1
|
Sato S, Ogawa Y, Shimizu E, Asai K, Okazaki T, Rusch R, Hirayama M, Shimmura S, Negishi K, Tsubota K. Cellular senescence promotes meibomian gland dysfunction in a chronic graft-versus-host disease mouse model. Ocul Surf 2024; 32:198-210. [PMID: 38499288 DOI: 10.1016/j.jtos.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/27/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Aging is a well-established risk factor for meibomian gland dysfunction (MGD). We previously reported an accelerated cellular senescence phenomenon in the lacrimal glands of a murine model of chronic graft-versus-host disease (cGVHD). Herein, we aimed to elucidate the relationship between cellular senescence and MGD in cGVHD mice, utilizing the senolytic agent ABT-263. METHODS A cGVHD mouse model was established through allogeneic bone marrow transplantation (BMT) from B10.D2 to BALB/c mice. Subsequently, cGVHD mice were treated with either ABT-263 or vehicle. The eyelids of recipients were analyzed at 4-week intervals post-BMT in both groups. RESULTS Meibomian gland (MG) area was significantly smaller in cGVHD mice than in syngeneic control mice. ABT-263-treated mice retained a significantly larger MG area than their vehicle-treated counterparts. Pathological and immunohistochemical examinations revealed significant reductions in eyelid tissue inflammation and pathological fibrosis in the ABT-263 group compared to that in the vehicle-treated group. Additionally, expression of DNA damage markers, senescent cell markers, and senescence-associated secretory phenotype (SASP) factors was elevated in the eyelids of cGVHD mice compared with that in syngeneic mice. The expression of these cellular senescence-associated molecules was considerably suppressed in ABT-263-treated eyelids compared to that in vehicle-treated ones. CONCLUSIONS Cellular senescence, along with expression of SASP factors, exhibited increased activity in the eyelids, particularly in the MGs of cGVHD mice. ABT-263 mitigated the severity of MGD. These findings highlight the potential of targeting cellular senescence as an effective approach for MGD treatment in cGVHD.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Okazaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Robert Rusch
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
2
|
Lu J, Sun W, Liu B, Zhang J, Wang R, Goltzman D, Miao D. Chk2 Modulates Bmi1-Deficiency-Induced Renal Aging and Fibrosis via Oxidative Stress, DNA Damage, and p53/TGFβ1-Induced Epithelial-Mesenchymal Transition. Int J Biol Sci 2024; 20:2008-2026. [PMID: 38617548 PMCID: PMC11008269 DOI: 10.7150/ijbs.93598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/03/2024] [Indexed: 04/16/2024] Open
Abstract
Renal aging may lead to fibrosis and dysfunction, yet underlying mechanisms remain unclear. We explored whether deficiency of the Polycomb protein Bmi1 causes renal aging via DNA damage response (DDR) activation, inducing renal tubular epithelial cell (RTEC) senescence and epithelial-mesenchymal transition (EMT). Bmi1 knockout mice exhibited oxidative stress, DDR activation, RTEC senescence, senescence-associated secretory phenotype (SASP), and age-related fibrosis in kidneys. Bmi1 deficiency impaired renal structure and function, increasing serum creatinine/urea, reducing creatinine clearance, and decreasing cortical thickness and glomerular number. However, knockout of the serine-threonine kinase Chk2 alleviated these aging phenotypes. Transcriptomics identified transforming growth factor beta 1 (TGFβ1) upregulation in Bmi1-deficient RTECs, but TGFβ1 was downregulated upon Chk2 knockout. The tumor suppressor protein p53 transcriptionally activated TGFβ1, promoting EMT in RTECs. Bmi1 knockout or oxidative stress (induced with H2O2) increased TGFβ1 expression, and EMT in RTECs and was partly reversed by p53 inhibition. Together, Bmi1 deficiency causes oxidative stress and DDR-mediated RTEC senescence/SASP, thus activating p53 and TGFβ1 to induce EMT and age-related fibrosis. However, blocking DDR (via Chk2 knockout) or p53 ameliorates these changes. Our study reveals mechanisms whereby Bmi1 preserves renal structure and function during aging by suppressing DDR and p53/TGFβ1-mediated EMT. These pathways represent potential targets for detecting and attenuating age-related renal decline.
Collapse
Affiliation(s)
- Jinhong Lu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Weiwei Sun
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Boyang Liu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jinge Zhang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhang X, Huang G, Zhang Z, Wang F, Liu Q, Du Y, Wang X, Gu X. P16 INK4a deletion alleviates contrast-induced acute kidney injury by ameliorating renal cell apoptosis and suppressing inflammation and oxidative stress. Exp Gerontol 2024; 187:112372. [PMID: 38301878 DOI: 10.1016/j.exger.2024.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third leading cause of hospital-acquired acute kidney injury. Cellular senescence is associated with CI-AKI. P16INK4a (p16) is a cell cycle regulator and link to aging and senescence. We found that the expression of p16 was elevated in CI-AKI renal tissues, however its role in CI-AKI remains insufficiently understood. In this study, we used p16 knockout (p16KO) mice and wild-type (WT) littermates to establish CI-AKI mice model to elucidate the impact of p16 on CI-AKI. The results showed that serum creatinine (SCr), blood urea nitrogen (BUN), and serum neutrophil gelatinase-associated lipocalin (NGAL) levels were markedly reduced in p16KO CI-AKI mice. Both immunohistochemistry and western blot analyses confirmed that p16 knockout alleviated renal cell apoptosis. Furthermore, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) were attenuated by downregulating NLRP3 and NF-κB inflammasomes. Additionally, ROS levels were diminished via activating Nrf2/Keap-1 pathway in p16KO CI-AKI mice. Collectively, our findings suggest that p16 deletion exerts protective effects against apoptosis, inflammation, and oxidative stress in CI-AKI mice model, p16 deletion might be a potential therapeutic strategy for ameliorating CI-AKI.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangyi Huang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhixuan Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Fen Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Liu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yingqiang Du
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Xiaoyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xin Gu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Guo C, Cui Y, Jiao M, Yao J, Zhao J, Tian Y, Dong J, Liao L. Crosstalk between proximal tubular epithelial cells and other interstitial cells in tubulointerstitial fibrosis after renal injury. Front Endocrinol (Lausanne) 2024; 14:1256375. [PMID: 38260142 PMCID: PMC10801024 DOI: 10.3389/fendo.2023.1256375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
The energy needs of tubular epithelial components, especially proximal tubular epithelial cells (PTECs), are high and they heavily depend on aerobic metabolism. As a result, they are particularly vulnerable to various injuries caused by factors such as ischemia, proteinuria, toxins, and elevated glucose levels. Initial metabolic and phenotypic changes in PTECs after injury are likely an attempt at survival and repair. Nevertheless, in cases of recurrent or prolonged injury, PTECs have the potential to undergo a transition to a secretory state, leading to the generation and discharge of diverse bioactive substances, including transforming growth factor-β, Wnt ligands, hepatocyte growth factor, interleukin (IL)-1β, lactic acid, exosomes, and extracellular vesicles. By promoting fibroblast activation, macrophage recruitment, and endothelial cell loss, these bioactive compounds stimulate communication between epithelial cells and other interstitial cells, ultimately worsening renal damage. This review provides a summary of the latest findings on bioactive compounds that facilitate the communication between these cellular categories, ultimately leading to the advancement of tubulointerstitial fibrosis (TIF).
