota across long physiological distances. Following the inhalation of various pathogenic factors (e.g., particulate matter 2.5 mum or less in diameter, pathogen) in the air through the mouth and nose, considering the anatomical connection between the nasopharynx and lungs, gut microbiome regulates oxidative stress and inflammatory states in the lungs and kidneys. Meanwhile, the intestine participates in the differentiation of T cells and promotes the migration of various immune cells to specific organs. This better explain the occurrence and progression of CKD caused by upper respiratory tract precursor infection and suggests the relationship between the lungs and kidney complications in some autoimmune diseases (e.g., anti-neutrophil cytoplasm antibodies -associated vasculitis, systemic lupus erythematosus). CKD can also affect the progression of lung diseases (e.g., acute respiratory distress syndrome and chronic obstructive pulmonary disease). We conclude that damage to the gut barrier appears to contribute to the development of immune-related CKD through gut-lung-kidney interplay, leading us to establish the gut-lung-kidney axis hypothesis. Further, we discuss possible therapeutic interventions and targets. For example, using prebiotics, probiotics, and laxatives (e.g., Rhubarb officinale) to regulate the gut ecology to alleviate oxidative stress, as well as improve the local immune system of the intestine and immune communication with the lungs and kidneys.
Collapse
Affiliation(s)
- Xinyin Liu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Department of Traditional Chinese Medicine, Jiande First People’s Hospital, Jiande, Hangzhou, China
| | - Xiaoran Wang
- Department of Nephrology, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Peipei Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yiwen Fang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyan Liu
- Department of Geriatric, Zhejiang Aged Care Hospital, Hangzhou, China
| | - Yueyue Ding
- Department of Geriatric, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wen Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
31
|
Yang K, Du G, Liu J, Zhao S, Dong W. Gut microbiota and neonatal acute kidney injury biomarkers. Pediatr Nephrol 2023; 38:3529-3547. [PMID: 36997773 DOI: 10.1007/s00467-023-05931-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
One of the most frequent issues in newborns is acute kidney injury (AKI), which can lengthen their hospital stay or potentially raise their chance of dying. The gut-kidney axis establishes a bidirectional interplay between gut microbiota and kidney illness, particularly AKI, and demonstrates the importance of gut microbiota to host health. Since the ability to predict neonatal AKI using blood creatinine and urine output as evaluation parameters is somewhat constrained, a number of interesting biomarkers have been developed. There are few in-depth studies on the relationships between these neonatal AKI indicators and gut microbiota. In order to gain fresh insights into the gut-kidney axis of neonatal AKI, this review is based on the gut-kidney axis and describes relationships between gut microbiota and neonatal AKI biomarkers.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Guoxia Du
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
32
|
Zhang P, Wang X, Li S, Cao X, Zou J, Fang Y, Shi Y, Xiang F, Shen B, Li Y, Fang B, Zhang Y, Guo R, Lv Q, Zhang L, Lu Y, Wang Y, Yu J, Xie Y, Wang R, Chen X, Yu J, Zhang Z, He J, Zhan J, Lv W, Nie Y, Cai J, Xu X, Hu J, Zhang Q, Gao T, Jiang X, Tan X, Xue N, Wang Y, Ren Y, Wang L, Zhang H, Ning Y, Chen J, Zhang L, Jin S, Ren F, Ehrlich SD, Zhao L, Ding X. Metagenome-wide analysis uncovers gut microbial signatures and implicates taxon-specific functions in end-stage renal disease. Genome Biol 2023; 24:226. [PMID: 37828586 PMCID: PMC10571392 DOI: 10.1186/s13059-023-03056-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The gut microbiota plays a crucial role in regulating host metabolism and producing uremic toxins in patients with end-stage renal disease (ESRD). Our objective is to advance toward a holistic understanding of the gut ecosystem and its functional capacity in such patients, which is still lacking. RESULTS Herein, we explore the gut microbiome of 378 hemodialytic ESRD patients and 290 healthy volunteers from two independent cohorts via deep metagenomic sequencing and metagenome-assembled-genome-based characterization of their feces. Our findings reveal fundamental alterations in the ESRD microbiome, characterized by a panel of 348 differentially abundant species, including ESRD-elevated representatives of Blautia spp., Dorea spp., and Eggerthellaceae, and ESRD-depleted Prevotella and Roseburia species. Through functional annotation of the ESRD-associated species, we uncover various taxon-specific functions linked to the disease, such as antimicrobial resistance, aromatic compound degradation, and biosynthesis of small bioactive molecules. Additionally, we show that the gut microbial composition can be utilized to predict serum uremic toxin concentrations, and based on this, we identify the key toxin-contributing species. Furthermore, our investigation extended to 47 additional non-dialyzed chronic kidney disease (CKD) patients, revealing a significant correlation between the abundance of ESRD-associated microbial signatures and CKD progression. CONCLUSION This study delineates the taxonomic and functional landscapes and biomarkers of the ESRD microbiome. Understanding the role of gut microbiota in ESRD could open new avenues for therapeutic interventions and personalized treatment approaches in patients with this condition.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xifan Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Liwen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jinbo Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yeqing Xie
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jiawei Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Wenlv Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yuxin Nie
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jiachang Hu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Ting Gao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaotian Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xiao Tan
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yimei Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yimei Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Li Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Stanislav Dusko Ehrlich
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3RX, UK.
