1
|
Dawangpa A, Chitta P, Rodrigues GDS, Iadsee N, Noronha NY, Nonino CB, Bueno Júnior CR, Sae-Lee C. Impact of combined exercise on blood DNA methylation and physical health in older women with obesity. PLoS One 2024; 19:e0315250. [PMID: 39680552 DOI: 10.1371/journal.pone.0315250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study examined the effects of a 14-week combined exercise program on blood DNA methylation (DNAm) and its potential biological pathways in normal-weight, overweight, and obese older women. A total of 41 participants were assessed at baseline, 7 weeks, and 14 weeks into the training. Their whole-blood DNAm profiles were measured using the Infinitum MethylationEPIC BeadChip, alongside physical and biochemical health evaluations. The results showed notable health improvements, with decreases in blood pressure and cholesterol levels in the overweight and obese groups. Blood triglycerides were reduced only in the overweight group. Physical performance also improved across all groups. At 14 weeks, 1,043 differentially methylated positions (DMPs) were identified, affecting 744 genes. The genes were linked to biological processes, such as cellular metabolism, with significant pathway enrichment related to oxidative phosphorylation and chemical carcinogenesis. Additionally, the overweight group experienced significant reductions in methylation levels at eight lipogenesis-related genes. Protein EpiScore analysis revealed decreased levels of CCL11, VEGFA, and NTRK3 proteins at 14 weeks compared to baseline. Despite these significant molecular changes, there was no observable difference in DNAm age after the intervention. This study highlights how combined exercise can modify DNAm patterns in older women, particularly in lipogenesis-related genes, but suggests that further research is needed to understand the full implications for biological ageing.
Collapse
Affiliation(s)
- Atchara Dawangpa
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pitaksin Chitta
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nutta Iadsee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natália Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carla B Nonino
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlos R Bueno Júnior
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Klein Y, David E, Pinto N, Khoury Y, Barenholz Y, Chaushu S. Breaking a dogma: orthodontic tooth movement alters systemic immunity. Prog Orthod 2024; 25:38. [PMID: 39370477 PMCID: PMC11456555 DOI: 10.1186/s40510-024-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The prevailing paradigm posits orthodontic tooth movement (OTM) as primarily a localized inflammatory process. In this study, we endeavor to elucidate the potential ramifications of mechanical force on systemic immunity, employing a time-dependent approach. MATERIALS AND METHODS A previously described mouse orthodontic model was used. Ni-Ti. springs were set to move the upper 1st-molar in C57BL/6 mice and the amount of OTM was. measured by µCT. Mice were allocated randomly into four experimental groups, each. corresponding to clinical phases of OTM, relative to force application. Terminal blood. samples were collected and a comprehensive blood count test for 7 cell types as well as. proteome profiling of 111 pivotal cytokines and chemokines were conducted. Two controls. groups were included: one comprised non-treated mice and the other mice with inactivated springs. RESULTS Serum immuno-profiling unveiled alterations in cellular immunity, manifesting as. changes in percentages of leukocytes, monocytes, macrophages, neutrophils, and. lymphocytes, alongside key signaling factors in comparison to both control groups. The systemic cellular and molecular alterations triggered by OTM mirrored the dynamics previously described in the local immune response. CONCLUSIONS Although the exact interplay between local and systemic immune responses to orthodontic forces require further elucidation, our findings demonstrate a tangible link between the two. Future investigations should aim to correlate these results with human subjects, and strive to delve deeper into the specific mechanisms by which mechanical force modulates the systemic immune response.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Eilon David
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Noy Pinto
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yasmin Khoury
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
3
|
Wang C, Wang J, Zhu Z, Hu J, Lin Y. Spotlight on pro-inflammatory chemokines: regulators of cellular communication in cognitive impairment. Front Immunol 2024; 15:1421076. [PMID: 39011039 PMCID: PMC11247373 DOI: 10.3389/fimmu.2024.1421076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Cognitive impairment is a decline in people's ability to think, learn, and remember, and so forth. Cognitive impairment is a global health challenge that affects the quality of life of thousands of people. The condition covers a wide range from mild cognitive impairment to severe dementia, which includes Alzheimer's disease (AD) and Parkinson's disease (PD), among others. While the etiology of cognitive impairment is diverse, the role of chemokines is increasingly evident, especially in the presence of chronic inflammation and neuroinflammation. Although inflammatory chemokines have been linked to cognitive impairment, cognitive impairment is usually multifactorial. Researchers are exploring the role of chemokines and other inflammatory mediators in cognitive dysfunction and trying to develop therapeutic strategies to mitigate their effects. The pathogenesis of cognitive disorders is very complex, their underlying causative mechanisms have not been clarified, and their treatment is always one of the challenges in the field of medicine. Therefore, exploring its pathogenesis and treatment has important socioeconomic value. Chemokines are a growing family of structurally and functionally related small (8-10 kDa) proteins, and there is growing evidence that pro-inflammatory chemokines are associated with many neurobiological processes that may be relevant to neurological disorders beyond their classical chemotactic function and play a crucial role in the pathogenesis and progression of cognitive disorders. In this paper, we review the roles and regulatory mechanisms of pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL20, and CXCL8) in cognitive impairment. We also discuss the intrinsic relationship between the two, hoping to provide some valuable references for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiayi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhichao Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesia, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Zheng Q, Wang D, Lin R, Li Z, Chen Y, Chen R, Zheng C, Xu W. Effects of circulating inflammatory proteins on osteoporosis and fractures: evidence from genetic correlation and Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1386556. [PMID: 38757000 PMCID: PMC11097655 DOI: 10.3389/fendo.2024.1386556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Objective There is a controversy in studies of circulating inflammatory proteins (CIPs) in association with osteoporosis (OP) and fractures, and it is unclear if these two conditions are causally related. This study used MR analyses to investigate the causal associations between 91 CIPs and OP and 9 types of fractures. Methods Genetic variants data for CIPs, OP, and fractures were obtained from the publicly available genome-wide association studies (GWAS) database. We used inverse variance weighted (IVW) as the primary analysis, pleiotropy, and heterogeneity tests to analyze the validity and robustness of causality and reverse MR analysis to test for reverse causality. Results The IVW results with Bonferroni correction indicated that CXCL11 (OR = 1.2049; 95% CI: 1.0308-1.4083; P = 0.0192) can increase the risk of OP; IL-4 (OR = 1.2877; 95% CI: 1.1003-1.5070; P = 0.0016), IL-7 (OR = 1.2572; 95% CI: 1.0401-1.5196; P = 0.0180), IL-15RA (OR = 1.1346; 95% CI: 1.0163-1.2668; P = 0.0246), IL-17C (OR = 1.1353; 95% CI: 1.0272-1.2547; P = 0.0129), CXCL10 (OR = 1.2479; 95% CI: 1.0832-1.4377; P = 0.0022), eotaxin/CCL11 (OR = 1.1552; 95% CI: 1.0525-1.2678; P = 0.0024), and FGF23 (OR = 1.9437; 95% CI: 1.1875-3.1816; P = 0.0082) can increase the risk of fractures; whereas IL-10RB (OR = 0.9006; 95% CI: 0.8335-0.9730; P = 0.0080), CCL4 (OR = 0.9101; 95% CI: 0.8385-0.9878; P = 0.0242), MCP-3/CCL7 (OR = 0.8579; 95% CI: 0.7506-0.9806; P = 0.0246), IFN-γ [shoulder and upper arm (OR = 0.7832; 95% CI: 0.6605-0.9287; P = 0.0049); rib(s), sternum and thoracic spine (OR = 0.7228; 95% CI: 0.5681-0.9197; P = 0.0083)], β-NGF (OR = 0.8384; 95% CI: 0.7473-0.9407; P = 0.0027), and SIRT2 (OR = 0.5167; 95% CI: 0.3296-0.8100; P = 0.0040) can decrease fractures risk. Conclusion Mendelian randomization (MR) analyses indicated the causal associations between multiple genetically predicted CIPs and the risk of OP and fractures.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhechen Li
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Rongsheng Chen
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Weihong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
6
|
Li M, Cong R, Wang H, Ma C, Lv Y, Zheng Y, Zhao Y, Fu Q, Li L. What happens to the osteoporotic bone mesenchymal stem cells? Evidence from RNA sequencing. Int J Med Sci 2024; 21:95-106. [PMID: 38164361 PMCID: PMC10750345 DOI: 10.7150/ijms.88146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Evidence presented that osteoporosis is closely related to the dysfunction of bone mesenchymal stem cells (BMSCs). But most studies are insufficient to reveal what actually happens to the osteoporotic BMSCs. In this study, BMSCs were harvested from ovariectomized and sham-operated rats. After checking the characteristics of rat models and stem cells, the BMSCs were carried out for RNA sequencing. Part of the findings were verified that seven mRNAs (Abi3bp, Aifm3, Ccl11, Cdkn1c, Chst10, Id2, Vcam1) were significantly up-regulated in osteoporotic BMSCs while seven mRNAs (Cep63, Fgfr3, Myc, Omd, Pou2f1, Smarcal1, Timm10b) were down-regulated. In addition, potential miRNA-mRNA and lncRNA-mRNA regulatory networks were illustrated. The changes in osteoporotic BMSCs covered a large set of biological processes, including cell viability, differentiation, immunoreaction, bone repairment and estrogen defect. This study enriched the pathophysiological mechanisms of BMSCs and osteporosis, as well as provided dozens of attractive RNA targets for further treatment.
Collapse
Affiliation(s)
- Mingyang Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Rong Cong
- Senior Department of Obstetrics & Gynecology, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Huadong Wang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chao Ma
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yongwei Lv
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yang Zheng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, China
| |
Collapse
|
7
|
Menegas S, Keller GS, Possamai-Della T, Aguiar-Geraldo JM, Quevedo J, Valvassori SS. Potential mechanisms of action of resveratrol in prevention and therapy for mental disorders. J Nutr Biochem 2023; 121:109435. [PMID: 37669710 DOI: 10.1016/j.jnutbio.2023.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
There is a growing body of evidence about the potential of diet and nutrients to improve the population's mental health and the treatment of psychiatric disorders. Some studies have suggested that resveratrol has therapeutic properties in mental disorders, such as major depressive disorder, bipolar disorder, Alzheimer's disease, and autism. In addition, resveratrol is known to induce several benefits modulated by multiple synergistic pathways, which control oxidative stress, inflammation, and cell death. This review collects the currently available data from animal and human studies and discusses the potential mechanisms of action of resveratrol in prevention and therapy for psychiatric disorders.
