1
|
Reijers VC, van Rees F, van der Heide T, Oost AP, Ruessink G, Koffijberg K, Camphuysen KCJ, Penning E, Hijner N, Govers LL. Birds influence vegetation coverage and structure on sandy biogeomorphic islands in the Dutch Wadden Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175254. [PMID: 39111441 DOI: 10.1016/j.scitotenv.2024.175254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Small uninhabited islands form important roosting and breeding habitats for many coastal birds. Previous studies have demonstrated that guano can promote ecosystem productivity and functionality on island ecosystems. Here, we assess the role of external nutrient input by coastal birds on the vegetation structure and coverage on sandy biogeomorphic islands, where island-forming processes depend on vegetation-sedimentation feedbacks. As a first step, we investigated whether breeding birds affect vegetation productivity on sandy back-barrier islands in the Wadden Sea. Using a combination of bird observations and plant stable isotope (δ15N) analyses, we demonstrate that (i) breeding birds transport large quantities of nutrients via their faecal outputs to these islands annually and that (ii) this external nitrogen source influences vegetation development on these sandy, nutrient-limited, islands. Based on these results we discuss how this avian nutrient pump could impact island development and habitat suitability for coastal birds and discuss future directions for research. In general, we conclude that avian subsidies have the potential to affect both the ecological and biogeomorphic functioning of coastal soft-sediment systems. However, the strength and scale of especially these biogeomorphic interactions are not fully understood. For the conservation of both threatened coastal birds and sandy back-barrier islands and the design of appropriate management strategies, we argue that three-way interactions between birds, vegetation and sandy island morphodynamics need to be further elucidated.
Collapse
Affiliation(s)
- Valérie C Reijers
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands; Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - Floris van Rees
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands; Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Tjisse van der Heide
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| | - Albert P Oost
- Staatsbosbeheer, P.O. Box 2, 3800 AA Amersfoort, the Netherlands
| | - Gerben Ruessink
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands
| | - Kees Koffijberg
- Sovon Dutch Centre for Field Ornithology, PO Box 6521, Nijmegen, the Netherlands
| | - Kees C J Camphuysen
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Emma Penning
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus Fryslân, University of Groningen, Zaailand 110, 8911 BN Leeuwarden, the Netherlands
| | - Nadia Hijner
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| | - Laura L Govers
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| |
Collapse
|
2
|
Lange ID, Benkwitt CE. Seabird nutrients increase coral calcification rates and boost reef carbonate production. Sci Rep 2024; 14:24937. [PMID: 39438679 PMCID: PMC11496823 DOI: 10.1038/s41598-024-76759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
While excessive anthropogenic nutrient loads are harmful to coral reefs, natural nutrient flows can boost coral growth and reef functions. Here we investigate if seabird-derived nutrient subsidies benefit the growth of two dominant corals on lagoonal reefs, submassive Isopora palifera and corymbose Acropora vermiculata, and if enhanced colony-level calcification rates can increase reef-scale carbonate production. I. palifera and A. vermiculata colonies close to an island with high seabird densities displayed 1.4 and 3.2-times higher linear extension rates, 1.8 and 3.9-times faster planar area increase, and 1.6 and 2.7-times higher calcification rates compared to colonies close to a nearby island with low seabird densities, respectively. While benthic ReefBudget surveys in combination with average coral growth rates did not indicate differences in reef-scale carbonate production across sites, coral carbonate production was 2.2-times higher at the seabird-rich island when using site-specific linear growth rates and skeletal densities. This study shows that seabird-derived nutrients benefit fast-growing branching as well as previously unstudied submassive coral taxa. It also demonstrates that nutrient subsidies benefit colony-scale and reef-scale calcification rates, which underpin important geo-ecological reef functions. Restoring natural nutrient pathways should thus be a priority for island and reef management.
Collapse
|
3
|
Wang X, Li H, Zhang J, Chen J, Xie X, Xie W, Yin K, Zhang D, Ruiz-Pino D, Kao SJ. Seamounts generate efficient active transport loops to nourish the twilight ecosystem. SCIENCE ADVANCES 2024; 10:eadk6833. [PMID: 38924405 DOI: 10.1126/sciadv.adk6833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Seamounts are ecological oases nurturing abundant fisheries resources and epibenthic megafauna in the vast oligotrophic ocean. Despite their significance, the formation mechanisms underlying these seamount ecological oases remain uncertain. To shed light on this phenomenon, this study conducted interdisciplinary in situ observations focusing on a shallow seamount in the oligotrophic ocean. The findings show that the seamount's topography interferes with the oceanic current to generate lee waves, effectively enhancing the nutrient supply to the euphotic layer downstream of the seamount. This continuous supply enhances phytoplankton biomass and subsequently the grazing and diurnal vertical migration of zooplankton, rapidly transporting the augmented phytoplankton biomass to the aphotic layer. Unlike the cyclonic eddies that move in the upper ocean, seamounts stand at fixed locations creating a more efficient and steady active transport loop. This active transport loop connects the euphotic and twilight zones, potentially conveying nourishment to benthic ecosystems to create stereoscopic oases in the oligotrophic ocean.
Collapse
Affiliation(s)
- Xinyang Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jingjing Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiaohui Xie
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Diana Ruiz-Pino
- Sorbonne University (S.U.), CNRS-IRD-MNHN, LOCEAN Laboratory/IPSL, Paris, France
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
4
|
Dunn RE, Benkwitt CE, Maury O, Barrier N, Carr P, Graham NAJ. Island restoration to rebuild seabird populations and amplify coral reef functioning. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14313. [PMID: 38887868 DOI: 10.1111/cobi.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
Mobile organisms like seabirds can provide important nutrient flows between ecosystems, but this connectivity has been interrupted by the degradation of island ecosystems. Island restoration (via invasive species eradications and the restoration of native vegetation) can reestablish seabird populations and their nutrient transfers between their foraging areas, breeding colonies, and adjacent nearshore habitats. Its diverse benefits are making island restoration increasingly common and scalable to larger islands and whole archipelagos. We identified the factors that influence breeding seabird abundances throughout the Chagos Archipelago in the Indian Ocean and conducted predictive modeling to estimate the abundances of seabirds that the archipelago could support under invasive predator eradication and native vegetation restoration scenarios. We explored whether the prey base exists to support restored seabird populations across the archipelago, calculated the nitrogen that restored populations of seabirds might produce via their guano, and modeled the cascading conservation gains that island restoration could provide. Restoration was predicted to increase breeding pairs of seabirds to over 280,000, and prey was predicted to be ample to support the revived seabird populations. Restored nutrient fluxes were predicted to result in increases in coral growth rates, reef fish biomasses, and parrotfish grazing and bioerosion rates. Given these potential cross-ecosystem benefits, our results support island restoration as a conservation priority that could enhance resilience to climatic change effects, such as sea-level rise and coral bleaching. We encourage the incorporation of our estimates of cross-ecosystem benefits in prioritization exercises for island restoration.
