1
|
Gilbert FB, Rainard P. Expression of the receptor for IgM (FcμR) by bovine neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105235. [PMID: 39089639 DOI: 10.1016/j.dci.2024.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Bovine neutrophils possess a particular set of receptors for immunoglobulins. They have been shown to express a distinctive receptor for IgG2, and it has long been known that they interact poorly with IgG1 but that they can use IgM antibodies as opsonins. We show that the binding of labeled IgM was inhibited by unlabeled IgM but not by IgA, suggesting that bovine neutrophils express a specific IgM receptor. The binding of non-aggregated IgM is strong at 4 °C, but shedding occurs at 37 °C. We designed anti-peptide antibodies based on the sequence of the FcμR, the newly described receptor for IgM. These antibodies bound to bovine neutrophils at 4 °C. At 37 °C, labeling was lost, but the loss was inhibited by pretreatment with cytochalasin D, indicating internalization of the receptor after cross-linking by antibodies. Neutrophils that had internalized the receptor were no longer able to bind IgM. Eosinophils showed a low level of FcμR expression. FcμR expression by neutrophils was not increased by stimulation with Toll-like receptor agonists or the complement anaphylatoxin C5a, and decreased by TNF-α. Exposure of neutrophils to IFN-γ for 18 h increased FcμR expression without augmenting the binding of IgG1 or IgG2. We confirmed that bovine neutrophils can use IgM to phagocytose and kill bacteria without the help of Complement. Neutrophils that have migrated into the lumen of inflamed lactating mammary glands expressed the FcμR. These results indicate that bovine neutrophils express an IgM receptor, the FcμR, which is functional to contribute to the opsonophagocytosis of bacteria at inflammatory sites. Expression of the FcμR by neutrophils gives IgM a particular importance for the immune defense in the bovine species.
Collapse
|
2
|
Gelalcha BD, Mohammed RI, Gelgie AE, Kerro Dego O. Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase producing- Escherichia coli and - Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Front Microbiol 2023; 14:1283165. [PMID: 38029210 PMCID: PMC10658008 DOI: 10.3389/fmicb.2023.1283165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The rise in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coli and -Klebsiella spp. isolates from bulk tank milk (BTM). Methods Thirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coli and -Klebsiella spp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). Results Ten presumptive ESBL-producing bacteria, eight E. coli, and two K. pneumoniae were isolated. The prevalence of ESBL-E. coli and -K. pneumoniae in BTM was 21.2% and 6.1%, respectively. ESBL-E. coli were detected in 41.2% of the study farms. Seven of the ESBL-E. coli isolates were multidrug resistant (MDR). The two ESBL-producing K. pneumoniae isolates were resistant to ceftriaxone. Seven ESBL-E. coli strains carry the blaCTX-M gene, and five of them co-harbored blaTEM-1. ESBL-E. coli co-harbored blaCTX-M with other resistance genes, including qnrB19, tet(A), aadA1, aph(3'')-Ib, aph(6)-Id), floR, sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). Most E. coli resistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) of E. coli were detected. All ESBL-E. coli were predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones of E. coli. Up to 40 virulence markers were detected in all E. coli isolates. One of the K. pneumoniae was ST867; the other was novel strain. K. pneumoniae isolates carried three types of beta-lactamase genes (blaCTX-M, blaTEM-1 and blaSHV). The novel K. pneumoniae ST also carried a novel IncFII(K) plasmid ST. Conclusion Detection of high-risk clones of MDR ESBL-E. coli and ESBL-K. pneumoniae in BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coli and -K. pneumoniae.
Collapse
Affiliation(s)
- Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ruwaa I. Mohammed
- Department of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Shandilya UK, Sharma A, Xu R, Muniz MMM, Karrow NA. Evaluation of Immunomodulatory Effects of Fusarium Mycotoxins Using Bacterial Endotoxin-Stimulated Bovine Epithelial Cells and Macrophages in Co-Culture. Genes (Basel) 2023; 14:2014. [PMID: 38002956 PMCID: PMC10671659 DOI: 10.3390/genes14112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by a variety of fungi that contaminate animal food and feeds and are capable of inducing a wide range of toxicities. Predictive in vitro models represent valuable substitutes for animal experiments to assess the toxicity of mycotoxins. The complexities of the interactions between epithelial and innate immune cells, vital for upholding barrier integrity and averting infections, remain inadequately understood. In the current study, a co-culture model of bovine epithelial cells (MAC-T) and macrophages (BoMac) was used to investigate the impact of exposure to Fusarium mycotoxins, namely deoxynivalenol (DON), zearalenone (ZEN), enniatin B (ENB), and beauvericin (BEA), on the inflammatory response elicited by the bacterial lipopolysaccharide (LPS) endotoxin. The MAC-T cells and BoMac were seeded on the apical side of a Transwell membrane and in the lower chamber, respectively, and mycotoxin exposure on the apical side of the membrane was carried out with the different mycotoxins (LC20; concentrations that elicited 20% cytotoxicity) for 48 h followed by an LPS immunity challenge for 24 h. The culture supernatants were collected from the basolateral compartment and these samples were submitted for cytokine/chemokine multiplex analysis. RNA-Seq analysis was performed using total RNA extracted from the MAC-T cells to acquire a more detailed insight into their cellular functions. The multiplex analysis indicated that IFN-γ, IL-1α, IL-8, and MCP-1 were significantly induced post-DON treatment when compared to control cells, and levels of IL-1α and IL-8 were enhanced significantly in all mycotoxin-treated groups post-LPS challenge. Analysis of the sequencing results showed that there were 341, 357, and 318 differentially expressed MAC-T cell genes that were up-regulated in the DON, ENB, and BEA groups, respectively. Gene ontology and pathway analysis revealed that these DEGs were significantly enriched in various biological processes and pathways related to inflammation, apoptosis signaling, and Wnt signaling. These results provide a comprehensive analysis of the co-culture cytokine/chemokine production and MAC-T cells' gene expression profiles elicited by Fusarium mycotoxins, which further contributes to the understanding of early endotoxemia post-mycotoxin exposure.
Collapse
Affiliation(s)
| | | | | | | | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd. E., Guelph, ON N1G2W1, Canada; (U.K.S.); (A.S.); (R.X.); (M.M.M.M.)
| |
Collapse
|
4
|
Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in Diagnostic Approaches and Therapeutic Management in Bovine Mastitis. Vet Sci 2023; 10:449. [PMID: 37505854 PMCID: PMC10384116 DOI: 10.3390/vetsci10070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk quality, increases milk losses because of milk being discarded, and increases overall production costs due to higher treatment and labour costs and premature culling. This review article discusses mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively. There is an increasing focus on the application of novel therapeutic approaches as an alternative to conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and environmental impacts. This article also discussed nanoparticles'/chitosan's roles in antibiotic-resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Balaji N
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasvinder Singh Soodan
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Marcos Veiga Dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
5
|
Coates LC, Durham SD, Storms DH, Magnuson AD, Van Hekken DL, Plumier BM, Finley JW, Fukagawa NK, Tomasula PM, Lemay DG, Picklo MJ, Barile D, Kalscheur KF, Kable ME. Associations among Milk Microbiota, Milk Fatty Acids, Milk Glycans, and Inflammation from Lactating Holstein Cows. Microbiol Spectr 2023; 11:e0402022. [PMID: 37074179 PMCID: PMC10269560 DOI: 10.1128/spectrum.04020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Milk oligosaccharides (MOs) can be prebiotic and antiadhesive, while fatty acids (MFAs) can be antimicrobial. Both have been associated with milk microbes or mammary gland inflammation in humans. Relationships between these milk components and milk microbes or inflammation have not been determined for cows and could help elucidate a novel approach for the dairy industry to promote desired milk microbial composition for improvement of milk quality and reduction of milk waste. We aimed to determine relationships among milk microbiota, MFAs, MOs, lactose, and somatic cell counts (SCC) from Holstein cows, using our previously published data. Raw milk samples were collected at three time points, ranging from early to late lactation. Data were analyzed using linear mixed-effects modeling and repeated-measures correlation. Unsaturated MFA and short-chain MFA had mostly negative relationships with potentially pathogenic genera, including Corynebacterium, Pseudomonas, and an unknown Enterobacteriaceae genus but numerous positive relationships with symbionts Bifidobacterium and Bacteroides. Conversely, many MOs were positively correlated with potentially pathogenic genera (e.g., Corynebacterium, Enterococcus, and Pseudomonas), and numerous MOs were negatively correlated with the symbiont Bifidobacterium. The neutral, nonfucosylated MO composed of eight hexoses had a positive relationship with SCC, while lactose had a negative relationship with SCC. One interpretation of these trends might be that in milk, MFAs disrupt primarily pathogenic bacterial cells, causing a relative increase in abundance of beneficial microbial taxa, while MOs respond to and act on pathogenic taxa primarily through antiadhesive methods. Further research is needed to confirm the potential mechanisms driving these correlations. IMPORTANCE Bovine milk can harbor microbes that cause mastitis, milk spoilage, and foodborne illness. Fatty acids found in milk can be antimicrobial and milk oligosaccharides can have antiadhesive, prebiotic, and immune-modulatory effects. Relationships among milk microbes, fatty acids, oligosaccharides, and inflammation have been reported for humans. To our knowledge, associations among the milk microbial composition, fatty acids, oligosaccharides, and lactose have not been reported for healthy lactating cows. Identifying these potential relationships in bovine milk will inform future efforts to characterize direct and indirect interactions of the milk components with the milk microbiota. Since many milk components are associated with herd management practices, determining if these milk components impact milk microbes may provide valuable information for dairy cow management and breeding practices aimed at minimizing harmful and spoilage-causing microbes in raw milk.