Collapse
Affiliation(s)
- Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuying Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicin, Jinan, Shandong, China
| | - Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jinming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicin, Jinan, Shandong, China
| |
Collapse
|
5
|
Rex N, Melk A, Schmitt R. Cellular senescence and kidney aging. Clin Sci (Lond) 2023; 137:1805-1821. [PMID: 38126209 PMCID: PMC10739085 DOI: 10.1042/cs20230140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Life expectancy is increasing worldwide, and by 2050 the proportion of the world's population over 65 years of age is estimated to surpass 1.5 billion. Kidney aging is associated with molecular and physiological changes that cause a loss of renal function and of regenerative potential. As the aging population grows, it is crucial to understand the mechanisms underlying these changes, as they increase the susceptibility to developing acute kidney injury (AKI) and chronic kidney disease (CKD). Various cellular processes and molecular pathways take part in the complex process of kidney aging. In this review, we will focus on the phenomenon of cellular senescence as one of the involved mechanisms at the crossroad of kidney aging, age-related disease, and CKD. We will highlight experimental and clinical findings about the role of cellular senescence in kidney aging and CKD. In addition, we will review challenges in senescence research and emerging therapeutic aspects. We will highlight the great potential of senolytic strategies for the elimination of harmful senescent cells to promote healthy kidney aging and to avoid age-related disease and CKD. This review aims to give insight into recent discoveries and future developments, providing a comprehensive overview of current knowledge on cellular senescence and anti-senescent therapies in the kidney field.
Collapse
Affiliation(s)
- Nikolai Rex
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
6
|
Chen H, Wang Q, Li J, Li Y, Chen A, Zhou J, Zhao J, Mao Z, Zhou Z, Zhang J, Wang Y, Wang R, Li Q, Zhang Y, Jiang R, Miao D, Jin J. IFNγ Transcribed by IRF1 in CD4+ Effector Memory T Cells Promotes Senescence-Associated Pulmonary Fibrosis. Aging Dis 2023; 14:2215-2237. [PMID: 37199578 PMCID: PMC10676796 DOI: 10.14336/ad.2023.0320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Physiologically aged lungs are prone to senescence-associated pulmonary diseases (SAPD). This study aimed to determine the mechanism and subtype of aged T cells affecting alveolar type II epithelial (AT2) cells, which promote the pathogenesis of senescence-associated pulmonary fibrosis (SAPF). Cell proportions, the relationship between SAPD and T cells, and the aging- and senescence-associated secretory phenotype (SASP) of T cells between young and aged mice were analyzed using lung single-cell transcriptomics. SAPD was monitored by markers of AT2 cells and found to be induced by T cells. Furthermore, IFNγ signaling pathways were activated and cell senescence, SASP, and T cell activation were shown in aged lungs. Physiological aging led to pulmonary dysfunction and TGF-β1/IL-11/MEK/ERK (TIME) signaling-mediated SAPF, which was induced by senescence and SASP of aged T cells. Especially, IFNγ was produced by the accumulated CD4+ effector memory T (TEM) cells in the aged lung. This study also found that physiological aging increased pulmonary CD4+ TEM cells, IFNγ was produced mainly by CD4+ TEM cells, and pulmonary cells had increased responsiveness to IFNγ signaling. Specific regulon activity was increased in T cell subclusters. IFNγ transcriptionally regulated by IRF1 in CD4+ TEM cells promoted the epithelial-to-mesenchymal transition by activating TIME signaling and cell senescence of AT2 cells with aging. Accumulated IRF1+CD4+ TEM produced IFNγ in lung with aging and anti-IRF1 primary antibody treatment inhibited the expression of IFNγ. Aging might drive T cell differentiation toward helper T cells with developmental trajectories and enhance cell interactions of pulmonary T cells with other surrounding cells. Thus, IFNγ transcribed by IRF1 in CD4+ effector memory T cells promotes SAPF. IFNγ produced by CD4+ TEM cells in physiologically aged lungs could be a therapeutic target for preventing SAPF.
Collapse
Affiliation(s)
- Haiyun Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
- Key Laboratory for Aging & Disease;
- Nanjing Medical University, Nanjing, Jiangsu, China. Medical School of Nanjing University, Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China. Department of Orthopaedics, Xuzhou Central Hospital
| | - Qiuyi Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jie Li
- The State Key Laboratory of Reproductive Medicine
| | - Yuan Li
- The Xuzhou Clinical School of Xuzhou Medical University
| | - Ao Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jiawen Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jingyu Zhao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Zhiyuan Mao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Zihao Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jin’ge Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Yue Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Rong Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Qing Li
- The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China. The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. Department of cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China. Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, China.
| | - Yongjie Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | | | - Dengshun Miao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
- Nanjing Medical University, Nanjing, Jiangsu, China. Medical School of Nanjing University, Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China. Department of Orthopaedics, Xuzhou Central Hospital
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| |
Collapse
|
7
|
Jo MJ, Lee JK, Kim JE, Ko GJ. Molecular Mechanisms Associated with Aging Kidneys and Future Perspectives. Int J Mol Sci 2023; 24:16912. [PMID: 38069234 PMCID: PMC10707287 DOI: 10.3390/ijms242316912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The rapid growth of the elderly population is making the need for extensive and advanced information about age-related organ dysfunction a crucial research area. The kidney is one of the organs most affected by aging. Aged kidneys undergo functional decline, characterized by a reduction in kidney size, decreased glomerular filtration rate, alterations in renal blood flow, and increased inflammation and fibrosis. This review offers a foundation for understanding the functional and molecular mechanisms of aging kidneys and for selecting identifying appropriate targets for future treatments of age-related kidney issues.
Collapse
Affiliation(s)
- Min-Jee Jo
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea; (M.-J.J.); (J.-K.L.); (J.-E.K.)
- Institute of Convergence New Drug Development, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Joo-Kyung Lee
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea; (M.-J.J.); (J.-K.L.); (J.-E.K.)
| | - Ji-Eun Kim
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea; (M.-J.J.); (J.-K.L.); (J.-E.K.)
| | - Gang-Jee Ko
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea; (M.-J.J.); (J.-K.L.); (J.-E.K.)
| |
Collapse
|
8
|
Ji X, Chen H, Liu B, Zhuang H, Bu S. Chk2 deletion rescues Bmi1 deficiency-induced mandibular osteoporosis by blocking DNA damage response pathway. Am J Transl Res 2023; 15:2220-2232. [PMID: 37056849 PMCID: PMC10086904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVES Bmi1 deficiency has been proved to be able to cause mandibular osteoporosis through suppressing oxidative stress. However, the role of DNA damage response pathway in this pathogenesis had not been well understood. In this study, we investigate whether mandibular osteoporosis induced by Bmi1 deficiency could be rescued by blocked DNA damage response pathway. METHODS The protein expression levels of antioxidant enzymes and DNA damage and damage response pathway molecules in mandibular tissue were examined using Western blots. Double knockout mice that lacked both Bmi1 and Chk2 were generated and their mandibular phenotypes were compared at 6 weeks old to wild-type, Chk2-/-, and Bmi1-/- mice using radiograph, micro-CT, histopathology, cellular and molecular techniques. RESULTS Bmi1 deficiency induces oxidative stress and DNA damage and activates DNA damage response pathways in mouse mandibles. Chk2 deletion rescued mandibular osteoporosis through promoting formation of osteoblastic bone as well as decreasing osteoclastic bone resorption. Mechanistically, Chk2 deletion suppressed oxidative stress, DNA damage, as well as cell senescence. In addition, it boosted proliferation of bone marrow mesenchymal stem cells (BM-MSCs) that derived from mandible through blocking the DNA damage response pathway. CONCLUSION Abolish the expression of Chk2 could rescue Bmi1 deficiency-related mandibular osteoporosis through promoting BM-MSC proliferation and osteoblastic bone formation, reducing osteoclastic bone resorption, decreasing oxidative stress, inhibiting damage of DNA and associated response pathways, suppressing cell senescence as well as senescence-associated secretory phenotype (SASP). These findings offer a theoretical basis for using Chk2 or p53 inhibitors to prevent and treat age-related mandibular osteoporosis.
