1
|
Butta N, van der Wal DE. Desialylation by neuraminidases in platelets, kiss of death or bittersweet? Curr Opin Hematol 2025; 32:43-51. [PMID: 38529832 DOI: 10.1097/moh.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Loss of surface sialic acid by neuraminidases is known as 'desialylation'. Platelets are desialylated in bacterial or viral infections, during storage, senescence, various mutations, platelet auto antibodies, hemostasis and shear stress. In this review the recent literature on the different sialic acid capped glycan structures will be covered as well as platelet desialylation in inherited glycan disorders and induced by external neuraminidases. RECENT FINDINGS Neuraminidases are released from platelet intracellular stores and translocated to the platelet surface. Apart from clearance, loss of surface sialic acid by neuraminidases ('desialylation') affects platelet signaling including ligand binding and their procoagulant function. Platelets are also desialylated in infections, various mutations, presence of platelet auto antibodies. SUMMARY Since platelet desialylation occurs in various healthy and pathological conditions, measuring desialylation might be a new diagnostic tool.
Collapse
Affiliation(s)
- Nora Butta
- Group of Coagulopathies and Haemostasis Disorders, La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Dianne E van der Wal
- Platelets and Thrombosis Research Laboratory, Anzac Research Institute, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
2
|
Reyes-Oliveras A, Ellis AE, Sheldon RD, Haab B. Metabolomics and 13C labelled glucose tracing to identify carbon incorporation into aberrant cell membrane glycans in cancer. Commun Biol 2024; 7:1576. [PMID: 39592729 PMCID: PMC11599571 DOI: 10.1038/s42003-024-07277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cell membrane glycans contribute to immune recognition, signaling, and cellular adhesion and migration, and altered membrane glycosylation is a feature of cancer cells that contributes to cancer progression. The uptake and metabolism of glucose and other nutrients essential for glycan synthesis could underlie altered membrane glycosylation, but the relationship between shifts in nutrient metabolism and the effects on glycans have not been directly examined. We developed a method that combines stable isotope tracing with metabolomics to enable direct observations of glucose allocation to nucleotide sugars and cell-membrane glycans. We compared the glucose allocation to membrane glycans of two pancreatic cancer cell lines that are genetically identical but have differing energy requirements. The 8988-S cells had higher glucose allocation to membrane glycans and intracellular pathways relating to glycan synthesis, but the 8988-T cells had higher glucose uptake and commitment of glucose to non-glycosylation pathways. The cell lines differed in the requirements of glucose for energy production, resulting in differences in glucose bioavailability for glycan synthesis. The workflow demonstrated here enables studies on the effects of metabolic shifts on the commitment of nutrients to cell-membrane glycans. The results suggest that cell-membrane glycans are remodeled through shifts in glucose commitment to non-glycosylation pathways.
Collapse
Affiliation(s)
- Alfredo Reyes-Oliveras
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Brian Haab
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA.
| |
Collapse
|
3
|
Zhang N, Li L, Mohri M, Siebert S, Lütteke T, Louton H, Bednarikova Z, Gazova Z, Nifantiev N, Jandowsky A, Frölich K, Eckert T, Loers G, Petridis AK, Bhunia A, Mohid SA, Scheidig AJ, Liu G, Zhang R, Lochnit G, Siebert HC. Protein - carbohydrate interaction studies using domestic animals as role models support the search of new glycomimetic molecules. Int J Biol Macromol 2024; 279:134951. [PMID: 39179069 DOI: 10.1016/j.ijbiomac.2024.134951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The structural dynamics of the interactions between defensins or lysozymes and various saccharide chains that are covalently linked to lipids or proteins were analyzed in relation to the sub-molecular architecture of the carbohydrate binding sites of lectins. Using tissue materials from rare and endangered domestic animals as well as from dogs it was possible to compare these results with data obtained from a human glioblastoma tissue. The binding mechanisms were analyzed on a cellular and a sub-molecular size level using biophysical techniques (e.g. NMR, AFM, MS) which are supported by molecular modeling tools. This leads to characteristic structural patterns being helpful to understand glyco-biochemical pathways in which galectins, defensins or lysozymes are involved. Carbohydrate chains have a distinct impact on cell differentiation, cell migration and immunological processes. The absence or the presence of sialic acids and the conformational dynamics in glycans are often correlated with zoonoses such as influenza- and coronavirus-infections. Receptor-sensitive glycomimetics could be a solution. The new findings concerning the function of galectin-3 in the nucleus in relation to differentiation processes can be understood when the binding specificity of neuroleptic molecules as well as the interactions between proteins and nucleic acids are describable on a sub-molecular size level.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Lan Li
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Marzieh Mohri
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Lütteke
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Helen Louton
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Nikolay Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anabell Jandowsky
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Kai Frölich
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany; RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center, Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Department of Neurosurgery, St. Lukes Hospital, Thessaloniki, Greece
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Sk Abdul Mohid
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Axel J Scheidig
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Guiqin Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Günter Lochnit
- Institut für Biochemie, Fachbereich Humanmedizin, Justus-Liebig-Universität Gießen, Friedrichstrasse 24, 35390 Gießen, Germany
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Roka-Moiia Y, Lewis S, Cleveland E, Italiano JE, Slepian MJ. Shear Stress Promotes Remodeling of Platelet Glycosylation via Upregulation of Platelet Glycosidase Activity: One More Thing. Thromb Haemost 2024. [PMID: 39168140 DOI: 10.1055/a-2398-9532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
BACKGROUND Mechanical circulatory support (MCS) is a mainstay of therapy for advanced and end-stage heart failure. Accompanied by systemic anticoagulation, contemporary MCS has become less thrombogenic, with bleeding complications emerging as a major cause of readmission and 1-year mortality. Shear-mediated platelet dysfunction and thrombocytopenia of undefined etiology are primary drivers of MCS-related bleeding. Recently, it has been demonstrated that deprivation of platelet surface glycosylation is associated with the decline of hemostatic function, microvesiculation, and premature apoptosis. We test the hypothesis that shear stress induces remodeling of platelet surface glycosylation via upregulation of glycosidase activity, thus facilitating platelet count decline and intense microvesiculation. METHODS Human gel-filtered platelets were exposed to continuous shear stress in vitro. Platelets and platelet-derived microparticles (PDMPs) were quantified via flow cytometry using size standard fluorescent nanobeads. Platelet surface glycosylation and NEU1 expression were evaluated using lectin- or immune-staining and multicolor flow cytometry; lectin blotting was utilized to verify glycosylation of individual glycoproteins. Platelet neuraminidase, galactosidase, hexosaminidase, and mannosidase activities were quantified using 4-methylumbelliferone-based fluorogenic substrates. RESULTS We demonstrate that shear stress promotes selective remodeling of platelet glycosylation via downregulation of 2,6-sialylation, terminal galactose, and mannose, while 2,3-sialylation remains largely unchanged. Shear-mediated deglycosylation is partially attenuated by neuraminidase inhibitors, strongly suggesting the involvement of platelet neuraminidase in observed phenomena. Shear stress increases platelet NEU1 surface expression and potentiates generation of numerous NEU1+ PDMPs. Platelets exhibit high basal hexosaminidase and mannosidase activities; basal activities of platelet neuraminidase and galactosidase are rather low and are significantly upregulated by shear stress. Shear stress of increased magnitude and duration promotes an incremental decline of platelet count and immense microvesiculation, both being further exacerbated by neuraminidase and partially attenuated by neuraminidase inhibition. CONCLUSION Our data indicate that shear stress accumulation, consistent with supraphysiologic conditions of device-supported circulation, promotes remodeling of platelet glycosylation via selective upregulation of platelet glycosidase activity. Shear-mediated platelet deglycosylation is associated with platelet count drop and increased microvesiculation, thus offering a direct link between deglycosylation and thrombocytopenia observed in device-supported patients. Based on our findings, we propose a panel of molecular markers to be used for reliable detection of shear-mediated platelet deglycosylation in MCS.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
- Arizona Center for Accelerated Biomedical Innovation, Tucson, Arizona, United States
| | - Sabrina Lewis
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
| | - Estevan Cleveland
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
- Arizona Center for Accelerated Biomedical Innovation, Tucson, Arizona, United States
| |
Collapse
|
5
|
Huo T, Wu H, Moussa Z, Sen M, Dalton V, Wang Z. Full-length αIIbβ3 cryo-EM structure reveals intact integrin initiate-activation intrinsic architecture. Structure 2024; 32:899-906.e3. [PMID: 38579706 PMCID: PMC11246237 DOI: 10.1016/j.str.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Integrin αIIbβ3 is the key receptor regulating platelet retraction and accumulation and a proven drug-target for antithrombotic therapies. Here we resolve the cryo-EM structures of the full-length αIIbβ3, which covers three distinct states along the activation pathway. Firstly, we obtain the αIIbβ3 structure at 3 Å resolution in the inactive state, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the ligand-binding domain tucked in a specific angle proximity to the TM region. After the addition of a Mn2+ agonist, we resolve two coexisting structures representing two new states between inactive and active state. Our structures show conformational changes of the αIIbβ3 activating trajectory and a unique twisting of the integrin legs, which is required for platelets accumulation. Our structure provides direct structural evidence for how the lower legs are involved in full-length integrin activation mechanisms and offers a new strategy to target the αIIbβ3 lower leg.