Collapse
Affiliation(s)
- Laurynne C. Coates
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Sierra D. Durham
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - David H. Storms
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Andrew D. Magnuson
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Diane L. Van Hekken
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Benjamin M. Plumier
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - John W. Finley
- U.S. Department of Agriculture—Agricultural Research Service, George Washington Carver Center, Beltsville, Maryland, USA
| | - Naomi K. Fukagawa
- U.S. Department of Agriculture—Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Peggy M. Tomasula
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Danielle G. Lemay
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Matthew J. Picklo
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Daniela Barile
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - Kenneth F. Kalscheur
- U.S. Department of Agriculture—Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, Wisconsin, USA
| | - Mary E. Kable
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| |
Collapse
|
6
|
Ginger L, Ledoux D, Bouchon M, Rautenbach I, Bagnard C, Lurier T, Foucras G, Germon P, Durand D, de Boyer des Roches A. Using behavioral observations in freestalls and at milking to improve pain detection in dairy cows after lipopolysaccharide-induced clinical mastitis. J Dairy Sci 2023:S0022-0302(23)00290-4. [PMID: 37268578 DOI: 10.3168/jds.2022-22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/27/2023] [Indexed: 06/04/2023]
Abstract
This study aimed to determine the effect of lipopolysaccharide (LPS)-induced mastitis with or without nonsteroidal anti-inflammatory drug (NSAID) on dairy cows' clinical, physiological, and behavioral responses in the milking parlor and freestalls as well as the specificity (Sp) and sensitivity (Se) of behavioral responses in detecting cows with LPS-induced mastitis. Twenty-seven cows received an intramammary infusion of 25 µg of Escherichia coli LPS in 1 healthy quarter. Following LPS infusion, 14 cows received a placebo (LPS cows), and 13 cows received 3 mg/kg of body weight of ketoprofen i.m. (LPS+NSAID cows). Cow response to the challenge was monitored at regular intervals from 24 h before to 48 h postinfusion (hpi) through direct clinical observations, markers of inflammation in milk, and via point-in-time direct behavioral observations in the barn and at milking. In LPS cows, infusion induced a significant increase of plasma cortisol levels at 3 and 8 hpi, milk cortisol levels at 8 hpi, somatic cell counts from 8 to 48 hpi, IL-6 and IL-8 at 8 hpi, milk amyloid A (mAA) and haptoglobin at 8 and 24 hpi, rectal temperature at 8 hpi, and respiratory rate at 8 hpi. Their rumen motility rate decreased at 8 and 32 hpi. Compared with before the challenge, significantly more LPS cows stopped feeding/ruminating and pressed their tail between their legs at 3 and 5 hpi, increased feeding/ruminating at 24 hpi, and had the tendency to be less responsive, dropping their head, and dropping their ears at 5 hpi. At milking, compared with before challenge, significantly more LPS cows lifted their hooves at forestripping at 8 hpi. The 2 groups showed similar patterns of response for milk cortisol, somatic cell count, respiratory rate, mAA, haptoglobin, and IL-6, IL-1β, and IL-8. Compared with LPS cows, LPS+NSAID cows had significantly lower plasma cortisol levels at 3 hpi, their rectal temperature decreased at 8 hpi, their rumen motility rate increased at 8 and 32 hpi, and their heart rate increased at 32 hpi. Compared with LPS cows, a significantly larger proportion of LPS+NSAID cows were feeding/ruminating, a lower proportion had ears down at 5 hpi, and a larger proportion lied down at 24 hpi. At milking, whatever the phase of milking, for "hoof to belly," 9 out of 14 cows did not show this behavior before infusion (Sp = 64%) and 14/14 did not kick during pre-infusion milking (Sp = 100%). Regarding sensitivity, at maximum, 5 cows out of 14 (Se = 36%) displayed "hoof to belly" after infusion. For "lifting hoof," 14/14 did not show hoof-lifting before infusion (Sp = 100%) and 6/14 displayed it after infusion (Se = 43%) at forestripping only. In the freestall barn, 9 behaviors had a Sp >75% (at minimum, 10/14 did not show the behavior) whatever the time point but Se < 60% (at maximum, 8/14 displayed the behavior). Finally, "absence of feeding and ruminating" had Sp of 86% (12/14 ate/ruminated) and Se of 71% (10/14 did not eat/ruminate) at 5 hpi. This study shows that feeding/ruminating, tail position, and reactivity at forestripping could be used as behavioral indictors for early detection of mastitis-related pain in dairy cows.
Collapse
Affiliation(s)
- L Ginger
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - D Ledoux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - M Bouchon
- INRAE, Herbipôle, 63122 Saint-Genès-Champanelle, France
| | - I Rautenbach
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - C Bagnard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - T Lurier
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280 Marcy-l'Etoile, France; Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122 Saint-Genès-Champanelle, France
| | - G Foucras
- Université de Toulouse, ENVT, INRAE, IHAP, 31076 Toulouse, France
| | - P Germon
- INRAE, UMR ISP, Université François Rabelais de Tours, 37380 Nouzilly, France
| | - D Durand
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - A de Boyer des Roches
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
7
|
Shandilya UK, Sharma A, Naylor D, Canovas A, Mallard B, Karrow NA. Expression Profile of miRNA from High, Middle, and Low Stress-Responding Sheep during Bacterial Endotoxin Challenge. Animals (Basel) 2023; 13:ani13030508. [PMID: 36766397 PMCID: PMC9913542 DOI: 10.3390/ani13030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Animals respond to stress by activating a wide array of physiological and behavioral responses that are collectively referred to as the stress response. MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in the regulation of homeostasis. There are many reports demonstrating examples of stress-induced miRNA expression profiles. The aim of this study was to determine the circulatory miRNA profile of variable stress-responding lambs (n = 112) categorized based on their cortisol levels as high (HSR, 336.2 ± 27.9 nmol/L), middle (MSR, 147.3 ±9.5 nmol/L), and low (LSR, 32.1 ± 10.4 nmol/L) stress responders post-LPS challenge (400 ng/kg iv). Blood was collected from the jugular vein at 0 (T0) and 4 h (T4) post-LPS challenge, and miRNAs were isolated from four animals from each group. An array of 84 miRNAs and 6 individual miRNAs were evaluated using qPCR. Among 90 miRNAs, there were 48 differentially expressed (DE) miRNAs (log fold change (FC) > 2 < log FC) in the HSR group, 46 in the MSR group, and 49 in the LSR group compared with T0 (control) samples. In the HSR group, three miRNAs, miR-485-5p, miR-1193-5p, and miR-3957-5p were significantly (p < 0.05) upregulated, while seven miRNAs, miR-376b-3p, miR-376c-3p, miR-411b-5p, miR-376a-3p, miR-376b-3p, miR-376c-3p, and miR-381-3p, were downregulated (p < 0.05) as compared to the LSR and MSR groups. Functional analysis of DE miRNAs revealed their roles in Ras and MAPK signaling, cytokine signaling, the adaptive immune system, and transcription pathways in the HSR phenotype, implicating a hyper-induced acute-phase response. In contrast, in the LSR group, enriched pathways included glucagon signaling metabolic regulation, the transportation of amino acids and ions, and the integration of energy metabolism. Taken together, these results indicate variation in the acute-phase response to an immune stress challenge, and these miRNAs are implicated in regulating responses within cortisol-based phenotypes.
Collapse
Affiliation(s)
- Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ankita Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Danielle Naylor
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON N1G 2W1, Canada
| | - Angela Canovas
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
8
|
Effect of Major Diseases on Productivity of a Large Dairy Farm in a Temperate Zone in Japan. DAIRY 2022. [DOI: 10.3390/dairy3040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The objective of the present study was to investigate the associations between major diseases (clinical mastitis, peracute mastitis, metabolic disorders, peripartum disorders) and four parameters related to productivity (305-day milk yield, number of days open, culling rate, death rate) on a large dairy farm in a temperate zone with approximately 2500 Holstein cows. Data were collected from 2014 to 2018 and involved 9663 calving records for 4256 cows. We found negative effects of clinical mastitis, peracute mastitis, metabolic disorders, and peripartum disorders on the productivity of cows. Clinical-mastitis-suffered cows with multiple diseases had more days open compared with those with clinical mastitis alone and the healthy group, and they had a higher death rate than the healthy group, whereas there was no difference in death rate between the clinical mastitis only and healthy groups. Cows suffering from peracute mastitis, metabolic disorders, and peripartum disorders with either single or multiple diseases exhibited reduced productivity compared with the healthy group. Our findings clearly show that major diseases of cows in a temperate zone have severely negative effects on their productivity.
Collapse
|
9
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
10
|
Gelalcha BD, Kerro Dego O. Extended-Spectrum Beta-Lactamases Producing Enterobacteriaceae in the USA Dairy Cattle Farms and Implications for Public Health. Antibiotics (Basel) 2022; 11:1313. [PMID: 36289970 PMCID: PMC9598938 DOI: 10.3390/antibiotics11101313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the top global health threats of the 21th century. Recent studies are increasingly reporting the rise in extended-spectrum beta-lactamases producing Enterobacteriaceae (ESBLs-Ent) in dairy cattle and humans in the USA. The causes of the increased prevalence of ESBLs-Ent infections in humans and commensal ESBLs-Ent in dairy cattle farms are mostly unknown. However, the extensive use of beta-lactam antibiotics, especially third-generation cephalosporins (3GCs) in dairy farms and human health, can be implicated as a major driver for the rise in ESBLs-Ent. The rise in ESBLs-Ent, particularly ESBLs-Escherichia coli and ESBLs-Klebsiella species in the USA dairy cattle is not only an animal health issue but also a serious public health concern. The ESBLs-E. coli and -Klebsiella spp. can be transmitted to humans through direct contact with carrier animals or indirectly through the food chain or via the environment. The USA Centers for Disease Control and Prevention reports also showed continuous increase in community-associated human infections caused by ESBLs-Ent. Some studies attributed the elevated prevalence of ESBLs-Ent infections in humans to the frequent use of 3GCs in dairy farms. However, the status of ESBLs-Ent in dairy cattle and their contribution to human infections caused by ESBLs-producing enteric bacteria in the USA is the subject of further study. The aims of this review are to give in-depth insights into the status of ESBL-Ent in the USA dairy farms and its implication for public health and to highlight some critical research gaps that need to be addressed.