Collapse
Affiliation(s)
- Samira Menegas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela S Keller
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
8
|
Matveeva D, Buravkov S, Andreeva E, Buravkova L. Hypoxic Extracellular Matrix Preserves Its Competence after Expansion of Human MSCs under Physiological Hypoxia In Vitro. Biomimetics (Basel) 2023; 8:476. [PMID: 37887607 PMCID: PMC10604705 DOI: 10.3390/biomimetics8060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Tissue-relevant O2 levels are considered as an important tool for the preconditioning of multipotent mesenchymal stromal cells (MSCs) for regenerative medicine needs. The present study investigated the quality and functions of the extracellular matrix (ECM) of MSCs under low O2 levels. Human adipose tissue-derived MSCs were continuously expanded under normoxia (20% O2, N) or "physiological" hypoxia (5% O2, Hyp). Decellularized ECM (dcECM) was prepared. The structure of the dcECM was analyzed using confocal laser and scanning electron microscopy. Collagen, dcECM-N, and dcECM-Hyp were recellularized with MSC-N and further cultured at normoxia. The efficacy of adhesion, spreading, growth, osteogenic potential, and paracrine activity of recellularized MSC-N were evaluated. At low O2, the dcECM showed an increased alignment of fibrillar structures and provided accelerated spreading of MSC-N, indicating increased dcECM-Hyp stiffness. We described O2-dependent "ECM-education" of MSC-N when cultured on dcECM-Hyp. This was manifested as attenuated spontaneous osteo-commitment, increased susceptibility to osteo-induction, and a shift in the paracrine profile. It has been suggested that the ECM after physiological hypoxia is able to ensure the maintenance of a low-commitment state of MSCs. DcECM, which preserves the competence of the natural microenvironment of cells and is capable of "educating" others, appears to be a prospective tool for guiding cell modifications for cell therapy and tissue engineering.
Collapse
Affiliation(s)
| | | | - Elena Andreeva
- Institute of Biomedical Problems of Russian Academy of Sciences, Moscow 123007, Russia; (D.M.); (S.B.); (L.B.)
| | | |
Collapse
|
9
|
Pawlik K, Mika J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules 2023; 28:5766. [PMID: 37570736 PMCID: PMC10421203 DOI: 10.3390/molecules28155766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropathic pain is a debilitating condition that affects millions of people worldwide. Numerous studies indicate that this type of pain is a chronic condition with a complex mechanism that tends to worsen over time, leading to a significant deterioration in patients' quality of life and issues like depression, disability, and disturbed sleep. Presently used analgesics are not effective enough in neuropathy treatment and may cause many side effects due to the high doses needed. In recent years, many researchers have pointed to the important role of chemokines not only in the development and maintenance of neuropathy but also in the effectiveness of analgesic drugs. Currently, approximately 50 chemokines are known to act through 20 different seven-transmembrane G-protein-coupled receptors located on the surface of neuronal, glial, and immune cells. Data from recent years clearly indicate that more chemokines than initially thought (CCL1/2/3/5/7/8/9/11, CXCL3/9/10/12/13/14/17; XCL1, CX3CL1) have pronociceptive properties; therefore, blocking their action by using neutralizing antibodies, inhibiting their synthesis, or blocking their receptors brings neuropathic pain relief. Several of them (CCL1/2/3/7/9/XCL1) have been shown to be able to reduce opioid drug effectiveness in neuropathy, and neutralizing antibodies against them can restore morphine and/or buprenorphine analgesia. The latest research provides irrefutable evidence that chemokine receptors are promising targets for pharmacotherapy; chemokine receptor antagonists can relieve pain of different etiologies, and most of them are able to enhance opioid analgesia, for example, the blockade of CCR1 (J113863), CCR2 (RS504393), CCR3 (SB328437), CCR4 (C021), CCR5 (maraviroc/AZD5672/TAK-220), CXCR2 (NVPCXCR220/SB225002), CXCR3 (NBI-74330/AMG487), CXCR4 (AMD3100/AMD3465), and XCR1 (vMIP-II). Recent research has shown that multitarget antagonists of chemokine receptors, such as CCR2/5 (cenicriviroc), CXCR1/2 (reparixin), and CCR2/CCR5/CCR8 (RAP-103), are also very effective painkillers. A multidirectional strategy based on the modulation of neuronal-glial-immune interactions by changing the activity of the chemokine family can significantly improve the quality of life of patients suffering from neuropathic pain. However, members of the chemokine family are still underestimated pharmacological targets for pain treatment. In this article, we review the literature and provide new insights into the role of chemokines and their receptors in neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Cracow, Poland;
| |
Collapse
|
10
|
Zhang Y, Liu D, Vithran DTA, Kwabena BR, Xiao W, Li Y. CC chemokines and receptors in osteoarthritis: new insights and potential targets. Arthritis Res Ther 2023; 25:113. [PMID: 37400871 PMCID: PMC10316577 DOI: 10.1186/s13075-023-03096-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease accompanied by the activation of innate and adaptive immune systems-associated inflammatory responses. Due to the local inflammation, the expression of various cytokines was altered in affected joints, including CC motif chemokine ligands (CCLs) and their receptors (CCRs). As essential members of chemokines, CCLs and CCRs played an important role in the pathogenesis and treatment of OA. The bindings between CCLs and CCRs on the chondrocyte membrane promoted chondrocyte apoptosis and the release of multiple matrix-degrading enzymes, which resulted in cartilage degradation. In addition, CCLs and CCRs had chemoattractant functions to attract various immune cells to osteoarthritic joints, further leading to the aggravation of local inflammation. Furthermore, in the nerve endings of joints, CCLs and CCRs, along with several cellular factors, contributed to pain hypersensitivity by releasing neurotransmitters in the spinal cord. Given this family's diverse and complex functions, targeting the functional network of CCLs and CCRs is a promising strategy for the prognosis and treatment of OA in the future.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | - Bosomtwe Richmond Kwabena
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Zheng B, Keen KJ, Fritzler MJ, Ryerson CJ, Wilcox P, Whalen BA, Sahin B, Yao I, Dunne JV. Circulating cytokine levels in systemic sclerosis related interstitial lung disease and idiopathic pulmonary fibrosis. Sci Rep 2023; 13:6647. [PMID: 37095095 PMCID: PMC10125994 DOI: 10.1038/s41598-023-31232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/08/2023] [Indexed: 04/26/2023] Open
Abstract
Exploration of cytokine levels in systemic sclerosis-associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF) is needed to find common and diverse biomolecular pathways. Circulating levels of 87 cytokines were compared amongst 19 healthy controls and consecutive patients with SSc-ILD (n = 39), SSc without ILD (n = 29), and IPF (n = 17) recruited from a Canadian centre using a log-linear model adjusted for age, sex, baseline forced vital capacity (FVC), and immunosuppressive or anti-fibrotic treatment at time of sampling. Also examined was annualized change in FVC. Four cytokines had Holm's corrected p-values less than 0.05. Eotaxin-1 levels were increased approximately two-fold in all patient categories compared to healthy controls. Interleukin-6 levels were eight-fold higher in all ILD categories compared to healthy controls. MIG/CXCL9 levels increased two-fold more in all but one patient category compared to healthy controls. Levels of a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13, (ADAMTS13) were lower for all categories of patients compared to controls. No substantial association was found for any of the cytokines with FVC change. Observed cytokine differences suggest both common and diverse pathways leading to pulmonary fibrosis. Further studies evaluating longitudinal change of these molecules would be informative.
Collapse
Affiliation(s)
- Boyang Zheng
- Division of Rheumatology, McGill University, Montreal, QC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J Keen
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Mathematics and Statistics, University of Northern British Columbia, Prince George, BC, Canada
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Pearce Wilcox
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beth A Whalen
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Basak Sahin
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Iris Yao
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - James V Dunne
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
- , Suite 330, 2184 West Broadway, Vancouver, BC, V6K 2E1, Canada.
| |
Collapse
|
12
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
13
|
Jiang Y, Pan Q, Zhu X, Liu J, Liu Z, Deng Y, Liu W, Liu Y. Knockdown of CCR3 gene inhibits Proliferation, migration and degranulation of eosinophils in mice by downregulating the PI3K/Akt pathway. Int Immunopharmacol 2022; 113:109439. [DOI: 10.1016/j.intimp.2022.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
|
14
|
Habberstad R, Aass N, Mollnes TE, Damås JK, Brunelli C, Rossi R, Garcia-Alonso E, Kaasa S, Klepstad P. Inflammatory Markers and Radiotherapy Response in Patients With Painful Bone Metastases. J Pain Symptom Manage 2022; 64:330-339. [PMID: 35803553 DOI: 10.1016/j.jpainsymman.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
CONTEXT Inflammation is proposed to influence tumor response in radiotherapy (RT). Clinical studies to investigate the relationship between inflammatory markers and RT response is warranted to understand the variable RT efficacy in patients with painful bone metastases. OBJECTIVES To evaluate the association between inflammatory markers and analgesic response to RT in patients with painful bone metastases. METHODS Adult patients from 7 European study sites undergoing RT for painful bone metastases were included in this prospective and longitudinal analysis. The association between RT response and 17 inflammatory markers at baseline, as well as the association between RT response and the changes observed in inflammatory markers between baseline and three and eight weeks after RT, was analyzed with univariate regression analyses. Baseline analyses were adjusted for potential clinical predictors of RT response. RESULTS None of the inflammatory markers were significantly associated with an upcoming RT response in the analysis of 448 patients with complete baseline data. In patients available for follow-up, the three-week change in TNF (P 0.017), IL-8 (P 0.028), IP-10 (P 0.032), eotaxin (P 0.043), G-CSF (P 0.033) and MCP-1 (P 0.002) were positively associated with RT response, while the three-week change in CRP (P 0.006) was negatively associated. CONCLUSION Results from this study show an association between RT response and change in pro-inflammatory mediators and indicate that inflammation may be important to achieve an analgesic RT response in patients with painful bone metastases. None of the investigated inflammatory markers were found to be pre-treatment predictors of RT response.