Collapse
Affiliation(s)
- Tong Huo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongjiang Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate School of Baylor College of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeinab Moussa
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Valerie Dalton
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cryo-EM/ET CPRIT Core, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Calver JF, Parmar NR, Harris G, Lithgo RM, Stylianou P, Zetterberg FR, Gooptu B, Mackinnon AC, Carr SB, Borthwick LA, Scott DJ, Stewart ID, Slack RJ, Jenkins RG, John AE. Defining the mechanism of galectin-3-mediated TGF-β1 activation and its role in lung fibrosis. J Biol Chem 2024; 300:107300. [PMID: 38641066 PMCID: PMC11134550 DOI: 10.1016/j.jbc.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
Integrin-mediated activation of the profibrotic mediator transforming growth factor-β1 (TGF-β1), plays a critical role in idiopathic pulmonary fibrosis (IPF) pathogenesis. Galectin-3 is believed to contribute to the pathological wound healing seen in IPF, although its mechanism of action is not precisely defined. We hypothesized that galectin-3 potentiates TGF-β1 activation and/or signaling in the lung to promote fibrogenesis. We show that galectin-3 induces TGF-β1 activation in human lung fibroblasts (HLFs) and specifically that extracellular galectin-3 promotes oleoyl-L-α-lysophosphatidic acid sodium salt-induced integrin-mediated TGF-β1 activation. Surface plasmon resonance analysis confirmed that galectin-3 binds to αv integrins, αvβ1, αvβ5, and αvβ6, and to the TGFβRII subunit in a glycosylation-dependent manner. This binding is heterogeneous and not a 1:1 binding stoichiometry. Binding interactions were blocked by small molecule inhibitors of galectin-3, which target the carbohydrate recognition domain. Galectin-3 binding to β1 integrin was validated in vitro by coimmunoprecipitation in HLFs. Proximity ligation assays indicated that galectin-3 and β1 integrin colocalize closely (≤40 nm) on the cell surface and that colocalization is increased by TGF-β1 treatment and blocked by galectin-3 inhibitors. In the absence of TGF-β1 stimulation, colocalization was detectable only in HLFs from IPF patients, suggesting the proteins are inherently more closely associated in the disease state. Galectin-3 inhibitor treatment of precision cut lung slices from IPF patients' reduced Col1a1, TIMP1, and hyaluronan secretion to a similar degree as TGF-β type I receptor inhibitor. These data suggest that galectin-3 promotes TGF-β1 signaling and may induce fibrogenesis by interacting directly with components of the TGF-β1 signaling cascade.
Collapse
Affiliation(s)
- Jessica F Calver
- School of Medicine, University of Nottingham, Nottingham, United Kingdom; Stevenage Bioscience Catalyst, Galecto Biotech AB, Stevenage, United Kingdom
| | - Nimesh R Parmar
- School of Medicine, University of Nottingham, Nottingham, United Kingdom; Roche Products Limited, Welwyn Garden City, Hertfordshire, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Ryan M Lithgo
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom; Membrane Protein Laboratory, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom
| | - Panayiota Stylianou
- Institute for Lung Health, NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom; Leicester Institute for Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | | | - Bibek Gooptu
- Institute for Lung Health, NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom; Leicester Institute for Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alison C Mackinnon
- Galecto Biotech AB, Nine Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Lee A Borthwick
- Fibrofind Ltd, Newcastle upon Tyne, United Kingdom; Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David J Scott
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Iain D Stewart
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert J Slack
- Stevenage Bioscience Catalyst, Galecto Biotech AB, Stevenage, United Kingdom
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alison E John
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Zheng X, Li Y, Cui T, Yang J, Meng X, Wang H, Chen L, He J, Chen N, Meng L, Ding L, Xie R. Traceless Protein-Selective Glycan Labeling and Chemical Modification. J Am Chem Soc 2023; 145:23670-23680. [PMID: 37857274 DOI: 10.1021/jacs.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Executing glycan editing at a molecular level not only is pivotal for the elucidation of complicated mechanisms involved in glycan-relevant biological processes but also provides a promising solution to potentiate disease therapy. However, the precision control of glycan modification or glyco-editing on a selected glycoprotein is by far a grand challenge. Of note is to preserve the intact cellular glycan landscape, which is preserved after editing events are completed. We report herein a versatile, traceless glycan modification methodology for customizing the glycoforms of targeted proteins (subtypes), by orchestrating chemical- and photoregulation in a protein-selective glycoenzymatic system. This method relies on a three-module, ligand-photocleavable linker-glycoenzyme (L-P-G) conjugate. We demonstrated that RGD- or synthetic carbohydrate ligand-containing conjugates (RPG and SPG) would not activate until after the ligand-receptor interaction is accomplished (chemical regulation). RPG and SPG can both release the glycoenzyme upon photoillumination (photoregulation). The adjustable glycoenzyme activity, combined with ligand recognition selectivity, minimizes unnecessary glycan editing perturbation, and photolytic cleavage enables precise temporal control of editing events. An altered target protein turnover and dimerization were observed in our system, emphasizing the significance of preserving the native physiological niche of a particular protein when precise modification on the carbohydrate epitope occurs.
Collapse
Affiliation(s)
- Xiaocui Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangfeng Meng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liusheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Nan Chen
- ChinaChomiX Biotech (Nanjing) Co., Ltd., Nanjing 210061, China
| | - Liying Meng
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Chen PD, Liao YY, Cheng YC, Wu HY, Wu YM, Huang MC. Decreased B4GALT1 promotes hepatocellular carcinoma cell invasiveness by regulating the laminin-integrin pathway. Oncogenesis 2023; 12:49. [PMID: 37907465 PMCID: PMC10618527 DOI: 10.1038/s41389-023-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Beta1,4-galactosyltransferases (B4GALTs) play a crucial role in several diseases, including cancer. B4GALT1 is highly expressed in the liver, and patients with mutations in B4GALT1 exhibit hepatopathy. However, the role of B4GALT1 in liver cancer remains unclear. Here, we found that B4GALT1 was significantly downregulated in hepatocellular carcinoma (HCC) tissue compared with the adjacent liver tissue, and low B4GALT1 expression was associated with vascular invasion and poor overall survival in patients with HCC. Additionally, silencing or loss of B4GALT1 enhanced HCC cell migration and invasion in vitro and promoted lung metastasis of HCC in NOD/SCID mice. Moreover, B4GALT1 knockdown or knockout increased cell adhesion to laminin, whereas B4GALT1 overexpression decreased the adhesion. Through a mass spectrometry-based approach and Griffonia simplicifolia lectin II (GSL-II) pull-down assays, we identified integrins α6 and β1 as the main protein substrates of B4GALT1 and their N-glycans were modified by B4GALT1. Further, the increased cell migration and invasion induced by B4GALT1 knockdown or knockout were significantly reversed using a blocking antibody against integrin α6 or integrin β1. These results suggest that B4GALT1 downregulation alters N-glycosylation and enhances the laminin-binding activity of integrin α6 and integrin β1 to promote invasiveness of HCC cells. Our findings provide novel insights into the role of B4GALT1 in HCC metastasis and highlight targeting the laminin-integrin axis as a potential therapeutic strategy for HCC with low B4GALT1 expression.