Collapse
Affiliation(s)
| | - Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Akhtar M, Naqvi SUAS, Liu Q, Pan H, Ma Z, Kong N, Chen Y, Shi D, Kulyar MFEA, Khan JA, Liu H. Short Chain Fatty Acids (SCFAs) Are the Potential Immunomodulatory Metabolites in Controlling Staphylococcus aureus-Mediated Mastitis. Nutrients 2022; 14:nu14183687. [PMID: 36145063 PMCID: PMC9503071 DOI: 10.3390/nu14183687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Mastitis is an emerging health concern in animals. An increased incidence of mastitis in dairy cows has been reported in the last few years across the world. It is estimated that up to 20% of cows are suffering from mastitis, causing incompetency in the mucosal immunity and resulting in excessive global economic losses in the dairy industry. Staphylococcus aureus (S. aureus) has been reported as the most common bacterial pathogen of mastitis at clinical and sub-clinical levels. Antibiotics, including penicillin, macrolides, lincomycin, cephalosporins, tetracyclines, chloramphenicol, and methicillin, were used to cure S. aureus-induced mastitis. However, S. aureus is resistant to most antibiotics, and methicillin-resistant S. aureus (MRSA) especially has emerged as a critical health concern. MRSA impairs immune homeostasis leaving the host more susceptible to other infections. Thus, exploring an alternative to antibiotics has become an immediate requirement of the current decade. Short chain fatty acids (SCFAs) are the potent bioactive metabolites produced by host gut microbiota through fermentation and play a crucial role in host/pathogen interaction and could be applied as a potential therapeutic agent against mastitis. The purpose of this review is to summarize the potential mechanism by which SCFAs alleviate mastitis, providing the theoretical reference for the usage of SCFAs in preventing or curing mastitis.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
12
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
13
|
Chen L, Liu X, Li Z, Wang J, Tian R, Zhang H. Integrated Analysis of Transcriptome mRNA and miRNA Profiles Reveals Self-Protective Mechanism of Bovine MECs Induced by LPS. Front Vet Sci 2022; 9:890043. [PMID: 35812870 PMCID: PMC9260119 DOI: 10.3389/fvets.2022.890043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have investigated the molecular crosstalk between mastitis-pathogens and cows by either miRNA or mRNA profiles. Here, we employed both miRNA and mRNA profiles to understand the mechanisms of the response of bovine mammary epithelial cells (bMECs) to lipopolysaccharide (LPS) by RNA-Seq. The total expression level of miRNAs increased while mRNAs reduced after LPS treatment. About 41 differentially expressed mRNAs and 45 differentially expressed miRNAs involved in inflammation were screened out. We found the NFκB-dependent chemokine, CXCL1, CXCL3, CXCL6, IL8, and CX3CL1 to be strongly induced. The anti-apoptosis was active because BCL2A1 and BIRC3 significantly increased with a higher expression. The effects of anti-microbe and inflammation were weakly activated because TNF, IL1, CCL20, CFB, S100A, MMP9, and NOS2A significantly increased but with a low expression, IL6 and β-defensin decreased. These activities were supervised by the NFKBIA to avoid excessive damage to bMECs. The bta-let-7a-5p, bta-miR-30a-5p, bta-miR-125b, and bta-miR-100 were essential to regulate infection process in bMECs after LPS induction. Moreover, the lactation potential of bMECs was undermined due to significantly downregulated SOSTDC1, WNT7B, MSX1, and bta-miR-2425-5p. In summary, bMECs may not be good at going head-to-head with the pathogens; they seem to be mainly charged with sending out signals for help and anti-apoptosis for maintaining lives after LPS induction.
Collapse
Affiliation(s)
- Ling Chen
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- *Correspondence: Xiaolin Liu
| | - Zhixiong Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Jian Wang
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Rongfu Tian
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
14
|
Rainard P, Foucras G, Martins RP. Adaptive Cell-Mediated Immunity in the Mammary Gland of Dairy Ruminants. Front Vet Sci 2022; 9:854890. [PMID: 35464360 PMCID: PMC9019600 DOI: 10.3389/fvets.2022.854890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the greatest issues for the global dairy industry and controlling these infections by vaccination is a long-sought ambition that has remained unfulfilled so far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG) have hampered progress in the rational design of immunization strategies targeting this organ, as current mastitis vaccines are unable to elicit a strong protective immunity. The objectives of this article are, from a comprehensive and critical review of available literature, to identify what characterizes adaptive immunity in the MG of ruminants, and to derive from this analysis research directions for the design of an optimal vaccination strategy. A peculiarity of the MG of ruminants is that it does not belong to the common mucosal immune system that links the gut immune system to the MG of rodents, swine or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue does not express the vascular addressins and chemokines that would allow the homing of memory T cells. However, it is possible to elicit an adaptive immune response in the MG of ruminants by local immunization because the mammary tissue is provided with antigen-presenting cells and is linked to systemic mechanisms. The optimal immune response is obtained by luminal exposure to antigens in a non-lactating MG. The mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic inflammation and enhanced defenses locally, resulting from the activation of resident memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational exploitation of this immunity by vaccination will need a better understanding of MG cell-mediated immunity. The phenotypic and functional characterization of mammary antigen-presenting cells and memory T cells are amongst research priorities. Based on current knowledge, rekindling research on the immune cells that populate the healthy, infected, or immunized MG appears to be a most promising approach to designing efficacious mastitis vaccines.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
15
|
Vitenberga-Verza Z, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Identification of Inflammatory and Regulatory Cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-Producing Cells in the Milk of Dairy Cows with Subclinical and Clinical Mastitis. Pathogens 2022; 11:372. [PMID: 35335696 PMCID: PMC8954094 DOI: 10.3390/pathogens11030372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
In naturally occurring bovine mastitis, effects of infection depend on the host inflammatory response, including the effects of secreted cytokines. Knowledge about the inflammatory and regulatory cytokines in milk cells of free-stall barn dairy cows and in naturally occurring mastitis is lacking as most studies focus on induced mastitis. Hereby, the aim of the study was to determine inflammatory and regulatory cytokines in the milk of dairy cows with subclinical and clinical mastitis. The following examinations of milk samples were performed: differential counting of somatic cells (SCC), bacteriological examination, and immunocytochemical analysis. Mean SCC increased in subclinical and clinical mastitis cases. The number of pathogenic mastitis-causing bacteria on plates increased in subclinical mastitis cases but decreased in clinical mastitis. The inflammatory and regulatory markers in the milk cells of healthy cows showed the highest mean cell numbers (%). In mastitis cases, immunoreactivity was more pronounced for IL-4, IL-6, IL-12, IL-13, IL-17A, TNF-α, and IFN-γ. Data about subclinical and clinical mastitis demonstrate inflammatory responses to intramammary infection driven by IL-1α, IL-4, and IL-17A. Moreover, the host defense response in mastitis is characterized by continuation or resolution of initial inflammation. IL-12 and INF-γ immunoreactivity was recognized to differ mastitis cases from the relative health status.
Collapse
Affiliation(s)
- Zane Vitenberga-Verza
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Māra Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Andżelika Drutowska
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., 6782 Morahalom, Hungary;
- Biological Research Center, Plant Biology Institute, 6726 Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
17
|
Naylor D, Sharma A, Li Z, Monteith G, Mallard BA, Bergeron R, Baes C, Karrow NA. Endotoxin-induced cytokine, chemokine and white blood cell profiles of variable stress-responding sheep. Stress 2021; 24:888-897. [PMID: 34259115 DOI: 10.1080/10253890.2021.1954905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Individual variation of the hypothalamic-pituitary-adrenal (HPA) axis response to stress could contribute to variable stress resiliency of livestock. During stress events, the innate immune system can also become activated and work in concert with the neuroendocrine system to restore homeostasis, while minimizing tissue damage. The purpose of this study was to assess immune function in variable stress-responding sheep in response to bacterial lipopolysaccharide (LPS) endotoxin immune-challenge. High (HSR, n = 12), middle (MSR, n = 12), and low-stress responders (LSR, n = 12) were selected from a population of 112 female lambs and classified based on serum cortisol concentration after receiving an intravenous bolus of LPS (400 ng/kg). Blood was collected from the jugular vein at 0 and 4 hrs post-LPS challenge to monitor changes in serum pro- and anti-inflammatory cytokines and chemokines, and white blood cell populations. Rectal temperature was recorded hourly to monitor fever. HSR had the greatest increase in rectal temperature and strongest pro-inflammatory IL-6 and IFN-γ cytokine responses compared to MSR and LSR. HSR and MSR had stronger anti-inflammatory IL-10 cytokine and CCL2 chemokine responses than LSR. White blood cell counts changed between 0 and 4 h; however, no differences were detected among the variable stress response groups. The distinct inflammatory response in variable stress responding sheep could contribute to individual differences in stress resiliency and this warrants investigation in the context of other types of stress.