| | - Liang Zhao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China.
| |
Collapse
|
33
|
Shi X, Li Z, Lin W, Shi W, Hu R, Chen G, Li X, Li X, Zhang S. Altered Intestinal Microbial Flora and Metabolism in Patients with Idiopathic Membranous Nephropathy. Am J Nephrol 2023; 54:451-470. [PMID: 37793354 DOI: 10.1159/000533537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/31/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Dysbiosis of the intestinal microbiome and related metabolites have been observed in chronic kidney disease, yet their roles in idiopathic membranous nephropathy (IMN) are poorly understood. METHODS In this study, we describe the variation of intestinal bacteria and fecal metabolites in patients with IMN in Chinese population. Stool samples were collected from 41 IMN patients at the beginning of diagnosis confirmation and 41 gender- and age-matched healthy control (HC). Microbial communities are investigated by sequencing of 16S rRNA genes and functional profiles predicted using Tax4Fun, and the correlation between intestinal bacteria and IMN clinical characteristics is also analyzed. Untargeted metabolomic analysis is performed to explore the relationship between colon's microbiota and fecal metabolites. RESULTS IMN gastrointestinal microbiota demonstrates lower richness and diversity compared to HC, and exhibits a marked taxonomic and inferred functional dysbiosis when compared to HC. Some genera are closely related to the clinical parameters, such as Citrobacter and Akkermansia. Twenty characteristic microbial biomarkers are selected to establish a disease prediction model with a diagnostic accuracy of 93.53%. Fecal metabolomics shows that tryptophan metabolism is reduced in IMN patients but uremic toxin accumulation in feces is not noticeable. Fecal microbiota transplantation demonstrates that gut dysbiosis impairs gut permeability in microbiota-depleted mice and induces NOD-like receptor activation in the kidneys. CONCLUSIONS Clarifying the changes in intestinal microbiota in IMN patients will help further know the pathogenesis of this disease, and microbiota-targeted biomarkers will provide a potentially powerful tool for diagnosing and treating IMN.
Collapse
Affiliation(s)
- Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weifeng Lin
- Department of Nephropathy, Peking University Third Hospital, Beijing, China
| | - Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Rongrong Hu
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Chen
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuemei Li
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuewang Li
- Department of Nephropathy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Amini Khiabani S, Haghighat S, Tayebi Khosroshahi H, Asgharzadeh M, Samadi Kafil H. Diversity of Bacteroidaceae family in gut microbiota of patients with chronic kidney disease and end stage renal disease. Health Promot Perspect 2023; 13:237-242. [PMID: 37808937 PMCID: PMC10558969 DOI: 10.34172/hpp.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 10/10/2023] Open
Abstract
Background Human intestine microbiota are known to be directly and indirectly altered during some diseases such as kidney complications. Bacteroides is considered as the main and the most abundant phylum among human gut microbiota, which has been classified as enterotype 1. This study aimed to assess the abundance of Bacteroides spp. in fecal flora of end-stage renal disease (ESRD) and chronic kidney disease (CKD) patients and compare it with the Bacteroides composition among fecal flora of healthy individual. Methods Fresh fecal samples were collected from 20 CKD/ESRD patients and 20 healthy individual without any kidney complications. The pure microbial DNA was extracted by QIAamp Stool Mini Kit from stool samples. MiSeq system was used to analyze the intestinal composition by next generation sequencing method. Results A number of 651 bacterial strains were isolated and identified from 40 fecal samples of both patients and healthy groups. Bioinformatics analysis defined 18 different types of Bacteroides species which included 2.76% of all strains. Statistical analysis showed no significant difference between study groups (P>0.05). In both healthy and patient groups three species including B. dorei, B. uniformis, and B. ovatus have allocated the most abundance to themselves. The lowest abundance was related to B. eggerthii, A. furcosa and B. barnesiae among CKD/ESRD patients and A. furcosa, B. barnesiae, and B. coprocola had the lowest abundance among healthy people. Conclusion This study indicates despite all previous evidence of Bacteroides role in gut microbiota, it had no different distribution between healthy persons and CKD/ESRD patients.