Collapse
Affiliation(s)
- Po-Da Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ying-Yu Liao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chia Cheng
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation center, National Taiwan University, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Sun Y, Isaji T, Oyama Y, Xu X, Liu J, Hanamatsu H, Yokota I, Miura N, Furukawa JI, Fukuda T, Gu J. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. J Biol Chem 2023; 299:105051. [PMID: 37451482 PMCID: PMC10406863 DOI: 10.1016/j.jbc.2023.105051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin β1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hisatoshi Hanamatsu
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ikuko Yokota
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Alvarez MR, Zhou Q, Tena J, Barboza M, Wong M, Xie Y, Lebrilla CB, Cabanatan M, Barzaga MT, Tan-Liu N, Heralde FM, Serrano L, Nacario RC, Completo GC. Glycomic, Glycoproteomic, and Proteomic Profiling of Philippine Lung Cancer and Peritumoral Tissues: Case Series Study of Patients Stages I-III. Cancers (Basel) 2023; 15:cancers15051559. [PMID: 36900350 PMCID: PMC10001221 DOI: 10.3390/cancers15051559] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death and non-small cell lung carcinoma (NSCLC) accounting for majority of lung cancers. Thus, it is important to find potential biomarkers, such as glycans and glycoproteins, which can be used as diagnostic tools against NSCLC. Here, the N-glycome, proteome, and N-glycosylation distribution maps of tumor and peritumoral tissues of Filipino lung cancer patients (n = 5) were characterized. We present several case studies with varying stages of cancer development (I-III), mutation status (EGFR, ALK), and biomarker expression based on a three-gene panel (CD133, KRT19, and MUC1). Although the profiles of each patient were unique, specific trends arose that correlated with the role of aberrant glycosylation in cancer progression. Specifically, we observed a general increase in the relative abundance of high-mannose and sialofucosylated N-glycans in tumor samples. Analysis of the glycan distribution per glycosite revealed that these sialofucosylated N-glycans were specifically attached to glycoproteins involved in key cellular processes, including metabolism, cell adhesion, and regulatory pathways. Protein expression profiles showed significant enrichment of dysregulated proteins involved in metabolism, adhesion, cell-ECM interactions, and N-linked glycosylation, supporting the protein glycosylation results. The present case series study provides the first demonstration of a multi-platform mass-spectrometric analysis specifically for Filipino lung cancer patients.
Collapse
Affiliation(s)
- Michael Russelle Alvarez
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Qingwen Zhou
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Mariana Barboza
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Michelle Cabanatan
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
| | - Ma. Teresa Barzaga
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
- College of Medicine, De La Salle Health Sciences Institute, Cavite 4114, Philippines
| | - Nelia Tan-Liu
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
| | - Francisco M. Heralde
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
- College of Medicine, University of the Philippines Manila, Manila City 1000, Philippines
| | - Luster Serrano
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Ruel C. Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Gladys Cherisse Completo
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
- Correspondence:
| |
Collapse
|
11
|
Wang Z, Huo T, Wu H, Moussa Z, Sen M, Dalton V. Full-length αIIbβ3 CryoEM structure reveals intact integrin initiate-activation intrinsic architecture. RESEARCH SQUARE 2023:rs.3.rs-2394542. [PMID: 36865117 PMCID: PMC9980189 DOI: 10.21203/rs.3.rs-2394542/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Integrin αIIbβ3 is the key receptor regulating platelet retraction and accumulation, thus pivotal for hemostasis, and arterial thrombosis as well as a proven drug-target for antithrombotic therapies. Here we resolve the cryoEM structures of the intact full-length αIIbβ3, which covers three distinct states along the activation pathway. Here, we resolve intact αIIbβ3 structure at 3Å resolution, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the head region ligand-binding domain tucked in a specific angle proximity to the TM region. In response to the addition of an Mn2+ agonist, we resolved two coexisting states, "intermediate" and "pre-active". Our structures show conformational changes of the intact αIIbβ3 activating trajectory, as well as a unique twisting of the lower integrin legs representing intermediate state (TM region at a twisting conformation) integrin and a coexisting pre-active state (bent and opening in leg), which is required for inducing the transitioning platelets to accumulate. Our structure provides for the first time direct structural evidence for the lower legs' involvement in full-length integrin activation mechanisms. Additionally, our structure offers a new strategy to target the αIIbβ3 lower leg allosterically instead of modulating the affinity of the αIIbβ3 head region.
Collapse
|
12
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
13
|
Sun S, Qiao B, Han Y, Wang B, Wei S, Chen Y. Posttranslational modifications of platelet adhesion receptors. Pharmacol Res 2022; 183:106413. [PMID: 36007773 DOI: 10.1016/j.phrs.2022.106413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
Platelets play a key role in normal hemostasis, whereas pathological platelet adhesion is involved in various cardiovascular events. The underlying cause in cardiovascular events involves plaque rupture leading to subsequent platelet adhesion, activation, release, and eventual thrombosis. Traditional antithrombotic drugs often target the signal transduction process of platelet adhesion receptors by influencing the synthesis of some key molecules, and their effects are limited. Posttranslational modifications (PTMs) of platelet adhesion receptors increase the functional diversity of the receptors and affect platelet physiological and pathological processes. Antithrombotic drugs targeting PTMs of platelet adhesion receptors may represent a new therapeutic idea. In this review, various PTMs, including phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, lipidation, and proteolysis, of three platelet adhesion receptors, glycoprotein Ib-IX-V (GPIb-IX-V), glycoprotein VI (GPVI), and integrin αIIbβ3, are reviewed. It is important to comprehensively understand the PTMs process of platelet adhesion receptors.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
14
|
RELA∙8-Oxoguanine DNA Glycosylase1 Is an Epigenetic Regulatory Complex Coordinating the Hexosamine Biosynthetic Pathway in RSV Infection. Cells 2022; 11:cells11142210. [PMID: 35883652 PMCID: PMC9319012 DOI: 10.3390/cells11142210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV), or human orthopneumovirus, is a negative-sense RNA virus that is the causative agent of severe lower respiratory tract infections in children and is associated with exacerbations of adult lung disease. The mechanisms how severe and/or repetitive virus infections cause declines in pulmonary capacity are not fully understood. We have recently discovered that viral replication triggers epithelial plasticity and metabolic reprogramming involving the hexosamine biosynthetic pathway (HBP). In this study, we examine the relationship between viral induced innate inflammation and the activation of hexosamine biosynthesis in small airway epithelial cells. We observe that RSV induces ~2-fold accumulation of intracellular UDP-GlcNAc, the end-product of the HBP and the obligate substrate of N glycosylation. Using two different silencing approaches, we observe that RSV replication activates the HBP pathway in a manner dependent on the RELA proto-oncogene (65 kDa subunit). To better understand the effect of RSV on the cellular N glycoproteome, and its RELA dependence, we conduct affinity enriched LC-MS profiling in wild-type and RELA-silenced cells. We find that RSV induces the accumulation of 171 N glycosylated peptides in a RELA-dependent manner; these proteins are functionally enriched in integrins and basal lamina formation. To elaborate this mechanism of HBP expression, we demonstrate that RSV infection coordinately induces the HBP pathway enzymes in a manner requiring RELA; these genes include Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT)-1/2, Glucosamine-Phosphate N-Acetyltransferase (GNPNAT)-1, phosphoglucomutase (PGM)-3 and UDP-N-Acetylglucosamine Pyrophosphorylase (UAP)-1. Using small-molecule inhibitor(s) of 8-oxoguanine DNA glycosylase1 (OGG1), we observe that OGG1 is also required for the expression of HBP pathway. In proximity ligation assays, RSV induces the formation of a nuclear and mitochondrial RELA∙OGG1 complex. In co-immunoprecipitaton (IP) experiments, we discover that RSV induces Ser 536-phosphorylated RELA to complex with OGG1. Chromatin IP experiments demonstrate a major role of OGG1 in supporting the recruitment of RELA and phosphorylated RNA Pol II to the HBP pathway genes. We conclude that the RELA∙OGG1 complex is an epigenetic regulator mediating metabolic reprogramming and N glycoprotein modifications of integrins in response to RSV. These findings have implications for viral-induced adaptive epithelial responses.
Collapse
|
15
|
Dressler FF, Dabadghao DS, Klapper L, Perner S, Idel C, Ribbat-Idel J. Deglycosylation of pathological specimens alters performance of diagnostic PDL1 antibodies. Virchows Arch 2022; 481:443-451. [PMID: 35779078 DOI: 10.1007/s00428-022-03369-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Immunohistochemical (IHC) predictive quantitation of PDL1 expression is obligatory in many cancer entities with improved response to immune checkpoint inhibition in PDL1-positive subgroups. With recent demonstration of increased positivity rates after enzymatic deglycosylation in breast cancer specimens, a comparative analysis with two different antibodies and extended controls was performed in a cohort of head and neck squamous cell cancer samples (HNSCC).Formalin-fixed paraffin-embedded tissue from HNSCC specimens was used for initial on-slide method optimization based on the PNGase F assay. SDS-PAGE and immunoblotting with the PDL1 antibody 28-8 was performed to evaluate deglycosylation efficiency. A tissue micro array of n = 527 tissue cores of 181 patients with HNSCC was used to determine the effects of deglycosylation on staining pattern and intensity with PDL1 antibodies 28-8 and E1L3N.Successful on-slide deglycosylation with PNGase F was confirmed by immunoblot but varied across replicates. Using E1L3N (intracellular binding domain, most probably not glycosylated), mean signal intensity as well as the fraction of PDL1 positive cells was increased by deglycosylation. Opposite effects were observed with 28-8 (extracellular binding domain, glycosylated).Deglycosylation reduces diagnostic performance of the PDL1 antibody 28-8. In contrast, effects for E1L3N are complex and probably involve reduction of off-target binding leading to specifically improved signal intensity. However, enzymatic deglycosylation adds further variance to IHC.