Collapse
Affiliation(s)
- Ragnhild Habberstad
- European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU (R.H., P.K.), Norwegian University of Science and Technology and St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway; Cancer Clinic, St. Olavs hospital (R.H.), Trondheim University Hospital, Trondheim, Norway.
| | - Nina Aass
- European Palliative Care Research Centre (PRC), Department of Oncology (N.A., S.K.), Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology (T.E.M.), Oslo University Hospital, Oslo, Norway; Research Laboratory, Nordland Hospital (T.E.M.), Bodø, Norway; KG Jebsen Thrombosis Research and Expertise Center, Faculty of Health Sciences (T.E.M.), University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine (T.E.M., J.K.D.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Kristian Damås
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine (T.E.M., J.K.D.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Infectious Diseases, St. Olav's Hospital (J.K.D.), Trondheim, Norway
| | - Cinzia Brunelli
- Palliative Care, Pain Therapy and Rehabilitation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori (C.B.), Milano, Italy
| | - Romina Rossi
- Palliative Care Unit IRCCS- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST-Srl, Meldola, Italy
| | - Elena Garcia-Alonso
- Radiation Oncology Department Arnau de Vilanova University Hospital (E.G.A.). IRB Lleida, España
| | - Stein Kaasa
- European Palliative Care Research Centre (PRC), Department of Oncology (N.A., S.K.), Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Klepstad
- European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU (R.H., P.K.), Norwegian University of Science and Technology and St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging (P.K.), Norwegian University of Science and Technology (NTNU) Trondheim, Norway; Department of Anesthesiology and Intensive Care Medicine, St Olavs Hospital (P.K.), Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Dickie A, Rotenberg B, Sowerby L. Concurrent management of nasal bone expansion from nasal polyposis (Woakes' disease). Laryngoscope Investig Otolaryngol 2022; 7:1274-1279. [PMID: 36258866 PMCID: PMC9575101 DOI: 10.1002/lio2.866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Background Woakes' disease is the eponymous name for severe chronic rhinosinusitis with nasal polyposis (CRSwNP) leading to thinning and expansion of the nasal pyramid. The endoscopic treatment of the sinus disease, while extensive, is standard practice for the rhinologist. Management of their external nasal deformities, for many, is not. Simultaneous closed rhinoplasty in these patients is straightforward, easy to perform and achieves an excellent esthetic outcome. Methods Three patients with CRSwNP and notable nasal pyramid expansion are reviewed. All patients had eosinophilic disease, with two having NSAID-exacerbated respiratory disease (N-ERD). All three patients underwent full house endoscopic sinus surgery from May 2018 to September 2019 along with simultaneous closed rhinoplasty. Two of these patients required only external digital pressure to fracture the nasal bones for gentle Boies elevator repositioning, while the third had osteotomies with minimal force to aid reduction. Results Postoperatively, patients had excellent nasal airway symptom improvement, and the cosmetic results following rhinoplasty demonstrated normalization of symmetry, profile, and contour of the nose with high-patient satisfaction. Conclusion Based on our experience, simultaneous rhinoplasty on the thinned nasal bones of Woakes' Disease patients is not only easy to perform, but provides excellent cosmetic and functional results by allowing bone to remodel in the appropriate position, and avoids a second-stage rhinoplasty.
Collapse
Affiliation(s)
- Alexander Dickie
- Department of Otolaryngology ‐ Head and Neck SurgeryLondon Health Sciences CentreLondonOntarioCanada
- Department of Otolaryngology ‐ Head and Neck SurgerySt. Joseph's HospitalLondonOntarioCanada
- Department of Otolaryngology‐Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| | - Brian Rotenberg
- Department of Otolaryngology ‐ Head and Neck SurgeryLondon Health Sciences CentreLondonOntarioCanada
- Department of Otolaryngology ‐ Head and Neck SurgerySt. Joseph's HospitalLondonOntarioCanada
- Department of Otolaryngology‐Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| | - Leigh Sowerby
- Department of Otolaryngology ‐ Head and Neck SurgeryLondon Health Sciences CentreLondonOntarioCanada
- Department of Otolaryngology ‐ Head and Neck SurgerySt. Joseph's HospitalLondonOntarioCanada
- Department of Otolaryngology‐Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| |
Collapse
|
16
|
Practical Significance of Biomarkers in Axial Spondyloarthritis: Updates on Diagnosis, Disease Activity, and Prognosis. Int J Mol Sci 2022; 23:ijms231911561. [PMID: 36232862 PMCID: PMC9570274 DOI: 10.3390/ijms231911561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that can lead to ankylosis by secondary ossification of inflammatory lesions, with progressive disability and a significant impact on quality of life. It is also a risk factor for the occurrence of comorbidities, especially cardiovascular diseases (CVDs), mood disorders, osteoporosis, and malignancies. Early diagnosis and treatment are needed to prevent or decrease functional decline and to improve the patient's prognosis. In respect of axSpA, there is an unmet need for biomarkers that can help to diagnose the disease, define disease activity and prognosis, and establish personalized treatment approaches. The aim of this review was to summarize the available information regarding the most promising biomarkers for axSpA. We classified and identified six core categories of biomarkers: (i) systemic markers of inflammation; (ii) molecules involved in bone homeostasis; (iii) HLA-B27 and newer genetic biomarkers; (iv) antibody-based biomarkers; (v) microbiome biomarkers; and (vi) miscellaneous biomarkers. Unfortunately, despite efforts to validate new biomarkers, few of them are used in clinical practice; however, we believe that these studies provide useful data that could aid in better disease management.
Collapse
|
17
|
Fisher CR, Salmons HI, Mandrekar J, Greenwood-Quaintance KE, Abdel MP, Patel R. A 92 protein inflammation panel performed on sonicate fluid differentiates periprosthetic joint infection from non-infectious causes of arthroplasty failure. Sci Rep 2022; 12:16135. [PMID: 36167782 PMCID: PMC9514711 DOI: 10.1038/s41598-022-20444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty, typically necessitating surgical intervention and prolonged antimicrobial therapy. Currently, there is no perfect assay for PJI diagnosis. Proteomic profiling of sonicate fluid has the potential to differentiate PJI from non-infectious arthroplasty failure (NIAF) and possibly clinical subsets of PJI and/or NIAF. In this study, 200 sonicate fluid samples, including 90 from subjects with NIAF (23 aseptic loosening, 35 instability, 10 stiffness, five osteolysis, and 17 other) and 110 from subjects with PJI (40 Staphylococcus aureus, 40 Staphylococcus epidermidis, 10 Staphylococcus lugdunensis, 10 Streptococcus agalactiae, and 10 Enterococcus faecalis) were analyzed by proximity extension assay using the 92 protein Inflammation Panel from Olink Proteomics. Thirty-seven of the 92 proteins examined, including CCL20, OSM, EN-RAGE, IL8, and IL6, were differentially expressed in PJI versus NIAF sonicate fluid samples, with none of the 92 proteins differentially expressed between staphylococcal versus non-staphylococcal PJI, nor between the different types of NIAF studied. IL-17A and CCL11 were differentially expressed between PJI caused by different bacterial species, with IL-17A detected at higher levels in S. aureus compared to S. epidermidis and S. lugdunensis PJI, and CCL11 detected at higher levels in S. epidermidis compared to S. aureus and S. agalactiae PJI. Receiver operative characteristic curve analysis identified individual proteins and combinations of proteins that could differentiate PJI from NIAF. Overall, proteomic profiling using this small protein panel was able to differentiate between PJI and NIAF sonicate samples and provide a better understanding of the immune response during arthroplasty failure.
Collapse
Affiliation(s)
- Cody R Fisher
- Department of Immunology, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Harold I Salmons
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jay Mandrekar
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Sciences, Mayo Clinic, Rochester, MN, USA
| | - Kerryl E Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Early Transcriptional Changes of Adipose-Derived Stem Cells (ADSCs) in Cell Culture. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091249. [PMID: 36143926 PMCID: PMC9501538 DOI: 10.3390/medicina58091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022]
Abstract
Background and Objectives: While autologous fat grafting has been carried out in the clinical field for many years, the utilization of isolated and cultured adipose-derived stem cells (ADSCs) is highly restricted in many countries. However, ADSCs are under investigation currently and heavily researched in many cell-based therapy approaches in the field of regenerative medicine. Objective: For the utilization of future cell-based therapies with ADSCs, in vitro cell expansion might be necessary in many cases. Thus, the cellular characteristics of ADSCs may be altered though the process of being cultured. The aim of this study was to assess changes in the gene expression profile of ADSCs after cell expansion for 48 h. Materials and Methods: Isolated ADSCs from five different donors were used for in vitro expansion. For the evaluation of the gene expression profile, mRNA deep Next-Generation Sequencing was performed to evaluate the differences between cultured and freshly isolated cells. Results: Our study gives insight into transcriptional changes in ADSCs after a short cell cultivation period. This includes the most prominent upregulated genes such as PPL, PRR15, CCL11 and ABCA9, as well the most downregulated genes, which are FOSB, FOS, EGR1 and DUSP6. Furthermore, we showed different biological processes that changed during short-term cell expansion, which led to downregulation of fat-associated metabolism hormone processes and to an upregulation of extracellular matrix-associated genes. Conclusion: In conclusion, our study reveals a detailed insight into early changes in the gene expression profile of cultured ADSCs. Our results can be utilized in future experiments.