Collapse
Affiliation(s)
- Siamak Amini Khiabani
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Tayebi Khosroshahi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Pantazi AC, Kassim MAK, Nori W, Tuta LA, Mihai CM, Chisnoiu T, Balasa AL, Mihai L, Lupu A, Frecus CE, Lupu VV, Chirila SI, Badescu AG, Hangan LT, Cambrea SC. Clinical Perspectives of Gut Microbiota in Patients with Chronic Kidney Disease and End-Stage Kidney Disease: Where Do We Stand? Biomedicines 2023; 11:2480. [PMID: 37760920 PMCID: PMC10525496 DOI: 10.3390/biomedicines11092480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) plays a vital role in human health, with increasing evidence linking its imbalance to chronic kidney disease and end-stage kidney disease. Although the exact methods underlying kidney-GM crosstalk are not fully understood, interventions targeting GM were made and lay in three aspects: diagnostic, predictive, and therapeutic interventions. While these interventions show promising results in reducing uremic toxins and inflammation, challenges remain in the form of patient-specific GM variability, potential side effects, and safety concerns. Our understanding of GMs role in kidney disease is still evolving, necessitating further research to elucidate the causal relationship and mechanistic interactions. Personalized interventions focusing on specific GM signatures could enhance patient outcomes. However, comprehensive clinical trials are needed to validate these approaches' safety, efficacy, and feasibility.
Collapse
Affiliation(s)
| | | | - Wassan Nori
- College of Medicine, Mustansiriyah University, Baghdad 10052, Iraq;
| | - Liliana Ana Tuta
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Corina Elena Frecus
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Sergiu Ioachim Chirila
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | | | - Laurentiu-Tony Hangan
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | - Simona Claudia Cambrea
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| |
Collapse
|
36
|
Gharaie S, Lee K, Newman-Rivera AM, Xu J, Patel SK, Gooya M, Arend LJ, Raj DS, Pluznick J, Parikh C, Noel S, Rabb H. Microbiome modulation after severe acute kidney injury accelerates functional recovery and decreases kidney fibrosis. Kidney Int 2023; 104:470-491. [PMID: 37011727 DOI: 10.1016/j.kint.2023.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Targeting gut microbiota has shown promise to prevent experimental acute kidney injury (AKI). However, this has not been studied in relation to accelerating recovery and preventing fibrosis. Here, we found that modifying gut microbiota with an antibiotic administered after severe ischemic kidney injury in mice, particularly with amoxicillin, accelerated recovery. These indices of recovery included increased glomerular filtration rate, diminution of kidney fibrosis, and reduction of kidney profibrotic gene expression. Amoxicillin was found to increase stool Alistipes, Odoribacter and Stomatobaculum species while significantly depleting Holdemanella and Anaeroplasma. Specifically, amoxicillin treatment reduced kidney CD4+T cells, interleukin (IL)-17 +CD4+T cells, and tumor necrosis factor-α double negative T cells while it increased CD8+T cells and PD1+CD8+T cells. Amoxicillin also increased gut lamina propria CD4+T cells while decreasing CD8+T and IL-17+CD4+T cells. Amoxicillin did not accelerate repair in germ-free or CD8-deficient mice, demonstrating microbiome and CD8+T lymphocytes dependence for amoxicillin protective effects. However, amoxicillin remained effective in CD4-deficient mice. Fecal microbiota transplantation from amoxicillin-treated to germ-free mice reduced kidney fibrosis and increased Foxp3+CD8+T cells. Amoxicillin pre-treatment protected mice against kidney bilateral ischemia reperfusion injury but not cisplatin-induced AKI. Thus, modification of gut bacteria with amoxicillin after severe ischemic AKI is a promising novel therapeutic approach to accelerate recovery of kidney function and mitigate the progression of AKI to chronic kidney disease.