Collapse
Affiliation(s)
- Franz F Dressler
- Institute of Pathology, University Medical Center Schleswig-Holstein, Luebeck Site, Ratzeburger Allee 160, 23562, Luebeck, Germany. .,Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Devang S Dabadghao
- Institute of Pathology, University Medical Center Schleswig-Holstein, Luebeck Site, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Luise Klapper
- Institute of Pathology, University Medical Center Schleswig-Holstein, Luebeck Site, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Medical Center Schleswig-Holstein, Luebeck Site, Ratzeburger Allee 160, 23562, Luebeck, Germany.,Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845, Borstel, Germany
| | - Christian Idel
- Department of Otorhinolaryngology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Julika Ribbat-Idel
- Institute of Pathology, University Medical Center Schleswig-Holstein, Luebeck Site, Ratzeburger Allee 160, 23562, Luebeck, Germany
| |
Collapse
|
16
|
Scherbinina SI, Frank M, Toukach PV. Carbohydrate structure database (CSDB) oligosaccharide conformation tool. Glycobiology 2022; 32:460-468. [PMID: 35275211 DOI: 10.1093/glycob/cwac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Population analysis in terms of glycosidic torsion angles is frequently used to reveal preferred conformers of glycans. However, due to high structural diversity and flexibility of carbohydrates, conformational characterization of complex glycans can be a challenging task. Herein we present a conformation module of oligosaccharide fragments occurring in natural glycan structures developed on the platform of the Carbohydrate Structure Database (CSDB). Currently, this module deposits free energy surface and conformer abundance maps plotted as a function of glycosidic torsions for 194 inter-residue bonds. Data are automatically and continuously derived from explicit-solvent molecular dynamics (MD) simulations. The module was also supplemented with high-temperature MD data of saccharides (2403 maps) provided by GlycoMapsDB (hosted by GLYCOSCIENCES.de project). Conformational data defined by up to four torsional degrees of freedom can be freely explored using a web interface of the module available at http://csdb.glycoscience.ru/database/core/search_conf.html.
Collapse
Affiliation(s)
- S I Scherbinina
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - M Frank
- Biognos AB, Box 8963, 40274 Göteborg, Sweden
| | - P V Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
17
|
Roblek M, Bicher J, van Gogh M, György A, Seeböck R, Szulc B, Damme M, Olczak M, Borsig L, Siekhaus DE. The Solute Carrier MFSD1 Decreases the Activation Status of β1 Integrin and Thus Tumor Metastasis. Front Oncol 2022; 12:777634. [PMID: 35211397 PMCID: PMC8861502 DOI: 10.3389/fonc.2022.777634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier Major Facilitator Superfamily Domain-containing protein 1 (MFSD1) in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in experimental and spontaneous metastasis mouse models. We identified an increased migratory potential in MFSD1−/− tumor cells which was mediated by increased focal adhesion turnover, reduced stability of mature inactive β1 integrin, and the resulting increased integrin activation index. We show that MFSD1 promoted recycling to the cell surface of endocytosed inactive β1 integrin and thereby protected β1 integrin from proteolytic degradation; this led to dampening of the integrin activation index. Furthermore, downregulation of MFSD1 expression was observed during the early steps of tumorigenesis, and higher MFSD1 expression levels correlate with a better cancer patient prognosis. In sum, we describe a requirement for endolysosomal MFSD1 in efficient β1 integrin recycling to suppress tumor cell dissemination.
Collapse
Affiliation(s)
- Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Bicher
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Merel van Gogh
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Attila György
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rita Seeböck
- Institute of Clinical Pathology, University Hospital St. Polten, St. Polten, Austria
| | - Bozena Szulc
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Daria E Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
18
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Wang Z, Zhu J. Structural determinants of the integrin transmembrane domain required for bidirectional signal transmission across the cell membrane. J Biol Chem 2021; 297:101318. [PMID: 34678312 PMCID: PMC8569584 DOI: 10.1016/j.jbc.2021.101318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Studying the tight activity regulation of platelet-specific integrin αIIbβ3 is foundational and paramount to our understanding of integrin structure and activation. αIIbβ3 is essential for the aggregation and adhesion function of platelets in hemostasis and thrombosis. Structural and mutagenesis studies have previously revealed the critical role of αIIbβ3 transmembrane (TM) association in maintaining the inactive state. Gain-of-function TM mutations were identified and shown to destabilize the TM association leading to integrin activation. Studies using isolated TM peptides have suggested an altered membrane embedding of the β3 TM α-helix coupled with αIIbβ3 activation. However, controversies remain as to whether and how the TM α-helices change their topologies in the context of full-length integrin in native cell membrane. In this study, we utilized proline scanning mutagenesis and cysteine scanning accessibility assays to analyze the structure and function correlation of the αIIbβ3 TM domain. Our identification of loss-of-function proline mutations in the TM domain suggests the requirement of a continuous TM α-helical structure in transmitting activation signals bidirectionally across the cell membrane, characterized by the inside-out activation for ligand binding and the outside-in signaling for cell spreading. Similar results were found for αLβ2 and α5β1 TM domains, suggesting a generalizable mechanism. We also detected a topology change of β3 TM α-helix within the cell membrane, but only under conditions of cell adhesion and the absence of αIIb association. Our data demonstrate the importance of studying the structure and function of the integrin TM domain in the native cell membrane.
Collapse
Affiliation(s)
- Zhengli Wang
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Jieqing Zhu
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
20
|
Huang YL, Liang CY, Labitzky V, Ritz D, Oliveira T, Cumin C, Estermann M, Lange T, Everest-Dass AV, Jacob F. Site-specific N-glycosylation of integrin α2 mediates collagen-dependent cell survival. iScience 2021; 24:103168. [PMID: 34646995 PMCID: PMC8501769 DOI: 10.1016/j.isci.2021.103168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Integrin alpha 2 (ITGA2) promotes cancer metastasis through selective adhesion to ECM proteins; however, the specific contribution of integrin glycosylation remains uncertain. We provide evidence that ITGA2 is a highly glycosylated transmembrane protein expressed in ovarian cancer tissue and cell lines. In-depth glycoproteomics identified predominant N- and O-glycosylation sites harboring substantially divergent ITGA2 glycosylation profiles. Generated putative ITGA2 N-glycosite mutants halted collagen and laminin binding and cells lacking N-glycosylated ITGA2 were marginally adherent to collagen, likely associated with its enhanced proteasome degradation through poly-ubiquitination. Proteomic and enrichment pathway analysis revealed increased cellular apoptosis and collagen organization in non-glycosylated ITGA2 mutant cells. Moreover, we provide evidence that ITGA2-specific sialylation is involved in selective cell-ECM binding. These results highlight the importance of glycans in regulating ITGA2 stability and ligand binding capacity which in turn modulates downstream focal adhesion and promotes cell survival in a collagen environment. In-depth glycoproteomics reveal divergent ITGA2 glycosylation Site-specific N-glycans regulate protein stability and ECM ligand binding affinity Loss of N-glycosylation induces proteasome degradation through poly-ubiquitination N-glycosylation mediates collagen-dependent cell survival through focal adhesion
Collapse
Affiliation(s)
- Yen-Lin Huang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel 4031, Switzerland
| | - Ching-Yeu Liang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel 4031, Switzerland
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg20246, Germany
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel4056, Switzerland
| | - Tiago Oliveira
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD4222, Australia
| | - Cécile Cumin
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel 4031, Switzerland
| | - Manuela Estermann
- Adolphe Merkle Institute, University of Fribourg, Fribourg1700, Switzerland
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg20246, Germany
| | - Arun V Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD4222, Australia
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel 4031, Switzerland
| |
Collapse
|
21
|
Justo BL, Jasiulionis MG. Characteristics of TIMP1, CD63, and β1-Integrin and the Functional Impact of Their Interaction in Cancer. Int J Mol Sci 2021; 22:9319. [PMID: 34502227 PMCID: PMC8431149 DOI: 10.3390/ijms22179319] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Tissue Inhibitor of Metalloproteases 1, also known as TIMP-1, is named for its well-established function of inhibiting the proteolytic activity of matrix metalloproteases. Given this function, many studies were carried out to verify if TIMP-1 was able to interrupt processes such as tumor cell invasion and metastasis. In contrast, many studies have shown that TIMP-1 expression is increased in several types of tumors, and this increase was correlated with a poor prognosis and lower survival in cancer patients. Later, it was shown that TIMP-1 is also able to modulate cell behavior through the induction of signaling pathways involved in cell growth, proliferation, and survival. The mechanisms involved in the regulation of the pleiotropic functions of TIMP-1 are still poorly understood. Thus, this review aimed to present literature data that show its ability to form a membrane complex with CD63 and β1-integrin, and point to N-glycosylation as a potential regulatory mechanism of the functions exerted by TIMP-1. This article reviewed the characteristics and functions performed individually by TIMP1, CD63, and β1-integrin, the roles of the TIMP-1/CD63/β1-integrin complex, both in a physiological context and in cancer, and the regulatory mechanisms involved in its assembly.