Collapse
Affiliation(s)
- D Naylor
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - A Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Z Li
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - G Monteith
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, Guelph, Canada
| | - R Bergeron
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - C Baes
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - N A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| |
Collapse
|
18
|
Farmanullah F, Liang X, Khan FA, Salim M, Rehman ZU, Khan M, Talpur HS, Schreurs NM, Gouda M, Khan SU, Shujun Z. Transcriptomic in silico analysis of bovine Escherichia coli mastitis highlights its immune-related expressed genes as an effective biomarker. J Genet Eng Biotechnol 2021; 19:153. [PMID: 34637035 PMCID: PMC8511192 DOI: 10.1186/s43141-021-00235-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Mastitis is one of the major diseases causing economic loss to the dairy industry by reducing the quantity and quality of milk. Thus, the objective of this scientific study was to find new biomarkers based on genes for the early prediction before its severity. METHODS In the present study, advanced bioinformatics including hierarchical clustering, enrichment analysis, active site prediction, epigenetic analysis, functional domain identification, and protein docking were used to analyze the important genes that could be utilized as biomarkers and therapeutic targets for mastitis. RESULTS Four differentially expressed genes (DEGs) were identified in different regions of the mammary gland (teat cistern, gland cistern, lobuloalveolar, and Furstenberg's rosette) that resulted in 453, 597, 577, and 636 DEG, respectively. Also, 101 overlapped genes were found by comparing 27 different expressed genes. These genes were associated with eight immune response pathways including NOD-like receptor signaling pathway (IL8, IL18, IL1B, PYDC1) and chemokine signaling pathway (PTK2, IL8, NCF1, CCR1, HCK). Meanwhile, 241 protein-protein interaction networks were developed among overlapped genes. Fifty-seven regulatory events were found between miRNAs, expressed genes, and the transcription factors (TFs) through micro-RNA and transcription factors (miRNA-DEG-TF) regulatory network. The 3D structure docking model of the expressed genes proteins identified their active sites and the binding ligands that could help in choosing the appropriate feed or treatment for affected animals. CONCLUSIONS The novelty of the distinguished DEG and their pathways in this study is that they can precisely improve the detection biomarkers and treatments techniques of cows' Escherichia coli mastitis disease due to their high affinity with the target site of the mammary gland before appearing the symptoms.
Collapse
Affiliation(s)
- Farmanullah Farmanullah
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Faculty of Veterinary and Animal Sciences, National Center for Livestock Breeding Genetics and Genomics LUAWMS, Uthal, Pakistan.
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mohammad Salim
- Department of Forestry and Wildlife Management, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, UAP, Peshawar, Pakistan
| | - Momen Khan
- Livestock and Dairy Development, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - N M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Department of Nutrition and Food Science, National Research Centre, Giza, 12622, Egypt
| | - Sami Ullah Khan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zhang Shujun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
19
|
Hu H, Fang Z, Mu T, Wang Z, Ma Y, Ma Y. Application of Metabolomics in Diagnosis of Cow Mastitis: A Review. Front Vet Sci 2021; 8:747519. [PMID: 34692813 PMCID: PMC8531087 DOI: 10.3389/fvets.2021.747519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cow mastitis, with high incidence rate and complex cause of disease, is one of the main diseases that affect the development of dairy industry in the world. Clinical mastitis and subclinical mastitis caused by Staphylococcus aureus, Escherichia coli, Streptococcus, and other pathogens have a huge potential safety hazard to food safety and the rapid development of animal husbandry. The economic loss caused by cow mastitis is billions of dollars every year in the world. In recent years, the omics technology has been widely used in animal husbandry with the continuous breakthrough of sequencing technology and the continuous reduction of sequencing cost. For dairy cow mastitis, the traditional diagnostic technique, such as histopathological screening, somatic cell count, milk pH test, milk conductivity test, enzyme activity test, and infrared thermography, are difficult to fully and comprehensively clarify its pathogenesis due to their own limitations. Metabolomics technology is an important part of system biology, which can simultaneously analyze all low molecular weight metabolites such as amino acids, lipids, carbohydrates under the action of complex factors including internal and external environment and in a specific physiological period accurately and efficiently, and then clarify the related metabolic pathways. Metabolomics, as the most downstream of gene expression, can amplify the small changes of gene and protein expression at the level of metabolites, which can more fully reflect the cell function. The application of metabolomics technology in cow mastitis can analyze the hetero metabolites, identify the related biomarkers, and reveal the physiological and pathological changes of cow mammary gland, so as to provide valuable reference for the prediction, diagnosis, and treatment of mastitis. The research progress of metabolomics technology in cow mastitis in recent years was reviewed, in order to provide guidance for the development of cow health and dairy industry safety in this manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanfen Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
20
|
Menichetti BT, Garcia-Guerra A, Lakritz J, Weiss WP, Velez JS, Bothe H, Merchan D, Schuenemann GM. Effect of timing of prepartum vaccination relative to pen change with an acidogenic diet on lying time and metabolic profile in Holstein dairy cows. J Dairy Sci 2021; 104:11059-11071. [PMID: 34364647 DOI: 10.3168/jds.2021-20242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
The objective was to assess the effect of prepartum vaccination timing relative to pen change with an acidogenic diet at 28 or 21 d before expected parturition (dpp) on lying time (LT), prepartum serum energy status (glucose, IGF-1, and nonesterified fatty acids), urine pH, and serum Ca at calving in pregnant Holstein dairy cows. Pregnant multiparous Holstein cows (n = 308) from 1 large dairy herd were randomly allocated into 1 of 3 treatment groups at 35 ± 3 dpp as follows: (1) vaccination at 28 dpp and pen change at 21 dpp (V28PC21; n = 108), (2) vaccination and pen change at 28 dpp (V28PC28; n = 99), and (3) vaccination and pen change at 21 dpp (V21PC21; n = 101). When cows changed pens, an acidogenic diet was introduced. Every other week, a group of 43 to 53 animals were enrolled and electronic data loggers (IceQube, IceRobotics) were fitted to the hind leg of individual cows to assess their LT. Blood samples were collected at 28, 26, 21, 19, 14 dpp and at calving. Parity, body condition score, days dry, and gestation length were not different among groups. Overall, V28PC28 cows had 7 additional days in prepartum pens consuming an acidogenic diet compared with V28PC21 or V21PC21 cows. Regardless of treatment group, cows in the far-off pen had 43 min/d less LT (709 vs. 753 min/d) and increased day-to-day coefficient of variation of LT (0.21 vs. 0.10) compared with cows within the prepartum pen. On average, for the 7 d following vaccination alone (28 to 22 dpp period), V28PC21 cows had ~22 min/d less LT compared with V21PC21 cows. Serum concentrations of glucose, nonesterified fatty acids, and IGF-1 were altered following vaccination alone, pen change alone, or vaccination plus pen change with an acidogenic diet before calving. At calving, V28PC21 cows had greater glucose concentrations (6.45 mmol/L) compared with V21PC21 cows (5.76 mmol/L), with V28PC28 cows intermediate (6.11 mmol/L). The assessment of Ca status at calving revealed that V28PC21 cows had greater Ca concentration (2.34 mmol/L) with lower subclinical hypocalcemia (<2.0 mmol/L; 17.3%) compared with V21PC21 cows (2.17 mmol/L and 31.9%), with V28PC28 cows intermediate (2.28 mmol/L and 25.2%). Serum concentrations of IGF-1 at calving were also greater for V28PC21 (3.43 nmol/L) cows compared with V21PC21 (2.69 nmol/L), with V28PC28 cows intermediate (3.07 nmol/L). Overall, V28PC21 cows had greater serum glucose, IGF-1, and ~46% reduction in subclinical hypocalcemia (from 31.9 to 17.3%) compared with V21PC21 cows but did not differ from V28PC28 cows (25.2%). These findings provided evidence that vaccinating cows at 28 dpp, followed 7 d later by pen change with an acidogenic diet at 21 dpp, would be beneficial.
Collapse
Affiliation(s)
- B T Menichetti
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus 43210
| | - A Garcia-Guerra
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J Lakritz
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus 43210
| | - W P Weiss
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | - J S Velez
- Aurora Organic Farms, Boulder, CO 80302
| | - H Bothe
- Aurora Organic Farms, Boulder, CO 80302
| | | | - G M Schuenemann
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus 43210.
| |
Collapse
|
21
|
Rainard P, Gilbert FB, Germon P, Foucras G. Invited review: A critical appraisal of mastitis vaccines for dairy cows. J Dairy Sci 2021; 104:10427-10448. [PMID: 34218921 DOI: 10.3168/jds.2021-20434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/23/2021] [Indexed: 11/19/2022]
Abstract
Infections of the mammary gland remain a frequent disease of dairy ruminants that negatively affect animal welfare, milk quality, farmer serenity, and farming profitability and cause an increase in use of antimicrobials. There is a need for efficacious vaccines to alleviate the burden of mastitis in dairy farming, but this need has not been satisfactorily fulfilled despite decades of research. A careful appraisal of past and current research on mastitis vaccines reveals the peculiarities but also the commonalities among mammary gland infections associated with the major mastitis pathogens Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae, or Streptococcus dysgalactiae. A major pitfall is that the immune mechanisms of effective protection have not been fully identified. Until now, vaccine development has been directed toward the generation of antibodies. In this review, we drew up an inventory of the main approaches used to design vaccines that aim at the major pathogens for the mammary gland, and we critically appraised the current and tentative vaccines. In particular, we sought to relate efficacy to vaccine-induced defense mechanisms to shed light on some possible reasons for current vaccine shortcomings. Based on the lessons learned from past attempts and the recent results of current research, the design of effective vaccines may take a new turn in the years to come.