Collapse
Affiliation(s)
- Xiaolei Ji
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Department of Stomatology, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Haiyun Chen
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Boyang Liu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Hai Zhuang
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Shoushan Bu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
9
|
Liang Y, Gu T, Peng S, Lin Y, Liu J, Wang X, Huang X, Zhang X, Zhu J, Zhao L, Fan C, Wang G, Gu X, Lin J. p16 INK4a Plays Critical Role in Exacerbating Inflammaging in High Fat Diet Induced Skin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3415528. [PMID: 36457728 PMCID: PMC9706253 DOI: 10.1155/2022/3415528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/02/2023]
Abstract
BACKGROUND Long term high fat diets (HFD) promote skin aging pathogenesis, but detailed mechanisms remain unclear especially for inflammaging, which has recently emerged as a pathway correlating aging and age-related disease with inflammation. p16INK4a (hereafter termed p16) inhibits the cell cycle, with p16 deletion significantly inhibiting inflammaging. We observed that HFD-induced p16 overexpression in the skin. Therefore, we investigated if p16 exacerbated inflammaging in HFD-induced skin and also if p16 deletion exerted protective effects against this process. METHODS Eight-week-old double knockout (KO) ApoE-/-p16-/- mice and ApoE-/- littermates were fed HFD for 12 weeks and their skin phenotypes were analyzed. We measured skin fibrosis, senescence-associated secretory phenotype (SASP) levels, and integrin-inflammasome pathway activation using histopathological, RNA-sequencing (RNA-seq), bioinformatics analysis, and molecular techniques. RESULTS We found that HFD contributed to inflammaging in the skin by activating the NLRP3 inflammasome pathway, increasing inflammatory infiltration, and promoting apoptosis by balancing expression between proapoptotic and antiapoptotic molecules. p16 knockout, when compared with the ApoE-/- phenotype, inhibited skin fibrosis by ameliorating inflammatory infiltration and proinflammatory factor expression (Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)), and also alleviated inflammaging skin progress induced by HFD in the ApoE-/- mouse model. RNA-seq showed that p16 KO mice inhibited both integrin-inflammasome and NF-κB proinflammatory pathway activation. CONCLUSIONS p16 deletion or p16 positive cell clearance could be a novel strategy preventing long term HFD-induced skin aging.
Collapse
Affiliation(s)
- Yan Liang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tianya Gu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Su Peng
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Lin
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - JiaBao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Xin Huang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaodong Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Jun Zhu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Lin Zhao
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Changyan Fan
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Guangyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Xin Gu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - JinDe Lin
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
10
|
Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel) 2022; 12:1332. [PMID: 36143369 PMCID: PMC9501954 DOI: 10.3390/life12091332] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological feature that is characterized by gradual degeneration of function in cells, tissues, organs, or an intact organism due to the accumulation of environmental factors and stresses with time. Several factors have been attributed to aging such as oxidative stress and augmented production or exposure to reactive oxygen species, inflammatory cytokines production, telomere shortening, DNA damage, and, importantly, the deposit of senescent cells. These are irreversibly mitotically inactive, yet metabolically active cells. The reason underlying their senescence lies within the extrinsic and the intrinsic arms. The extrinsic arm is mainly characterized by the expression and the secretory profile known as the senescence-associated secretory phenotype (SASP). The intrinsic arm results from the impact of several genes meant to regulate the cell cycle, such as tumor suppressor genes. P16INK4A is a tumor suppressor and cell cycle regulator that has been linked to aging and senescence. Extensive research has revealed that p16 expression is significantly increased in senescent cells, as well as during natural aging or age-related pathologies. Based on this fact, p16 is considered as a specific biomarker for detecting senescent cells and aging. Other studies have found that p16 is not only a senescence marker, but also a protein with many functions outside of senescence and aging. In this paper, we discuss and shed light on several studies that show the different functions of p16 and provide insights in its role in several biological processes besides senescence and aging.
Collapse
Affiliation(s)
| | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | | |
Collapse
|
11
|
Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis 2022; 13:522. [PMID: 35661704 PMCID: PMC9166763 DOI: 10.1038/s41419-022-04972-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
Apoptotic resistance leads to persistent accumulation of senescent cells and sustained expression of a senescence-associated secretory phenotype, playing an essential role in the progression of tissue fibrosis. However, whether senescent renal tubular epithelial cells (RTECs) exhibit an apoptosis-resistant phenotype, and the role of this phenotype in diabetic nephropathy (DN) remain unclear. Our previous study was the first to demonstrate that decoy receptor 2 (DcR2) is associated with apoptotic resistance in senescent RTECs and renal fibrosis. In this study, we aimed to further explore the mechanism of DcR2 in apoptosis-resistant RTECs and renal fibrosis in DN. DcR2 was co-localized with fibrotic markers (α-SMA, collagen IV, fibronectin), senescent marker p16, and antiapoptotic proteins FLIP and Bcl2 but rarely co-localized with caspase 3 or TUNEL. DcR2 overexpression promoted renal fibrosis in mice with streptozotocin (STZ)-induced DN, as evidenced by augmented Masson staining and upregulated expression of fibrotic markers. DcR2 overexpression also enhanced FLIP expression while reducing the expression of pro-apoptotic proteins (caspases 8 and 3) in senescent RTECs, resulting in apoptotic resistance. In contrast, DcR2 knockdown produced the opposite effects in vitro and in vivo. Moreover, quantitative proteomics and co-immunoprecipitation experiments demonstrated that DcR2 interacted with glucose-related protein 78 kDa (GRP78), which has been shown to promote apoptotic resistance in cancer. GRP78 exhibited co-localization with senescent and antiapoptotic markers but was rarely co-expressed with caspase 3 or TUNEL. Additionally, GRP78 knockdown decreased the apoptosis resistance of HG-induced senescent RTECs with upregulated cleaved caspase 3 and increased the percentage of apoptotic RTECs. Mechanistically, DcR2 mediated apoptotic resistance in senescent RTECs by enhancing GRP78-caspase 7 interactions and promoting Akt phosphorylation. Thus, DcR2 mediated the apoptotic resistance of senescent RTECs and renal fibrosis by interacting with GRP78, indicating that targeting the DcR2-GRP78 axis represents a promising therapeutic strategy for DN.
Collapse
|
12
|
Chen A, Li X, Zhao J, Zhou J, Xie C, Chen H, Wang Q, Wang R, Miao D, Li J, Jin J. Chronic alcohol reduces bone mass through inhibiting proliferation and promoting aging of endothelial cells in type-H vessels. Stem Cells Dev 2022; 31:541-554. [DOI: 10.1089/scd.2021.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ao Chen
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Xiaoting Li
- Nanjing Medical University, 12461, Department of Nutrition and Food Safety, School of Public Health, Nanjing, Jiangsu, China
| | - Jingyu Zhao
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Jiawen Zhou
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Nanjing Medical University, 12461, Department of Nutrition and Food Safety, School of Public Health, Nanjing, Jiangsu, China
| | - Haiyun Chen
- Nanjing Medical University, 12461, Anti-aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiuyi Wang
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Rong Wang
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Dengshun Miao
- Nanjing Medical University, Nanjing, Jiangsu, China, 210029, ,
| | - Jie Li
- Xuzhou Medical University, 38044, Department of Orthopaedics, Xuzhou Central Hospital; The Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianliang Jin
- Nanjing Medical University, 12461, Nanjing, China, 211166
- No.101,Longmian Avenue,Jiangning DistrictChina
| |
Collapse
|
13
|
Yi X, Tao J, Qian Y, Feng F, Hu X, Xu T, Jin H, Ruan H, Zheng HF, Tong P. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Front Pharmacol 2022; 13:1056460. [PMID: 36618945 PMCID: PMC9816435 DOI: 10.3389/fphar.2022.1056460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
No drug options exist for skeletal muscle atrophy in clinical, which poses a huge socio-economic burden, making development on drug interventions a general wellbeing need. Patients with a variety of pathologic conditions associated with skeletal muscle atrophy have systemically elevated inflammatory factors. Morroniside, derived from medicinal herb Cornus officinalis, possesses anti-inflammatory effect. However, whether and how morroniside combat muscle atrophy remain unknown. Here, we identified crucial genetic associations between TNFα/NF-κB pathway and grip strength based on population using 377,807 European participants from the United Kingdom Biobank dataset. Denervation increased TNFα in atrophying skeletal muscles, which inhibited myotube formation in vitro. Notably, morroniside treatment rescued TNFα-induced myotube atrophy in vitro and impeded skeletal muscle atrophy in vivo, resulting in increased body/muscles weights, No. of satellite cells, size of type IIA, IIX and IIB myofibers, and percentage of type IIA myofibers in denervated mice. Mechanistically, in vitro and/or in vivo studies demonstrated that morroniside could not only inhibit canonical and non-canonical NF-κB, inflammatory mediators (IL6, IL-1b, CRP, NIRP3, PTGS2, TNFα), but also down-regulate protein degradation signals (Follistatin, Myostatin, ALK4/5/7, Smad7/3), ubiquitin-proteasome molecules (FoxO3, Atrogin-1, MuRF1), autophagy-lysosomal molecules (Bnip3, LC3A, and LC3B), while promoting protein synthesis signals (IGF-1/IGF-1R/IRS-1/PI3K/Akt, and BMP14/BMPR2/ALK2/3/Smad5/9). Moreover, morroniside had no obvious liver and kidney toxicity. This human genetic, cells and mice pathological evidence indicates that morroniside is an efficacious and safe inflammatory muscle atrophy treatment and suggests its translational potential on muscle wasting.