Collapse
Affiliation(s)
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 5 Floor, São Paulo 04039-032, Brazil;
| |
Collapse
|
22
|
Khosrowabadi E, Rivinoja A, Risteli M, Tuomisto A, Salo T, Mäkinen MJ, Kellokumpu S. SLC4A2 anion exchanger promotes tumour cell malignancy via enhancing net acid efflux across golgi membranes. Cell Mol Life Sci 2021; 78:6283-6304. [PMID: 34279699 PMCID: PMC8429400 DOI: 10.1007/s00018-021-03890-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
Proper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive "H+ leak" pathway. Here, we show that this proton leak across Golgi membranes is mediated by the AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on bicarbonate import (in exchange for chloride export) and the expression level of the Golgi-localized AE2a anion exchanger. In the acidic Golgi lumen, imported bicarbonate anions and protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The flattened morphology of the Golgi cisternae helps this process, as their high surface-volume ratio is optimal for water and gas exchange. Interestingly, this net acid efflux pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, reverse their invasive and anchorage-independent growth phenotype. These findings suggest a possibility to return malignant cells to a benign state by restoring Golgi resting pH.
Collapse
Affiliation(s)
- Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu (Oulun Yliopisto), Aapistie 7A, PO BOX 5400, 90014, Oulu, Finland.
| | | | - Maija Risteli
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Anne Tuomisto
- Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Markus J Mäkinen
- Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu (Oulun Yliopisto), Aapistie 7A, PO BOX 5400, 90014, Oulu, Finland.
| |
Collapse
|
23
|
Jayawardena N, Miles LA, Burga LN, Rudin C, Wolf M, Poirier JT, Bostina M. N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. Viruses 2021; 13:v13050769. [PMID: 33924774 PMCID: PMC8145208 DOI: 10.3390/v13050769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/12/2023] Open
Abstract
Seneca Valley virus (SVV) is a picornavirus with potency in selectively infecting and lysing cancerous cells. The cellular receptor for SVV mediating the selective tropism for tumors is anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein expressed in tumors. Similar to other mammalian receptors, ANTXR1 has been shown to harbor N-linked glycosylation sites in its extracellular vWA domain. However, the exact role of ANTXR1 glycosylation on SVV attachment and cellular entry was unknown. Here we show that N-linked glycosylation in the ANTXR1 vWA domain is necessary for SVV attachment and entry. In our study, tandem mass spectrometry analysis of recombinant ANTXR1-Fc revealed the presence of complex glycans at N166, N184 in the vWA domain, and N81 in the Fc domain. Symmetry-expanded cryo-EM reconstruction of SVV-ANTXR1-Fc further validated the presence of N166 and N184 in the vWA domain. Cell blocking, co-immunoprecipitation, and plaque formation assays confirmed that deglycosylation of ANTXR1 prevents SVV attachment and subsequent entry. Overall, our results identified N-glycosylation in ANTXR1 as a necessary post-translational modification for establishing stable interactions with SVV. We anticipate our findings will aid in selecting patients for future cancer therapeutics, where screening for both ANTXR1 and its glycosylation could lead to an improved outcome from SVV therapy.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Linde A. Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
| | - Charles Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - John T. Poirier
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Otago Micro and Nano Imaging Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| |
Collapse
|
24
|
Lavinda O, Manga P, Orlow SJ, Cardozo T. Biophysical Compatibility of a Heterotrimeric Tyrosinase-TYRP1-TYRP2 Metalloenzyme Complex. Front Pharmacol 2021; 12:602206. [PMID: 33995009 PMCID: PMC8114058 DOI: 10.3389/fphar.2021.602206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
Tyrosinase (TYR) is a copper-containing monooxygenase central to the function of melanocytes. Alterations in its expression or activity contribute to variations in skin, hair and eye color, and underlie a variety of pathogenic pigmentary phenotypes, including several forms of oculocutaneous albinism (OCA). Many of these phenotypes are linked to individual missense mutations causing single nucleotide variants and polymorphisms (SNVs) in TYR. We previously showed that two TYR homologues, TYRP1 and TYRP2, modulate TYR activity and stabilize the TYR protein. Accordingly, to investigate whether TYR, TYRP1, and TYRP2 are biophysically compatible with various heterocomplexes, we computationally docked a high-quality 3D model of TYR to the crystal structure of TYRP1 and to a high-quality 3D model of TYRP2. Remarkably, the resulting TYR-TYRP1 heterodimer was complementary in structure and energy with the TYR-TYRP2 heterodimer, with TYRP1 and TYRP2 docking to different adjacent surfaces on TYR that apposed a third realistic protein interface between TYRP1-TYRP2. Hence, the 3D models are compatible with a heterotrimeric TYR-TYRP1-TYRP2 complex. In addition, this heterotrimeric TYR-TYRP1-TYRP2 positioned the C-terminus of each folded enzymatic domain in an ideal position to allow their C-terminal transmembrane helices to form a putative membrane embedded three-helix bundle. Finally, pathogenic TYR mutations causing OCA1A, which also destabilize TYR biochemically, cluster on an unoccupied protein interface at the periphery of the heterotrimeric complex, suggesting that this may be a docking site for OCA2, an anion channel. Pathogenic OCA2 mutations result in similar phenotypes to those produced by OCA1A TYR mutations. While this complex may be difficult to detect in vitro, due to the complex environment of the vertebrate cellular membranous system, our results support the existence of a heterotrimeric complex in melanogenesis.
Collapse
Affiliation(s)
- Olga Lavinda
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Prashiela Manga
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Seth J Orlow
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
25
|
The Importance of Platelet Glycoside Residues in the Haemostasis of Patients with Immune Thrombocytopaenia. J Clin Med 2021; 10:jcm10081661. [PMID: 33924503 PMCID: PMC8069668 DOI: 10.3390/jcm10081661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 01/14/2023] Open
Abstract
Loss of sialic acid from the carbohydrate side chains of platelet glycoproteins can affect platelet clearance, a proposed mechanism involved in the etiopathogenesis of immune thrombocytopaenia (ITP). We aimed to assess whether changes in platelet glycosylation in patients with ITP affected platelet counts, function, and apoptosis. This observational, prospective, and transversal study included 82 patients with chronic primary ITP and 115 healthy controls. We measured platelet activation markers and assayed platelet glycosylation and caspase activity, analysing samples using flow cytometry. Platelets from patients with ITP with a platelet count <30 × 103/µL presented less sialic acid. Levels of α1,6-fucose (a glycan residue that can directly regulate antibody-dependent cellular cytotoxicity) and α-mannose (which can be recognised by mannose-binding-lectin and activate the complement pathway) were increased in the platelets from these patients. Platelet surface exposure of other glycoside residues due to sialic acid loss inversely correlated with platelet count and the ability to be activated. Moreover, loss of sialic acid induced the ingestion of platelets by human hepatome HepG2 cells. Changes in glycoside composition of glycoproteins on the platelets’ surface impaired their functional capacity and increased their apoptosis. These changes in platelet glycoside residues appeared to be related to ITP severity.
Collapse
|
26
|
Kellman BP, Lewis NE. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends Biochem Sci 2021; 46:284-300. [PMID: 33349503 PMCID: PMC7954846 DOI: 10.1016/j.tibs.2020.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
27
|
Jain N, Singh S. Glycans in scaffold design in tissue reconstruction. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911521997847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.