Collapse
Affiliation(s)
- Sepideh Gharaie
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Kyungho Lee
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Andrea M Newman-Rivera
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jiaojiao Xu
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Shishir Kumar Patel
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Mahta Gooya
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Lois J Arend
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Dominic S Raj
- Department of Medicine, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Jennifer Pluznick
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Chirag Parikh
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Sanjeev Noel
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
37
|
Tran NT, Chaidee A, Surapinit A, Yingklang M, Roytrakul S, Charoenlappanit S, Pinlaor P, Hongsrichan N, Nguyen Thi H, Anutrakulchai S, Cha'on U, Pinlaor S. Strongyloides stercoralis infection reduces Fusicatenibacter and Anaerostipes in the gut and increases bacterial amino-acid metabolism in early-stage chronic kidney disease. Heliyon 2023; 9:e19859. [PMID: 37809389 PMCID: PMC10559256 DOI: 10.1016/j.heliyon.2023.e19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Understanding gut bacterial composition and proteome changes in patients with early-stage chronic kidney disease (CKD) could lead to better methods of controlling the disease progression. Here, we investigated the gut microbiome and microbial functions in patients with S. stercoralis infection (strongyloidiasis) and early-stage CKD. Thirty-five patients with early stages (1-3) of CKD were placed in two groups matched for population characteristics and biochemical parameters, 12 patients with strongyloidiasis in one group and 23 uninfected patients in the other. From every individual, a sample of their feces was obtained and processed for 16S rRNA sequencing and metaproteomic analysis using tandem liquid chromatography-mass spectrometry (LC-MS/MS). Strongyloides stercoralis infection per se did not significantly alter gut microbial diversity. However, certain genera (Bacteroides, Faecalibacterium, Fusicatenibacter, Sarcina, and Anaerostipes) were significantly more abundant in infection-free CKD patients than in infected individuals. The genera Peptoclostridium and Catenibacterium were enriched in infected patients. Among the significantly altered genera, Fusicatenibacter and Anaerostipes were the most correlated with renal parameters. The relative abundance of members of the genus Fusicatenibacter was moderately positively correlated with estimated glomerular filtration rate (eGFR) (r = 0.335, p = 0.049) and negatively with serum creatinine (r = -0.35, p = 0.039). Anaerostipes, on the other hand, showed a near-significant positive correlation with eGFR (r = 0.296, p = 0.084). Individuals with S. stercoralis infection had higher levels of bacterial proteins involved in amino-acid metabolism. Analysis using STITCH predicted that bacterial amino-acid metabolism may also be involved in the production of colon-derived uremic toxin (indole), a toxic substance known to promote CKD. Strongyloides stercoralis infection is, therefore, associated with reduced abundance of Fusicatenibacter and Anaerostipes (two genera possibly beneficial for kidney function) and with increased bacterial amino-acid metabolism in the early-stages of CKD, potentially producing uremic toxin. This study provides useful information for prevention of progression of CKD beyond the early stages.
Collapse
Affiliation(s)
- Na T.D. Tran
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medical Laboratory Science, Danang University of Medical Technology and Pharmacy, Danang, Viet Nam
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Achirawit Surapinit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sitiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Hai Nguyen Thi
- Department of Parasitology, Faculty of Basic Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Viet Nam
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha'on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
38
|
Revel-Muroz A, Akulinin M, Shilova P, Tyakht A, Klimenko N. Stability of human gut microbiome: Comparison of ecological modelling and observational approaches. Comput Struct Biotechnol J 2023; 21:4456-4468. [PMID: 37745638 PMCID: PMC10511340 DOI: 10.1016/j.csbj.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
The gut microbiome plays a pivotal role in the human body, and perturbations in its composition have been linked to various disorders. Stability is an essential property of a healthy human gut microbiome, which allows it to maintain its functional richness under the external influences. This property has been explored through two distinct methodologies - mathematical modelling based on ecological principles and statistical analysis drawn from observations in interventional studies. Here we conducted a meta-analysis aimed to compare the two approaches utilising the data from 9 interventional and time series studies encompassing 3512 gut microbiome profiles obtained via 16S rRNA gene sequencing. By employing the previously published compositional Lotka-Volterra method, we modelled the dynamics of the microbial community and evaluated ecological stability measures. These measures were compared to those based on observed microbiome changes. There was a substantial correlation between the outcomes of the two approaches. Particularly, local stability assessed within the ecological paradigm was positively correlated with observational stability measures accounting for the compositional nature of microbiome data. Additionally, we were able to reproduce the previously reported inverse relationship between the community's robustness to microorganism loss and local stability, attributed to the distinct impacts of coefficient characterising the network decomposition on these two stability assessments. Our findings demonstrate harmonisation between the ecological and observational approaches to microbiome analysis, advancing the understanding of healthy gut microbiome concept. This paves the way to develop efficient microbiome-targeting interventions for disease prevention and treatment.