Collapse
Affiliation(s)
- Ruth E Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK
| | | | - Olivier Maury
- Institut de Recherche pour le Développement, Université de Montpellier, Sète, France
| | - Nicolas Barrier
- Institut de Recherche pour le Développement, Université de Montpellier, Sète, France
| | - Peter Carr
- Institute of Zoology, Zoological Society of London, London, UK
| | | |
Collapse
|
5
|
Appoo J, Bunbury N, Jaquemet S, Graham NA. Seabird nutrient subsidies enrich mangrove ecosystems and are exported to nearby coastal habitats. iScience 2024; 27:109404. [PMID: 38510135 PMCID: PMC10952037 DOI: 10.1016/j.isci.2024.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Eutrophication by human-derived nutrient enrichment is a major threat to mangroves, impacting productivity, ecological functions, resilience, and ecosystem services. Natural mangrove nutrient enrichment processes, however, remain largely uninvestigated. Mobile consumers such as seabirds are important vectors of cross-ecosystem nutrient subsidies to islands but how they influence mangrove ecosystems is poorly known. We assessed the contribution, uptake, cycling, and transfer of nutrients from seabird colonies in remote mangrove systems free of human stressors. We found that nutrients from seabird guano enrich mangrove plants, reduce nutrient limitations, enhance mangrove invertebrate food webs, and are exported to nearby coastal habitats through tidal flow. We show that seabird nutrient subsidies in mangroves can be substantial, improving the nutrient status and health of mangroves and adjacent coastal habitats. Conserving mobile consumers, such as seabirds, is therefore vital to preserve and enhance their role in mangrove productivity, resilience, and provision of diverse functions and services.
Collapse
Affiliation(s)
- Jennifer Appoo
- UMR ENTROPIE, Université de La Réunion, 97744 Saint Denis Cedex 9, La Réunion, France
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
| | - Nancy Bunbury
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Sébastien Jaquemet
- UMR ENTROPIE, Université de La Réunion, 97744 Saint Denis Cedex 9, La Réunion, France
| | | |
Collapse
|
6
|
Prekrasna-Kviatkovska Y, Parnikoza I, Yerkhova A, Stelmakh O, Pavlovska M, Dzyndra M, Yarovyi O, Dykyi E. From acidophilic to ornithogenic: microbial community dynamics in moss banks altered by gentoo penguins. Front Microbiol 2024; 15:1362975. [PMID: 38525081 PMCID: PMC10959021 DOI: 10.3389/fmicb.2024.1362975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The study explores the indirect impact of climate change driven by gentoo's penguin colonization pressure on the microbial communities of moss banks formed by Tall moss turf subformation in central maritime Antarctica. Methods Microbial communities and chemical composition of the differently affected moss banks (Unaffected, Impacted and Desolated) located on Galindez Island and Сape Tuxen on the mainland of Kyiv Peninsula were analyzed. Results The native microbiota of the moss banks' peat was analyzed for the first time, revealing a predominant presence of Acidobacteria (32.2 ± 14.4%), followed by Actinobacteria (15.1 ± 4.0%) and Alphaproteobacteria (9.7 ± 4.1%). Penguin colonization and subsequent desolation of moss banks resulted in an increase in peat pH (from 4.7 ± 0.05 to 7.2 ± 0.6) and elevated concentrations of soluble nitrogen (from 1.8 ± 0.4 to 46.9 ± 2.1 DIN, mg/kg) and soluble phosphorus compounds (from 3.6 ± 2.6 to 20.0 ± 1.8 DIP, mg/kg). The contrasting composition of peat and penguin feces led to the elimination of the initial peat microbiota, with an increase in Betaproteobacteria (from 1.3 ± 0.8% to 30.5 ± 23%) and Bacteroidota (from 5.5 ± 3.7% to 19.0 ± 3.7%) proportional to the intensity of penguins' impact, accompanied by a decrease in community diversity. Microbial taxa associated with birds' guts, such as Gottschalkia and Tissierella, emerged in Impacted and Desolated moss banks, along with bacteria likely benefiting from eutrophication. The changes in the functional capacity of the penguin-affected peat microbial communities were also detected. The nitrogen-cycling genes that regulate the conversion of urea into ammonia, nitrite oxide, and nitrate oxide (ureC, amoA, nirS, nosZ, nxrB) had elevated copy numbers in the affected peat. Desolated peat samples exhibit the highest nitrogen-cycle gene numbers, significantly differing from Unaffected peat (p < 0.05). Discussion The expansion of gentoo penguins induced by climate change led to the replacement of acidophilic microbiomes associated with moss banks, shaping a new microbial community influenced by penguin guano's chemical and microbial composition.
Collapse
Affiliation(s)
| | - Ivan Parnikoza
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Department of Cell Population Genetics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Faculty of Natural Science, National University of “Kyiv-Mohyla Academy”, Kyiv, Ukraine
| | - Anna Yerkhova
- Biomedical Institute, Open International University of Human Development Ukraine, Kyiv, Ukraine
| | - Olesia Stelmakh
- Faculty of Molecular Biology and Biotechnology, Kyiv Academic University, Kyiv, Ukraine
| | - Mariia Pavlovska
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Marta Dzyndra
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Oleksandr Yarovyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Evgen Dykyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| |
Collapse
|
7
|
Benkwitt CE, D'Angelo C, Dunn RE, Gunn RL, Healing S, Mardones ML, Wiedenmann J, Wilson SK, Graham NAJ. Seabirds boost coral reef resilience. SCIENCE ADVANCES 2023; 9:eadj0390. [PMID: 38055814 DOI: 10.1126/sciadv.adj0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Global climate change threatens tropical coral reefs, yet local management can influence resilience. While increasing anthropogenic nutrients reduce coral resistance and recovery, it is unknown how the loss, or restoration, of natural nutrient flows affects reef recovery. Here, we test how natural seabird-derived nutrient subsidies, which are threatened by invasive rats, influence the mechanisms and patterns of reef recovery following an extreme marine heatwave using multiyear field experiments, repeated surveys, and Bayesian modeling. Corals transplanted from rat to seabird islands quickly assimilated seabird-derived nutrients, fully acclimating to new nutrient conditions within 3 years. Increased seabird-derived nutrients, in turn, caused a doubling of coral growth rates both within individuals and across entire reefs. Seabirds were also associated with faster recovery time of Acropora coral cover (<4 years) and more dynamic recovery trajectories of entire benthic communities. We conclude that restoring seabird populations and associated nutrient pathways may foster greater coral reef resilience through enhanced growth and recovery rates of corals.
Collapse
Affiliation(s)
| | - Cecilia D'Angelo
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Rachel L Gunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf Der Morgenstelle 28, 72076 Tübingen, Germany
| | - Samuel Healing
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - M Loreto Mardones
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Joerg Wiedenmann
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Shaun K Wilson
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia
- University of Western Australia, UWA Oceans Institute, Crawley, WA 6009, Australia
| | | |
Collapse
|
8
|
Vandvik V, Halbritter AH, Althuizen IHJ, Christiansen CT, Henn JJ, Jónsdóttir IS, Klanderud K, Macias-Fauria M, Malhi Y, Maitner BS, Michaletz S, Roos RE, Telford RJ, Bass P, Björnsdóttir K, Bustamante LLV, Chmurzynski A, Chen S, Haugum SV, Kemppinen J, Lepley K, Li Y, Linabury M, Matos IS, Neto-Bradley BM, Ng M, Niittynen P, Östman S, Pánková K, Roth N, Castorena M, Spiegel M, Thomson E, Vågenes AS, Enquist BJ. Plant traits and associated data from a warming experiment, a seabird colony, and along elevation in Svalbard. Sci Data 2023; 10:578. [PMID: 37666874 PMCID: PMC10477187 DOI: 10.1038/s41597-023-02467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.