Collapse
|
19
|
Yamada K, Asai K, Yanagimoto M, Sone R, Inazu S, Mizutani R, Kadotani H, Watanabe T, Tochino Y, Kawaguchi T. Clopidogrel-induced Eosinophilia with Hypercalcemia. Intern Med 2022; 61:2681-2685. [PMID: 35135910 PMCID: PMC9492498 DOI: 10.2169/internalmedicine.7830-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are few cases describing the association of eosinophilia with hypercalcemia, and drug-induced eosinophilia with hypercalcemia has not been reported. A 74-year-old man had been diagnosed with asthma 4 months earlier. He was admitted due to eosinophilia with hypercalcemia. Chest computed tomography showed a nodule in the left lung and mediastinal lymphadenopathy. By obtaining a detailed medical history, clopidogrel was suspected as the prime cause of eosinophilia. After the discontinuation of clopidogrel, the eosinophilia with hypercalcemia, lung nodule and mediastinal lymphadenopathy improved. Clopidogrel-induced eosinophilia can potentially cause hypercalcemia. Obtaining a detailed clinical history is important in diagnosing the cause of eosinophilia.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Misaki Yanagimoto
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Risa Sone
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Satsuki Inazu
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Ryo Mizutani
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Hideaki Kadotani
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Yoshihiro Tochino
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Japan
| |
Collapse
|
20
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front Immunol 2022; 13:907733. [PMID: 35874704 PMCID: PMC9304905 DOI: 10.3389/fimmu.2022.907733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
21
|
Nazarinia D, Behzadifard M, Gholampour J, Karimi R, Gholampour M. Eotaxin-1 (CCL11) in neuroinflammatory disorders and possible role in COVID-19 neurologic complications. Acta Neurol Belg 2022; 122:865-869. [PMID: 35690992 PMCID: PMC9188656 DOI: 10.1007/s13760-022-01984-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
The related neurologic complications of SARS-CoV-2 infection in COVID-19 patients and survivors comprise symptoms including depression, anxiety, muscle pain, dizziness, headaches, fatigue, and anosmia/hyposmia that may continue for months. Recent studies have been demonstrated that chemokines have brain-specific attraction and effects such as chemotaxis, cell adhesion, modulation of neuroendocrine functions, and neuroinflammation. CCL11 is a member of the eotaxin family that is chemotactic agents for eosinophils and participate in innate immunity. Eotaxins may exert physiological and pathological functions in the central nerve system, and CCL11 may induce neuronal cytotoxicity effects by inducing the production of reactive oxygen species (ROS) in microglia cells. Plasma levels of CCL11 elevated in neuroinflammation and neurodegenerative disorders. COVID-19 patients display elevations in CCL11 levels. As CCL11 plays roles in physiosomatic and neuroinflammation, analyzing the level of this chemokine in COVID-19 patients during hospitalization and to predicting post-COVID-19-related neurologic complications may be worthwhile. Moreover, using chemokine modulators may be helpful in lessening the neurologic complications in such patients.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Mahin Behzadifard
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Javad Gholampour
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Branch of Islamic Azad University, Mashhad, Iran
| | - Roqaye Karimi
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadali Gholampour
- Department of Medicine, Lung Biology Center, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Rosendahl S, Sulniute R, Persson J, Forsberg S, Häggvik R, Drewsen V, Koskinen Holm C, Kindstedt E, Lundberg P. Lack of CCR3 leads to a skeletal phenotype only in male mice. Biochem Biophys Res Commun 2022; 620:98-104. [DOI: 10.1016/j.bbrc.2022.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
|
23
|
Neto E, Monteiro AC, Leite Pereira C, Simões M, Conde JP, Chu V, Sarmento B, Lamghari M. Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Adv Healthc Mater 2022; 11:e2102305. [PMID: 35158409 PMCID: PMC11468530 DOI: 10.1002/adhm.202102305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-a-chip in vitro platforms accurately mimic complex microenvironments offering the ability to recapitulate and dissect mechanisms of physiological and pathological settings, revealing their major importance to develop new therapeutic targets. Bone diseases, such as osteoarthritis, are extremely complex, comprising of the action of inflammatory mediators leading to unbalanced bone homeostasis and de-regulation of sensory innervation and angiogenesis. Although there are models to mimic bone vascularization or innervation, in vitro platforms merging the complexity of bone, vasculature, innervation, and inflammation are missing. Therefore, in this study a microfluidic-based neuro-vascularized bone chip (NVB chip) is proposed to 1) model the mechanistic interactions between innervation and angiogenesis in the inflammatory bone niche, and 2) explore, as a screening tool, novel strategies targeting inflammatory diseases, using a nano-based drug delivery system. It is possible to set the design of the platform and achieve the optimized conditions to address the neurovascular network under inflammation. Moreover, this system is validated by delivering anti-inflammatory drug-loaded nanoparticles to counteract the neuronal growth associated with pain perception. This reliable in vitro tool will allow understanding the bone neurovascular system, enlightening novel mechanisms behind the inflammatory bone diseases, bone destruction, and pain opening new avenues for new therapies discovery.
Collapse
Affiliation(s)
- Estrela Neto
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Ana Carolina Monteiro
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Catarina Leite Pereira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Miguel Simões
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- CESPUInstituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeRua Central da Gandra, 137Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| |
Collapse
|
24
|
Kassab A, Rizk N, Prakash S. The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies. Int J Mol Sci 2022; 23:ijms23084338. [PMID: 35457154 PMCID: PMC9025381 DOI: 10.3390/ijms23084338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in aging studies brought about by heterochronic parabiosis suggest that aging might be a reversable process that is affected by changes in the systemic milieu of organs and cells. Given the broadness of such a systemic approach, research to date has mainly questioned the involvement of “shared organs” versus “circulating factors”. However, in the absence of a clear understanding of the chronological development of aging and a unified platform to evaluate the successes claimed by specific rejuvenation methods, current literature on this topic remains scattered. Herein, aging is assessed from an engineering standpoint to isolate possible aging potentiators via a juxtaposition between biological and mechanical systems. Such a simplification provides a general framework for future research in the field and examines the involvement of various factors in aging. Based on this simplified overview, the kidney as a filtration organ is clearly implicated, for the first time, with the aging phenomenon, necessitating a re-evaluation of current rejuvenation studies to untangle the extent of its involvement and its possible role as a potentiator in aging. Based on these findings, the review concludes with potential translatable and long-term therapeutics for aging while offering a critical view of rejuvenation methods proposed to date.
Collapse
Affiliation(s)
- Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| | - Nasser Rizk
- Department of Biomedical Sciences, College of Health Sciences-QU-Health, Qatar University, Doha 2713, Qatar
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| |
Collapse
|
25
|
Skrzypkowska M, Stasiak M, Sakowska J, Chmiel J, Maciejewska A, Buciński A, Słomiński B, Trzonkowski P, Łuczkiewicz P. Cytokines and chemokines multiplex analysis in patients with low disease activity rheumatoid arthritis. Rheumatol Int 2022; 42:609-619. [PMID: 35179632 PMCID: PMC8940835 DOI: 10.1007/s00296-022-05103-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis is a severe chronic autoimmune disorder that results from pathological activation of immune cells and altered cytokine/chemokine network. The aim of our study was to evaluate concentrations of chosen cytokines and chemokines in blood sera and synovial fluid samples isolated from low disease activity rheumatoid arthritis (RA) patients and osteoarthritis (OA) sufferers. Blood sera and synovial fluid samples have been obtained from 24 OA and 14 RA patients. Cytokines/chemokines levels have been determined using a Milliplex® Map 38-plex human cytokine/chemokine magnetic bead-based panel (Merck Millipore, Germany) and Luminex® MAGPIX® platform (Luminex USA). Low disease activity RA patients showed altered concentration of numerous cytokine/chemokine when compared to OA controls—they were characterized by, inter alia, increased: eotaxin/CCL11 (p = 0.037), GRO/CXCL1 (p = 0.037), IL-2 (p = 0.013), IL-4 (p = 0.017), IL-7 (p = 0.003), IL-8 (p = 0.0007) and GM-CSF (p = 0.037) serum levels, whilst MDC/CCL22 concentration was decreased in this group (p = 0.034). Eotaxin/CCL11 (p = 0.001), GRO/CXCL1 (p = 0.041), IL-10 (p = 0.003), GM-CSF (p = 0.01), IL-1RA (p = 0.0005) and VEGF (p = 0.01) concentrations in synovial fluid of RA females were also increased. Even with low disease activity score, RA patients exhibited increased concentrations of cytokines with pro- and anti-inflammatory activities, as well as numerous chemokines, growth factors and regulators of angiogenesis. Surprisingly, RA subjects also shown decreased concentration of CCL22 chemokine. The attempt to restore cytokine balance and tolerogenic environment is ineffective in RA sufferers even with good disease management. Distinguished factors could serve as possible indicators of disease progression even in low disease activity patients.
Collapse
Affiliation(s)
- Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-210 Gdańsk, Poland
| | - Mariusz Stasiak
- Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Sakowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-210 Gdańsk, Poland
| | - Joanna Chmiel
- Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Agata Maciejewska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-210 Gdańsk, Poland
| | - Adam Buciński
- Department of Biopharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-210 Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-210 Gdańsk, Poland
| | - Piotr Łuczkiewicz
- Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
26
|
Shkair L, Garanina EE, Martynova EV, Kolesnikova AI, Arkhipova SS, Titova AA, Rizvanov AA, Khaiboullina SF. Immunogenic Properties of MVs Containing Structural Hantaviral Proteins: An Original Study. Pharmaceutics 2022; 14:pharmaceutics14010093. [PMID: 35056989 PMCID: PMC8779827 DOI: 10.3390/pharmaceutics14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an emerging infectious disease that remains a global public health threat. The highest incidence rate is among zoonotic disease cases in Russia. Most cases of HFRS are reported in the Volga region of Russia, which commonly identifies the Puumala virus (PUUV) as a pathogen. HFRS management is especially challenging due to the lack of specific treatments and vaccines. This study aims to develop new approaches for HFRS prevention. Our goal is to test the efficacy of microvesicles (MVs) as PUUV nucleocapsid (N) and glycoproteins (Gn/Gc) delivery vehicles. Our findings show that MVs could deliver the PUUV N and Gn/Gc proteins in vitro. We have also demonstrated that MVs loaded with PUUV proteins could elicit a specific humoral and cellular immune response in vivo. These data suggest that an MV-based vaccine could control HFRS.
Collapse
|
27
|
Pawlik K, Ciechanowska A, Ciapała K, Rojewska E, Makuch W, Mika J. Blockade of CC Chemokine Receptor Type 3 Diminishes Pain and Enhances Opioid Analgesic Potency in a Model of Neuropathic Pain. Front Immunol 2021; 12:781310. [PMID: 34795678 PMCID: PMC8593225 DOI: 10.3389/fimmu.2021.781310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Neuropathic pain is a serious clinical issue, and its treatment remains a challenge in contemporary medicine. Thus, dynamic development in the area of animal and clinical studies has been observed. The mechanisms of neuropathic pain are still not fully understood; therefore, studies investigating these mechanisms are extremely important. However, much evidence indicates that changes in the activation and infiltration of immune cells cause the release of pronociceptive cytokines and contribute to neuropathic pain development and maintenance. Moreover, these changes are associated with low efficacy of opioids used to treat neuropathy. To date, the role of CC chemokine receptor type 3 (CCR3) in nociception has not been studied. Similarly, little is known about its endogenous ligands (C-C motif ligand; CCL), namely, CCL5, CCL7, CCL11, CCL24, CCL26, and CCL28. Our research showed that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with upregulation of CCL7 and CCL11 in the spinal cord and dorsal root ganglia (DRG). Moreover, our results provide the first evidence that single and repeated intrathecal administration of the CCR3 antagonist SB328437 diminishes mechanical and thermal hypersensitivity. Additionally, repeated administration enhances the analgesic properties of morphine and buprenorphine following nerve injury. Simultaneously, the injection of SB328437 reduces the protein levels of some pronociceptive cytokines, such as IL-6, CCL7, and CCL11, in parallel with a reduction in the activation and influx of GFAP-, CD4- and MPO-positive cells in the spinal cord and/or DRG. Moreover, we have shown for the first time that an inhibitor of myeloperoxidase-4-aminobenzoic hydrazide may relieve pain and simultaneously enhance morphine and buprenorphine efficacy. The obtained results indicate the important role of CCR3 and its modulation in neuropathic pain treatment and suggest that it represents an interesting target for future investigations.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
28
|
Kurogoushi R, Hasegawa T, Akazawa Y, Iwata K, Sugimoto A, Yamaguchi-Ueda K, Miyazaki A, Narwidina A, Kawarabayashi K, Kitamura T, Nakagawa H, Iwasaki T, Iwamoto T. Fibroblast growth factor 2 suppresses the expression of C-C motif chemokine 11 through the c-Jun N-terminal kinase pathway in human dental pulp-derived mesenchymal stem cells. Exp Ther Med 2021; 22:1356. [PMID: 34659502 PMCID: PMC8515551 DOI: 10.3892/etm.2021.10791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
The regulation of the mesenchymal stem cell (MSC) programming mechanism promises great success in regenerative medicine. Tissue regeneration has been associated not only with the differentiation of MSCs, but also with the microenvironment of the stem cell niche that involves various cytokines and immune cells in the tissue regeneration site. In the present study, fibroblast growth factor 2 (FGF2), the principal growth factor for tooth development, dental pulp homeostasis and dentin repair, was reported to affect the expression of cytokines in human dental pulp-derived MSCs. FGF2 significantly inhibited the expression of chemokine C-C motif ligand 11 (CCL11) in a time- and dose-dependent manner in the SDP11 human dental pulp-derived MSC line. This inhibition was diminished following treatment with the AZD4547 FGF receptor (FGFR) inhibitor, indicating that FGF2 negatively regulated the expression of CCL11 in SDP11 cells. Furthermore, FGF2 activated the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in SDP11 cells. The mechanism of the FGFR-downstream signaling pathway was then studied using the SB203580, U0126 and SP600125 inhibitors for p38 MAPK, ERK1/2, and JNK, respectively. Interestingly, only treatment with SP600125 blocked the FGF2-mediated suppression of CCL11. The present results suggested that FGF2 regulated the expression of cytokines and suppressed the expression of CCL11 via the JNK signaling pathway in human dental pulp-derived MSCs. The present findings could provide important insights into the association of FGF2 and CCL11 in dental tissue regeneration therapy.