Collapse
Affiliation(s)
- Pascal Rainard
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France.
| | - Florence B Gilbert
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Pierre Germon
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Gilles Foucras
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Toulouse, École Nationale Vétérinaire de Toulouse, Interactions Hôtes-Agents Pathogènes, 31076 Toulouse, France
| |
Collapse
|
22
|
Maity S, Ambatipudi K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol Ecol 2021; 97:6006870. [PMID: 33242081 DOI: 10.1093/femsec/fiaa241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine mastitis is a prototypic emerging and reemerging bacterial disease that results in cut-by-cut torture to animals, public health and the global economy. Pathogenic microbes causing mastitis have overcome a series of hierarchical barriers resulting in the zoonotic transmission from bovines to humans either by proximity or remotely through milk and meat. The disease control is challenging and has been attributed to faulty surveillance systems to monitor their emergence at the human-animal interface. The complex interaction between the pathogens, the hidden pathobionts and commensals of the bovine mammary gland that create a menace during mastitis remains unexplored. Here, we review the zoonotic potential of these pathogens with a primary focus on understanding the interplay between the host immunity, mammary ecology and the shift from symbiosis to dysbiosis. We also address the pros and cons of the current management strategies and the extent of the success in implementing the One-Health approach to keep these pathogens at bay.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| |
Collapse
|
23
|
Shielding Effect of Escherichia coli O-Antigen Polysaccharide on J5-Induced Cross-Reactive Antibodies. mSphere 2021; 6:6/1/e01227-20. [PMID: 33504665 PMCID: PMC7885324 DOI: 10.1128/msphere.01227-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite intensive research, mastitis remains an important disease in dairy cattle with a significant impact on animal welfare, use of antibiotics, and, in the end, the economy of dairy farms. Although vaccines available so far have shown limited efficacy against coliform mastitis, vaccination is considered one of the measures that could limit the consequences of mastitis. Escherichia coli is the leading cause of severe mastitis in dairy farms. As E. coli mastitis is refractory to the hygienic control measures adapted to contagious mastitis, efficient vaccines are in demand. Existing mastitis vaccines, based on the use of killed rough E. coli J5 as the antigen, aim at inducing phagocytosis by neutrophils. We assessed the binding of J5-induced antibodies to isogenic rough and smooth strains along with a panel of mastitis-associated E. coli. Analysis by enzyme-linked immunosorbent assay revealed that antibodies to OmpA or killed J5 bind readily to rough E. coli but poorly to smooth strains. Flow cytometry analysis indicated that immunization with J5 induced antibodies that cross-reacted with rough E. coli strains but with only a small subpopulation of smooth strains. We identified type 1 fimbriae as the target of most antibodies cross-reacting with the smooth strains. These results suggest that the O-polysaccharide of lipopolysaccharide shields the outer membrane antigens and that only fiber antigens protruding at the bacterial surface can elicit antibodies reacting with mastitis-associated E. coli. We evaluated J5-induced antibodies in an opsonophagocytic killing assay with bovine neutrophils. J5 immune serum was not more efficient than preimmune serum, showing that immunization did not improve on the already high efficiency of naturally acquired antibodies to E. coli. In conclusion, it is unlikely that the efficiency of J5 vaccines is related to the induction of opsonic antibodies. Consequently, other research directions, such as cell-mediated immunity, should be explored to improve E. coli mastitis vaccines. IMPORTANCE Despite intensive research, mastitis remains an important disease in dairy cattle with a significant impact on animal welfare, use of antibiotics, and, in the end, the economy of dairy farms. Although vaccines available so far have shown limited efficacy against coliform mastitis, vaccination is considered one of the measures that could limit the consequences of mastitis. One reason for the lack of efficiency of current vaccines likely stems from the current evaluation of vaccines that relies mostly on measuring antibody production against vaccine antigens. This report clearly shows that vaccine-induced antibodies fail to bind to most mastitis-associated E. coli strains because of the presence of an O-antigen and, thus, do not allow for improved phagocytosis of pathogens. As a consequence, this report calls for revised criteria for the evaluation of vaccines and suggests that cell-mediated immunity should be targeted by new vaccinal strategies. More generally, these results could be extended to other vaccine development strategies targeting coliform bacteria.
Collapse
|
24
|
Rault L, Lévêque PA, Barbey S, Launay F, Larroque H, Le Loir Y, Germon P, Guinard-Flament J, Even S. Bovine Teat Cistern Microbiota Composition and Richness Are Associated With the Immune and Microbial Responses During Transition to Once-Daily Milking. Front Microbiol 2021; 11:602404. [PMID: 33391220 PMCID: PMC7772349 DOI: 10.3389/fmicb.2020.602404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
The relationship between microbiota and health has been widely reported in humans and animals. We established a link between teat cistern microbiota composition and bovine mastitis, an inflammatory disease often due to bacterial infections. To further decipher the relationships between teat cistern microbiota and immune and microbial responses, a switch from twice- to once-daily milking (ODM) in 31 initially healthy quarters of dairy cows was used to trigger an udder perturbation. In this study, a temporal relationship was reported between initial teat cistern microbiota composition and richness, the immune response to ODM, and mastitis development. Quarters with a low initial microbiota richness and taxonomic markers such as Bacteroidetes and Proteobacteria were associated with a higher rate of mastitis during ODM. Quarters with a higher richness and taxonomic markers such as Firmicutes, including the Lachnospiraceae family, and genera such as Bifidobacterium and Corynebacterium displayed early inflammation following transition to ODM but without developing mastitis (no infection). Short-term compositional shifts of microbiota indicates that microbiotas with a higher initial richness were more strongly altered by transition to ODM, with notably the disappearance of rare OTUs. Microbiota modifications were associated with an early innate immune system stimulation, which, in turn, may have contributed to the prevention of mastitis development.
Collapse
Affiliation(s)
| | | | - Sarah Barbey
- INRAE, Domaine Expérimental du Pin, Gouffern En Auge, France
| | - Frederic Launay
- INRAE, Domaine Expérimental du Pin, Gouffern En Auge, France
| | - Hélène Larroque
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Pierre Germon
- INRAE, Université François Rabelais, ISP, Tours, France
| | | | | |
Collapse
|
25
|
Th17-related mammary immunity, but not a high systemic Th1 immune response is associated with protection against E. coli mastitis. NPJ Vaccines 2020; 5:108. [PMID: 33298970 PMCID: PMC7686320 DOI: 10.1038/s41541-020-00258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
Vaccination against bovine mastitis lags behind despite high demand from the dairy industry and margin for efficacy improvement. We previously compared two immunization protocols against E. coli using either only the intramuscular route or a combination of intramuscular and mammary ductal routes, also known as 'prime and pull' strategy. A homologous mammary challenge during the memory phase showed that immunization favorably modified the mastitis course, notably in locally immunized cows in comparison to intramuscular and control adjuvant-only groups. Here, we performed whole-blood profiling through RNA-seq transcriptome and plasma cytokine 15-plex analyses at time points of the E. coli mastitis that showed significant clinical and laboratory differences among the groups. Diminished production of inflammatory cytokines and increased IFNγ were detected in the blood of immunized cows, where a T lymphocyte activation profile was evidenced at 12-h post infection. Acute phase neutropenia was less severe in these cows, and pathways related to neutrophil diapedesis and monocyte activation were also present. Furthermore, three intramammary-immunized cows showing faster healing and shorter mastitis duration had gene profiles that differed from their counterparts, but without any clue for the mastitis susceptibility difference. Inasmuch, when gene expression of CD4 T cells was assessed in mammary tissue, enrichment of IL-17-associated pathways was identified in the quarters of intramammary-immunized cows not only after challenge but also in the control quarters that were not infected. These findings indicate that local immunization mobilizes protective mechanisms that rely on the settlement of type 3 immunity-related CD4 T cells prior to infection.
Collapse
|
26
|
Hamel J, Zhang Y, Wente N, Krömker V. Heat stress and cow factors affect bacteria shedding pattern from naturally infected mammary gland quarters in dairy cattle. J Dairy Sci 2020; 104:786-794. [PMID: 33189273 DOI: 10.3168/jds.2020-19091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Mastitis-causing pathogens are shed from infected mammary gland quarters and thus contribute to an increased risk of new intramammary infections. The objective of the current study was to investigate the shedding characteristics of various mastitis-causing pathogens and associated animal-specific (somatic cell score and parity) and environmental (heat stress) factors. In a longitudinal study, infected udder quarters were sampled consecutively on 5 dairy farms in Germany. To capture climatic factors, temperature-humidity index (THI) was calculated. In the laboratory analysis, the pathogens and their counts in the milk samples were determined. A generalized linear mixed model with gamma link was used to evaluate the factors influencing pathogen-shedding characteristics. The variables somatic cell count, pathogen, parity, and THI had significant influence on pathogen shedding. Staphylococci were shed in lower values than streptococci. The pathogen shedding from mammary gland quarters with intramammary infections was higher in the first and second lactation than in higher lactations. Exceeding the THI threshold 60 resulted in higher pathogen counts on the same day. This was only caused by the pathogens yeasts and Streptococcus uberis. Possible mechanisms causing differences in pathogen shedding are changes in the counts due to influenced milk quantities, better growth conditions at higher temperatures, or altered immunological reactions. The mechanisms often remain speculative and require further investigation. The study underlines the contribution of cows with high somatic cell counts regarding the transmission of mastitis pathogens within a herd. Furthermore, it becomes clear that heat stress in Germany influences udder health and that prevention measures are useful.