Collapse
Affiliation(s)
- Nipun Jain
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shashi Singh
- CSIR—Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
28
|
Hou J, Yan D, Liu Y, Huang P, Cui H. The Roles of Integrin α5β1 in Human Cancer. Onco Targets Ther 2020; 13:13329-13344. [PMID: 33408483 PMCID: PMC7781020 DOI: 10.2147/ott.s273803] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion to the extracellular matrix has important roles in tissue integrity and human health. Integrins are heterodimeric cell surface receptors that are composed by two non-covalently linked alpha and beta subunits that mainly participate in the interaction of cell-cell adhesion and cell-extracellular matrix and regulate cell motility, adhesion, differentiation, migration, proliferation, etc. In mammals, there have been eighteen α subunits and 8 β subunits and so far 24 distinct types of αβ integrin heterodimers have been identified in humans. Integrin α5β1, also known as the fibronectin receptor, is a heterodimer with α5 and β1 subunits and has emerged as an essential mediator in many human carcinomas. Integrin α5β1 alteration is closely linked to the progression of several types of human cancers, including cell proliferation, angiogenesis, tumor metastasis, and cancerogenesis. In this review, we will introduce the functions of integrin α5β1 in cancer progression and also explore its regulatory mechanisms. Additionally, the potential clinical applications as a target for cancer imaging and therapy are discussed. Collectively, the information reviewed here may increase the understanding of integrin α5β1 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Du Yan
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400716, People's Republic of China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| |
Collapse
|
29
|
Pierce CF, Brown VR, Olsen SC, Boggiatto P, Pedersen K, Miller RS, Speidel SE, Smyser TJ. Loci Associated With Antibody Response in Feral Swine ( Sus scrofa) Infected With Brucella suis. Front Vet Sci 2020; 7:554674. [PMID: 33324693 PMCID: PMC7724110 DOI: 10.3389/fvets.2020.554674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Feral swine (Sus scrofa) are a destructive invasive species widespread throughout the United States that disrupt ecosystems, damage crops, and carry pathogens of concern for the health of domestic stock and humans including Brucella suis-the causative organism for swine brucellosis. In domestic swine, brucellosis results in reproductive failure due to abortions and infertility. Contact with infected feral swine poses spillover risks to domestic pigs as well as humans, companion animals, wildlife, and other livestock. Genetic factors influence the outcome of infectious diseases; therefore, genome wide association studies (GWAS) of differential immune responses among feral swine can provide an understanding of disease dynamics and inform management to prevent the spillover of brucellosis from feral swine to domestic pigs. We sought to identify loci associated with differential antibody responses among feral swine naturally infected with B. suis using a case-control GWAS. Tissue, serum, and genotype data (68,516 bi-allelic single nucleotide polymorphisms) collected from 47 feral swine were analyzed in this study. The 47 feral swine were culture positive for Brucella spp. Of these 47, 16 were antibody positive (cases) whereas 31 were antibody negative (controls). Single-locus GWAS were performed using efficient mixed-model association eXpedited (EMMAX) methodology with three genetic models: additive, dominant, and recessive. Eight loci associated with seroconversion were identified on chromosome 4, 8, 9, 10, 12, and 18. Subsequent bioinformatic analyses revealed nine putative candidate genes related to immune function, most notably phagocytosis and induction of an inflammatory response. Identified loci and putative candidate genes may play an important role in host immune responses to B. suis infection, characterized by a detectable bacterial presence yet a differential antibody response. Given that antibody tests are used to evaluate brucellosis infection in domestic pigs and for disease surveillance in invasive feral swine, additional studies are needed to fully understand the genetic component of the response to B. suis infection and to more effectively translate estimates of Brucella spp. antibody prevalence among feral swine to disease control management action.
Collapse
Affiliation(s)
- Courtney F. Pierce
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Vienna R. Brown
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Feral Swine Damage Management Program, Fort Collins, CO, United States
| | - Steven C. Olsen
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Paola Boggiatto
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Kerri Pedersen
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Raleigh, NC, United States
| | - Ryan S. Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Timothy J. Smyser
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| |
Collapse
|
30
|
Measurement of Integrin Activation and Conformational Changes on the Cell Surface by Soluble Ligand and Antibody Binding Assays. Methods Mol Biol 2020. [PMID: 33215372 DOI: 10.1007/978-1-0716-0962-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Soluble ligand and conformation-dependent antibody binding assay of integrins on the cell surface is an effective approach to evaluate the activation status of integrins in live cells. The ligands or antibodies are usually labeled with biotin or a fluorescent dye and incubated with integrin-expressing cells in suspension. The cell-bound ligands and antibodies are then detected by flow cytometry. Here we describe the detailed protocols of soluble ligand or antibody binding assay for αIIbβ3, αVβ3, α5β1, and αLβ2 integrins that are transiently or stably expressed in the model cell lines such as HEK293 or CHO-k1 cells.
Collapse
|
31
|
Park D, Park S, Song J, Kang M, Lee S, Horak M, Suh YH. N‐linked glycosylation of the mGlu7 receptor regulates the forward trafficking and transsynaptic interaction with Elfn1. FASEB J 2020; 34:14977-14996. [DOI: 10.1096/fj.202001544r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Da‐ha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sunha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Jae‐man Song
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Minji Kang
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Martin Horak
- Institute of Physiology of the Czech Academy of Sciences Institute of Experimental Medicine of the Czech Academy of Sciences Prague 4 Czech Republic
| | - Young Ho Suh
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| |
Collapse
|
32
|
N-Linked Glycan Sites on the Influenza A Virus Neuraminidase Head Domain Are Required for Efficient Viral Incorporation and Replication. J Virol 2020; 94:JVI.00874-20. [PMID: 32699088 DOI: 10.1128/jvi.00874-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
N-linked glycans commonly contribute to secretory protein folding, sorting, and signaling. For enveloped viruses, such as the influenza A virus (IAV), large N-linked glycans can also be added to prevent access to epitopes on the surface antigens hemagglutinin (HA or H) and neuraminidase (NA or N). Sequence analysis showed that in the NA head domain of H1N1 IAVs, three N-linked glycosylation sites are conserved and that a fourth site is conserved in H3N2 IAVs. Variable sites are almost exclusive to H1N1 IAVs of human origin, where the number of head glycosylation sites first increased over time and then decreased with and after the introduction of the 2009 pandemic H1N1 IAV of Eurasian swine origin. In contrast, variable sites exist in H3N2 IAVs of human and swine origin, where the number of head glycosylation sites has mainly increased over time. Analysis of IAVs carrying N1 and N2 mutants demonstrated that the N-linked glycosylation sites on the NA head domain are required for efficient virion incorporation and replication in cells and eggs. It also revealed that N1 stability is more affected by the head domain glycans, suggesting N2 is more amenable to glycan additions. Together, these results indicate that in addition to antigenicity, N-linked glycosylation sites can alter NA enzymatic stability and the NA amount in virions.IMPORTANCE N-linked glycans are transferred to secretory proteins upon entry into the endoplasmic reticulum lumen. In addition to promoting secretory protein maturation, enveloped viruses also utilize these large oligosaccharide structures to prevent access to surface antigen epitopes. Sequence analyses of the influenza A virus (IAV) surface antigen neuraminidase (NA or N) showed that the conservation of N-linked glycosylation sites on the NA enzymatic head domain differs by IAV subtype (H1N1 versus H3N2) and species of origin, with human-derived IAVs possessing the most variability. Experimental analyses verified that the N-linked glycosylation sites on the NA head domain contribute to virion incorporation and replication. It also revealed that the head domain glycans affect N1 stability more than N2, suggesting N2 is more accommodating to glycan additions. These results demonstrate that in addition to antigenicity, changes in N-linked glycosylation sites can alter other properties of viral surface antigens and virions.
Collapse
|
33
|
Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Rømer TB, Levann A, Andersen MM, Ye Z, Thein D, Bennett EP, Büll C, Moons SJ, Boltje T, Clausen H, Vakhrushev SY, Bagdonaite I, Wandall HH. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell 2020; 54:669-684.e7. [PMID: 32710848 PMCID: PMC7497784 DOI: 10.1016/j.devcel.2020.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
The glycome undergoes characteristic changes during histogenesis and organogenesis, but our understanding of the importance of select glycan structures for tissue formation and homeostasis is incomplete. Here, we present a human organotypic platform that allows genetic dissection of cellular glycosylation capacities and systematic interrogation of the roles of distinct glycan types in tissue formation. We used CRISPR-Cas9 gene targeting to generate a library of 3D organotypic skin tissues that selectively differ in their capacity to produce glycan structures on the main types of N- and O-linked glycoproteins and glycolipids. This tissue library revealed distinct changes in skin formation associated with a loss of features for all tested glycoconjugates. The organotypic skin model provides phenotypic cues for the distinct functions of glycoconjugates and serves as a unique resource for further genetic dissection and identification of the specific structural features involved. The strategy is also applicable to other organotypic tissue models.
Collapse
Affiliation(s)
- Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Emil M H Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Adamopoulou
- Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Troels B Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Asha Levann
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel M Andersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David Thein
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sam J Moons
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Thomas Boltje
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Platelets and Defective N-Glycosylation. Int J Mol Sci 2020; 21:ijms21165630. [PMID: 32781578 PMCID: PMC7460655 DOI: 10.3390/ijms21165630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.