Collapse
Affiliation(s)
- Rika Kurogoushi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan.,Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Yuki Akazawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Kimiko Yamaguchi-Ueda
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Aya Miyazaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Anrizandy Narwidina
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Takamasa Kitamura
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Hiroshi Nakagawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tomonori Iwasaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| |
Collapse
|
29
|
Karim K, Giribabu N, Salleh N. Marantodes pumilum Var Alata (Kacip Fatimah) ameliorates derangement in RANK/RANKL/OPG pathway and reduces inflammation and oxidative stress in the bone of estrogen-deficient female rats with type-2 diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153677. [PMID: 34333329 DOI: 10.1016/j.phymed.2021.153677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND M. pumilum has been claimed to protect the bone against the adverse effect of estrogen deficiency. Additionally, it also exhibits anti-diabetic activity. In view of these, this study aims to identify the mechanisms underlying the bone protective effect of M. pumilum in the presence of both estrogen deficiency and diabetes mellitus (DM). METHODS Ovariectomized, diabetic female rats were given M. pumilum leave aqueous extract (MPLA) (50 and 100 mg/kg/day), estrogen, glibenclamide and estrogen plus glibenclamide for 28 consecutive days. At the end of the treatment, fasting blood glucose (FBG), serum insulin, Ca2+, PO43- and bone alkaline phosphatase (BALP) levels were measured. Rats were sacrificed and femur bones were harvested for determination of expression level and distribution of RANK, RANKL, OPG and oxidative stress and inflammatory proteins by molecular biological techniques. RESULTS 100 mg/kg/day MPLA treatment decreased the FBG and BALP levels but increased the serum insulin, Ca2+ and PO43- levels in estrogen deficient, diabetic rats. Expression and distribution of RANKL, NF-κB p65, IKKβ, IL-6, IL-1β and Keap-1 decreased however expression and distribution of RANK, OPG, BMP-2, Type-1 collagen, Runx2, TRAF6, Nrf2, NQO-1, HO-1, SOD and CAT increased in the bone of estrogen deficient, diabetic rats which received 100 mg/kg/day MPLA with greater effects than estrogen-only, glibenclamide-only and estrogen plus glibenclamide treatments. CONCLUSION MPLA helps to overcome the adverse effect of estrogen deficiency and DM on the bone and thus this herb could potentially be used for the treatment and prevention of osteoporosis in postmenopausal women with diabetes.
Collapse
Affiliation(s)
- Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Low Dose Ionising Radiation-Induced Hormesis: Therapeutic Implications to Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The concept of radiation-induced hormesis, whereby a low dose is beneficial and a high dose is detrimental, has been gaining attention in the fields of molecular biology, environmental toxicology and radiation biology. There is a growing body of literature that recognises the importance of hormetic dose response not only in the radiation field, but also with molecular agents. However, there is continuing debate on the magnitude and mechanism of radiation hormetic dose response, which could make further contributions, as a research tool, to science and perhaps eventually to public health due to potential therapeutic benefits for society. The biological phenomena of low dose ionising radiation (LDIR) includes bystander effects, adaptive response, hypersensitivity, radioresistance and genomic instability. In this review, the beneficial and the detrimental effects of LDIR-induced hormesis are explored, together with an overview of its underlying cellular and molecular mechanisms that may potentially provide an insight to the therapeutic implications to human health in the future.
Collapse
|
31
|
Iwamoto R, Takahashi T, Yoshimi K, Imai Y, Koide T, Hara M, Ninomiya T, Nakamura H, Sayama K, Yukita A. Chemokine ligand 28 (CCL28) negatively regulates trabecular bone mass by suppressing osteoblast and osteoclast activities. J Bone Miner Metab 2021; 39:558-571. [PMID: 33721112 DOI: 10.1007/s00774-021-01210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/26/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bone metabolism imbalances cause bone metabolism diseases, like osteoporosis, through aging. Although some chemokines are known to be involved in bone mass regulation, many have not been investigated. Thus, the present study aimed to investigate the role of chemokine ligand 28 (CCL28) on bone metabolism. MATERIALS AND METHODS To investigate the role of CCL28 on bone metabolism, 10-week-old male wild-type and Ccl28 knockout (Ccl28 KO) mice were analyzed. Microcomputed tomography analysis and bone tissue morphometry were used to investigate the effect of Ccl28 deficiency on the bone. CCL28 localization in bone tissue was assumed by immunohistochemistry. Osteoblast and osteoclast markers were evaluated by enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction. Finally, in vitro experiments using MC3T3-E1 and bone marrow macrophages revealed the direct effect of CCL28 on osteoblast and osteoclast. RESULTS This study showed that Ccl28 deficiency significantly increased bone mass and the number of mature osteoblasts. Immunoreactivity for CCL28 was observed in osteoblasts and osteoclasts on bone tissue. Additionally, Ccl28 deficiency promoted osteoblast and osteoclast maturation. Moreover, CCL28 treatment decreased osteoblast and osteoclast activities but did not affect differentiation. CONCLUSION In summary, this study indicated that CCL28 is one of the negative regulators of bone mass by suppressing osteoblast and osteoclast activities. These results provide important insights into bone immunology and the selection of new osteoporosis treatments.
Collapse
Affiliation(s)
- Rina Iwamoto
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takumi Takahashi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kazuto Yoshimi
- Laboratory Animal Research Center, Division of Animal Genetics, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yuji Imai
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Miroku Hara
- Department of Oral Diagnostics and Comprehensive Dentistry, Matsumoto Dental University Hospital, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Tadashi Ninomiya
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroaki Nakamura
- Department of Oral Histology, Matsumoto Dental University, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Kazutoshi Sayama
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Akira Yukita
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Education (Sciences), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
32
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:cancers13122955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
|
33
|
Yadav P, Bhatt B, Balaji KN. Selective Activation of MST1/2 Kinases by Retinoid Agonist Adapalene Abrogates AURKA-Regulated Septic Arthritis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2888-2899. [PMID: 34031150 DOI: 10.4049/jimmunol.2001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
Septic arthritis is a chronic inflammatory disorder caused by Staphylococcus aureus invasion of host synovium, which often progresses to impairment of joint functions. Although it is known that disease progression is intricately dependent on dysregulated inflammation of the knee joint, identification of molecular events mediating such imbalance during S. aureus-induced septic arthritis still requires detailed investigation. In this article, we report that Aurora kinase A (AURKA) responsive WNT signaling activates S. aureus infection-triggered septic arthritis, which results in inflammation of the synovium. In this context, treatment with adapalene, a synthetic retinoid derivative, in a mouse model for septic arthritis shows significant reduction of proinflammatory mediators with a simultaneous decrease in bacterial burden and prevents cartilage loss. Mechanistically, adapalene treatment inhibits WNT signaling with concomitant activation of HIPPO signaling, generating alternatively activated macrophages. Collectively, we establish adapalene as a promising strategy to suppress S. aureus-induced irreversible joint damage.
Collapse
Affiliation(s)
- Preeti Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
34
|
Watkins A, Fasanello D, Stefanovski D, Schurer S, Caracappa K, D'Agostino A, Costello E, Freer H, Rollins A, Read C, Su J, Colville M, Paszek M, Wagner B, Reesink H. Investigation of synovial fluid lubricants and inflammatory cytokines in the horse: a comparison of recombinant equine interleukin 1 beta-induced synovitis and joint lavage models. BMC Vet Res 2021; 17:189. [PMID: 33980227 PMCID: PMC8117281 DOI: 10.1186/s12917-021-02873-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lameness is a debilitating condition in equine athletes that leads to more performance limitation and loss of use than any other medical condition. There are a limited number of non-terminal experimental models that can be used to study early inflammatory and synovial fluid biophysical changes that occur in the equine joint. Here, we compare the well-established carpal IL-1β-induced synovitis model to a tarsal intra-articular lavage model, focusing on serial changes in synovial fluid inflammatory cytokines/chemokines and the synovial fluid lubricating molecules lubricin/proteoglycan 4 and hyaluronic acid. The objectives of this study were to evaluate clinical signs; synovial membrane and synovial fluid inflammation; and synovial fluid lubricants and biophysical properties in response to carpal IL-1β synovitis and tarsal intra-articular lavage. RESULTS Hyaluronic acid (HA) concentrations, especially high molecular weight HA, and synovial fluid viscosity decreased after both synovitis and lavage interventions. Synovial fluid lubricin concentrations increased 17-20-fold for both synovitis and lavage models, with similar changes in both affected and contralateral joints, suggesting that repeated arthrocentesis alone resulted in elevated synovial fluid lubricin concentrations. Synovitis resulted in a more severe inflammatory response based on clinical signs (temperature, heart rate, respiratory rate, lameness and joint effusion) and clinicopathological and biochemical parameters (white blood cell count, total protein, prostaglandin E2, sulfated glycosaminoglycans, tumor necrosis factor-α and CC chemokine ligands - 2, - 3, - 5 and - 11) as compared to lavage. CONCLUSIONS Synovial fluid lubricin increased in response to IL-1β synovitis and joint lavage but also as a result of repeated arthrocentesis. Frequent repeated arthrocentesis is associated with inflammatory changes, including increased sulfated glycosaminoglycan concentrations and decreased hyaluronic acid concentrations. Synovitis results in more significant inflammatory changes than joint lavage. Our data suggests that synovial fluid lubricin, TNF-α, CCL2, CCL3, CCL5, CCL11 and sGAG may be useful biomarkers for synovitis and post-lavage joint inflammation. Caution should be exercised when performing repeated arthrocentesis clinically or in experimental studies due to the inflammatory response and loss of HA and synovial fluid viscosity.