Collapse
Affiliation(s)
- Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Akulinin
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
| | - Polina Shilova
- Department of Biology, Moscow State University, 1–12 Leninskie Gory, Moscow, Russia
| | - Alexander Tyakht
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| |
Collapse
|
39
|
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212. [PMID: 37596634 PMCID: PMC10436623 DOI: 10.1186/s12964-023-01219-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract. The absorption of SCFAs is mediated by substrate transporters, such as monocarboxylate transporter 1 and sodium-coupled monocarboxylate transporter 1, which promote cellular metabolism. An increasing number of studies have implicated metabolites produced by microorganisms as crucial executors of diet-based microbial influence on the host. SCFAs are important fuels for intestinal epithelial cells (IECs) and represent a major carbon flux from the diet, that is decomposed by the gut microbiota. SCFAs play a vital role in multiple molecular biological processes, such as promoting the secretion of glucagon-like peptide-1 by IECs to inhibit the elevation of blood glucose, increasing the expression of G protein-coupled receptors such as GPR41 and GPR43, and inhibiting histone deacetylases, which participate in the regulation of the proliferation, differentiation, and function of IECs. SCFAs affect intestinal motility, barrier function, and host metabolism. Furthermore, SCFAs play important regulatory roles in local, intermediate, and peripheral metabolisms. Acetate, propionate, and butyrate are the major SCFAs, they are involved in the regulation of immunity, apoptosis, inflammation, and lipid metabolism. Herein, we review the diverse functional roles of this major class of bacterial metabolites and reflect on their ability to affect intestine, metabolic, and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu-Ning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Li-Ting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hui-Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Ming-Di Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
40
|
Amini Khiabani S, Asgharzadeh M, Samadi Kafil H. Chronic kidney disease and gut microbiota. Heliyon 2023; 9:e18991. [PMID: 37609403 PMCID: PMC10440536 DOI: 10.1016/j.heliyon.2023.e18991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a range of various pathophysiological processes correlated with abnormal renal function and a progressive loss in GFR. Just as dysbiosis and altered pathology of the gut are accompanied with hypertension, which is a significant CKD risk factor. Gut dysbiosis in CKD patients is associated with an elevated levels of uremic toxins, which in turn increases the CKD progression. According to research results, the gut-kidney axis has a role in the formation of kidney stones, also in IgAN. A number of researchers have categorized the gut microbiota as enterotypes, and others, skeptical of theory of enterotypes, have suggested biomarkers to describe taxa that related to lifestyle, nutrition, and disease status. Metabolome-microbiome studies have been used to investigate the interactions of host-gut microbiota in terms of the involvement of metabolites in these interactions and are yielded promising results. The correlation between gut microbiota and CKD requires further multi-omic researches. Also, with regard to systems biology, studies on the communication network of proteins and transporters such as SLC and ABC, can help us achieve a deeper understanding of the gut-liver-kidney axis communication and can thus provide promising new horizons in the treatment of CKD patients. Probiotic-based treatment is an approach to reduce uremic poisoning, which is accomplished by swallowing microbes those can catalyze URS in the gut. If further comprehensive studies are carried out, we will know about the probiotics impact in slowing the renal failure progression and reducing inflammatory markers.
Collapse
Affiliation(s)
- Siamak Amini Khiabani
- Research center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Zhao XN, Liu SX, Wang ZZ, Zhang S, You LL. Roxadustat alleviates the inflammatory status in patients receiving maintenance hemodialysis with erythropoiesis-stimulating agent resistance by increasing the short-chain fatty acids producing gut bacteria. Eur J Med Res 2023; 28:230. [PMID: 37430374 DOI: 10.1186/s40001-023-01179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have improved the treatment of renal anemia, especially in patients resistant to erythropoiesis-stimulating agents (ESAs). HIF facilitates maintain gut microbiota homeostasis, which plays an important role in inflammation and iron metabolism, which are in turn key factors affecting ESA resistance. The current study aimed to investigate the effects of roxadustat on inflammation and iron metabolism and on the gut microbiota in patients with ESA resistance. METHODS We conducted a self-controlled, single-center study including 30 patients with ESA resistance undergoing maintenance hemodialysis. All patients received roxadustat without iron agents for renal anemia. Hemoglobin and inflammatory factors were monitored. Fecal samples were collected before and after 3 months' administration and the gut microbiota were analyzed by 16S ribosomal RNA gene sequencing. RESULTS Hemoglobin levels increased after treatment with roxadustat for 3 months (P < 0.05). Gut microbiota diversity and abundance also changed, with increases in short-chain fatty acid (SCFA)-producing bacteria (Acidaminococcaceae, Butyricicoccus, Ruminococcus bicirculans, Ruminococcus bromii, Bifidobacterium dentium, Eubacterium hallii) (P < 0.05). Serum SCFA levels also increased (P < 0.05). Inflammatory factors, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, interferon-γ, and endotoxin gradually decreased (P < 0.05). Serum hepcidin, ferritin, and total and unsaturated iron-binding capacities decreased (P < 0.05), while soluble transferrin receptor levels increased at each time point (P < 0.05). There were no significant differences in serum iron and transferrin saturation at each time point. The abundance of Alistipes shahii was significantly negatively correlated with IL-6 and TNF-α (P < 0.05). CONCLUSIONS Roxadustat alleviated renal anemia in patients with ESA resistance by decreasing inflammatory factors and hepcidin levels and improving iron utilization. These effects were at least partly mediated by improved diversity and abundance of SCFA-producing gut bacteria, probably via activation of HIF.