Collapse
Affiliation(s)
- Xiangjiao Yi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jianguo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Feng Feng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xueqin Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Taotao Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| |
Collapse
|
14
|
Chan J, Eide IA, Tannæs TM, Waldum-Grevbo B, Jenssen T, Svensson M. Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Med 2021; 3:1041-1049. [PMID: 34939013 PMCID: PMC8664741 DOI: 10.1016/j.xkme.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rationale & Objective Deterioration of kidney graft function is associated with accelerated cellular senescence. Marine n-3 polyunsaturated fatty acids (PUFAs) have favorable properties that may counteract cellular senescence development and damage caused by the senescence-associated secretory phenotype (SASP) secretome. Our objective was to investigate the potential effects of marine n-3 PUFA supplementation on the SASP secretome in kidney transplant recipients. Study Design Exploratory substudy of the Omega-3 Fatty Acids in Renal Transplantation trial. Setting & Participants Adult kidney transplant recipients with a functional kidney graft (defined as having an estimated glomerular filtration rate of >30 mL/min/1.73 m2) 8 weeks after engraftment were included in this study conducted in Norway. Analytical Approach The intervention consisted of 2.6 g of a marine n-3 PUFA or olive oil (placebo) daily for 44 weeks. The outcome was a predefined panel of SASP components in the plasma and urine. Results A total of 132 patients were enrolled in the Omega-3 Fatty Acids in Renal Transplantation trial, and 66 patients were allocated to receive either the study drug or placebo. The intervention with the marine n-3 PUFA was associated with reduced plasma levels of granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, matrix metalloproteinase (MMP)-1, and MMP-13 compared with the intervention in the control group. Limitations Post hoc analysis. Conclusions The results suggest that marine n-3 PUFA supplementation has mitigating effects on the plasma SASP components granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, MMP-1, and MMP-13 in kidney transplant recipients. Future studies with kidney transplant recipients in maintenance phase, combined with an evaluation of cellular senescence markers in kidney transplant biopsies, are needed to further elucidate the potential antisenescent effect of marine n-3 PUFAs. This trial is registered as NCT01744067.
Collapse
Affiliation(s)
- Joe Chan
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| | - Ivar A Eide
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - Tone M Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog
| | - Bård Waldum-Grevbo
- Department of Nephrology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Trond Jenssen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - My Svensson
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| |
Collapse
|
15
|
Zhou J, Hou C, Chen H, Qin Z, Miao Z, Zhao J, Wang Q, Cui M, Xie C, Wang R, Li Q, Zuo G, Miao D, Jin J. P16 I NK 4a Deletion Ameliorates Damage of Intestinal Epithelial Barrier and Microbial Dysbiosis in a Stress-Induced Premature Senescence Model of Bmi-1 Deficiency. Front Cell Dev Biol 2021; 9:671564. [PMID: 34712655 PMCID: PMC8545785 DOI: 10.3389/fcell.2021.671564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine whether Bmi-1 deficiency leads to intestinal epithelial barrier destruction and microbiota dysfunction, which members of the microbial community alter barrier function with age, and whether p16INK4a deletion could reverse the damage of intestinal epithelial barrier and microbial dysbiosis. Intestines from Bmi-1–deficient (Bmi-1–/–), Bmi-1 and p16INK4a double-knockout (Bmi-1–/–p16INK4a–/–), and wild-type mice were observed for aging and inflammation. Duolink Proximity Ligation Assay, immunoprecipitation, and construction of p16INK4a overexpressed adenovirus and the overexpressed plasmids of full-length, mutant, or truncated fragments for occludin were used for analyzing the interaction between p16INK4a and occludin. High-throughput sequencing of V4 region amplicon of 16S ribosomal RNA was conducted using intestinal microbiota. We found Bmi-1 deficiency destructed barrier structure, barrier function, and tight junction (TJ) in intestinal epithelium; decreased the TJ proteins; increased tumor necrosis factor α (TNF-α)–dependent barrier permeability; and up-regulated proinflammatory level of macrophages induced by intestinal microbial dysbiosis. The transplantation of fecal microbiota from wild-type mice ameliorated TJ in intestinal epithelium of Bmi-1–/– and Bmi-1–/–p16INK4a–/– mice. Harmful bacteria including Desulfovibrio, Helicobacter, and Oscillibacter were at a higher level in Bmi-1–/– mice. More harmful bacteria Desulfovibrio entered the epithelium and promoted macrophages-secreted TNF-α and caused TNF-α–dependent barrier permeability and aging. Accumulated p16INK4a combined with occludin at the 1st–160th residue in cytoplasm of intestinal epithelium cells from Bmi-1–/– mice, which blocked formation of TJ and the repair of intestinal epithelium barrier. P16INK4a deletion could maintain barrier function and microbiota balance in Bmi-1–/– mice through strengthening formation of TJ and decreasing macrophages-secreted TNF-α induced by Desulfovibrio entering the intestinal epithelium. Thus, Bmi-1 maintained intestinal TJ, epithelial barrier function, and microbiota balance through preventing senescence characterized by p16INK4a accumulation. The clearance of p16INK4a-positive cells in aging intestinal epithelium would be a new method for maintaining barrier function and microbiota balance. The residues 1–160 of occludin could be a novel therapeutic target for identifying small molecular antagonistic peptides to prevent the combination of p16INK4a with occludin for protecting TJ.