Collapse
|
35
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
β4GALT1 controls β1 integrin function to govern thrombopoiesis and hematopoietic stem cell homeostasis. Nat Commun 2020; 11:356. [PMID: 31953383 PMCID: PMC6968998 DOI: 10.1038/s41467-019-14178-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is critical to megakaryocyte (MK) and thrombopoiesis in the context of gene mutations that affect sialylation and galactosylation. Here, we identify the conserved B4galt1 gene as a critical regulator of thrombopoiesis in MKs. β4GalT1 deficiency increases the number of fully differentiated MKs. However, the resulting lack of glycosylation enhances β1 integrin signaling leading to dysplastic MKs with severely impaired demarcation system formation and thrombopoiesis. Platelets lacking β4GalT1 adhere avidly to β1 integrin ligands laminin, fibronectin, and collagen, while other platelet functions are normal. Impaired thrombopoiesis leads to increased plasma thrombopoietin (TPO) levels and perturbed hematopoietic stem cells (HSCs). Remarkably, β1 integrin deletion, specifically in MKs, restores thrombopoiesis. TPO and CXCL12 regulate β4GalT1 in the MK lineage. Thus, our findings establish a non-redundant role for β4GalT1 in the regulation of β1 integrin function and signaling during thrombopoiesis. Defective thrombopoiesis and lack of β4GalT1 further affect HSC homeostasis.
Collapse
|
37
|
Ma J, Li Q, Tan H, Jiang H, Li K, Zhang L, Shi Q, Yin H. Unique N-glycosylation of a recombinant exo-inulinase from Kluyveromyces cicerisporus and its effect on enzymatic activity and thermostability. J Biol Eng 2019; 13:81. [PMID: 31737090 PMCID: PMC6844067 DOI: 10.1186/s13036-019-0215-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Background Inulinase can hydrolyze polyfructan into high-fructose syrups and fructoligosaccharides, which are widely used in food, the medical industry and the biorefinery of Jerusalem artichoke. In the present study, a recombinant exo-inulinase (rKcINU1), derived from Kluyveromyces cicerisporus CBS4857, was proven as an N-linked glycoprotein, and the removal of N-linked glycan chains led to reduced activity. Results Five N-glycosylation sites with variable high mannose-type oligosaccharides (Man3–9GlcNAc2) were confirmed in the rKcINU1. The structural modeling showed that all five glycosylation sites (Asn-362, Asn-370, Asn-399, Asn-467 and Asn-526) were located at the C-terminus β-sandwich domain, which has been proven to be more conducive to the occurrence of glycosylation modification than the N-terminus domain. Single-site N-glycosylation mutants with Asn substituted by Gln were obtained, and the Mut with all five N-glycosylation sites removed was constructed, which resulted in the loss of all enzyme activity. Interestingly, the N362Q led to an 18% increase in the specific activity against inulin, while a significant decrease in thermostability (2.91 °C decrease in Tm) occurred, and other single mutations resulted in the decrease in the specific activity to various extents, among which N467Q demonstrated the lowest enzyme activity. Conclusion The increased enzyme activity in N362Q, combined with thermostability testing, 3D modeling, kinetics data and secondary structure analysis, implied that the N-linked glycan chains at the Asn-362 position functioned negatively, mainly as a type of steric hindrance toward its adjacent N-glycans to bring rigidity. Meanwhile, the N-glycosylation at the other four sites positively regulated enzyme activity caused by altered substrate affinity by means of fine-tuning the β-sandwich domain configuration. This may have facilitated the capture and transfer of substrates to the enzyme active cavity, in a manner quite similar to that of carbohydrate binding modules (CBMs), i.e. the chains endowed the β-sandwich domain with the functions of CBM. This study discovered a unique C-terminal sequence which is more favorable to glycosylation, thereby casting a novel view for glycoengineering of enzymes from fungi via redesigning the amino acid sequence at the C-terminal domain, so as to optimize the enzymatic properties.
Collapse
Affiliation(s)
- Junyan Ma
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China.,2Liaoning Province Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622 China
| | - Qian Li
- 2Liaoning Province Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622 China
| | - Haidong Tan
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Hao Jiang
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Kuikui Li
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Lihua Zhang
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Quan Shi
- 3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Heng Yin
- 1Natural Products and Glyco-Biotechnology Research Group, Liaoning Province Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
38
|
Toonstra C, Hu Y, Zhang H. Deciphering the Roles of N-Glycans on Collagen-Platelet Interactions. J Proteome Res 2019; 18:2467-2477. [PMID: 31055923 DOI: 10.1021/acs.jproteome.9b00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Collagen is a potent agonist for platelet activation, presenting itself as a key contributor to coagulation via interactions with platelet glycoproteins. The fine details dictating platelet-collagen interactions are poorly understood. In particular, glycosylation could be a key determinant in the platelet-collagen interaction. Here, we report an affinity purification coupled to a mass spectrometry-based approach to elucidate the function of N-glycans in dictating platelet-collagen interactions. By integrative proteomic and glycoproteomic analysis of collagen-platelet interactive proteins with N-glycan manipulation, we demonstrate that the interaction of platelet adhesive receptors with collagen is highly N-glycan regulated, with glycans on many receptors playing positive roles in collagen binding, with glycans on other platelet glycoproteins exhibiting inhibitory roles on the binding to collagen. Our results significantly enhance our understanding of the details of glycans influencing the platelet-collagen interaction.
Collapse
Affiliation(s)
- Christian Toonstra
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| | - Yingwei Hu
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| | - Hui Zhang
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| |
Collapse
|
39
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
40
|
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol 2019; 10:300. [PMID: 30873166 PMCID: PMC6400985 DOI: 10.3389/fimmu.2019.00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The glycosciences aim to understand the impact of extracellular and intracellular carbohydrate structures on biological function. These glycans primarily fall into three major groups: lipid-linked carbohydrates that are referred to as glycosphingolipids or simply glycolipids; relatively short carbohydrate chains that are often O- or N-linked to proteins yielding common glycoproteins; and extended linear polymeric carbohydrate structures that are referred to as glycosaminoglycans (GAGs). Whereas, the impact of such carbohydrate structures has been extensively examined in cancer biology, their role in acute and chronic heart disease is less studied. In this context, a growing body of evidence indicates that glycans play an important role in immune mediated cell recruitment to damaged heart tissue to initiate wound healing and repair after injury. This is particularly important following ischemia and reperfusion that occurs in the heart in the setting of acute myocardial infarction. Here, immune system-mediated repair of the damaged myocardium plays a critical role in determining post-infarction ventricular remodeling, cardiac function, and patient outcome. Further, alterations in immune cell activity can promote the development of heart failure. The present review summarizes our current understanding of the phases of immune-mediated repair following myocardial infarction. It discusses what is known regarding glycans in mediating the recruitment of circulating immune cells during the early inflammatory stage of post-infarction repair, with focus on the selectin family of adhesion molecules. It offers future directions for research aimed at utilizing our knowledge of mechanisms underlying immune cell recruitment to either modulate leukocyte recruitment to the injured tissue or enhance the targeted delivery of biologic therapeutics such as stem cells in an attempt to promote repair of the damaged heart.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Chemical & Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
41
|
Cayrol F, Sterle HA, Díaz Flaqué MC, Barreiro Arcos ML, Cremaschi GA. Non-genomic Actions of Thyroid Hormones Regulate the Growth and Angiogenesis of T Cell Lymphomas. Front Endocrinol (Lausanne) 2019; 10:63. [PMID: 30814977 PMCID: PMC6381017 DOI: 10.3389/fendo.2019.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell lymphomas (TCL) are a heterogeneous group of aggressive clinical lymphoproliferative disorders with considerable clinical, morphological, immunophenotypic, and genetic variation, including ~10-15% of all lymphoid neoplasms. Several evidences indicate an important role of the non-neoplastic microenvironment in promoting both tumor growth and dissemination in T cell malignancies. Thus, dysregulation of integrin expression and activity is associated with TCL survival and proliferation. We found that thyroid hormones acting via the integrin αvβ3 receptor are crucial factors in tumor microenvironment (TME) affecting the pathophysiology of TCL cells. Specifically, TH-activated αvβ3 integrin signaling promoted TCL proliferation and induced and an angiogenic program via the up-regulation of the vascular endothelial growth factor (VEGF). This was observed both on different TCL cell lines representing the different subtypes of human hematological malignancy, and in preclinical models of TCL tumors xenotransplanted in immunodeficient mice as well. Moreover, development of solid tumors by inoculation of murine TCLs in syngeneic hyperthyroid mice, showed increased tumor growth along with increased expression of cell cycle regulators. The genomic or pharmacological inhibition of integrin αvβ3 decreased VEGF production, induced TCL cell death and decreased in vivo tumor growth and angiogenesis. Here, we review the non-genomic actions of THs on TCL regulation and their contribution to TCL development and evolution. These actions not only provide novel new insights on the endocrine modulation of TCL, but also provide a potential molecular target for its treatment.