Collapse
Affiliation(s)
- Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.
| | - Aud H Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Inge H J Althuizen
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
- NORCE, Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway
| | | | - Jonathan J Henn
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, USA
| | | | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Brian Salvin Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Sean Michaletz
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ruben E Roos
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Richard J Telford
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Polly Bass
- Department of Ethnobotany, University of Alaska, Fairbanks, Canada
| | | | | | - Adam Chmurzynski
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Shuli Chen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Siri Vatsø Haugum
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | | | - Kai Lepley
- School of Geography, Development and Environment, University of Arizona, Tucson, USA
| | - Yaoqi Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Mary Linabury
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Ilaíne Silveira Matos
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, USA
| | | | - Molly Ng
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, USA
| | | | - Silje Östman
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Karolína Pánková
- Department of Botany, Charles University, Prague, Czech Republic
| | - Nina Roth
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Marcus Spiegel
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eleanor Thomson
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA.
| |
Collapse
|
9
|
Wiedenmann J, D'Angelo C, Mardones ML, Moore S, Benkwitt CE, Graham NAJ, Hambach B, Wilson PA, Vanstone J, Eyal G, Ben-Zvi O, Loya Y, Genin A. Reef-building corals farm and feed on their photosynthetic symbionts. Nature 2023; 620:1018-1024. [PMID: 37612503 PMCID: PMC10468396 DOI: 10.1038/s41586-023-06442-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Coral reefs are highly diverse ecosystems that thrive in nutrient-poor waters, a phenomenon frequently referred to as the Darwin paradox1. The energy demand of coral animal hosts can often be fully met by the excess production of carbon-rich photosynthates by their algal symbionts2,3. However, the understanding of mechanisms that enable corals to acquire the vital nutrients nitrogen and phosphorus from their symbionts is incomplete4-9. Here we show, through a series of long-term experiments, that the uptake of dissolved inorganic nitrogen and phosphorus by the symbionts alone is sufficient to sustain rapid coral growth. Next, considering the nitrogen and phosphorus budgets of host and symbionts, we identify that these nutrients are gathered through symbiont 'farming' and are translocated to the host by digestion of excess symbiont cells. Finally, we use a large-scale natural experiment in which seabirds fertilize some reefs but not others, to show that the efficient utilization of dissolved inorganic nutrients by symbiotic corals established in our laboratory experiments has the potential to enhance coral growth in the wild at the ecosystem level. Feeding on symbionts enables coral animals to tap into an important nutrient pool and helps to explain the evolutionary and ecological success of symbiotic corals in nutrient-limited waters.
Collapse
Affiliation(s)
- Jörg Wiedenmann
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK.
| | - Cecilia D'Angelo
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - M Loreto Mardones
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Shona Moore
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | | | - Bastian Hambach
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Paul A Wilson
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - James Vanstone
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gal Eyal
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Marine Palaeoecology Laboratory, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Or Ben-Zvi
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amatzia Genin
- Department of Ecology, Evolution & Behavior, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| |
Collapse
|
10
|
Linhares BDA, Bugoni L. Seabirds subsidize terrestrial food webs and coral reefs in a tropical rat-invaded archipelago. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2733. [PMID: 36057541 DOI: 10.1002/eap.2733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 05/23/2023]
Abstract
Allochthonous resource fluxes mediated by organisms crossing ecosystem boundaries may be essential for supporting the structure and function of resource-limited environments, such as tropical islands and surrounding coral reefs. However, invasive species, such as black rats, thrive on tropical islands and disrupt the natural pathways of nutrient subsidies by reducing seabird colonies. Here, we used stable isotopes of nitrogen and carbon to examine the role of seabirds in subsidizing the terrestrial food webs and adjacent coral reefs in the Abrolhos Archipelago, Southwest Atlantic Ocean. By sampling invasive rats and multiple ecosystem compartments (soil, plants, grasshoppers, tarantulas, and lizards) within and outside seabird colonies, we showed that seabird subsidies led to an overall enrichment in 15 N across the food web on islands. However, contrary to other studies, δ15 N values were consistently lower within the seabird colonies, suggesting that a higher seabird presence might produce a localized depletion in 15 N in small islands influenced by seabirds. In contrast, the nitrogen content (%N) in plants and soils was higher inside the colonies, corresponding to a higher effect of seabirds at the base of the trophic web. Among consumers, lizards and invasive rats seemed to obtain allochthonous resources from subsidized terrestrial organisms outside the colony. Inside the colony, however, they showed a more direct consumption of marine matter, suggesting that subsidies benefit these native and invasive animals both directly and indirectly. Nonetheless, in coral reefs, scleractinian corals assimilated seabird-derived nitrogen only around the two smaller and lower-elevation islands, as demonstrated by the substantially higher δ15 N values in relation to the reference areas. This provides evidence that island morphology may influence the incorporation of seabird nutrients in coral reefs around rat-invaded islands, likely because guano lixiviation toward seawater is facilitated in small and low-elevation terrains. Overall, these results showed that seabirds affected small islands across all trophic levels within and outside colonies and that these effects spread outward to coral reefs, evidencing resiliency of seabird subsidies even within a rat-invaded archipelago. Because rats are consumers of seabird chicks and eggs, however, rat eradication could potentially benefit the terrestrial and nearshore ecosystems through increased subsides carried by seabirds.
Collapse
Affiliation(s)
- Bruno de Andrade Linhares
- Universidade Federal do Rio Grande (FURG), Programa de Pós-Graduação em Oceanografia Biológica, Rio Grande, Brazil
- Universidade Federal do Rio Grande (FURG), Laboratório de Aves Aquáticas e Tartarugas Marinhas (LAATM), Instituto de Ciências Biológicas, Rio Grande, Brazil
| | - Leandro Bugoni
- Universidade Federal do Rio Grande (FURG), Laboratório de Aves Aquáticas e Tartarugas Marinhas (LAATM), Instituto de Ciências Biológicas, Rio Grande, Brazil
| |
Collapse
|
11
|
Justel-Díez M, Delgadillo-Nuño E, Gutiérrez-Barral A, García-Otero P, Alonso-Barciela I, Pereira-Villanueva P, Álvarez-Salgado XA, Velando A, Teira E, Fernández E. Inputs of seabird guano alter microbial growth, community composition and the phytoplankton-bacterial interactions in a coastal system. Environ Microbiol 2023. [PMID: 36752021 DOI: 10.1111/1462-2920.16349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Seabird guano enters coastal waters providing bioavailable substrates for microbial plankton, but their role in marine ecosystem functioning remains poorly understood. Two concentrations of the water soluble fraction (WSF) of gull guano were added to different natural microbial communities collected in surface waters from the Ría de Vigo (NW Spain) in spring, summer, and winter. Samples were incubated with or without antibiotics (to block bacterial activity) to test whether gull guano stimulated phytoplankton and bacterial growth, caused changes in taxonomic composition, and altered phytoplankton-bacteria interactions. Alteromonadales, Sphingobacteriales, Verrucomicrobia and diatoms were generally stimulated by guano. Chlorophyll a (Chl a) concentration and bacterial abundance significantly increased after additions independently of the initial ambient nutrient concentrations. Our study demonstrates, for the first time, that the addition of guano altered the phytoplankton-bacteria interaction index from neutral (i.e. phytoplankton growth was not affected by bacterial activity) to positive (i.e. phytoplankton growth was stimulated by bacterial activity) in the low-nutrient environment occurring in spring. In contrast, when environmental nutrient concentrations were high, the interaction index changed from positive to neutral after guano additions, suggesting the presence of some secondary metabolite in the guano that is needed for phytoplankton growth, which would otherwise be supplied by bacteria.