Collapse
Affiliation(s)
- Johannes Hamel
- University of Applied Sciences and Arts Hannover, Faculty II, Department of Bioprocess Engineering - Microbiology, 30453 Hannover, Germany
| | - Yanchao Zhang
- University of Applied Sciences and Arts Hannover, Faculty II, Department of Bioprocess Engineering - Microbiology, 30453 Hannover, Germany
| | - Nicole Wente
- University of Applied Sciences and Arts Hannover, Faculty II, Department of Bioprocess Engineering - Microbiology, 30453 Hannover, Germany
| | - Volker Krömker
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Section Production, Nutrition and Health, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
27
|
Sharma A, Shandilya UK, Sullivan T, Naylor D, Canovas A, Mallard BA, Karrow NA. Identification of Ovine Serum miRNAs Following Bacterial Lipopolysaccharide Challenge. Int J Mol Sci 2020; 21:E7920. [PMID: 33113825 PMCID: PMC7663744 DOI: 10.3390/ijms21217920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Host-pathogen interactions are complex and influenced by host genetic and epigenetic modifications. Recently, the significance of microRNAs (miRNAs) in pathogenic infection and the regulation of immune response has been highlighted. However, information on miRNAs' role in the course of inflammation is still very limited in small ruminants. The present study was intended to identify changes in the expression of circulatory miRNAs post-lipopolysaccharide (LPS)-challenge. In this study, young ewes (n = 18) were challenged with Escherichia coli LPS (400 ng/kg i.v.) and blood samples were collected for serum miRNA isolation at two-time points; prior to challenge (T0), and 4 h (T4) post-challenge, reflecting the peak cortisol response. A total of 91 miRNAs were profiled, including 84 miRNAs on a commercial ovine miRNA-PCR array, and seven individual miRNAs. Forty five miRNAs were differentially expressed (DE) with 35 being up-regulated (Fold regulation, FR > 2) and 10 being down-regulated (FR < 1, p < 0.05) at T4. Among the up-regulated miRNAs, 14 were significantly (p < 0.05) induced, including oar-miRs: 369-3p, 495-3p, 376a-3p, 543-3p, 668-3p, 329a-3p, 655-3p, 411a-5p, and 154a-3p, which were located on ovine chromosome 18 forming four miRNA clusters within 10 kb. The elevated miRNAs belonged to different functional classes, playing roles in activating the hypothalamic-pituitary-adrenal axis; increasing cell survival and differentiation; and inducing inflammatory responses and targeted PI3K-Akt and MAPK signaling and chemokine signaling pathways. In summary, these results reveal the dynamic nature of ovine serum miRNAs during LPS-induced stress and highlight the potential role of identified miRNA-clusters on chromosome 18 to understand the regulation of the acute-phase response. Some of these identified circulating miRNAs may also serve as stress biomarkers for livestock in the future.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Tianna Sullivan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Danielle Naylor
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Angela Canovas
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| |
Collapse
|
28
|
Rainard P, Cunha P, Martins RP, Gilbert FB, Germon P, Foucras G. Type 3 immunity: a perspective for the defense of the mammary gland against infections. Vet Res 2020; 51:129. [PMID: 33059767 PMCID: PMC7559147 DOI: 10.1186/s13567-020-00852-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland defenses through innate immune training or vaccination. However, this is a promising way to find new means of improving mammary gland defenses against infection.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France.
| | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | | | | | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
29
|
Fukushima Y, Kino E, Furutani A, Minamino T, Mikurino Y, Horii Y, Honkawa K, Sasaki Y. Epidemiological study to investigate the incidence and prevalence of clinical mastitis, peracute mastitis, metabolic disorders and peripartum disorders, on a dairy farm in a temperate zone in Japan. BMC Vet Res 2020; 16:389. [PMID: 33054781 PMCID: PMC7557088 DOI: 10.1186/s12917-020-02613-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our aim was to investigate the incidence and prevalence of clinical mastitis, peracute mastitis, metabolic disorders, and peripartum disorders, and to examine factors affecting the prevalence of each disease in cows raised on a large dairy farm in a temperate climate in Japan. The present study was performed on a large commercial dairy farm with approximately 2500 Holstein cows. Data were collected from 2014 to 2018, and involved 9663 calving records for 4256 cows. Results The incidence rate on the farm was 21.9% for clinical mastitis, 10.4% for peracute mastitis, 2.9% for metabolic disorders, and 3.2% for peripartum disorders. The prevalence rates for clinical mastitis, peracute mastitis, metabolic disorders, and peripartum disorders were 28.0, 13.3, 3.7, and 4.0%, respectively. In all four diseases, the probability of time to occurrence for each disease was associated with parity and calving season (P < 0.05). Regarding metabolic disorders and peripartum disorders, the probability of occurrence decreased during the first 10 days after calving. Conclusions Our results showed that clinical mastitis occurred most often in this temperate zone, and that metabolic disorders and peripartum disorders occurred from calving to day 10 post-calving.
Collapse
Affiliation(s)
- Yuki Fukushima
- Course of Animal and Grassland Sciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Erina Kino
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Aina Furutani
- Course of Animal and Grassland Sciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | - Yoichiro Horii
- Honkawa Ranch, Oita, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | | | - Yosuke Sasaki
- Course of Animal and Grassland Sciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan. .,Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan. .,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
30
|
Naylor D, Sharma A, Li Z, Monteith G, Sullivan T, Canovas A, Mallard BA, Baes C, Karrow NA. Short communication: Characterizing ovine serum stress biomarkers during endotoxemia. J Dairy Sci 2020; 103:5501-5508. [PMID: 32307170 DOI: 10.3168/jds.2019-17718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Breeding stress-resilient livestock is a potential strategy to help mitigate the negative effect of environmental and pathogenic stressors. The hypothalamic-pituitary-adrenal axis and immune system are activated during stress events and release mediators into the circulation that help restore physiological homeostasis. The purpose of this study was to assess a comprehensive set of circulatory mediators released in response to an acute immune stress challenge to identify candidate biomarkers that can be used for the selection of stress-resilient animals. Fifteen female lambs were stress challenged with an intravenous bolus of lipopolysaccharide (LPS; 400 ng/kg), and blood was collected from the jugular vein at 0, 2, 4, and 6 h after LPS challenge to identify and monitor candidate stress biomarkers; temperature was also recorded over time. Biomarker responses were evaluated with a repeated-measures model to compare time points with baseline values. As expected, all sheep had a monophasic febrile response to LPS challenge, and cortisol increased and returned to baseline by 6 h. The cytokines tumor necrosis factor-α, IL-6, IFN-γ (proinflammatory), and IL-10 (anti-inflammatory) increased, but only tumor necrosis factor-α returned to baseline during the monitoring period. The cytokines IL-1α, IL-1β, IL-17α (proinflammatory), and IL-4 (anti-inflammatory) did not respond to LPS challenge. All chemokines (CCL2, CCL3, CCL4, CXCL10, and IL-8) responded to LPS challenge; however, only CCL2, CCL3, CCL4, and CXCL10 increased over time, and only CCL3, CCL4, and CXCL10 returned to baseline during the monitoring period. MicroRNA (miR-145, miR-233, and miR-1246) also increased and remained elevated during the study. In summary, the LPS challenge induced a strong stress response in Rideau-Dorset sheep that could be monitored with a distinct profile of circulatory biomarkers.
Collapse
Affiliation(s)
- D Naylor
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Z Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - G Monteith
- Department of Clinical Studies, Ontario Veterinary College, Guelph, ON, N1G 2W1, Canada
| | - T Sullivan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Canovas
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, N1G 2W1, Canada
| | - C Baes
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - N A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
31
|
Cunha P, Vern YL, Gitton C, Germon P, Foucras G, Rainard P. Expansion, isolation and first characterization of bovine Th17 lymphocytes. Sci Rep 2019; 9:16115. [PMID: 31695097 PMCID: PMC6834651 DOI: 10.1038/s41598-019-52562-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin 17A-producing T helper cells (Th17) are CD4+ T cells that are crucial to immunity to extracellular bacteria. The roles of these cells in the bovine species are poorly defined, because the characterization of bovine Th17 cells lags behind for want of straightforward cultivation and isolation procedures. We have developed procedures to differentiate, expand, and isolate bovine Th17 cells from circulating CD4+ T cells of adult cows. Using polyclonal stimulation with antibodies to CD3 and CD28, we expanded IL-17A-positive CD4+ T cells in a serum-free cell culture medium supplemented with TGF-β1, IL-6 and IL-2. Populations of CD4+ T cells producing IL-17A or IFN-γ or both cytokines were obtained. Isolation of IL-17A-secreting CD4+ T cells was performed by labelling surface IL-17A, followed by flow cytometry cell sorting. The sorted Th17 cells were restimulated and could be expanded for several weeks. These cells were further characterized by cytokine profiling at transcriptomic and protein levels. They produced high amounts of IL-17A and IL-17F, and moderate amounts of IL-22 and IFN-γ. The techniques developed will be useful to characterize the phenotypic and functional properties of bovine Th17 cells.