Collapse
Affiliation(s)
- Florencia Cayrol
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Helena A Sterle
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Celeste Díaz Flaqué
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Laura Barreiro Arcos
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
43
|
Surfaceome nanoscale organization and extracellular interaction networks. Curr Opin Chem Biol 2018; 48:26-33. [PMID: 30308468 DOI: 10.1016/j.cbpa.2018.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
The reductionist view of 'one target-one drug' has fueled the development of therapeutic agents to treat human disease. However, many compounds that have efficacy in vitro are inactive in complex in vivo systems. It has become clear that a molecular understanding of signaling networks is needed to address disease phenotypes in the human body. Protein signaling networks function at the molecular level through information transfer via protein-protein interactions. Cell surface exposed proteins, termed the surfaceome, are the gatekeepers between the intra- and extracellular signaling networks, translating extracellular cues into intracellular responses and vice versa. As 66% of drugs in the DrugBank target the surfaceome, these proteins are a key source for potential diagnostic and therapeutic agents. In this review article, we will discuss current knowledge about the spatial organization and molecular interactions of the surfaceome and provide a perspective on the technologies available for studying the extracellular surfaceome interaction network.
Collapse
|
44
|
Autonomous conformational regulation of β 3 integrin and the conformation-dependent property of HPA-1a alloantibodies. Proc Natl Acad Sci U S A 2018; 115:E9105-E9114. [PMID: 30209215 DOI: 10.1073/pnas.1806205115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Integrin α/β heterodimer adopts a compact bent conformation in the resting state, and upon activation undergoes a large-scale conformational rearrangement. During the inside-out activation, signals impinging on the cytoplasmic tail of β subunit induce the α/β separation at the transmembrane and cytoplasmic domains, leading to the extended conformation of the ectodomain with the separated leg and the opening headpiece that is required for the high-affinity ligand binding. It remains enigmatic which integrin subunit drives the bent-to-extended conformational rearrangement in the inside-out activation. The β3 integrins, including αIIbβ3 and αVβ3, are the prototypes for understanding integrin structural regulation. The Leu33Pro polymorphism located at the β3 PSI domain defines the human platelet-specific alloantigen (HPA) 1a/b, which provokes the alloimmune response leading to clinically important bleeding disorders. Some, but not all, anti-HPA-1a alloantibodies can distinguish the αIIbβ3 from αVβ3 and affect their functions with unknown mechanisms. Here we designed a single-chain β3 subunit that mimics a separation of α/β heterodimer on inside-out activation. Our crystallographic and functional studies show that the single-chain β3 integrin folds into a bent conformation in solution but spontaneously extends on the cell surface. This demonstrates that the β3 subunit autonomously drives the membrane-dependent conformational rearrangement during integrin activation. Using the single-chain β3 integrin, we identified the conformation-dependent property of anti-HPA-1a alloantibodies, which enables them to differently recognize the β3 in the bent state vs. the extended state and in the complex with αIIb vs. αV This study provides deeper understandings of integrin conformational activation on the cell surface.
Collapse
|
45
|
Zhou D, Thinn AMM, Zhao Y, Wang Z, Zhu J. Structure of an extended β 3 integrin. Blood 2018; 132:962-972. [PMID: 30018079 PMCID: PMC6117741 DOI: 10.1182/blood-2018-01-829572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Cells use adhesion receptor integrins to communicate with their surroundings. Integrin activation and cellular signaling are coupled with change from bent to extended conformation. β3 integrins, including αIIbβ3, which is essential for the function of platelets in hemostasis and thrombosis, and αVβ3, which plays multiple roles in diverse cell types, have been prototypes in understanding integrin structure and function. Despite extensive structural studies, a high-resolution integrin structure in an extended conformation remains to be determined. The human β3 Leu33Pro polymorphism, located at the PSI domain, defines human platelet-specific alloantigens 1a and 1b (HPA-1a/b), immune response to which is a cause of posttransfusion purpura and fetal/neonatal alloimmune thrombocytopenia. Leu33Pro substitution has also been suggested to be a risk factor for thrombosis. Here we report the crystal structure of the β3 headpiece in either Leu33 or Pro33 form, both of which reveal intermediate and fully extended conformations coexisting in 1 crystal. These were used to build high-resolution structures of full-length β3 integrin in the intermediate and fully extended states, agreeing well with the corresponding conformations observed by electron microscopy. Our structures reveal how β3 integrin becomes extended at its β-knee region and how the flexibility of β-leg domains is determined. In addition, our structures reveal conformational changes of the PSI and I-EGF1 domains upon β3 extension, which may affect the binding of conformation-dependent anti-HPA-1a alloantibodies. Our structural and functional data show that Leu33Pro substitution does not directly alter the conformation or ligand binding of β3 integrin.
Collapse
Affiliation(s)
- Dongwen Zhou
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| | - Yan Zhao
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Physiology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| |
Collapse
|
46
|
Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and Integrin Regulation in Cancer. Trends Cancer 2018; 4:537-552. [PMID: 30064662 DOI: 10.1016/j.trecan.2018.05.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Integrins are transmembrane receptors that coordinate extracellular matrix (ECM)-cell and cell-cell interactions, signal transmission, gene expression, and cell function. The aberration of integrin function is one of the well-recognized mechanisms of cancer. The activity of integrins is strongly influenced by glycans through glycosylation events and the establishment of glycan-mediated interactions. Glycans represent a class of ubiquitous biomolecules that display an extraordinary complexity and diversity in both structure and function. Widely expressed both in the ECM and on the cell surface, they play a crucial role in mediating cell proliferation, survival, and metastasis during cancer. The purpose of this review is to provide an overview of how both glycosylation of integrins and integrin interaction with the cancer glyco-microenvironment can regulate cancer progression.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Laura Russo
- Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano-Bicocca, Milan, Italy
| | - Fabio Quondamatteo
- Anatomy Facility, School of Life Science, University of Glasgow, Glasgow, Scotland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
47
|
Cui J, Huang W, Wu B, Jin J, Jing L, Shi WP, Liu ZY, Yuan L, Luo D, Li L, Chen ZN, Jiang JL. N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis. J Pathol 2018; 245:41-52. [PMID: 29431199 PMCID: PMC5947728 DOI: 10.1002/path.5054] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022]
Abstract
While the importance of protein N-glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N-acetylglucosaminyltransferase V (GnT-V) regulates cancer processes remain largely unknown. In the current study, we report that GnT-V-mediated N-glycosylation of CD147/basigin, a tumor-associated glycoprotein that carries β1,6-N-acetylglucosamine (β1,6-GlcNAc) glycans, is upregulated during TGF-β1-induced epithelial-to-mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of β1,6-GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin β1. These results reveal that β1,6-branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT-V expression and that inhibition of GnT-V-mediated N-glycosylation suppressed PI3K signaling. In summary, β1,6-branched N-glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jian Cui
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Wan Huang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Bo Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, PR China
| | - Jin Jin
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Lin Jing
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Wen-Pu Shi
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Zhen-Yu Liu
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Lin Yuan
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Dan Luo
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Ling Li
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Zhi-Nan Chen
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| | - Jian-Li Jiang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
48
|
Thinn AMM, Wang Z, Zhu J. The membrane-distal regions of integrin α cytoplasmic domains contribute differently to integrin inside-out activation. Sci Rep 2018; 8:5067. [PMID: 29568062 PMCID: PMC5864728 DOI: 10.1038/s41598-018-23444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Functioning as signal receivers and transmitters, the integrin α/β cytoplasmic tails (CT) are pivotal in integrin activation and signaling. 18 α integrin subunits share a conserved membrane-proximal region but have a highly diverse membrane-distal (MD) region at their CTs. Recent studies demonstrated that the presence of α CTMD region is essential for talin-induced integrin inside-out activation. However, it remains unknown whether the non-conserved α CTMD regions differently regulate the inside-out activation of integrin. Using αIIbβ3, αLβ2, and α5β1 as model integrins and by replacing their α CTMD regions with those of α subunits that pair with β3, β2, and β1 subunits, we analyzed the function of CTMD regions of 17 α subunits in talin-mediated integrin activation. We found that the α CTMD regions play two roles on integrin, which are activation-supportive and activation-regulatory. The regulatory but not the supportive function depends on the sequence identity of α CTMD region. A membrane-proximal tyrosine residue present in the CTMD regions of a subset of α integrins was identified to negatively regulate integrin inside-out activation. Our study provides a useful resource for investigating the function of α integrin CTMD regions.
Collapse
Affiliation(s)
- Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|