Collapse
Affiliation(s)
- Xiu-Nan Zhao
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Shu-Xin Liu
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China.
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China.
- School of Clinical Medicine, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, Liaoning, China.
| | - Zhen-Zhen Wang
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Shuang Zhang
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Lian-Lian You
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| |
Collapse
|
42
|
Fatani AMN, Suh JH, Auger J, Alabasi KM, Wang Y, Segal MS, Dahl WJ. Pea hull fiber supplementation does not modulate uremic metabolites in adults receiving hemodialysis: a randomized, double-blind, controlled trial. Front Nutr 2023; 10:1179295. [PMID: 37457968 PMCID: PMC10349378 DOI: 10.3389/fnut.2023.1179295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Background Fiber is a potential therapeutic to suppress microbiota-generated uremic molecules. This study aimed to determine if fiber supplementation decreased serum levels of uremic molecules through the modulation of gut microbiota in adults undergoing hemodialysis. Methods A randomized, double-blinded, controlled crossover study was conducted. Following a 1-week baseline, participants consumed muffins with added pea hull fiber (PHF) (15 g/d) and control muffins daily, each for 4 weeks, separated by a 4-week washout. Blood and stool samples were collected per period. Serum p-cresyl sulfate (PCS), indoxyl sulfate (IS), phenylacetylglutamine (PAG), and trimethylamine N-oxide (TMAO) were quantified by LC-MS/MS, and fecal microbiota profiled by 16S rRNA gene amplicon sequencing and specific taxa of interest by qPCR. QIIME 2 sample-classifier was used to discover unique microbiota profiles due to the consumption of PHF. Results Intake of PHF contributed an additional 9 g/d of dietary fiber to the subjects' diet due to compliance. No significant changes from baseline were observed in serum PCS, IS, PAG, or TMAO, or for the relative quantification of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bifidobacterium, or Roseburia, taxa considered health-enhancing. Dietary protein intake and IS (r = -0.5, p = 0.05) and slow transit stool form and PCS (r = 0.7, p < 0.01) were significantly correlated at baseline. PHF and control periods were not differentiated; however, using machine learning, taxa most distinguishing the microbiota composition during the PHF periods compared to usual diet alone were enriched Gemmiger, Collinsella, and depleted Lactobacillus, Ruminococcus, Coprococcus, and Mogibacteriaceae. Conclusion PHF supplementation did not mitigate serum levels of targeted microbial-generated uremic molecules. Given the high cellulose content, which may be resistant to fermentation, PHF may not exert sufficient effects on microbiota composition to modulate its activity at the dose consumed.