Collapse
Affiliation(s)
- Maider Justel-Díez
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Erick Delgadillo-Nuño
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Alberto Gutiérrez-Barral
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Paula García-Otero
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Isaac Alonso-Barciela
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Pablo Pereira-Villanueva
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | | | - Alberto Velando
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Eva Teira
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Emilio Fernández
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Blanchard G, Munoz F. Revisiting extinction debt through the lens of multitrophic networks and meta‐ecosystems. OIKOS 2022. [DOI: 10.1111/oik.09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Blanchard
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- AMAP, IRD, Herbier de Nouvelle Calédonie Nouméa Nouvelle Calédonie
| | | |
Collapse
|
13
|
Benkwitt CE, Carr P, Wilson SK, Graham NAJ. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc Biol Sci 2022; 289:20220195. [PMID: 35538790 PMCID: PMC9091852 DOI: 10.1098/rspb.2022.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mobile consumers are key vectors of cross-ecosystem nutrients, yet have experienced population declines which threaten their ability to fill this role. Despite their importance and vulnerability, there is little information on how consumer biodiversity, in addition to biomass, influences the magnitude of nutrient subsidies. Here, we show that both biomass and diversity of seabirds enhanced the provisioning of nutrients across tropical islands and coral reefs, but their relative influence varied across systems. Seabird biomass was particularly important for terrestrial and near-shore subsidies and enhancing fish biomass, while seabird diversity was associated with nutrient subsidies further offshore. The positive effects of diversity were likely driven by high functional complementarity among seabird species in traits related to nutrient storage and provisioning. However, introduced rats and non-native vegetation reduced seabird biomass and diversity, with rats having a stronger effect on biomass and vegetation having a stronger effect on diversity. Accordingly, the restoration of cross-ecosystem nutrient flows provided by seabirds will likely be most successful when both stressors are removed, thus protecting both high biomass and diversity. Recognizing the importance of mobile consumer diversity and biomass, and their underlying drivers, is a necessary step to conserving these species and the ecosystem functions they provide.
Collapse
Affiliation(s)
| | - Peter Carr
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London NW1 4RY, UK,Chagos Conservation Trust, 23 The Avenue, Sandy, Beds SG19 1ER, UK
| | - Shaun K. Wilson
- Marine Science Program, Department of Biodiversity Conservation and Attractions, Kensington, Western Australia, Australia,Oceans Institute, University of Western Australia, Crawly, Western Australia, Australia
| | | |
Collapse
|
14
|
Alba-González P, Álvarez-Salgado XA, Cobelo-García A, Kaal J, Teira E. Faeces of marine birds and mammals as substrates for microbial plankton communities. MARINE ENVIRONMENTAL RESEARCH 2022; 174:105560. [PMID: 35021141 DOI: 10.1016/j.marenvres.2022.105560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The chemical composition of the seawater soluble fraction (WSF) of yellow-legged gulls and harbour seal faeces and their impact on microbial plankton communities from an eutrophic coastal area have been tested. After characterisation of the C:N:P stoichiometry, trace metals content and organic molecular composition of the faeces, significant differences between species have been observed in all parameters. Seagull faeces present about three times larger N content than seal faeces and are also richer in trace elements except for Cu and Zn. Organic nitrogen in seagull faeces is dominated by uric acid, while the proteins are the main N source in seal faeces. It is remarkable that seagull faeces are five times more soluble in seawater than seal faeces and present a much higher N content (48.0 versus 3.5 mg N in the WSF per gram of dry faeces), >85% of which as dissolved organic nitrogen, with C:N molar ratios of 2.4 and 13 for seagull and seal faeces, respectively. Based on this contrasting N content, large differences were expected in their impact on microbial populations. To test this hypothesis, a 3-day microcosm incubation experiment was performed, in which coastal seawater was amended with realistic concentrations of the WSF of seagull or seal faeces. A significant and similar increase in bacterial biomass occurred in response to both treatments. In the case of phytoplankton, the impact of the treatment with seagull faeces was significantly larger that the effect of the treatment with seal faeces. Our data suggest that the distinct competitive abilities of phytoplankton and bacteria largely influence the potential impact of distinct animal faeces on primary productivity in coastal ecosystems. Impacts on the microbial plankton communities do not affect only this trophic level, but the whole trophic chain, contributing to nutrient recycling in coastal areas where large populations of these species are settled.
Collapse
Affiliation(s)
- Pablo Alba-González
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, E36310, Vigo, Spain
| | | | | | | | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, E36310, Vigo, Spain
| |
Collapse
|
15
|
Longley-Wood K, Engels M, Lafferty KD, McLaughlin JP, Wegmann A. Transforming Palmyra Atoll to native-tree dominance will increase net carbon storage and reduce dissolved organic carbon reef runoff. PLoS One 2022; 17:e0262621. [PMID: 35061815 PMCID: PMC8782295 DOI: 10.1371/journal.pone.0262621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
Native forests on tropical islands have been displaced by non-native species, leading to calls for their transformation. Simultaneously, there is increasing recognition that tropical forests can help sequester carbon that would otherwise enter the atmosphere. However, it is unclear if native forests sequester more or less carbon than human-altered landscapes. At Palmyra Atoll, efforts are underway to transform the rainforest composition from coconut palm (Cocos nucifera) dominated to native mixed-species. To better understand how this landscape-level change will alter the atoll's carbon dynamics, we used field sampling, remote sensing, and parameter estimates from the literature to model the total carbon accumulation potential of Palmyra's forest before and after transformation. The model predicted that replacing the C. nucifera plantation with native species would reduce aboveground biomass from 692.6 to 433.3 Mg C. However, expansion of the native Pisonia grandis and Heliotropium foertherianum forest community projected an increase in soil carbon to at least 13,590.8 Mg C, thereby increasing the atoll's overall terrestrial carbon storage potential by 11.6%. Nearshore sites adjacent to C. nucifera canopy had a higher dissolved organic carbon (DOC) concentration (110.0 μMC) than sites adjacent to native forest (81.5 μMC), suggesting that, in conjunction with an increase in terrestrial carbon storage, replacing C. nucifera with native forest will reduce the DOC exported from the forest into in nearshore marine habitats. Lower DOC levels have potential benefits for corals and coral dependent communities. For tropical islands like Palmyra, reverting from C. nucifera dominance to native tree dominance could buffer projected climate change impacts by increasing carbon storage and reducing coral disease.
Collapse
Affiliation(s)
- Kate Longley-Wood
- The Nature Conservancy, Protect Oceans Land and Water Program, Boston, Massachusetts, United States of America
| | - Mary Engels
- Department of Natural Resources and Society, University of Idaho, Moscow, Idaho, United States of America
| | - Kevin D. Lafferty
- U.S. Geological Survey, Western Ecological Research Center at Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - John P. McLaughlin
- University of California, Santa Barbara, Marine Science Institute, Santa Barbara, California, United States of America
| | - Alex Wegmann
- The Nature Conservancy, Sacramento, California, United States of America
| |
Collapse
|
16
|
Do Invasive Mammal Eradications from Islands Support Climate Change Adaptation and Mitigation? CLIMATE 2021. [DOI: 10.3390/cli9120172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Climate change represents a planetary emergency that is exacerbating the loss of native biodiversity. In response, efforts promoting climate change adaptation strategies that improve ecosystem resilience and/or mitigate climate impacts are paramount. Invasive Alien Species are a key threat to islands globally, where strategies such as preventing establishment (biosecurity), and eradication, especially invasive mammals, have proven effective for reducing native biodiversity loss and can also advance ecosystem resilience and create refugia for native species at risk from climate change. Furthermore, there is growing evidence that successful eradications may also contribute to mitigating climate change. Given the cross-sector potential for eradications to reduce climate impacts alongside native biodiversity conservation, we sought to understand when conservation managers and funders explicitly sought to use or fund the eradication of invasive mammals from islands to achieve positive climate outcomes. To provide context, we first summarized available literature of the synergistic relationship between invasive species and climate change, including case studies where invasive mammal eradications served to meet climate adaptation or mitigation solutions. Second, we conducted a systematic review of the literature and eradication-related conference proceedings to identify when these synergistic effects of climate and invasive species were explicitly addressed through eradication practices. Third, we reviewed projects from four large funding entities known to support climate change solutions and/or native biodiversity conservation efforts and identified when eradications were funded in a climate change context. The combined results of our case study summary paired with systematic reviews found that, although eradicating invasive mammals from islands is an effective climate adaptation strategy, island eradications are poorly represented within the climate change adaptation and mitigation funding framework. We believe this is a lost opportunity and encourage eradication practitioners and funders of climate change adaptation to leverage this extremely effective nature-based tool into positive conservation and climate resilience solutions.