Collapse
Affiliation(s)
- Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diana Fasanello
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darko Stefanovski
- Department of Biostatistics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Schurer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Katherine Caracappa
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Albert D'Agostino
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily Costello
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Claire Read
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
35
|
Wakabayashi K, Isozaki T, Tsubokura Y, Fukuse S, Kasama T. Eotaxin-1/CCL11 is involved in cell migration in rheumatoid arthritis. Sci Rep 2021; 11:7937. [PMID: 33846499 PMCID: PMC8041786 DOI: 10.1038/s41598-021-87199-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Eotaxin-1 (CCL11) induces the migration of different leukocyte types by interacting with CCR3. In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are pathogenic effectors and a major CCR3-expressing cell. The aim of this study was to investigate the expression and function of CCL11 in RA FLS. The expression of CCL11 and CCR3 was evaluated by ELISA, immunofluorescence and quantitative PCR analysis. The CCL11 levels in serum and synovial fluids (SFs) from RA patients were significantly higher than those in serum from healthy controls and SFs from osteoarthritis patients. CCL11 and CCR3 were expressed in the RA synovial tissue lining layers. The secretion of CCL11 in RA FLS-conditioned medium and the mRNA expression of CCL11 and CCR3 were induced by TNF-α. Furthermore, CCL11 induced the mRNA expression of CCL11 and CCR3. Application of a CCR3 antagonist reduced TNF-α-induced CCL11 secretion from RA FLS. CCL11 induced the migration of RA FLS and monocytes. RA FLS migration was decreased by treatment with CCL11 siRNA. The migration of monocytes to medium conditioned with CCL11 siRNA-transfected and TNF-α-stimulated RA FLS was reduced. These data indicate that the self-amplification of CCL11 via CCR3 may play an important role in cell migration in RA.
Collapse
Affiliation(s)
- Kuninobu Wakabayashi
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan.
| | - Takeo Isozaki
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Yumi Tsubokura
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Sayaka Fukuse
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Tsuyoshi Kasama
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
36
|
Kim DA, Park SJ, Lee JY, Kim JH, Lee S, Lee E, Jang IY, Jung HW, Park JH, Kim BJ. Effect of CCL11 on In Vitro Myogenesis and Its Clinical Relevance for Sarcopenia in Older Adults. Endocrinol Metab (Seoul) 2021; 36:455-465. [PMID: 33849248 PMCID: PMC8090464 DOI: 10.3803/enm.2020.942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The C-C motif chemokine ligand 11 (CCL11) has been receiving attention as a potential pro-aging factor. Accordingly, it may be involved in muscle metabolism and sarcopenia, a key component of aging phenotypes. To clarify this potential, we investigated the effects of CCL11 on in vitro muscle biology and its clinical relevance for sarcopenia parameters in older adults. METHODS Myogenesis was induced in mouse C2C12 myoblasts with 2% horse serum. Human blood samples were collected from 79 participants who underwent a functional assessment. Thereafter, CCL11 level was measured using a quantikine ELISA kit. Sarcopenia was defined using the Asian-specific guideline. RESULTS Recombinant CCL11 treatment significantly stimulated myogenesis in a dose-dependent manner, and consistently increased the expression of myogenic differentiation markers. Among the C-C chemokine receptors (CCRs), CCR5, not CCR2 and CCR3, was predominantly expressed in muscle cells. Further, the CCR5 inhibitor blocked recombinant CCL11-stimulated myogenesis. In a clinical study, serum CCL11 level was not significantly different according to the status of sarcopenia, low muscle mass, weak muscle strength, and poor physical performance, and was not associated with skeletal muscle index, grip strength, short physical performance battery score, gait speed, and time to complete 5 chair stands, after adjusting for sex, age, and body mass index. CONCLUSION Contrary to expectations, CCL11 exerted beneficial effects on muscle metabolism at least in vitro system. However, its impact on human muscle health was not evident, suggesting that circulating CCL11 may not be a useful biomarker for sarcopenia risk assessment in older adults.
Collapse
Affiliation(s)
- Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jeoung Hee Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Seungjoo Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee-Won Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
37
|
McKenna MK, Englisch A, Brenner B, Smith T, Hoyos V, Suzuki M, Brenner MK. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol Ther 2021; 29:1808-1820. [PMID: 33571680 DOI: 10.1016/j.ymthe.2021.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) is a formidable barrier to the success of adoptive cell therapies for solid tumors. Oncolytic immunotherapy with engineered adenoviruses (OAd) may disrupt the TME by infecting tumor cells, as well as surrounding stroma, to improve the functionality of tumor-directed chimeric antigen receptor (CAR)-T cells, yet efficient delivery of OAds to solid tumors has been challenging. Here we describe how mesenchymal stromal cells (MSCs) can be used to systemically deliver a binary vector containing an OAd together with a helper-dependent Ad (HDAd; combinatorial Ad vector [CAd]) that expresses interleukin-12 (IL-12) and checkpoint PD-L1 (programmed death-ligand 1) blocker. CAd-infected MSCs deliver and produce functional virus to infect and lyse lung tumor cells while stimulating CAR-T cell anti-tumor activity by release of IL-12 and PD-L1 blocker. The combination of this approach with administration of HER.2-specific CAR-T cells eliminates 3D tumor spheroids in vitro and suppresses tumor growth in two orthotopic lung cancer models in vivo. Treatment with CAd MSCs increases the overall numbers of human T cells in vivo compared to CAR-T cell only treatment and enhances their polyfunctional cytokine secretion. These studies combine the predictable targeting of CAR-T cells with the advantages of cancer cell lysis and TME disruption by systemic MSC delivery of oncolytic virotherapy: incorporation of immunostimulation by cytokine and checkpoint inhibitor production through the HDAd further enhances anti-tumor activity.
Collapse
Affiliation(s)
- Mary K McKenna
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Alexander Englisch
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Benjamin Brenner
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Tyler Smith
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Valentina Hoyos
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masataka Suzuki
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Lee SH, Ahn JR, Go HN, Lee SY, Park MJ, Song KB, Yoon J, Jung S, Cho HJ, Lee E, Yang SI, Hong SJ. Exposure to Polyhexamethylene Guanidine Exacerbates Bronchial Hyperresponsiveness and Lung Inflammation in a Mouse Model of Ovalbumin-Induced Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:655-664. [PMID: 34212551 PMCID: PMC8255342 DOI: 10.4168/aair.2021.13.4.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 11/20/2022]
Abstract
Humidifier disinfectants (HDs) exposure has now been associated with acute lung injury and pulmonary fibrosis; polyhexamethylene guanidine (PHMG) has been confirmed to cause severe lung inflammation and fibrosis in mice. Recent evidence also indicates that HDs exposure increases the asthma risk in children, but the underlying mechanisms remain unclear. We aimed to investigate the effects of PHMG exposure on asthma in mice and the potential underlying mechanisms. BALB/c mice were intranasally administered PHMG (0.1 mg/kg/day; 5 days per week) during 2 episodes of ovalbumin (OVA) sensitization and were then challenged with 1% OVA by inhalation. Bronchial hyperresponsiveness (BHR), inflammatory cell influx into bronchoalveolar lavage (BAL) fluid, serum total and OVA-specific immunoglobulin (Ig) E levels, and histopathological changes in the lung were analyzed. The levels of asthma-related cytokines and chemokines were assayed in the lung tissues to evaluate possible mechanisms. Exposure to PHMG following OVA sensitization and challenge significantly enhanced BHR, inflammatory cell counts in BAL fluid, airway inflammation, and total serum IgE levels in the asthma mouse model. In addition, the levels of chemokine ligand (CCL) 11 and serpine F1/pigment epithelium-derived factor (SERPINF1) were significantly elevated in the lungs of these mice compared to those in the control and OVA-treated only groups. Our findings suggest that PHMG can enhance the development of allergic responses and lung inflammation via CCL11- and SERPINF1-induced signaling in a mouse model of asthma.
Collapse
Affiliation(s)
- Seung Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Rin Ahn
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Na Go
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jee Park
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Baek Song
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong Hospital, Incheon, Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun Ju Cho
- Department of Pediatrics, International St. Mary's hospital, Catholic Kwandong University, Incheon, Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University College of Medicine, Gwangju, Korea
| | - Song I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Synovial Tissue Proteins and Patient-Specific Variables as Predictive Factors for Temporomandibular Joint Surgery. Diagnostics (Basel) 2020; 11:diagnostics11010046. [PMID: 33396653 PMCID: PMC7824237 DOI: 10.3390/diagnostics11010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Our knowledge of synovial tissues in patients that are scheduled for surgery as a result of temporomandibular joint (TMJ) disorders is limited. Characterising the protein profile, as well as mapping clinical preoperative variables, might increase our understanding of pathogenesis and forecast surgical outcome. A cohort of 100 patients with either disc displacement, osteoarthritis, or chronic inflammatory arthritis (CIA) was prospectively investigated for a set of preoperative clinical variables. During surgery, a synovial tissue biopsy was sampled and analysed via multi-analytic profiling. The surgical outcome was classified according to a predefined set of outcome criteria six months postoperatively. Higher concentrations of interleukin 8 (p = 0.049), matrix metalloproteinase 7 (p = 0.038), lumican (p = 0.037), and tissue inhibitor of metalloproteinase 2 (p = 0.015) were significantly related to an inferior surgical outcome. Several other proteins, which were not described earlier in the TMJ synovia, were detected but not related to surgical outcome. Bilateral masticatory muscle palpation pain had strong association to a poor outcome that was related to the diagnoses disc displacement and osteoarthritis. CIA and the patient-reported variable TMJ disability might be related to an unfavourable outcome according to the multivariate model. These findings of surgical predictors show potential in aiding clinical decision-making and they might enhance the understanding of aetiopathogenesis in TMJ disorders.