Collapse
Affiliation(s)
- Jiawen Zhou
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chenxing Hou
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Haiyun Chen
- Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyue Qin
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zi'an Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingyu Zhao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyi Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Cui
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Guoping Zuo
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
17
|
Higher senescence associated secretory phenotype and lower defense mediator in urinary extracellular vesicles of elders with and without Parkinson disease. Sci Rep 2021; 11:15783. [PMID: 34349163 PMCID: PMC8339003 DOI: 10.1038/s41598-021-95062-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Youth fountain and aging culprits are usually sought and identified in blood but not urine. Extracellular vesicles (EVs) possess parental cell properties, circulate in blood, CSF and urine, and provide paracrine and remote cell–cell communication messengers. This study investigated whether senescence‐associated secretory phenotype (SASP) and immune defense factors in EVs of urine could serve as biomarkers in elderly individuals with and without a comorbidity. Urine samples from young adults and elderly individuals with and without Parkinson disease (PD) were collected and stored at − 80 °C until studies. Urine EVs were separated from a drop-through solution and confirmed by verifying CD9, CD63, CD81 and syntenin expression. The EVs and drop-through solution were subjected to measurement of SASP cytokines and defense factors by Milliplex array assays. Many SASP cytokines and defense factors could be detected in urinary EVs but not urinary solutions. Elderly individuals (age > 60) had significantly higher levels of the SASP-associated factors IL-8, IP-10, GRO, and MCP-1 in EVs (p < 0.05). In contrast, some defense factors, IL-4, MDC and IFNα2 in EVs had significantly lower levels in elderly adults than in young adults (age < 30). Patients with and without PD exhibited a similar SASP profile in EVs but significantly lower levels of IL-10 in the EVs from patients with PD. This study used a simple device to separate urinary EVs from solution for comparisons of SASP and defense mediators between young adults and elders with and without PD. Results from this study indicate that aging signature is present in EVs circulating to urine and the signatures include higher inflammatory mediators and lower defense factors in urinary EVs but not solutions, suggesting a simple method to separate urinary EVs from solutions for searching aging mechanistic biomarkers may make prediction of aging and monitoring of anti-senolytic interventions possible.
Collapse
|
18
|
Yin Y, Zhou N, Zhang H, Dai X, Lv X, Chen N, Miao D, Hu Q. Bmi1 regulate tooth and mandible development by inhibiting p16 signal pathway. J Cell Mol Med 2021; 25:4195-4203. [PMID: 33745198 PMCID: PMC8093977 DOI: 10.1111/jcmm.16468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
To determine whether the deletion of p16 can correct tooth and mandible growth retardation caused by Bmi1 deficiency, we compared the tooth and mandible phenotypes of homozygous p16‐deficient (p16−/−) mice, homozygous Bmi1‐deficient (Bmi1−/−) mice, double homozygous Bmi1 and p16‐deficient (Bmi1−/−p16−/−) mice to those of their wild‐type littermates at 4 weeks of age by radiograph, histochemistry and immunohistochemistry. Results showed that compared to Bmi1−/− mice, the dental mineral density, dental volume and dentin sialoprotein immunopositive areas were increased, whereas the ratio of the predentin area to total dentin area and that of biglycan immunopositive area to dentin area were decreased in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve tooth development in Bmi1 knockout mice. Compared to Bmi1−/− mice, the mandible mineral density, cortical thickness, alveolar bone volume, osteoblast number and activity, alkaline phosphatase positive area were all increased significantly in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve mandible growth in Bmi1 knockout mice. Furthermore, the protein expression levels of cyclin D, CDK4 and p53 were increased significantly in p16−/− mice compared with those from wild‐type mice; the protein expression levels of cyclin D and CDK4 were decreased significantly, whereas those of p27 and p53 were increased significantly in Bmi1−/− mice; these parameters were partly rescued in Bmi1−/−p16−/− mice compared with those from Bmi1−/− mice. Therefore, our results indicate that Bmi1 plays roles in regulating tooth and mandible development by inhibiting p16 signal pathway which initiated entry into cell cycle.
Collapse
Affiliation(s)
- Ying Yin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Nan Zhou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Hui Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuliang Dai
- Reproductive Center, Nanjing Medical University Affiliated Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Xianhui Lv
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Ning Chen
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|
20
|
Xiang C, Yan Y, Zhang D. Alleviation of the doxorubicin-induced nephrotoxicity by fasudil in vivo and in vitro. J Pharmacol Sci 2021; 145:6-15. [PMID: 33357780 DOI: 10.1016/j.jphs.2020.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Treatment with the chemotherapeutic agent, doxorubicin (DOX), is limited by side effects. We have previously demonstrated that fasudil, a Rho/ROCK inhibitor, has antioxidant, anti-inflammatory and anti-apoptotic effects in contrast-induced acute kidney injury model. The present study to investigated the possible protective effect of fasudil, on DOX-induced nephrotoxicity. MATERIALS AND METHOD In vivo: Forty male C57BL/6 male mice were randomly divided into 4 groups: Control group, DOX treatment group (DOX group), DOX + low dose fasudil (DOX + L group), DOX + high dose fasudil (DOX + H group). Mice in 2-4 groups received DOX (2.5 mg/kg, i.p.) once a week for 8 weeks. The 3 and 4 group were given 2 mg/kg/d or 10 mg/kg/d fasudil before DOX injection. respectively. Meanwhile, the control group received saline. At the end of week eight, blood samples were collected for biochemical testing. The kidneys were removed for histological, immunohistochemical, Western blot, quantitative real-time PCR (qRT-PCR), and molecular detection. In vitro: NRK-52E cells were treated with 40 uM fasudil for 12 h, then incubated with 1 uM DOX for 24 h. Cells then collected for qRT-PCR and Western blot. RESULTS In vivo, fasudil treatment ameliorated DOX-induced immunofluorescence reaction of DNA damage-related factors (8-OHdG), decreased the expression of Bax, Caspase-3, p16, p21 and p53, and increased the expression of protein of Bcl-2, Bmi-1 and Sirt-1. In the mouse model, administration of fasudil significantly ameliorated DOX-induced kidney damage, suppressed cell apoptosis and senescence, ameliorated redox imbalance and DNA damage. At the same time, DOX produced obvious kidney damage revealed by kidney functions changes: increased serum creatinine (SCr) and blood urea nitrogen (BUN) concentrations. In addition, kidney tissue staining in the DOX group showed abnormal structure and fibroproliferative disorders. And DOX could promote the oxidation and senescence of kidney cells, leading to increased expression of 8-OHdG and senescence and apoptosis-related factors. On the contrary, fasudil treatment can effectively inhibit redox imbalance and DNA damage caused by DOX, and inhibit cell senescence and apoptosis. Fasudil can inhibit excessive activation of Rho/ROCK signaling pathway, thereby improving kidney tissue fibrosis and recovery kidney function. CONCLUSION Fasudil has a protective effect on DOX-induced nephrotoxicity in mice and NRK-52E cells, which can inhibit oxidative stress and DNA damage, inhibit apoptosis, and delays cell senescence by inhibiting RhoA/Rho kinase (ROCK) signaling pathway.
Collapse
Affiliation(s)
- Chengyu Xiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nangjing, China
| | - Yi Yan
- Department of Cardiology, Jiangyin People's Hospital, Jiangyin, China
| | - Dingguo Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nangjing, China.
| |
Collapse
|
21
|
Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Sci Rep 2020; 10:16385. [PMID: 33046751 PMCID: PMC7550355 DOI: 10.1038/s41598-020-73315-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease characterised by chronic muscle degeneration and inflammation. Our previously established DMD model rats (DMD rats) have a more severe disease phenotype than the broadly used mouse model. We aimed to investigate the role of senescence in DMD using DMD rats and patients. Senescence was induced in satellite cells and mesenchymal progenitor cells, owing to the increased expression of CDKN2A, p16- and p19-encoding gene. Genetic ablation of p16 in DMD rats dramatically restored body weight and muscle strength. Histological analysis showed a reduction of fibrotic and adipose tissues invading skeletal muscle, with increased muscle regeneration. Senolytic drug ABT263 prevented loss of body weight and muscle strength, and increased muscle regeneration in rats even at 8 months—the late stage of DMD. Moreover, senescence markers were highly expressed in the skeletal muscle of DMD patients. In situ hybridization of CDKN2A confirmed the expression of it in satellite cells and mesenchymal progenitor cells in patients with DMD. Collectively, these data provide new insights into the integral role of senescence in DMD progression.