Collapse
|
17
|
Kerninon F, Payri CE, Le Loc'h F, Alcoverro T, Maréchal JP, Chalifour J, Gréaux S, Mège S, Athanase J, Cordonnier S, Rouget ML, Lorre E, Uboldi T, Monnier O, Hellio C. Selection of parameters for seagrass management: Towards the development of integrated indicators for French Antilles. MARINE POLLUTION BULLETIN 2021; 170:112646. [PMID: 34225197 DOI: 10.1016/j.marpolbul.2021.112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Seagrass beds are increasingly impacted by human activities in coastal areas, particularly in tropical regions. The objective of this research program was to study seagrass beds characteristics under various environmental conditions in the French Antilles (FA, Caribbean Sea). A total of 61 parameters, from plant physiology to seagrass ecosystem, were tested along a gradient of anthropogenic conditions, distributed across 11 sites and 3 islands of the FA. A selection of 7 parameters was identified as relevant for the monitoring of seagrass meadows in the framework of public policies. They combined "early warning indicators" (e.g. nutrients and some trace metals) and long-term responding parameters (e.g. shoot density) adapted to management time scales. The ecological status of seagrass meadows was evaluated using a PCA. This work is a first step towards monitoring and management of seagrass meadows in the FA.
Collapse
Affiliation(s)
- Fanny Kerninon
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France.
| | - Claude E Payri
- UMR Entropie (IRD, Université de la Réunion, Université de la Nouvelle-Calédonie, CNRS, Ifremer), Institut de Recherche pour le Développement (IRD), 101 Promenade Roger Laroque, Nouméa 98848, Nouvelle-Calédonie, France
| | | | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carretera d'accés a la cala sant Francesc 14, 17300 Blanes, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| | | | - Julien Chalifour
- Réserve Naturelle Nationale de Saint-Martin, Anse Marcel, 97150 Saint-Martin, France
| | - Sébastien Gréaux
- Agence Territoriale de l'Environnement de Saint-Barthélemy, Rue de la République, Gustavia 97133, Saint-Barthélemy, France
| | - Simone Mège
- Parc National de la Guadeloupe, rue Jean-Jaurès, 97122 Baie-Mahault, Guadeloupe, France
| | - Julien Athanase
- Réserve Naturelle Nationale de Petite-Terre, Association Tité, Capitaineries, 97127 La Désirade, France
| | - Sébastien Cordonnier
- Université des Antilles, UMR BOREA, B.P. 592, Pointe-à-Pitre 97159, Guadeloupe, France
| | - Marie-Laure Rouget
- UMS 3113, Univ Brest, IUEM, rue Dumont d'Urville, 29280 Plouzané, France
| | - Elise Lorre
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Thomas Uboldi
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Olivier Monnier
- Office français de la biodiversité, 5 Square Félix Nadar, 94300 Vincennes, France
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
18
|
Bayless AL, Christopher SJ, Day RD, Ness JM, Bryan CE, Toline CA, Woodley CM. Trace element proxies and stable isotopes used to identify water quality threats to elkhorn coral (Acropora palmata) at two national parks in St. Croix, USVI. MARINE POLLUTION BULLETIN 2021; 169:112575. [PMID: 34119965 DOI: 10.1016/j.marpolbul.2021.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Biological impairments have been documented on reefs at two national parks in St. Croix, USVI. Although several water quality parameters have been out of compliance with USVI criteria, whether these parameters or other pollutants are responsible for coral health impacts is unknown. Trace elements quantified in sediment showed four sites at SARI, which is closer than BUIS to settlements and land-derived anthropogenic outflows, had Cu mass fractions above sediment quality guidelines for invertebrate toxicity. Trace elements were also analyzed in the skeleton of threatened elkhorn coral, Acropora palmata, to evaluate potential exposure. Heavy metals (Pb, Zn) were significantly greater in coral skeleton at SARI than BUIS. Cu, Pb, and Zn may be impacting coral health in these parks. Potential anthropogenic sources of these metals were revealed by the coral tissue stable isotope levels (δ13C and δ15N). These findings provide a framework for determining heavy metal impacts on these invaluable reefs.
Collapse
Affiliation(s)
- Amanda L Bayless
- College of Charleston, Department of Biology contractor for National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC 29412, USA; The University of Charleston, SC at the College of Charleston, Grice Marine Laboratory, 205 Fort Johnson Rd., Charleston, SC 29412, USA.
| | - Steven J Christopher
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC 29412, USA
| | - Russell D Day
- Marine Science and Nautical Training Academy (MANTA), 520 Folly Rd., Charleston, SC 29412, USA
| | - Jennifer M Ness
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC 29412, USA
| | - Colleen E Bryan
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC 29412, USA
| | - C Anna Toline
- United States National Park Service, Region 2, South Atlantic Gulf, Charleston, SC 29412, USA
| | - Cheryl M Woodley
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC 29412, USA
| |
Collapse
|
19
|
Benkwitt CE, Gunn RL, Le Corre M, Carr P, Graham NAJ. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr Biol 2021; 31:2704-2711.e4. [PMID: 33887185 DOI: 10.1016/j.cub.2021.03.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022]
Abstract
Biological invasions pose a threat to nearly every ecosystem worldwide.1,2 Although eradication programs can successfully eliminate invasive species and enhance native biodiversity, especially on islands,3 the effects of eradication on cross-ecosystem processes are unknown. On islands where rats were never introduced, seabirds transfer nutrients from pelagic to terrestrial and nearshore marine habitats, which in turn enhance the productivity, biomass, and functioning of recipient ecosystems.4-6 Here, we test whether rat eradication restores seabird populations, their nutrient subsidies, and some of their associated benefits for ecosystem function to tropical islands and adjacent coral reefs. By comparing islands with different rat invasion histories, we found a clear hierarchy whereby seabird biomass, seabird-driven nitrogen inputs, and the incorporation of seabird-derived nutrients into terrestrial and marine food chains were highest on islands where rats were never introduced, intermediate on islands where rats were eradicated 4-16 years earlier, and lowest on islands with invasive rats still present. Seabird-derived nutrients diminished from land to sea and with increasing distance to rat-eradicated islands, but extended at least 300 m from shore. Although rat eradication enhanced seabird-derived nutrients in soil, leaves, marine algae, and herbivorous reef fish, reef fish growth was similar around rat-eradicated and rat-infested islands. Given that the loss of nutrient subsidies is of global concern,7 that removal of invasive species restores previously lost nutrient pathways over relatively short timescales is promising. However, the full return of cross-ecosystem nutrient subsidies and all of their associated demographic benefits may take multiple decades.