Collapse
|
40
|
Rosendahl S, Sulniute R, Eklund M, Koskinen Holm C, Johansson MJO, Kindstedt E, Lindquist S, Lundberg P. CCR3 deficiency is associated with increased osteoclast activity and reduced cortical bone volume in adult male mice. J Biol Chem 2020; 296:100177. [PMID: 33303631 PMCID: PMC7948475 DOI: 10.1074/jbc.ra120.015571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence emphasizes the importance of chemokines and chemokine receptors as regulators of bone remodeling. The C–C chemokine receptor 3 (CCR3) is dramatically upregulated during osteoclastogenesis, but the role of CCR3 in osteoclast formation and bone remodeling in adult mice is unknown. Herein, we used bone marrow macrophages derived from adult male CCR3-proficient and CCR3-deficient mice to study the role of CCR3 in osteoclast formation and activity. CCR3 deficiency was associated with formation of giant hypernucleated osteoclasts, enhanced bone resorption when cultured on bone slices, and altered mRNA expression of related chemokine receptors and ligands. In addition, primary mouse calvarial osteoblasts isolated from CCR3-deficient mice showed increased mRNA expression of the osteoclast activator–related gene, receptor activator of nuclear factor kappa-B ligand, and osteoblast differentiation–associated genes. Microcomputed tomography analyses of femurs from CCR3-deficient mice revealed a bone phenotype that entailed less cortical thickness and volume. Consistent with our in vitro studies, the total number of osteoclasts did not differ between the genotypes in vivo. Moreover, an increased endocortical osteoid mineralization rate and higher trabecular and cortical bone formation rate was displayed in CCR3-deficient mice. Collectively, our data show that CCR3 deficiency influences osteoblast and osteoclast differentiation and that it is associated with thinner cortical bone in adult male mice.
Collapse
Affiliation(s)
- Sara Rosendahl
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Rima Sulniute
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Michaela Eklund
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Cecilia Koskinen Holm
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marcus J O Johansson
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Elin Kindstedt
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Susanne Lindquist
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Pernilla Lundberg
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden.
| |
Collapse
|
41
|
Sarker H, Hardy E, Haimour A, Karim MA, Scholl-Bürgi S, Martignetti JA, Botto LD, Fernandez-Patron C. Comparative Serum Analyses Identify Cytokines and Hormones Commonly Dysregulated as Well as Implicated in Promoting Osteolysis in MMP-2-Deficient Mice and Children. Front Physiol 2020; 11:568718. [PMID: 33101055 PMCID: PMC7546215 DOI: 10.3389/fphys.2020.568718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Deficiency of matrix metalloproteinase 2 (MMP-2) causes a complex syndrome characterized by multicentric osteolysis, nodulosis, and arthropathy (MONA) as well as cardiac valve defects, dwarfism and hirsutism. MMP-2 deficient (Mmp2 -/-) mice are a model for this rare multisystem pediatric syndrome but their phenotype remains incompletely characterized. Here, we extend the phenotypic characterization of MMP-2 deficiency by comparing the levels of cytokines and chemokines, soluble cytokine receptors, angiogenesis factors, bone development factors, apolipoproteins and hormones in mice and humans. Initial screening was performed on an 8-year-old male presenting a previously unreported deletion mutation c1294delC (Arg432fs) in the MMP2 gene and diagnosed with MONA. Of eighty-one serum biomolecules analyzed, eleven were upregulated (>4-fold), two were downregulated (>4-fold) and sixty-eight remained unchanged, compared to unaffected controls. Specifically, Eotaxin, GM-CSF, M-CSF, GRO-α, MDC, IL-1β, IL-7, IL-12p40, MIP-1α, MIP-1β, and MIG were upregulated and epidermal growth factor (EGF) and ACTH were downregulated in this patient. Subsequent analysis of five additional MMP-2 deficient patients confirmed the upregulation in Eotaxin, IL-7, IL-12p40, and MIP-1α, and the downregulation in EGF. To establish whether these alterations are bona fide phenotypic traits of MMP-2 deficiency, we further studied Mmp2 -/- mice. Among 32 cytokines measured in plasma of Mmp2 -/- mice, the cytokines Eotaxin, IL-1β, MIP-1α, and MIG were commonly upregulated in mice as well as patients with MMP-2 deficiency. Moreover, bioactive cortisol (a factor that exacerbates osteoporosis) was also elevated in MMP-2 deficient mice and patients. Among the factors we have identified to be dysregulated in MMP-2 deficiency many are osteoclastogenic and could potentially contribute to bone disorder in MONA. These new molecular phenotypic traits merit being targeted in future research aimed at understanding the pathological mechanisms elicited by MMP-2 deficiency in children.
Collapse
Affiliation(s)
- Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Ayman Haimour
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mahmoud A. Karim
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - John A. Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States
| | - Lorenzo D. Botto
- Department of Pediatrics, Division of Medical Genetics and Pediatrics, The University of Utah, Salt Lake City, UT, United States
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090230. [PMID: 32887304 PMCID: PMC7558796 DOI: 10.3390/ph13090230] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: CCL-11 (eotaxin) is a chemokine with an important role in allergic conditions. Recent evidence indicates that CCL-11 plays a role in brain disorders as well. This paper reviews the associations between CCL-11 and aging, neurodegenerative, neuroinflammatory and neuropsychiatric disorders. Methods: Electronic databases were searched for original articles examining CCL-11 in neuropsychiatric disorders. Results: CCL-11 is rapidly transported from the blood to the brain through the blood-brain barrier. Age-related increases in CCL-11 are associated with cognitive impairments in executive functions and episodic and semantic memory, and therefore, this chemokine has been described as an “Endogenous Cognition Deteriorating Chemokine” (ECDC) or “Accelerated Brain-Aging Chemokine” (ABAC). In schizophrenia, increased CCL-11 is not only associated with impairments in cognitive functions, but also with key symptoms including formal thought disorders. Some patients with mood disorders and premenstrual syndrome show increased plasma CCL-11 levels. In diseases of old age, CCL-11 is associated with lowered neurogenesis and neurodegenerative processes, and as a consequence, increased CCL-11 increases risk towards Alzheimer’s disease. Polymorphisms in the CCL-11 gene are associated with stroke. Increased CCL-11 also plays a role in neuroinflammatory disease including multiple sclerosis. In animal models, neutralization of CCL-11 may protect against nigrostriatal neurodegeneration. Increased production of CCL-11 may be attenuated by glucocorticoids, minocycline, resveratrol and anti-CCL11 antibodies. Conclusions: Increased CCL-11 production during inflammatory conditions may play a role in human disease including age-related cognitive decline, schizophrenia, mood disorders and neurodegenerative disorders. Increased CCL-11 production is a new drug target in the treatment and prevention of those disorders.
Collapse
|
43
|
AHMADI H, KHORRAMDELAZAD H, HASSANSHAHI G, ABBASI FARD M, AHMADI Z, NOROOZI KARIMABAD M, MOLLAHOSSEINI M. Involvement of Eotaxins (CCL11, CCL24, CCL26) in Pathogenesis of Osteopenia and Osteoporosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1769-1775. [PMID: 33643953 PMCID: PMC7898105 DOI: 10.18502/ijph.v49i9.4098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/16/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the role of eotaxin family members including C-C motif chemokine 11 (CCL11), C-C motif chemokine 24 (CCL24), and C-C motif chemokine 26 (CCL26) as the subgroups of CC-chemokine in patients affected with osteoporosis and osteopenia. METHODS Overall, 19 osteoporotic patients, 18 osteopenic individuals, and 20 healthy subjects were recruited in this study. The bone mineral density (BMD) was then measured at the lumbar spine (L1-L4) and the hip (femoral neck and total hip) using dual-energy X-ray absorptiometry for diagnosis of bone density and related disorders. Additionally, enzyme-linked immunosorbent assay (ELISA) technique was employed to measure the serum levels of CCL11, CCL24, and CCL26. RESULTS The circulating levels of CCL11, CCL24, and CCL26 had been increased in both groups of patients with osteopenia and osteoporosis compared to those in healthy subjects (P<0.05); while no significant difference was observed between serum levels of these chemokines in such patients. CONCLUSION Eotaxins can play a role in the pathogenesis of osteoporosis and osteopenia; however, further studies are needed to clarify various roles of eotaxins in the pathophysiology of osteoporosis and osteopenia.
Collapse
Affiliation(s)
- Hadis AHMADI
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein KHORRAMDELAZAD
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein HASSANSHAHI
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra ABBASI FARD
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-ibn-Abitaleb Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra AHMADI
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojgan NOROOZI KARIMABAD
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid MOLLAHOSSEINI
- Department of Orthopedics, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
44
|
McCauley J, Bitsaktsis C, Cottrell J. Macrophage subtype and cytokine expression characterization during the acute inflammatory phase of mouse bone fracture repair. J Orthop Res 2020; 38:1693-1702. [PMID: 31989683 DOI: 10.1002/jor.24603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/07/2020] [Accepted: 01/21/2020] [Indexed: 02/04/2023]
Abstract
Fracture repair is a complex process requiring heterotypic interactions between osteogenic cells and immune cells. Recent evidence indicates that macrophages are critically involved in fracture repair. Polarized macrophage populations differentially promote and regulate inflammation in other tissues, but little is known about the various macrophage subtypes and their signaling activities following a bone fracture. The authors hypothesized that classically activated (M1 subtype) and alternatively activated (M2 subtype) macrophages are active during the early repair process to initiate and regulate the inflammatory response. To test our hypothesis, bone marrow was collected from intact femurs (naïve group), contralateral and fractured femurs of mice on days 0, 1, 2, 4, and 7 postfracture. Macrophages were isolated from the bone marrow and macrophage subtypes were identified using flow cytometry with antibodies to F4/80, MHC II, CD86, CD11c, and CD40. Bone marrow cytokine levels were measured using xMAP. Flow cytometry revealed dynamic changes in M1 subtype (F4/80+/MHC II+/CD86+), M2 subtype (F4/80+/MHC II-/CD86-), and dendritic cell (DCs; MHCII+/CD11c+/CD40+) populations following fracture as compared to naïve controls. M1 subtype levels were correlated with IL-1α, IL-1ß, IL-2, IL-17, Eotaxin, and MCP-1, while DCs were correlated with IL-6, G-CSF, LIF, KC, and VEGF-A. The results indicate that M1 and M2 subtypes and DCs are recruited to the fracture site early during the repair process and consequently may work in tandem to regulate the inflammatory response required to recruit osteogenic cells needed for later stages of repair.