Collapse
|
22
|
Zhou J, Chen A, Wang Z, Zhang J, Chen H, Zhang H, Wang R, Miao D, Jin J. Bmi-1 determines the stemness of renal stem or progenitor cells. Biochem Biophys Res Commun 2020; 529:1165-1172. [PMID: 32819581 DOI: 10.1016/j.bbrc.2020.06.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Renal stem or progenitor cells (RSCs), labeled with CD24 and CD133, play an important role during the repair of renal injury. Bmi-1 is a critical factor in regulating stemness of adult stem cells or progenitor cells. To investigate whether Bmi-1 determines the stemness of RSCs by inhibiting p16 and p53, and/or maintaining redox balance, RSCs were isolated, cultured and analyzed for stemness characterizations. In RSCs from Bmi-1-deficient (Bmi-1-/-) mice and wild type (WT) littermates, self-renewal, stemness, and expressions of molecules for regulating redox balance and cell cycle progression were compared. Self-renewal of RSCs from Bmi-1 and p16 double-knockout (Bmi-1-/-p16-/-), Bmi-1 and p53 double-knockout (Bmi-1-/-p53-/-) and N-acetylcysteine (NAC)-treated Bmi-1-/- mice were further analyzed for amelioration. Human renal proximal tubular epithelial cells (HK2) were also used for signaling analysis. Our results showed that third-passage RSCs from WT mice had good stemness; Bmi-1 deficiency led to the decreased stemness, and the increased apoptosis for RSCs; NAC treatment or p16/p53 deletion ameliorated the decreased self-renewal of RSCs in Bmi-1 deficiency mice by maintaining redox balance or inhibiting cell cycle arrest respectively; Oxidative stress (OS) could negatively feedback regulate the mRNA expressions of Bmi-1, p16 and p53. In conclusion, Bmi-1 determined the stemness of RSCs through maintaining redox balance and preventing cell cycle arrest. Thus, Bmi-1 signaling molecules would be novel therapeutic targets for maintaining RSCs and hampering the progression of kidney diseases to prevent renal failure.
Collapse
Affiliation(s)
- Jiawen Zhou
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ao Chen
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ziyang Wang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jin'ge Zhang
- School of Nursing, Shanxi Medical University, Jinzhong, Shanxi, 030001, China
| | - Haiyun Chen
- Anti-aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hengzhi Zhang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Rong Wang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dengshun Miao
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianliang Jin
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
23
|
Bahrami A, Bo S, Jamialahmadi T, Sahebkar A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res Rev 2020; 58:101024. [PMID: 32006687 DOI: 10.1016/j.arr.2020.101024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Human ageing is determined by degenerative alterations and processes with different manifestations such as gradual organ dysfunction, tissue function loss, increased population of aged (senescent) cells, incapability of maintaining homeostasis and reduced repair capacity, which collectively lead to an increased risk of diseases and death. The inhibitors of HMG-CoA reductase (statins) are the most widely used lipid-lowering agents, which can reduce cardiovascular morbidity and mortality. Accumulating evidence has documented several pleiotropic effects of statins in addition to their lipid-lowering properties. Recently, several studies have highlighted that statins may have the potential to delay the ageing process and inhibit the onset of senescence. In this review, we focused on the anti-ageing mechanisms of statin drugs and their effects on cardiovascular and non-cardiovascular diseases.
Collapse
|
24
|
Li J, Karim MA, Che H, Geng Q, Miao D. Deletion of p16 prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence. Am J Transl Res 2020; 12:672-683. [PMID: 32194914 PMCID: PMC7061825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
To investigate whether p16 deletion can prevent osteoporosis caused by estrogen deficiency, we first confirmed that p16 protein expression levels were significantly up-regulated in bony tissue of ovariectomized (OVX) wild-type mice. Eight-week-old wild-type and p16-/- mice were then sham-operated or bilateral OVX. After 12 weeks, the bone phenotypes of all models were analyzed by radiography, micro-computed tomography, histology, immunohistochemistry, and molecular biology. The results showed that p16 deficiency could rescue OVX-induced osteoporosis by significantly increased bone mineral density, trabecular bone volume, total collagen positive area, osteoblast number, type I collagen positive area, fibroblast colony-forming unit (CFU-f) and alkaline phosphatase-positive CFU-f with up-regulation of the mRNA expression levels of Alp, Runx2, type I collagen and osteocalcin, and significantly reduced osteoclast surface and the ratio of RANKL/OPG mRNA expression level. Furthermore, we also demonstrated that p16 deletion inhibited OVX-induced oxidative stress and bone cell senescence, such as a significant decrease in reactive oxygen species levels, up-regulation of superoxide dismutase 1 and 2 protein expression levels, and reduction of the percentage of β-galactosidase-positive osteocytes and p21 protein expression levels in bony tissue. Our results indicate that p16 deletion can prevent estrogen deficiency-induced osteoporosis by inhibiting oxidative stress, osteocyte senescence and osteoclastic bone resorption, stimulating osteogenesis and osteoblastic bone formation. Therefore, this study provides new insights into the potential of p16 as a novel therapeutic target for estrogen deficiency-induced osteoporosis.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical UniversityXuzhou, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Muhammad Amin Karim
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Hui Che
- University Medical Center, Albert-Ludwigs-UniversityFreiburg, Germany
| | - Qinghe Geng
- Department of Orthopaedics, Pizhou Hospital, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, Jiangsu, China
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
25
|
Graham ZA, Goldberger A, Azulai D, Conover CF, Ye F, Bauman WA, Cardozo CP, Yarrow JF. Contusion spinal cord injury upregulates p53 protein expression in rat soleus muscle at multiple timepoints but not key senescence cytokines. Physiol Rep 2020; 8:e14357. [PMID: 32026570 PMCID: PMC7002538 DOI: 10.14814/phy2.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
To determine whether muscle disuse after a spinal cord injury (SCI) produces elevated markers of cellular senescence and induces markers of the senescence-associated secretory phenotypes (SASPs) in paralyzed skeletal muscle. Four-month-old male Sprague-Dawley rats received a moderate-severe (250 kiloDyne) T-9 contusion SCI or Sham surgery and were monitored over 2 weeks, and 1-, 2-, or 3 months. Animals were sacrificed via isoflurane overdose and terminal exsanguination and the soleus was carefully excised and snap frozen. Protein expression of senescence markers p53, p27, and p16 was determined from whole soleus lysates using Western immunoblotting and RT-qPCR was used to determine the soleus gene expression of IL-1α, IL-1β, IL-6, CXCL1, and TNFα. SCI soleus muscle displayed 2- to 3-fold higher total p53 protein expression at 2 weeks, and at 1 and 2 months when compared with Sham. p27 expression was stable across all groups and timepoints. p16 protein expression was lower at 3 months in SCI versus Sham, but not earlier timepoints. Gene expression was relatively stable between groups at 2 weeks. There were Surgery x Time interaction effects for IL-6 and TNFα mRNA expression but not for IL-1α, IL-1β, or CXCL1. There were no main effects for time or surgery for IL-1α, IL-1β, or CXCL1, but targeted t tests showed reductions in IL-1α and CXCL1 in SCI animals compared to Sham at 3 months and IL-1β was reduced in SCI animals compared to Sham animals at the 2-month timepoint. The elevation in p53 does not appear consistent with the induction of SASP because mRNA expression of cytokines associated with senescence was not uniformly upregulated and, in some instances, was downregulated in the early chronic phase of SCI.