Collapse
Affiliation(s)
- Asmaa M. N. Fatani
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
- Food and Nutrition Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jérémie Auger
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montréal, QC, Canada
| | - Karima M. Alabasi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
- Foods and Nutrition Department, School of Health Science and Wellness, Northwest Missouri State University, Maryville, MO, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Mark S. Segal
- Department of Nephrology, Hypertension and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL, United States
- North Florida South Georgia VHS, Gainesville, FL, United States
| | - Wendy J. Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Jia PP, Chandrajith R, Junaid M, Li TY, Li YZ, Wei XY, Liu L, Pei DS. Elucidating environmental factors and their combined effects on CKDu in Sri Lanka using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121967. [PMID: 37290634 DOI: 10.1016/j.envpol.2023.121967] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease with uncertain etiology (CKDu) in Sri Lanka has attracted much attention as a global health issue. However, how environmental factors in local drinking water induce kidney damage in organisms is still elusive. We investigated multiple environmental factors including water hardness and fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM) to elucidate their toxic effects on CKDu risk in zebrafish. Acute exposure affected renal development and inhibited the fluorescence of Na, K-ATPase alpha1A4:GFP zebrafish kidney. Chronic exposure influenced the body weight of both genders of adult fish and induced kidney damage by histopathological analyses. Furthermore, the exposure significantly disturbed differential expression genes (DEGs), diversity and richness of gut microbiota, and critical metabolites related to renal functions. The transcriptomic analysis revealed that kidney-related DEGs were linked with renal cell carcinoma, proximal tubule bicarbonate reclamation, calcium signaling pathway, and HIF-1 signaling pathway. The significantly disrupted intestinal microbiota was closely related to the environmental factors and H&E score, which demonstrated the mechanisms of kidney risks. Notably, the Spearman correlation analysis indicated that the changed bacteria such as Pseudomonas, Paracoccus, and ZOR0006, etc were significantly connected to the DEGs and metabolites. Therefore, the assessment of multiple environmental factors provided new insights on "bio-markers" as potential therapies of the target signaling pathways, metabolites, and gut bacteria to monitor or protect residents from CKDu.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Rohana Chandrajith
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xing-Yi Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
44
|
Randall DW, Kieswich J, Hoyles L, McCafferty K, Curtis M, Yaqoob MM. Gut Dysbiosis in Experimental Kidney Disease: A Meta-Analysis of Rodent Repository Data. J Am Soc Nephrol 2023; 34:533-553. [PMID: 36846952 PMCID: PMC10103368 DOI: 10.1681/asn.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.
Collapse
Affiliation(s)
- David W. Randall
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Julius Kieswich
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom
| | - Kieran McCafferty
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michael Curtis
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower Wing, Great Maze Pond, United Kingdom
| | - Muhammed M. Yaqoob
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
45
|
Voroneanu L, Burlacu A, Brinza C, Covic A, Balan GG, Nistor I, Popa C, Hogas S, Covic A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes-A Systematic Review. J Clin Med 2023; 12:jcm12051948. [PMID: 36902734 PMCID: PMC10003930 DOI: 10.3390/jcm12051948] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND A bidirectional kidney-gut axis was described in patients with chronic kidney disease (CKD). On the one hand, gut dysbiosis could promote CKD progression, but on the other hand, studies reported specific gut microbiota alterations linked to CKD. Therefore, we aimed to systematically review the literature on gut microbiota composition in CKD patients, including those with advanced CKD stages and end-stage kidney disease (ESKD), possibilities to shift gut microbiota, and its impact on clinical outcomes. MATERIALS AND METHODS We performed a literature search in MEDLINE, Embase, Scopus, and Cochrane databases to find eligible studies using pre-specified keywords. Additionally, key inclusion and exclusion criteria were pre-defined to guide the eligibility assessment. RESULTS We retrieved 69 eligible studies which met all inclusion criteria and were analyzed in the present systematic review. Microbiota diversity was decreased in CKD patients as compared to healthy individuals. Ruminococcus and Roseburia had good power to discriminate between CKD patients and healthy controls (AUC = 0.771 and AUC = 0.803, respectively). Roseburia abundance was consistently decreased in CKD patients, especially in those with ESKD (p < 0.001). A model based on 25 microbiota dissimilarities had an excellent predictive power for diabetic nephropathy (AUC = 0.972). Several microbiota patterns were observed in deceased ESKD patients as compared to the survivor group (increased Lactobacillus, Yersinia, and decreased Bacteroides and Phascolarctobacterium levels). Additionally, gut dysbiosis was associated with peritonitis and enhanced inflammatory activity. In addition, some studies documented a beneficial effect on gut flora composition attributed to synbiotic and probiotic therapies. Large randomized clinical trials are required to investigate the impact of different microbiota modulation strategies on gut microflora composition and subsequent clinical outcomes. CONCLUSIONS Patients with CKD had an altered gut microbiome profile, even at early disease stages. Different abundance at genera and species levels could be used in clinical models to discriminate between healthy individuals and patients with CKD. ESKD patients with an increased mortality risk could be identified through gut microbiota analysis. Modulation therapy studies are warranted.