Collapse
Affiliation(s)
| | - Rachel L Gunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Matthieu Le Corre
- UMR ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie, Avenue René Cassin, 97490 Sainte Clotilde, La Réunion
| | - Peter Carr
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK; Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9EZ, UK
| | | |
Collapse
|
20
|
Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish. Sci Rep 2021; 11:12575. [PMID: 34131172 PMCID: PMC8206227 DOI: 10.1038/s41598-021-91884-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
By improving resource quality, cross-ecosystem nutrient subsidies may boost demographic rates of consumers in recipient ecosystems, which in turn can affect population and community dynamics. However, empirical studies on how nutrient subsidies simultaneously affect multiple demographic rates are lacking, in part because humans have disrupted the majority of these natural flows. Here, we compare the demographics of a sex-changing parrotfish (Chlorurus sordidus) between reefs where cross-ecosystem nutrients provided by seabirds are available versus nearby reefs where invasive, predatory rats have removed seabird populations. For this functionally important species, we found evidence for a trade-off between investing in growth and fecundity, with parrotfish around rat-free islands with many seabirds exhibiting 35% faster growth, but 21% lower size-based fecundity, than those around rat-infested islands with few seabirds. Although there were no concurrent differences in population-level density or biomass, overall mean body size was 16% larger around rat-free islands. Because the functional significance of parrotfish as grazers and bioeroders increases non-linearly with size, the increased growth rates and body sizes around rat-free islands likely contributes to higher ecosystem function on coral reefs that receive natural nutrient subsidies. More broadly, these results demonstrate additional benefits, and potential trade-offs, of restoring natural nutrient pathways for recipient ecosystems.
Collapse
|
21
|
De La Peña-Lastra S. Seabird droppings: Effects on a global and local level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142148. [PMID: 33254937 DOI: 10.1016/j.scitotenv.2020.142148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Seabirds, with approximately 1 billion specimens, are the main exchangers of nutrients between Terrestial and Marine Systems and they have become an emerging interest group because of their effects on the planet's ecosystem. This review paper aims to highlight the impact of seabird droppings at different trophic levels, their occurrence, ecological risks and effects on soil, water, atmosphere and biota at global and local level to try to understand the ecological and climatic changes associated with the activities of these birds. Seabirds they have a very marked influence on the ecosystems where they form their colonies since, in addition to their function as predators, alongside with their depositions, they condition the primary producers and, consequently, the rest of the food chain. Their excrements contain large amounts of N, P and trace elements, most of which are bioavailable. In this study, besides bringing together the different works on nutrients and trace elements in excrements and differentiating some terms referring to these excrements, a brief historical overview of their importance for agriculture is made. In addition, the impacts produced by these birds on the ecosystem are also analysed according to two levels, at a global and local level. At each of these levels, a current state of the effects on the different compartments of the ecosystems is made, from the biota to the soils, the water or the atmosphere. This review supports the idea that more studies are needed both at the atmospheric level and in the terrestrial or marine environment for a better understanding of the changes these birds generate.
Collapse
Affiliation(s)
- Saúl De La Peña-Lastra
- CRETUS Institute, Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Galicia. Spain.
| |
Collapse
|
22
|
Hentati-Sundberg J, Raymond C, Sköld M, Svensson O, Gustafsson B, Bonaglia S. Fueling of a marine-terrestrial ecosystem by a major seabird colony. Sci Rep 2020; 10:15455. [PMID: 32963305 PMCID: PMC7508978 DOI: 10.1038/s41598-020-72238-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022] Open
Abstract
Seabirds redistribute nutrients between different ecosystem compartments and over vast geographical areas. This nutrient transfer may impact both local ecosystems on seabird breeding islands and regional biogeochemical cycling, but these processes are seldom considered in local conservation plans or biogeochemical models. The island of Stora Karlsö in the Baltic Sea hosts the largest concentration of piscivorous seabirds in the region, and also hosts a large colony of insectivorous House martins Delichon urbicum adjacent to the breeding seabirds. We show that a previously reported unusually high insectivore abundance was explained by large amounts of chironomids—highly enriched in δ15N—that feed on seabird residues as larvae along rocky shores to eventually emerge as flying adults. Benthic ammonium and phosphate fluxes were up to 163% and 153% higher close to the colony (1,300 m distance) than further away (2,700 m) and the estimated nutrient release from the seabirds at were in the same order of magnitude as the loads from the largest waste-water treatment plants in the region. The trophic cascade impacting insectivorous passerines and the substantial redistribution of nutrients suggest that seabird nutrient transfer should be increasingly considered in local conservation plans and regional nutrient cycling models.
Collapse
Affiliation(s)
- J Hentati-Sundberg
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 45330, Lysekil, Sweden.
| | - C Raymond
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - M Sköld
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 45330, Lysekil, Sweden
| | - O Svensson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - B Gustafsson
- Baltic Nest Institute, Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Tvärminne Zoological Station, University of Helsinki, Hankko, Finland
| | - S Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Wang X, Liu X, Fang Y, Jin J, Wu L, Fu P, Huang H, Zhang H, Emslie SD. Application of δ 15N to trace the impact of penguin guano on terrestrial and aquatic nitrogen cycles in Victoria Land, Ross Sea region, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:134496. [PMID: 31874340 DOI: 10.1016/j.scitotenv.2019.134496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Penguin colonies in Antarctica offer an ideal "natural laboratory" to investigate ecosystem function and the nitrogen (N) cycle. This study assessed the spatial distribution of penguin-derived N from guano and quantitatively assessed its impact on plant N utilization strategies in Victoria Land, Ross Sea region, Antarctica. Soil, moss, and aquatic microbial mats were collected inside and outside an active Adélie penguin (Pygoscelis adeliae) colony and analyzed for δ15N of total and inorganic nitrogen (NH4+-N and NO3--N). The soil total nitrogen (TN), NH4+-N, and NO3--N concentrations, as well as their δ15N values were significantly higher in guano-impacted areas than those in guano-free areas, verifying that guano is an important N source at and near penguin colonies. However, even far from the penguin colonies, soil δ15N values resembled those in penguin colonies, suggesting strong spatial impacts of penguin-derived N. The moss impacted by guano was more enriched in δ15N than in guano-free areas. The δ15N values of NH4+-N and NO3--N in soils covered with moss revealed that the moss might prefer inorganic N in the absence of guano, while the dissolved organic N would become an important source for moss growing on ornithogenic soils. Aquatic microbial mat samples near penguin colonies were 15N-enriched, but 15N-depleted at upland sites.
Collapse
Affiliation(s)
- Xueying Wang
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaodong Liu
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jing Jin
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Libin Wu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Huihui Huang
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Zhang
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Steven D Emslie
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| |
Collapse
|
24
|
Affiliation(s)
- M Thibault
- Laboratoire d'Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), UMR ENTROPIE (IRD-Université de La Réunion-CNRS), BP A5, Nouméa Cedex 98848, New Caledonia, France.
| | - F Houlbrèque
- Laboratoire d'Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), UMR ENTROPIE (IRD-Université de La Réunion-CNRS), BP A5, Nouméa Cedex 98848, New Caledonia, France
| | - A Lorrain
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - E Vidal
- Laboratoire d'Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), UMR ENTROPIE (IRD-Université de La Réunion-CNRS), BP A5, Nouméa Cedex 98848, New Caledonia, France
| |
Collapse
|
25
|
Benkwitt CE, Wilson SK, Graham NAJ. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. GLOBAL CHANGE BIOLOGY 2019; 25:2619-2632. [PMID: 31157944 DOI: 10.1111/gcb.14643] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Cross-ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate-related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015-2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post-bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral-dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community-wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.