Collapse
Affiliation(s)
- Patricia Cunha
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - Yves Le Vern
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | | | - Pierre Germon
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Pascal Rainard
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France.
| |
Collapse
|
32
|
Rainard P. A reply to the comments on "Control of bovine mastitis in the 21st century: Immunize of tolerize?". Res Vet Sci 2019; 127:103-104. [PMID: 31683195 DOI: 10.1016/j.rvsc.2019.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Pascal Rainard
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France.
| |
Collapse
|
33
|
Steele NM, Swartz TH, Enger KM, Schramm H, Cockrum RR, Lacy-Hulbert SJ, White RR, Hogan J, Petersson-Wolfe CS. The effect of J5 bacterins on clinical, behavioral, and antibody response following an Escherichia coli intramammary challenge in dairy cows at peak lactation. J Dairy Sci 2019; 102:11233-11249. [PMID: 31606213 DOI: 10.3168/jds.2019-16549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 02/02/2023]
Abstract
Vaccination against coliform mastitis has become part of mastitis control programs in the past 3 decades, as a means of reducing the severity of clinical mastitis. Our study objective was to evaluate the effect of 2 commercially available vaccines on clinical, behavioral, and antibody response following Escherichia coli intramammary challenge in cows near peak lactation. Cows (n = 12 per group) were vaccinated with vaccine 1 (V1) or vaccine 2 (V2) at dry-off, 21 d pre-calving, and 14 d post-calving. Twelve cows served as unvaccinated controls (CTL). Cows were challenged with E. coli in a rear quarter at approximately 100 d in milk. Milk samples were collected pre- and post-challenge to enumerate E. coli and determine somatic cell count. Serum was collected before each vaccination and at d 0, 1, 2, 3, 6, 30, and 60 relative to challenge, to study antibody response. Milk IgA and tumor necrosis factor-α concentrations were determined in whey. Vaginal temperature, cow activity, and milk yield and components were monitored post-challenge. Bacterial count, somatic cell score, milk yield and component decline, vaginal temperature, activity measures, and antibody and cytokine response were analyzed for treatment differences. The effects of parity, breed, and a repeated measure of time were also tested. Seven cows had to be removed from the study post-challenge for antibiotic treatment (CTL and V1, n = 3 each; V2, n = 1), 2 of which were euthanized (both CTL). Vaccinated cows exhibited fever (vaginal temperature ≥39.4°C) 3 h earlier than CTL cows, but we found no differences between treatments for bacterial count, somatic cell score, or milk yield reduction. Vaccinated cows spent more time lying per rest bout 2 d post-challenge, but total daily lying time was not different from CTL cows during the 7 d post-challenge. The vaccines differed in antibody response: V1 cows had greater serum IgG1 and IgG2 post-challenge. A parity effect was also evident: primiparous cows had lower bacterial counts, somatic cell score and a smaller milk yield decline than multiparous cows, but also had lower antibody production. Immunization with either J5 bacterin did not reduce clinical signs of mastitis in cows challenged at 100 d in milk, demonstrating that the effects of J5 vaccination had diminished at peak lactation.
Collapse
Affiliation(s)
- N M Steele
- Department of Dairy Science, Virginia Tech, Blacksburg 24061; DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand.
| | - T H Swartz
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - K M Enger
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | - H Schramm
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg 24061
| | - R R Cockrum
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | | | - R R White
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061
| | - J Hogan
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | | |
Collapse
|
34
|
Keane OM. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 2019; 102:4713-4726. [PMID: 30827546 DOI: 10.3168/jds.2018-15326] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
Intramammary infection (IMI) is one of the most costly diseases to the dairy industry. It is primarily due to bacterial infection and the major intramammary pathogens include Escherichia coli, Streptococcus uberis, and Staphylococcus aureus. The severity and outcome of IMI is dependent on several host factors including innate host resistance, energy balance, immune status, parity, and stage of lactation. Additionally, the infecting organism can influence the host immune response and progression of disease. It is increasingly recognized that not only the infecting pathogen species, but also the strain, can affect the transmission, severity, and outcome of IMI. For each of 3 major IMI-associated pathogens, S. aureus, Strep. uberis, and E. coli, specific strains have been identified that are adapted to the intramammary environment. Strain-dependent variation in the host immune response to infection has also been reported. The diversity of strains associated with IMI must be considered if vaccines effective against the full repertoire of mammary pathogenic strains are to be developed. Although important advances have been made recently in understanding the molecular mechanism underpinning strain-specific virulence, further research is required to fully elucidate the cellular and molecular pathogenesis of mammary adapted strains and the role of the strain in influencing the pathophysiology of infection. Improved understanding of molecular pathogenesis of strains associated with bovine IMI will contribute to the development of new control strategies, therapies, and vaccines. The development of enabling technologies such as pathogenomics, transcriptomics, and proteomics can facilitate system-level studies of strain-specific molecular pathogenesis and the identification of key mediators of host-pathogen interactions.
Collapse
Affiliation(s)
- O M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93.
| |
Collapse
|
35
|
Korkmaz F, Elsasser T, Kerr D. Variation in fibroblast expression of toll-like receptor 4 and lipopolysaccharide-induced cytokine production between animals predicts control of bacterial growth but not severity of Escherichia coli mastitis. J Dairy Sci 2018; 101:10098-10115. [DOI: 10.3168/jds.2017-14372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
|
36
|
Rainard P, Foucras G. A Critical Appraisal of Probiotics for Mastitis Control. Front Vet Sci 2018; 5:251. [PMID: 30364110 PMCID: PMC6191464 DOI: 10.3389/fvets.2018.00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/19/2018] [Indexed: 01/13/2023] Open
Abstract
The urge to reduce antimicrobials use in dairy farming has prompted a search for alternative solutions. As infections of the mammary gland is a major reason for antibiotic administration to dairy ruminants, mammary probiotics have recently been presented as a possible alternative for the treatment of mastitis. To assess the validity of this proposal, we performed a general appraisal of the knowledge related to probiotics for mammary health by examining their potential modes of action and assessing the compatibility of these mechanisms with the immunobiology of mammary gland infections. Then we analyzed the literature published on the subject, taking into account the preliminary in vitro experiments and the in vivo trials. Preliminary experiments aimed essentially at exploring in vitro the capacity of putative probiotics, mainly lactic acid bacteria (LABs), to interfere with mastitis-associated bacteria or to interact with mammary epithelial cells. A few studies used LABs selected on the basis of bacteriocin production or the capacity to adhere to epithelial cells to perform in vivo experiments. Intramammary infusion of LABs showed that LABs are pro-inflammatory for the mammary gland, inducing an intense influx of neutrophils into milk during lactation and at drying-off. Yet, their capacity to cure mastitis remains to be established. A few preliminary studies tackle the possibility of using probiotics to interfere with the teat apex microbiota or to prevent the colonization of the teat canal by pathogenic bacteria. From the analysis of the published literature, it appears that currently there is no sound scientific foundation for the use of probiotics to prevent or treat mastitis. We conclude that the prospects for oral probiotics are not promising for ruminants, those for intramammary probiotics should be considered with caution, but that teat apex probiotics deserve further research.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, Université de Tours, UMR 1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRA, UMR1225, Toulouse, France
| |
Collapse
|
37
|
de Boyer des Roches A, Lussert A, Faure M, Herry V, Rainard P, Durand D, Wemelsfelder F, Foucras G. Dairy cows under experimentally-induced Escherichia coli mastitis show negative emotional states assessed through Qualitative Behaviour Assessment. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Seroussi E, Blum SE, Krifucks O, Lavon Y, Leitner G. Application of pancreatic phospholipase A2 for treatment of bovine mastitis. PLoS One 2018; 13:e0203132. [PMID: 30148880 PMCID: PMC6110515 DOI: 10.1371/journal.pone.0203132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022] Open
Abstract
Recent findings have indicated that secreted phospholipases A2 (sPLA2s) have anti-inflammatory functions, including relief of symptoms in a mouse model of mastitis. This prompted us to investigate the therapeutic application of sPLA2, PLA2G1B, for bovine mastitis. Initial testing of PLA2G1B's effect on bovine mammary epithelial cell (bMEC) line PS revealed no changes in cell viability or cytokine-secretion pattern. However, when cells were first treated with lipopolysaccharide endotoxin (LPS) or live bacteria (Escherichia coli or Staphylococcus aureus), incubation with PLA2G1B significantly improved cell viability, suggesting involvement of sPLA2s in protecting membranes from lipid-peroxidation damage, rather than a bactericidal action. When PLA2G1B was applied simultaneously with LPS, a significant short-term reduction in interleukin-8 secretion was observed compared with bMECs treated only with LPS, supporting previous reports that PLA2G1B affects interleukin-8 signaling in similar cells. Following the favorable outcome of the in vitro experiments, we tested PLA2G1B in vivo by mammary infusion into infected glands. In one of a small sample (n = 4) of lactating cows chronically infected with Streptococcus dysgalactiae, a single PLA2G1B treatment completely cleared inflammation and bacteria, demonstrating its potential to cure subclinical mastitis. PLA2G1B treatment did not affect coagulase-negative staphylococci infection. These types of mastitis may involve formation of a resistant biofilm, and its elimination may relate to sPLA2s' characteristic ability to aggregate with cellular debris, facilitating their internalization by macrophages. In a bovine model of clinical mastitis based on introduction of E. coli via the streak canal, a single mammary infusion of PLA2G1B led to faster recovery to pre-infection milk-yield levels and decrease of somatic cell counts. In this case, all of sPLA2s' modes of resolving inflammation may apply, including competitive binding of the sPLA2s’ receptor, the inactivation of which confers resistance to endotoxic shock. Hence, this study strongly supports further research into PLA2G1B as a cure for bovine mastitis.