Collapse
Affiliation(s)
- Zachary A. Graham
- Research ServiceBirmingham VA Medical CenterBirminghamALUSA
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama‐BirminghamBirminghamALUSA
| | - Abigail Goldberger
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
| | - Daniella Azulai
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
| | - Christine F. Conover
- Research Service and Brain Rehabilitation Research CenterMalcolm Randall VA Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Fan Ye
- Research Service and Brain Rehabilitation Research CenterMalcolm Randall VA Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - William A. Bauman
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
- Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christopher P. Cardozo
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
- Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Joshua F. Yarrow
- Research Service and Brain Rehabilitation Research CenterMalcolm Randall VA Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Florida College of MedicineGainesvilleFLUSA
| |
Collapse
|
26
|
Chen H, Chen H, Liang J, Gu X, Zhou J, Xie C, Lv X, Wang R, Li Q, Mao Z, Sun H, Zuo G, Miao D, Jin J. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Exp Mol Med 2020; 52:130-151. [PMID: 31959867 PMCID: PMC7000795 DOI: 10.1038/s12276-019-0371-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023] Open
Abstract
To study whether TGF-β1/IL-11/MEK/ERK (TIME) signaling mediates senescence-associated pulmonary fibrosis (SAPF) in Bmi-1-deficient (Bmi-1-/-) mice and determines the major downstream mediator of Bmi-1 and crosstalk between p16INK4a and reactive oxygen species that regulates SAPF, phenotypes were compared among 7-week-old p16INK4a and Bmi-1 double-knockout, N-acetylcysteine (NAC)-treated Bmi-1-/-, Bmi-1-/-, and wild-type mice. Pulmonary fibroblasts and alveolar type II epithelial (AT2) cells were used for experiments. Human pulmonary tissues were tested for type Ι collagen, α-smooth muscle actin (α-SMA), p16INK4a, p53, p21, and TIME signaling by using enzyme-linked immunosorbent assay (ELISA). Our results demonstrated that Bmi-1 deficiency resulted in a shortened lifespan, ventilatory resistance, poor ventilatory compliance, and SAPF, including cell senescence, DNA damage, a senescence-associated secretory phenotype and collagen overdeposition that was mediated by the upregulation of TIME signaling. The signaling stimulated cell senescence, senescence-related secretion of TGF-β1 and IL-11 and production of collagen 1 by pulmonary fibroblasts and the epithelial-to-mesenchymal transition of AT2 cells. These processes were inhibited by anti-IL-11 or the MEK inhibitor PD98059. NAC treatment prolonged the lifespan and ameliorated pulmonary dysfunction and SAPF by downregulating TIME signaling more than p16INK4a deletion by inhibiting oxidative stress and DNA damage and promoting ubiquitin-proteasome degradation of p16INK4a and p53. Cytoplasmic p16INK4a accumulation upregulated MEK/ERK signaling by inhibiting the translocation of pERK1/2 (Thr202/Tyr204) from the cytoplasm to the nucleus in senescent fibroblasts. The accumulation of collagen 1 and α-SMA in human lungs accompanied by cell senescence may be mediated by TIME signaling. Thus, this signaling in aging fibroblasts or AT2 cells could be a therapeutic target for preventing SAPF.
Collapse
Affiliation(s)
- Haiyun Chen
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Anti-aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hongjie Chen
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jialong Liang
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Gu
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiawen Zhou
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xianhui Lv
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qing Li
- Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu, 210029, China
| | - Zhiyuan Mao
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Haijian Sun
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Guoping Zuo
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianliang Jin
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
27
|
Chen G, Zhang Y, Yu S, Sun W, Miao D. Bmi1 Overexpression in Mesenchymal Stem Cells Exerts Antiaging and Antiosteoporosis Effects by Inactivating p16/p19 Signaling and Inhibiting Oxidative Stress. Stem Cells 2019; 37:1200-1211. [PMID: 30895687 PMCID: PMC6851636 DOI: 10.1002/stem.3007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that Bmi1 deficiency leads to osteoporosis phenotype by inhibiting the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs), but it is unclear whether overexpression of Bmi1 in MSCs stimulates skeletal development and rescues Bmi1 deficiency-induced osteoporosis. To answer this question, we constructed transgenic mice (Bmi1Tg ) that overexpressed Bmi1 driven by the Prx1 gene and analyzed their skeletal phenotype differences with that of wild-type littermates. We then hybridized Bmi1Tg to Bmi1-/- mice to generate Bmi1-/- mice overexpressing Bmi1 in MSCs and compared their skeletal phenotypes with those of Bmi1-/- and wild-type mice using imaging, histopathological, immunohistochemical, histomorphometric, cellular, and molecular methods. Bmi1Tg mice exhibited enhanced bone growth and osteoblast formation, including the augmentation of bone size, cortical and trabecular volume, number of osteoblasts, alkaline phosphatase (ALP)-positive and type I collagen-positive areas, number of total colony forming unit fibroblasts (CFU-f) and ALP+ CFU-f, and osteogenic gene expression levels. Consistently, MSC overexpressing Bmi1 in the Bmi1-/- background not only largely reversed Bmi1 systemic deficiency-induced skeletal growth retardation and osteoporosis, but also partially reversed Bmi1 deficiency-induced systemic growth retardation and premature aging. To further explore the mechanism of action of MSCs overexpressing Bmi1 in antiosteoporosis and antiaging, we examined changes in oxidative stress and expression levels of p16 and p19. Our results showed that overexpression of Bmi1 in MSCs inhibited oxidative stress and downregulated p16 and p19. Taken together, the results of this study indicate that overexpression of Bmi1 in MSCs exerts antiaging and antiosteoporosis effects by inactivating p16/p19 signaling and inhibiting oxidative stress. Stem Cells 2019;37:1200-1211.
Collapse
Affiliation(s)
- Guangpei Chen
- Department of Human Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Anatomy, Histology, and Embryology, Suzhou Health and Technology College, Suzhou, People's Republic of China
| | - Shuxiang Yu
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Sun
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Gu X, Peng CY, Lin SY, Qin ZY, Liang JL, Chen HJ, Hou CX, Wang R, Du YQ, Jin JL, Yang ZJ. P16 INK4a played a critical role in exacerbating acute tubular necrosis in acute kidney injury. Am J Transl Res 2019; 11:3850-3861. [PMID: 31312394 PMCID: PMC6614612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/12/2019] [Indexed: 06/10/2023]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality, which is mostly caused by acute tubular necrosis (ATN). AKI is associated with many factors, including cell senescence, inflammatory infiltration, apoptosis and excessive accumulation of reactive oxygen species (ROS). P16INK4a (hereafter termed p16) inhibits cell cycle, and the absence of p16 can significantly slow the progression of cell senescence. We found that the expression of p16 was significantly increased after ATN. To determine whether p16 could exacerbate ATN degree and whether p16 deletion had protective effects against the ATN and renal dysfunction in AKI progression, glycerol-rhabdomyolysis-induced ATN was performed in eight-week-old p16 knockout and wild-type (WT) littermates. Their ATN phenotypes were analyzed; the levels of serum creatinine and serum urea nitrogen were detected; inflammation, cell apoptosis, ROS level and ROS signaling pathway molecules were examined using histopathological and molecular techniques. We found that compared to WT mice, p16 deletion has protective effects against the ATN phenotype and renal dysfunction in AKI progression through ameliorating inflammatory infiltration and proinflammatory factor expression by inhibiting NF-κB proinflammatory pathway, decreasing cell apoptosis by balancing the expressions between pro-apoptotic and anti-apoptotic molecules, and reducing ROS levels and downregulating ROS signaling pathway molecules including AIF, PGAM5 and KEAP1. Thus, p16 deletion or inhibition and p16 positive cell clearance would be a novel strategy for preventing ATN in AKI progression.