Collapse
Affiliation(s)
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | | |
Collapse
|
26
|
Fischer JH, McCauley CF, Armstrong DP, Debski I, Wittmer HU. Contrasting responses of lizard occurrences to burrowing by a critically endangered seabird. COMMUNITY ECOL 2019. [DOI: 10.1556/168.2019.20.1.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J. H. Fischer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - C. F. McCauley
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - D. P. Armstrong
- Wildlife Ecology Group, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - I. Debski
- Aquatic Unit, Department of Conservation, PO Box 10420, Wellington, New Zealand
| | - H. U. Wittmer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
27
|
Savage C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci Rep 2019; 9:4284. [PMID: 30862902 PMCID: PMC6414626 DOI: 10.1038/s41598-019-41030-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/27/2019] [Indexed: 11/10/2022] Open
Abstract
Nutrient subsidies across ecotone boundaries can enhance productivity in the recipient ecosystem, especially if the nutrients are transferred from a nutrient rich to an oligotrophic ecosystem. This study demonstrates that seabird nutrients from islands are assimilated by endosymbionts in corals on fringing reefs and enhance growth of a dominant reef-building species, Acropora formosa. Nitrogen stable isotope ratios (δ15N) of zooxanthellae were enriched in corals near seabird colonies and decreased linearly with distance from land, suggesting that ornithogenic nutrients were assimilated in corals. In a one-year reciprocal transplant experiment, A. formosa fragments grew up to four times faster near the seabird site than conspecifics grown without the influence of seabird nutrients. The corals influenced by elevated ornithogenic nutrients were located within a marine protected area with abundant herbivorous fish populations, which kept nuisance macroalgae to negligible levels despite high nutrient concentrations. In this pristine setting, seabird nutrients provide a beneficial nutrient subsidy that increases growth of the ecologically important branching corals. The findings highlight the importance of catchment–to–reef management, not only for ameliorating negative impacts from land but also to maintain beneficial nutrient subsidies, in this case seabird guano.
Collapse
Affiliation(s)
- Candida Savage
- Department of Marine Science, University of Otago, Dunedin, New Zealand. .,Department of Biological Sciences and Marine Research Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
28
|
De La Peña-Lastra S, Pérez-Alberti A, Otero XL. Enrichment of trace elements in colonies of the yellow-legged gull (Larus michahellis) in the Atlantic Islands National Park (Galicia-NW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1536-1548. [PMID: 30340299 DOI: 10.1016/j.scitotenv.2018.08.284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Marine-derived nutrients are known accumulate in seabird breeding colonies due to the deposition of nutrient-rich biological materials, thus greatly altering the functioning and dynamics of these terrestrial ecosystems. Here we present the results of a sampling survey carried out during three years in yellow-legged gull colonies in the Atlantic Islands of Galicia National Park (NW Spain) with the aim of evaluating the influence of the colonies on the accumulation of trace elements, including micronutrients (Cu, Zn, Se, Co, Mo, Ni) and toxic elements (Cr, Cd, Hg, Pb, As, Ag), in the surrounding environments. For this purpose, we analysed samples of biological materials produced by the seabirds (pellets, excrement, feathers, eggs) and of soil, plants and inland water from several different subcolonies and control zones without seabirds. The concentrations of most of the elements were higher in excrement and pellets (mean values: Zn: 152, As: 50 mg kg-1, Cd: 6, Co: 5 mg kg-1) than in feathers and eggs. The flow of trace elements into the breeding colonies, considering only the excrement, revealed a very high level of trace element deposition for a supposedly pristine environment (Zn: 2667, Cd: 70, Cu: 315, As: 64 g ha-1). The total concentrations of trace elements in soil were consistent with the long-term impact of the seabirds. Thus, the values in areas which this impact was greatest were significantly higher than in the control zones, particularly considering the most labile geochemical fractions of the soil. The concentrations of some elements (i.e. Co, As, Cd) were also higher in the inland waters in the colonies than in control zones. Finally, the concentration of trace elements in plants varied depending on the species and element considered.
Collapse
Affiliation(s)
- S De La Peña-Lastra
- Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Galicia, Spain
| | - A Pérez-Alberti
- Departamento de Xeografía, Facultade de Xeografía, Universidade de Santiago de Compostela, Galicia, Spain
| | - X L Otero
- Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
29
|
Courtial L, Planas Bielsa V, Houlbrèque F, Ferrier-Pagès C. Effects of ultraviolet radiation and nutrient level on the physiological response and organic matter release of the scleractinian coral Pocillopora damicornis following thermal stress. PLoS One 2018; 13:e0205261. [PMID: 30356284 PMCID: PMC6200223 DOI: 10.1371/journal.pone.0205261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding which factors enhance or mitigate the impact of high temperatures on corals is crucial to predict the severity of coral bleaching worldwide. On the one hand, global warming is usually associated with high ultraviolet radiation levels (UVR), and surface water nutrient depletion due to stratification. On the other hand, eutrophication of coastal reefs increases levels of inorganic nutrients and decreases UVR, so that the effect of different combinations of these stressors on corals is unknown. In this study, we assessed the individual and crossed effects of high temperature, UVR and nutrient level on the key performance variables of the reef building coral Pocillopora damicornis. We found that seawater warming was the major stressor, which induced bleaching and impaired coral photosynthesis and calcification in all nutrient and UVR conditions. The strength of this effect however, was nutrient dependent. Corals maintained in nutrient-depleted conditions experienced the highest decrease in net photosynthesis under thermal stress, while nutrient enrichment (3 μM NO3- and 1 μM PO4+) slightly limited the negative impact of temperature through enhanced protein content, photosynthesis and respiration rates. UVR exposure had only an effect on total nitrogen release rates, which significantly decreased under normal growth conditions and tended to decrease also under thermal stress. This result suggests that increased level of UVR will lead to significant changes in the nutrient biogeochemistry of surface reef waters. Overall, our results show that environmental factors have different and interactive effects on each of the coral's physiological parameters, requiring multifactorial approaches to predict the future of coral reefs.
Collapse
Affiliation(s)
- Lucile Courtial
- Sorbonne Universités, UPMC Université Paris 6, IFD-ED 129, France
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, Principality of Monaco
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS), Laboratoire d’Excellence « CORAIL», BP A5, Nouméa cedex, New Caledonia, France
| | - Victor Planas Bielsa
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, Principality of Monaco
| | - Fanny Houlbrèque
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS), Laboratoire d’Excellence « CORAIL», BP A5, Nouméa cedex, New Caledonia, France
| | | |
Collapse
|
30
|
Cipro CVZ, Bustamante P, Petry MV, Montone RC. Seabird colonies as relevant sources of pollutants in Antarctic ecosystems: Part 1 - Trace elements. CHEMOSPHERE 2018; 204:535-547. [PMID: 29684873 DOI: 10.1016/j.chemosphere.2018.02.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Global distillation is classically pointed as the biggest responsible for contaminant inputs in Polar ecosystems. Mercury (Hg) and other trace elements (TEs) also present natural sources, whereas the biologically mediated input is typically ignored. However, bioaccumulation and biomagnification combined with the fact that seabirds gather in large numbers into large colonies and excrete on land might represent an important local TEs input. A previous work suggested these colonies as sources of not only nutrients, but also organic contaminants. To evaluate a similar hypothesis for TEs, samples of lichen (n = 55), mosses (n = 58) and soil (n = 37) were collected in 13 locations within the South Shetlands Archipelago during the austral summers of 2013-14 and 2014-15. They were divided in: "colony" (within the colony itself for soil and bordering it for vegetation) and "control" (at least 50 m away from colony interference), analysed for TEs (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) and stable isotopes (C and N). In most cases, soil seems the best matrix to assess colonies as TEs sources, as it presented more differences between control/colony sites than vegetation. Colonies are clearly local sources of organic matter, Cd, Hg and likely of As, Se and Zn. Conversely, Co, Cr, Ni and Pb come presumably from other sources, natural or anthropogenic. In general, isotopes were more useful for interpreting vegetation data due to fractionation of absorbed animal-derived organic matter. Other local Hg sources could be inferred from high levels in control sites, location and wind patterns.