Collapse
Affiliation(s)
- Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization (ARO), Rishon LeTsiyon, Israel
- * E-mail:
| | - Shlomo E. Blum
- National Mastitis Reference Center, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Oleg Krifucks
- National Mastitis Reference Center, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Yaniv Lavon
- Israel Cattle Breeders Association, Caesarea, Israel
| | - Gabriel Leitner
- National Mastitis Reference Center, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
39
|
Hambali IU, Bhutto KR, Jesse FFA, Lawan A, Odhah MN, Wahid AH, Azmi MLM, Zakaria Z, Arsalan M, Muhammad NA, Jefri MN. Clinical responses in cows vaccinated with a developed prototype killed Staphylococcus aureus mastitis vaccine. Microb Pathog 2018; 124:101-105. [PMID: 30114463 DOI: 10.1016/j.micpath.2018.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 11/30/2022]
Abstract
Mastitis is an inflammatory condition of the udder that occurs as a result of the release of leucocytes into the udder in a response to bacterial invasion. The major causes of mastitis are an array of gram positive and negative bacteria, however, algae, virus, fungi, mechanical or thermal injury to the gland have also been identified as possible causes. Mastitis vaccines are yet to be developed using Malaysian local isolate of bacteria. The objective of the present experimental trial was to develop a monovalent vaccine against mastitis using S. aureus of Malaysian isolate and to evaluate the clinical responses such as temperature, respiratory rates and heart rates in vaccinated cows. S. aureus is a major causative bacteria in clinical and subclinical types of mastitis in cows. Four concentrations of the bacterin (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were prepared using Aluminium potassium sulfate adjuvant. Thirty cows were grouped into four treatment groups (B, C, D and E) with a fifth group as control (A). These groups were vaccinated intramuscularly(IM) with the prepared monovalent vaccine and its influence on the vital signs were intermittently measured. The mean of rectal temperature was significantly different (p˂ 0.05) at 0hr Post Vaccination [1]" in groups D and E (39.5 ± 0.15 °C and 39.4 ± 0.15 °C respectively) and at 3 h PV in groups C, D and E (39.8 ± 0.14 °C, 39.9 ± 0.14 °C and 40.3 ± 0.14 °C respectively) compared to the control group. This indicated a sharp increased rectal temperatures between 0hr and 3 h PV in groups C, D and E which later declined at 24 h PV. The mean of rectal temperature of group E was significantly different (p˂ 0.05) at weeks 1 and 2 PV (39.87 ± 0.19 °C and 39.80 ± 0.18 °C respectively) compared to the control group. The mean of heart rate was significantly different (p˂ 0.05) at week 1 PV in groups D and E (83.0 ± 3.8 beats/minute and 80.0 ± 3.8 °C respectively) compared to control. A trending decrease was however observed in heart rates of group E from weeks through 4 PV and in group D from weeks 1 through 3 PV. The mean of respiratory rates was significantly different (p˂ 0.05) at week 3 PV in group B and D (31.0 ± 1.2 breaths/minute and 28.0 ± 1.2 breaths/minute) compared to control. In conclusion, this study highlights responses of these vital signs due to vaccination against S. aureus causing mastitis in cows. To the best of our knowledge the findings of this study adds value to the shallow literature on vital signs alterations in cows vaccinated against mastitis as elevated levels of temperature and heart rates of group D and E indicated obvious response.
Collapse
Affiliation(s)
- I U Hambali
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Public health and Preventive Medicine, University of Maiduguri, 600233, Nigeria.
| | - K R Bhutto
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Directorate of Veterinary Research and Diagnosis, Livestock and Fisheries Department, 70050, Sindh, Pakistan
| | - F F A Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Research Centre for Ruminant Disease, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - A Lawan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, 600233, Nigeria
| | - M N Odhah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, 39, Yemen
| | - A H Wahid
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M L Mohd Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Z Zakaria
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M Arsalan
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Directorate of Animal Health, Livestock and Dairy Development Department Baluchistan, 87300, Pakistan
| | - N A Muhammad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Clinical Medicine and Surgery, University of Veterinary and Animal Science Lahore, 54500, Pakistan
| | - M N Jefri
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
40
|
Rainard P, Gitton C, Chaumeil T, Fassier T, Huau C, Riou M, Tosser-Klopp G, Krupova Z, Chaize A, Gilbert FB, Rupp R, Martin P. Host factors determine the evolution of infection with Staphylococcus aureus to gangrenous mastitis in goats. Vet Res 2018; 49:72. [PMID: 30045763 PMCID: PMC6060506 DOI: 10.1186/s13567-018-0564-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/03/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is the major cause of very severe mastitis of dairy goats. The initial objective of our study was to fine-tune an experimental model of infection of the goat mammary gland with two strains of S. aureus and two lines of goats (low and high somatic cell score lines). Following the challenge, the 10 infected goats divided in two clear-cut severity groups, independently of the S. aureus strain and the goat line. Five goats developed very severe mastitis (of which four were gangrenous) characterized by uncontrolled infection (UI group), whereas the other five kept the infection under control (CI group). The outcome of the infection was determined by 18 h post-infection (hpi), as heralded by the bacterial milk concentration at 18 hpi: more than 107/mL in the UI group, about 106/mL in the CI group. Leukocyte recruitment and composition did not differ between the groups, but the phagocytic killing at 18 hpi efficiency did. Contributing factors involved milk concentrations of α-toxin and LukMF′ leukotoxin, but not early expression of the genes encoding the pentraxin PTX3, the cytokines IL-1α and IL-1β, and the chemokines IL-8 and CCL5. Concentrations of TNF-α, IFN-γ, IL-17A, and IL-22 rose sharply in the milk of UI goats when infection was out of control. The results indicate that defenses mobilized by the mammary gland at an early stage of infection were essential to prevent staphylococci from reaching critical concentrations. Staphylococcal exotoxin production appeared to be a consequent event inducing the evolution to gangrenous mastitis.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, UMR 1282, Université Tours, 37380, Nouzilly, France.
| | | | | | | | - Christophe Huau
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | | | - Gwenola Tosser-Klopp
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Zuzana Krupova
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France.,EXCILONE, 78990, Elancourt, France
| | - Anne Chaize
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | | | - Rachel Rupp
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Patrice Martin
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
41
|
Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli. mBio 2018; 9:mBio.00423-18. [PMID: 29615502 PMCID: PMC5885034 DOI: 10.1128/mbio.00423-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec-positive (fec+) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec. Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec-transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. Bovine mastitis is the major infectious disease in dairy cows and the leading cause of economic loss to the global dairy industry, directly contributing to the price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system.
Collapse
|
42
|
Petzl W, Zerbe H, Günther J, Seyfert HM, Hussen J, Schuberth HJ. Pathogen-specific responses in the bovine udder. Models and immunoprophylactic concepts. Res Vet Sci 2017; 116:55-61. [PMID: 29275905 DOI: 10.1016/j.rvsc.2017.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 12/20/2022]
Abstract
Bovine mastitis is a disease of major economic effects on the dairy industry worldwide. Experimental in vivo infection models have been widely proven as an effective tool for the investigation of pathogen-specific host immune responses. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are two common mastitis pathogens with an opposite clinical outcome of the disease. E. coli and S. aureus have proven to be valid surrogates to model clinical and subclinical mastitis respectively. Contemporary transcriptome profiling studies demonstrated that the transcriptomic response in the teat reflects the course of pathogen-specific mastitis, being ultimately determined by the immune response of the mammary epithelial cells. After an experimental in vivo challenge, E. coli induces a vigorous early transcriptional response in udder tissue being quantitatively and - notably - qualitatively distinct from the much weaker response against an S. aureus infection. E. coli mastitis models proved that the local response in the infected udder quarters is accompanied by a response in non-infected neighbouring udder quarters modulating systemically their immune responsiveness. Immunomodulation of the udder was investigated in animal models. Pathophysiological consequences were studied after intramammary administration of cytokines, chemokines, growth factors, steroidal anti-inflammatory drugs, or priming of tissue resident cells with pathogen-derived molecules. The latter approaches resulted only in a temporal protection of the udder, reducing transiently the risk of infection but sustained lowering of the severity of an eventually occurring mastitis. They offer an alternative to vaccination trials, which over decades also did not yield protection against new infections.
Collapse
Affiliation(s)
- Wolfram Petzl
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Juliane Günther
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Jamal Hussen
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al Ahsaa, Saudi Arabia
| | | |
Collapse
|
43
|
Cellular and humoral immune response to recombinant Escherichia coli OmpA in cows. PLoS One 2017; 12:e0187369. [PMID: 29088296 PMCID: PMC5663511 DOI: 10.1371/journal.pone.0187369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
The outer membrane protein (Omp) A is a major constituent of the outer membrane of Escherichia coli. This protein has been used in several vaccine development studies, but seldom with a view to vaccinating against mastitis. The objective of this study was to investigate the immunogenicity of E. coli OmpA and its vaccine potential for cows. Both the humoral and cellular immune responses were investigated. The gene for OmpA of the mastitis-causing strain P4 was cloned and expressed, and the recombinant protein (rEcOmpA) purified. Cows were immunized twice with rEcOmpA with adjuvant one month apart by the systemic route. Before immunization, few antibodies to rEcOmpA were detected, and there was little production of IL-17A in a whole blood stimulation assay (WBA) with rEcOmpA. Antibodies to rEcOmpA were induced by immunization. These antibodies were not able to react with E. coli P4, but reacted with a rough P4 mutant prepared by inactivating the rfb locus. This suggests that the complete LPS O-chain precluded the accessibility of antibodies to their target at the outer membrane. The cellular immune response appeared to be biased towards a Th17-type, as more IL-17A than IFN-γ was produced in the OmpA-specific WBA. There was a good correlation between antibody titers and the production of IL-17A in the WBA. The intramammary instillation of rEcOmpA elicited a slight local inflammatory response which was not related to the WBA. Overall, the interest of OmpA as vaccine immunogen was not established, although other experimental conditions (dose, adjuvant, route) need to be investigated to conclude definitively. The study pointed to several important issues such as the accessibility of OmpA to antibodies and the weakness of Th1-type response induced by OmpA.
Collapse
|
44
|
de Boyer des Roches A, Faure M, Lussert A, Herry V, Rainard P, Durand D, Foucras G. Behavioral and patho-physiological response as possible signs of pain in dairy cows during Escherichia coli mastitis: A pilot study. J Dairy Sci 2017; 100:8385-8397. [DOI: 10.3168/jds.2017-12796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/31/2017] [Indexed: 01/22/2023]
|