Collapse
Affiliation(s)
- Xin Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Cheng-Yi Peng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Shi-Yu Lin
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Zi-Yue Qin
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Jia-Long Liang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Hong-Jie Chen
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Chen-Xing Hou
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Rong Wang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Ying-Qiang Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Jian-Liang Jin
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Zhi-Jian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| |
Collapse
|
29
|
Santelli A, Sun IO, Eirin A, Abumoawad AM, Woollard JR, Lerman A, Textor S, Puranik AS, Lerman LO. Senescent Kidney Cells in Hypertensive Patients Release Urinary Extracellular Vesicles. J Am Heart Assoc 2019; 8:e012584. [PMID: 31433703 PMCID: PMC6585370 DOI: 10.1161/jaha.119.012584] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Background Hypertension may be associated with renal cellular injury. Cells in distress release extracellular vesicles (EVs), and their numbers in urine may reflect renal injury. Cellular senescence, an irreversible growth arrest in response to a noxious milieu, is characterized by release of proinflammatory cytokines. We hypothesized that EVs released by senescent nephron cells can be identified in urine of patients with hypertension. Methods and Results We recruited patients with essential hypertension (EH) or renovascular hypertension and healthy volunteers (n=14 each). Renal oxygenation was assessed using magnetic resonance imaging and blood samples collected from both renal veins for cytokine-level measurements. EVs isolated from urine samples were characterized by imaging flow cytometry based on specific markers, including p16 (senescence marker), calyxin (podocytes), urate transporter 1 (proximal tubules), uromodulin (ascending limb of Henle's loop), and prominin-2 (distal tubules). Overall percentage of urinary p16+ EVs was elevated in EH and renovascular hypertension patients compared with healthy volunteers and correlated inversely with renal function and directly with renal vein cytokine levels. Urinary levels of p16+/urate transporter 1+ were elevated in all hypertensive subjects compared with healthy volunteers, whereas p16+/prominin-2+ levels were elevated only in EH versus healthy volunteers and p16+/uromodulin+ in renovascular hypertension versus EH. Conclusions Levels of p16+ EVs are elevated in urine of hypertensive patients and may reflect increased proximal tubular cellular senescence. In EH, EVs originate also from distal tubules and in renovascular hypertension from Henle's loop. Hence, urinary EVs levels may be useful to identify intrarenal sites of cellular senescence.
Collapse
Affiliation(s)
- Adrian Santelli
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
- Department of PhysiopathologyHospital de ClinicasMontevideoUruguay
| | - In O. Sun
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
| | - Alfonso Eirin
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
| | | | | | - Amir Lerman
- Department of Cardiovascular DiseasesMayo ClinicRochesterMN
| | | | | | | |
Collapse
|
30
|
Pignolo RJ, Samsonraj RM, Law SF, Wang H, Chandra A. Targeting Cell Senescence for the Treatment of Age-Related Bone Loss. Curr Osteoporos Rep 2019; 17:70-85. [PMID: 30806947 DOI: 10.1007/s11914-019-00504-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We review cell senescence in the context of age-related bone loss by broadly discussing aging mechanisms in bone, currently known inducers and markers of senescence, the senescence-associated secretory phenotype (SASP), and the emerging roles of senescence in bone homeostasis and pathology. RECENT FINDINGS Cellular senescence is a state of irreversible cell cycle arrest induced by insults or stressors including telomere attrition, oxidative stress, DNA damage, oncogene activation, and other intrinsic or extrinsic triggers and there is mounting evidence for the role of senescence in aging bone. Cellular aging also instigates a SASP that exerts detrimental paracrine and likely systemic effects. With aging, multiple cell types in the bone microenvironment become senescent, with osteocytes and myeloid cells as primary contributors to the SASP. Targeting undesired senescent cells may be a favorable strategy to promote bone anabolic and anti-resorptive functions in aging bone, with the possibility of improving bone quality and function with normal aging and/or disease.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | | | - Susan F Law
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Haitao Wang
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Abhishek Chandra
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
31
|
Wang R, Xue X, Wang Y, Zhao H, Zhang Y, Wang H, Miao D. BMI1 Deficiency Results in Female Infertility by Activating p16/p19 Signaling and Increasing Oxidative Stress. Int J Biol Sci 2019; 15:870-881. [PMID: 30906217 PMCID: PMC6429020 DOI: 10.7150/ijbs.30488] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/12/2019] [Indexed: 01/20/2023] Open
Abstract
The polycomb repressor B lymphoma Mo-MLV insertion region 1 (BMI1) is a core composition of polycomb repressive complex 1 (PRC1) and contributes to diverse fundamental cellular processes including cell senescence, apoptosis and proliferation. To investigate the role and mechanism of BMI1 in maintaining normal female reproductive function, we compared the differences in reproductive phenotypes between Bmi1-deficient and wild-type female mice. The Bmi1-deficient female mice were then supplemented with N-acetylcysteine in their drinking water to explore whether antioxidant supplementation could improve reproductive dysfunction caused by BMI1 deficiency. The results revealed that Bmi1 deletion resulted in complete infertility in female mice, estrous cycle disorder, and follicular developmental disorders. The reactive oxygen species levels in the ovarian tissue were increased; the ability of antioxidant enzymes was downregulated; the expression levels of p19 and p53 proteins were significantly upregulated. We also found that oocytes derived from Bmi1-deficient mice could not develop into embryos by in vitro fertilization and in vitro culture of embryos. Furthermore, supplementation with the antioxidant NAC not only improved the reproductive defects caused by Bmi1 deletion, but also largely rescued the ability of Bmi1-deficient oocytes to develop into embryos in vitro. These results indicated that cells lacking Bmi1 resulted in female infertility by activating the p16/p19 signaling pathway, increasing oxidative stress and DNA damage, inhibiting granulosa cell proliferation, and inducing granulosa cell apoptosis. Thus, BMI1 may be a novel potential target for the clinical treatment of female infertility.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian Xue
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Wang
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyang Zhao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuling Zhang
- Department of Ultrasound, Taikang Xianlin Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Hui Wang
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Abstract
Purpose of Review The concept of cellular senescence has been evolving. Although originally proposed based on studies of serum-driven replication of cell lines in vitro, it is now clear that cellular senescence occurs in vivo. It has also become clear that cellular senescence can be triggered by a number of stimuli such as radiation, chemotherapy, activation of oncogenes, metabolic derangements, and chronic inflammation. Recent Findings As we learn more about the mechanisms of cellular aging, it has become important to ask whether accelerated cellular senescence occurs in lupus and other systemic rheumatologic diseases. Summary Accelerated cellular aging may be one explanation for some of the excess morbidity and mortality seen in lupus patients. If so, drugs targeting cellular senescence may provide new options for preventing long-term complications such as organ failure in systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Lin Gao
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Maria Slack
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Anolik
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R John Looney
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
33
|
Dai X, Zhang Q, Yu Z, Sun W, Wang R, Miao D. Bmi1 Deficient Mice Exhibit Male Infertility. Int J Biol Sci 2018; 14:358-368. [PMID: 29559852 PMCID: PMC5859480 DOI: 10.7150/ijbs.23325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/21/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies have demonstrated that the polycomb repressor Bmi1 is universally expressed in all types of testicular cells and might regulate the spermatogonia proliferation, however, it is unclear whether Bmi1 plays a critical role in maintaining normal male fertility in vivo. To answer this question, we first confirmed that Bmi1 is universally expressed in all types of testicular cells and found that the gene relative expression levels of Bmi1 in testis were the highest relative to other organs. Then we investigated the role of Bmi1 in maintaining normal male fertility using Bmi1 knockout male mouse model. Our results demonstrated that Bmi1 deficiency resulted in totally male infertility with smaller testis, severe oligospermia and sperm malformation. Mechanistically, decreased serum testosterone levels with down-regulating 3βHSD and 17βHSD expression levels, reduced germ cell proliferation, increased germ cell apoptosis with up-regulating p16, p19, p53 and p21 expression levels, increased reactive oxygen species (ROS) and H2O2 levels with down-regulating gene expression levels of anti-oxidant enzymes, and increased 8-OHdG and γ.H2AX positive cells in testis were observed in Bmi1 deficient mice compared with wild-type mice. These results indicate that Bmi1 deficiency results in male infertility by reducing testosterone syntheses, increasing oxidative stress and DNA damage, activating p16 and p19 signaling pathway, inhibiting germ cell proliferation and inducing germ cell apoptosis and sperm malformation. Thus, Bmi1 may be a novel and potential target for the clinic treatment of male infertility.
Collapse
Affiliation(s)
- Xiuliang Dai
- Department of Reproductive Medicine Center, Affiliated Changzhou Maternity and Child Health Care Hospital, Nanjing Medical University, Changzhou, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenzhen Yu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Sun
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|