Collapse
Affiliation(s)
- C V Z Cipro
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico (LabQOM), Universidade de São Paulo, Praça do Oceanográfico n° 191 (sala 186), 05508-120, São Paulo, SP, Brazil; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle, Cedex 01, France.
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle, Cedex 01, France
| | - M V Petry
- Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos, Av. Unisinos n° 950, Cristo Rei, São Leopoldo, Rio Grande do Sul, 93022-000, Brazil
| | - R C Montone
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico (LabQOM), Universidade de São Paulo, Praça do Oceanográfico n° 191 (sala 186), 05508-120, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 2018; 559:250-253. [DOI: 10.1038/s41586-018-0202-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022]
|
32
|
Abstract
Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.
Collapse
Affiliation(s)
- Alex D Rogers
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
33
|
Wu L, Liu X, Fang Y, Hou S, Xu L, Wang X, Fu P. Nitrogen cycling in the soil-plant system along a series of coral islands affected by seabirds in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:166-175. [PMID: 29426138 DOI: 10.1016/j.scitotenv.2018.01.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/21/2018] [Indexed: 06/08/2023]
Abstract
The nitrogen (N) utilization strategy of plants has become a topic of interest within the field of phytoecology. However, few studies have considered N cycling on coral island ecosystems from the perspective of their evolution. The aim of this study was to test the impacts of biological transport by seabirds, on the sources and uses of N by plants, and pathways of N cycling in soil-plant ecosystems on coral islands. A series of eight coral islands were investigated, five of which were affected to a varying extent by seabirds. The total phosphorus (TP) concentration from avian sources and the δ15N values of total nitrogen (TN) and inorganic nitrogen (IN: NH4+-N, and NO3--N), δ18O of NO3--O, in soils were determined, as well as proxies in plant leaves of two dominant plant species, including TN, the carbon/nitrogen ratio (C/N), and δ13C and δ15N values. The results show that, with an increase of TP, the TN and IN content, and δ15N values in soils all increased. Plant C/N and δ15N values decreased and increased, respectively, as the soil N content increased. When the TN content of the soil was low, the δ15N value in plant leaves was similar to that in soil NO3-, but was much lower than that in soil NH4+. When the soil TN content was high, the δ15N values were similar. Both plants and soil were probably N-limited prior to seabird colonization, with the N source on the barren coral islands originating primarily from atmospheric deposition. With seabird guano input and subsequent pedogenesis, the source of N switched to guano. Under these conditions, most of the N utilized by plants originated from NH4+, while nitrate is dominant for non-seabirds islands. Seabird activities have played a key role in the N dynamics of soil-plant ecosystems at coral islands.
Collapse
Affiliation(s)
- Libin Wu
- Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaodong Liu
- Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Shengjie Hou
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xueying Wang
- Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
34
|
Otero XL, De La Peña-Lastra S, Pérez-Alberti A, Ferreira TO, Huerta-Diaz MA. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat Commun 2018; 9:246. [PMID: 29362437 PMCID: PMC5780392 DOI: 10.1038/s41467-017-02446-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 12/01/2017] [Indexed: 11/09/2022] Open
Abstract
Seabirds drastically transform the environmental conditions of the sites where they establish their breeding colonies via soil, sediment, and water eutrophication (hereafter termed ornitheutrophication). Here, we report worldwide amounts of total nitrogen (N) and total phosphorus (P) excreted by seabirds using an inventory of global seabird populations applied to a bioenergetics model. We estimate these fluxes to be 591 Gg N y-1 and 99 Gg P y-1, respectively, with the Antarctic and Southern coasts receiving the highest N and P inputs. We show that these inputs are of similar magnitude to others considered in global N and P cycles, with concentrations per unit of surface area in seabird colonies among the highest measured on the Earth's surface. Finally, an important fraction of the total excreted N (72.5 Gg y-1) and P (21.8 Gg y-1) can be readily solubilized, increasing their short-term bioavailability in continental and coastal waters located near the seabird colonies.
Collapse
Affiliation(s)
- Xosé Luis Otero
- Departamento de Edafoloxía e Química Agrícola, Campus Vida, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Saul De La Peña-Lastra
- Departamento de Edafoloxía e Química Agrícola, Campus Vida, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Augusto Pérez-Alberti
- Departamento de Xeografía Física, Facultade de Xeografía e Historia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Tiago Osorio Ferreira
- Luiz de Queiroz College of Agriculture, University of Sao Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Sao Paulo, Brazil
| | - Miguel Angel Huerta-Diaz
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, CP 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
35
|
Abstract
Tropical scleractinian corals are dependent to varying degrees on their photosymbiotic partners. Under normal levels of temperature and irradiance, they can provide most, but not all, of the host's nutritional requirements. Heterotrophy is required to adequately supply critical nutrients, especially nitrogen and phosphorus. Scleractinian corals are known as mesozooplankton predators, and most employ tentacle capture. The ability to trap nano- and picoplankton has been demonstrated by several coral species and appears to fulfill a substantial proportion of their daily metabolic requirements. The mechanism of capture likely involves mucociliary activity or extracoelenteric digestion, but the relative contribution of these avenues have not been evaluated. Many corals employ mesenterial filaments to procure food in various forms, but the functional morphology and chemical activities of these structures have been poorly documented. Corals are capable of acquiring nutrition from particulate and dissolved organic matter, although the degree of reliance on these sources generally has not been established. Corals, including tropical, deep- and cold-water species, are known as a major source of carbon and other nutrients for benthic communities through the secretion of mucus, despite wide variation in chemical composition. Mucus is cycled through the planktonic microbial loop, the benthos, and the microbial community within the sediments. The consensus indicates that the dissolved organic fraction of mucus usually exceeds the insoluble portion, and both serve as sources for the growth of nano- and picoplankton. As many corals employ mucus to trap food, a portion is taken back during feeding. The net gain or loss has not been evaluated, although production is generally thought to exceed consumption. The same is true for the net uptake and loss of dissolved organic matter by mucus secretion. Octocorals are thought not to employ mucus capture or mesenterial filaments during feeding and generally rely on tentacular filtration of weakly swimming mesozooplankton, particulates, dissolved organic matter, and picoplankton. Nonsymbiotic species in the tropics favor phytoplankton and weakly swimming zooplankton. Azooxanthellate soft corals are opportunistic feeders and shift their diet according to the season from phyto- and nanoplankton in summer to primarily particulate organic matter (POM) in winter. Cold-water species favor POM, phytodetritus, microplankton, and larger zooplankton when available. Antipatharians apparently feed on mesozooplankton but also use mucus nets, possibly for capture of POM. Feeding modes in this group are poorly known.
Collapse
Affiliation(s)
- Walter M Goldberg
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|