Collapse
Affiliation(s)
- Luminita Voroneanu
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Alexandru Burlacu
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Crischentian Brinza
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Andreea Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Correspondence:
| | - Gheorghe G. Balan
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. 1 Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Ionut Nistor
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Cristina Popa
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Simona Hogas
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| |
Collapse
|
46
|
Zhao T, Xiang Q, Lie B, Chen D, Li M, Zhang X, Yang J, He B, Zhang W, Dong R, Liu Y, Gu J, Zhu Q, Yao Y, Duan T, Li Z, Xu Y. Yishen Huashi granule modulated lipid metabolism in diabetic nephropathy via PI3K/AKT/mTOR signaling pathways. Heliyon 2023; 9:e14171. [PMID: 36938470 PMCID: PMC10018483 DOI: 10.1016/j.heliyon.2023.e14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Aim Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Although etiology for DN is complex and still needs to be fully understood, lipid metabolism disorder is found to play a role in it. Previously, we found Yishen Huashi (YSHS) granule could inhibit diabetic damage and reduce level of microalbuminuria (mALB) in DN animals. To explore its role and mechanism in lipid metabolism under DN settings, this study was designed. Materials and methods DN rats were induced by streptozotocin (STZ), HepG2 and CaCO2 cells were applied for in vitro study. Hematoxylin-Eosin (HE), periodic acid-Schiff (PAS) staining, and Transmission Electron Microscopy (TEM) were applied for histological observation; 16s Sequencing was used for intestinal microbiota composition analysis; western blotting (WB) and immunofluorescence were carried out for molecular biological study, and enzyme-linked immunosorbent assay (ELISA) was used for lipid determination. Results YSHS administration significantly reduced levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL-C), while increased level of high-density lipoprotein (HDL-C); meanwhile, histological changes and steatosis of the liver was ameliorated, integrity of the intestinal barrier was enhanced, and dysbacteriosis within intestinal lumen was ameliorated. Mechanism study found that YSHS modulated mitophagy within hepatocytes and inhibited mTOR/AMPK/PI3K/AKT signaling pathway. Conclusion In conclusion, we found in the present study that YSHS administration could ameliorate lipid metabolism disorder in DN animals, and its modulation on intestinal-liver axis played a significant role in it.
Collapse
Affiliation(s)
- Tingting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Qian Xiang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Beifeng Lie
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Deqi Chen
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Minyi Li
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Xi Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Junzheng Yang
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Bao He
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Wei Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Ruixue Dong
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yadi Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Junling Gu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Quan Zhu
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Yijing Yao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Tingting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
- Corresponding author.
| | - Zhenghai Li
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
- Corresponding author.
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, PR China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China
- Corresponding author. Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
47
|
Chen TH, Cheng CY, Huang CK, Ho YH, Lin JC. Exploring the Relevance between Gut Microbiota-Metabolites Profile and Chronic Kidney Disease with Distinct Pathogenic Factor. Microbiol Spectr 2023; 11:e0280522. [PMID: 36475922 PMCID: PMC9927243 DOI: 10.1128/spectrum.02805-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The intimate correlation of chronic kidney disease (CKD) with structural alteration in gut microbiota or metabolite profile has been documented in a growing body of studies. Nevertheless, a paucity of demonstrated knowledge regarding the impact and underlying mechanism of gut microbiota or metabolite on occurrence or progression of CKD is unclarified thus far. In this study, a liquid chromatography coupled-mass spectrometry and long-read sequencing were applied to identify gut metabolites and microbiome with statistically-discriminative abundance in diabetic CKD patients (n = 39), hypertensive CKD patients (n = 26), or CKD patients without comorbidity (n = 40) compared to those of healthy participants (n = 60). The association between CKD-related species and metabolite was evaluated by using zero-inflated negative binomial (ZINB) regression. The predictive utility of identified operational taxonomic units (OTUs), metabolite, or species-metabolite association toward the diagnosis of incident chronic kidney disease with distinct pathogenic factor was assessed using the random forest regression model and the receiver operating characteristic (ROC) curve. The results of statistical analyses indicated alterations in the relative abundances of 26 OTUs and 41 metabolites that were specifically relevant to each CKD-patient group. The random forest regression model with only species, metabolites, or its association differentially distinguished the hypertensive, diabetic CKD patients, or enrolled CKD patients without comorbidity from the healthy participants. IMPORTANCE Gut dysbiosis-altered metabolite association exhibits specific and convincing utility to differentiate CKD associated with distinct pathogenic factor. These results present the validity of pathogenesis-associated markers across healthy participants and high-risk population toward the early screening, prevention, diagnosis, or personalized treatment of CKD.
Collapse
Affiliation(s)
- Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Kai Huang
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Ho
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
48
|
Biomarkers in Urolithiasis. Urol Clin North Am 2023; 50:19-29. [DOI: 10.1016/j.ucl.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
50
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|