Collapse
Affiliation(s)
- James McCauley
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey
| | | | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey
| |
Collapse
|
45
|
Ulmner M, Sugars R, Naimi-Akbar A, Suslu S, Reseland JE, Kruger-Weiner C, Lund B. Synovial tissue cytokine profile in disc displacement of the temporomandibular joint. J Oral Rehabil 2020; 47:1202-1211. [PMID: 32640062 DOI: 10.1111/joor.13051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Symptomatic disc displacement (DD) of the temporomandibular joint (TMJ) may cause pain and limited mouth opening. The aetiopathogenesis is obscure and probably complex, which makes the diagnostic classification crude and mainly based on clinical criteria rather than disease mechanisms, and tissue characteristics. OBJECTIVES The study aim was to characterise and quantify synovial tissue in DD, where specific cytokine patterns might serve as potential biomarkers. METHODS An observational cohort study was performed harvesting synovial tissue from 63 patients: 44 with DD without reduction (DDwoR) and 19 with DD with reduction (DDwR). DDwoR was subdivided depending on type of onset (sudden, n = 17; delayed, n = 27), and DDwR served as the control group. Proteins were extracted from tissue samples and investigated in a multi-analytic profiling system. RESULTS DDwoR patients had significantly higher concentrations in 12 out of 28 analysed cytokines compared to DDwR. In the same statistical model, significantly lower concentrations of interferon gamma-induced protein (IP) 10, osteoprotegerin (OPG) and RANTES were detected in DDwoR patients. Women showed significantly higher concentrations of epidermal growth factor and interleukin (IL) 1ra compared to men. DDwoR with sudden onset had significant higher concentrations of bone morphogenetic protein 4, eotaxin and IL-8 compared to DDwoR with delayed onset. CONCLUSIONS Characterising the biomarker panel for TMJ conditions may serve as suggestible targets for disease classification and novel treatment options. The significantly lower concentrations of IP-10, OPG and RANTES could be proposed as putative markers for the separation of the studied conditions to other TMJ diseases.
Collapse
Affiliation(s)
- Mattias Ulmner
- Department of Craniofacial Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rachael Sugars
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aron Naimi-Akbar
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Health Technology Assessment-Odontology (HTA-O), Malmö University, Malmö, Sweden
| | - Safiyye Suslu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Carina Kruger-Weiner
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Oral and Maxillofacial Surgery, Folktandvården Stockholm, Eastman institutet, Stockholm, Sweden
| | - Bodil Lund
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Zayed M, Iohara K, Watanabe H, Nakashima M. CCR3 antagonist protects against induced cellular senescence and promotes rejuvenation in periodontal ligament cells for stimulating pulp regeneration in the aged dog. Sci Rep 2020; 10:8631. [PMID: 32451381 PMCID: PMC7248074 DOI: 10.1038/s41598-020-65301-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Pulp regeneration after transplantation of mobilized dental pulp stem cells (MDPSCs) declines in the aged dogs due in part to the chronic inflammation and/or cellular senescence. Eotaxin-1/C-C motif chemokine 11 (CCL11) is an inflammation marker via chemokine receptor 3 (CCR3). Moreover, CCR3 antagonist (CCR3A) can inhibit CCL11 binding to CCR3 and prevent CCL11/CCR3 signaling. The study aimed to examine the effect of CCR3A on cellular senescence and anti-inflammation/immunomodulation in human periodontal ligament cells (HPDLCs). The rejuvenating effects of CCR3A on neurite extension and migratory activity to promote pulp regeneration in aged dog teeth were also evaluated. In vivo, the amount of regenerated pulp tissues was significantly increased by transplantation of MDPSCs with CCR3A compared to control without CCR3A. In vitro, senescence of HPDLCs was induced after p-Cresol exposure, as indicated by increased cell size, decreased proliferation and increased senescence markers, p21 and IL-1β. Treatment of HPDLCs with CCR3A prevented the senescence effect of p-Cresol. Furthermore, CCR3A significantly decreased expression of CCL11, increased expression of immunomodulatory factor, IDO, and enhanced neurite extension and migratory activity. In conclusion, CCR3A protects against p-Cresol-induced cellular senescence and enhances rejuvenating effects, suggesting its potential utility to stimulate pulp regeneration in the aged teeth.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, 474-8511, Japan
- Department of Animal Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, 474-8511, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, 474-8511, Japan.
- Aeras Bio Inc., Air Water Group, Kobe, Hyogo, 650-047, Japan.
| |
Collapse
|
47
|
Zhao M, Tao F, Venkatraman A, Li Z, Smith SE, Unruh J, Chen S, Ward C, Qian P, Perry JM, Marshall H, Wang J, He XC, Li L. N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells. Cell Rep 2020; 26:652-669.e6. [PMID: 30650358 DOI: 10.1016/j.celrep.2018.12.093] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/31/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University; Key Laboratory of Stem Cells and Tissue Engineering Sun Yat-Sen University, Guangzhou 510000, China; Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Fang Tao
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Zhenrui Li
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Christina Ward
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Pengxu Qian
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA; Center of Stem Cell and Regenerative Medicine, Institute of Hematology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 310058
| | - John M Perry
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA; Children's Research Institute, Children's Mercy, Kansas City, MO 64108, USA
| | - Heather Marshall
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Jinxi Wang
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 66110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
48
|
Boscolo Sesillo F, Fox D, Sacco A. Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell Rep 2020; 26:689-701.e6. [PMID: 30650360 DOI: 10.1016/j.celrep.2018.12.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Most human cancers originate from high-turnover tissues, while low-proliferating tissues, like skeletal muscle, exhibit a lower incidence of tumor development. In Duchenne muscular dystrophy (DMD), which induces increased skeletal muscle regeneration, tumor incidence is increased. Rhabdomyosarcomas (RMSs), a rare and aggressive type of soft tissue sarcoma, can develop in this context, but the impact of DMD severity on RMS development and its cell of origin are poorly understood. Here, we show that RMS latency is affected by DMD severity and that muscle stem cells (MuSCs) can give rise to RMS in dystrophic mice. We report that even before tumor formation, MuSCs exhibit increased self-renewal and an expression signature associated with RMSs. These cells can form tumorspheres in vitro and give rise to RMSs in vivo. Finally, we show that the inflammatory genes Ccl11 and Rgs5 are involved in RMS growth. Together, our results show that DMD severity drives MuSC-mediated RMS development.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Fox
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Jafri MA, Kalamegam G, Abbas M, Al-Kaff M, Ahmed F, Bakhashab S, Rasool M, Naseer MI, Sinnadurai V, Pushparaj PN. Deciphering the Association of Cytokines, Chemokines, and Growth Factors in Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Using an ex vivo Osteochondral Culture System. Front Cell Dev Biol 2020; 7:380. [PMID: 32010693 PMCID: PMC6979484 DOI: 10.3389/fcell.2019.00380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder associated with degradation and decreased production of the extracellular matrix, eventually leading to cartilage destruction. Limited chondrocyte turnover, structural damage, and prevailing inflammatory milieu prevent efficient cartilage repair and restoration of joint function. In the present study, we evaluated the role of secreted cytokines, chemokines, and growth factors present in the culture supernatant obtained from an ex vivo osteochondral model of cartilage differentiation using cartilage pellets (CP), bone marrow stem cells (BM-MSCs), and/or BM-MSCs + CP. Multiplex cytokine analysis showed differential secretion of growth factors (G-CSF, GM-CSF, HGF, EGF, VEGF); chemokines (MCP-1, MIP1α, MIP1β, RANTES, Eotaxin, IP-10), pro-inflammatory cytokines (IL-1β, IL-2, IL-5, IL-6, IL-8, TNFα, IL-12, IL-15, IL-17) and anti-inflammatory cytokines (IL-4, IL-10, and IL-13) in the experimental groups compared to the control. In silico analyses of the role of stem cells and CP in relation to the expression of various molecules, canonical pathways and hierarchical cluster patterns were deduced using the Ingenuity Pathway Analysis (IPA) software (Qiagen, United States). The interactions of the cytokines, chemokines, and growth factors that are involved in the cartilage differentiation showed that stem cells, when used together with CP, bring about a favorable cell signaling that supports cartilage differentiation and additionally helps to attenuate inflammatory cytokines and further downstream disease-associated pro-inflammatory pathways. Hence, the autologous or allogeneic stem cells and local cartilage tissues may be used for efficient cartilage differentiation and the management of OA.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gauthaman Kalamegam
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Medicine, Asian Institute of Medicine, Science and Technology University, Bedong, Malaysia
| | - Mohammed Abbas
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Orthopaedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Al-Kaff
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Orthopaedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vasan Sinnadurai
- Faculty of Medicine, Asian Institute of Medicine, Science and Technology University, Bedong, Malaysia
| | - Peter Natesan Pushparaj
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Hachim MY, Hachim IY, Naeem KB, Hannawi H, Al Salmi I, Hannawi S. C-C chemokine receptor type 5 links COVID-19, rheumatoid arthritis, and Hydroxychloroquine: in silico analysis. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:14. [PMID: 32923679 PMCID: PMC7479747 DOI: 10.1186/s41231-020-00066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Patients with rheumatoid arthritis (RA) represent one of the fragile patient groups that might be susceptible to the critical form of the coronavirus disease - 19 (COVID-19). On the other side, RA patients have been found not to have an increased risk of COVID-19 infection. Moreover, some of the Disease-Modifying Anti-Rheumatic Drugs (DMARDS) commonly used to treat rheumatic diseases like Hydroxychloroquine (HCQ) were proposed as a potential therapy for COVID-19 with a lack of full understanding of their molecular mechanisms. This highlights the need for the discovery of common pathways that may link both diseases at the molecular side. In this research, we used the in silico approach to investigate the transcriptomic profile of RA synovium to identify shared molecular pathways with that of severe acute respiratory syndrome-corona virus-2 (SARS-COV-2) infected lung tissue. Our results showed upregulation of chemotactic factors, including CCL4, CCL8, and CCL11, that all shared CCR5 as their receptor, as a common derangement observed in both diseases; RA and COVID-19. Moreover, our results also highlighted a possible mechanism through which HCQ, which can be used as a monotherapy in mild RA or as one of the triple-DMARDs therapy (tDMARDs; methotrexate, sulphasalazine, and HCQ), might interfere with the COVID-19 infection. This might be achieved through the ability of HCQ to upregulate specific immune cell populations like activated natural killer (NK) cells, which were found to be significantly reduced in COVID-19 infection. In addition to its ability to block CCR5 rich immune cell recruitment that also was upregulated in the SARS-COV-2 infected lungs. This might explain some of the reports that showed beneficial effects.
Collapse
Affiliation(s)
- Mahmood Y. Hachim
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ibrahim Y. Hachim
- grid.412789.10000 0004 4686 5317Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Kashif Bin Naeem
- grid.415786.90000 0004 1773 3198Ministry of Health and Prevention (MOHAP), Dubai, UAE
| | - Haifa Hannawi
- grid.415786.90000 0004 1773 3198Ministry of Health and Prevention (MOHAP), Dubai, UAE
| | - Issa Al Salmi
- grid.416132.30000 0004 1772 5665The Royal Hospital, Muscat, Oman
| | - Suad Hannawi
- grid.415786.90000 0004 1773 3198Ministry of Health and Prevention (MOHAP), Dubai, UAE
| |
Collapse
|