1
|
He Z, Ouyang Q, Chen Q, Song Y, Hu J, Hu S, He H, Li L, Liu H, Wang J. Molecular mechanisms of hypothalamic-pituitary-ovarian/thyroid axis regulating age at first egg in geese. Poult Sci 2024; 103:103478. [PMID: 38295497 PMCID: PMC10844868 DOI: 10.1016/j.psj.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Age at first egg (AFE) has consistently garnered interest as a crucial reproductive indicator within poultry production. Previous studies have elucidated the involvement of the hypothalamic-pituitary-ovarian (HPO) and hypothalamic-pituitary-thyroid (HPT) axes in regulating poultry sexual maturity. Concurrently, there was evidence suggesting a potential co-regulatory relationship between these 2 axes. However, as of now, no comprehensive exploration of the key pathways and genes responsible for the crosstalk between the HPO and HPT axes in the regulation of AFE has been reported. In this study, we conducted a comparative analysis of morphological differences and performed transcriptomic analysis on the hypothalamus, pituitary, thyroid, and ovarian stroma between normal laying group (NG) and abnormal laying group (AG). Morphological results showed that the thyroid index difference (D-) value (thyroid index D-value=right thyroid index-left thyroid index) was significantly (P < 0.05) lower in the NG than in the AG, while the ovarian index was significantly (P < 0.01) higher in the NG than in the AG. Furthermore, between NG and AG, we identified 99, 415, 167, and 1182 differentially expressed genes (DEGs) in the hypothalamus, pituitary, thyroid, and ovarian stroma, respectively. Gene ontology (GO) analysis highlighted that DEGs from 4 tissues were predominantly enriched in the "biological processes" category. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that 16, 14, 3, and 26 KEGG pathways were significantly enriched (P < 0.05) in the hypothalamus, pituitary, thyroid, and ovarian stroma. The MAPK signaling pathway emerged as the sole enriched pathway across all 4 tissues. Employing an integrated analysis of the protein-protein interaction (PPI) network and correlation analysis, we found GREB1 emerged as a pivotal component within the HPO axis to regulate estrogen-related signaling in the HPT axis, meanwhile, the HPT axis influenced ovarian development by regulating thyroid hormone-related signaling mainly through OPN5. Then, 10 potential candidate genes were identified, namely IGF1, JUN, ERBB4, KDR, PGF, FGFR1, GREB1, OPN5, DIO3, and THRB. These findings establish a foundation for elucidating the physiological and genetic mechanisms by which the HPO and HPT axes co-regulate goose AFE.
Collapse
Affiliation(s)
- Zhiyu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingliang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yang Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
2
|
Tian X, Yin Z, Li Z, Wang Z, Xing Z, Liu C, Wang L, Wang C, Zhang J, Dong L. Regeneration of Thyroid Glands in the Spleen Restores Homeostasis in Thyroidectomy Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305913. [PMID: 38059822 PMCID: PMC10853707 DOI: 10.1002/advs.202305913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Surgical removal of the thyroid gland (TG) for treating thyroid disorders leaves the patients on lifelong hormone replacement that partially compensates the physiological needs, but regenerating TG is challenging. Here, an approach is reported to regenerate TG within the spleen for fully restoring the thyroid's functions in mice, by transplanting thyroid tissue blocks to the spleen. Within 48 h, the transplanted tissue efficiently revascularizes, forming thyroid follicles similar to the native gland after 4 weeks. Structurally, the ectopically generated thyroid integrates with the surrounding splenic tissue while maintaining its integrity, separate from the lymphatic tissue. Functionally, it fully restores the native functions of the TG in hormone regulation in response to physiological stimuli, outperforming the established method of oral levothyroxine therapy in maintaining systemic homeostasis. The study demonstrates the full restoration of thyroid functions post-thyroidectomy by intrasplenic TG regeneration, providing fresh insights for designing novel therapies for thyroid-related disorders.
Collapse
Affiliation(s)
- Xue‐Jiao Tian
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhi‐Jie Yin
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen‐Jiang Li
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen‐Zhen Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
| | - Chun‐Yan Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Lin‐Tao Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Chun‐Ming Wang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau SAR999078China
| | - Jun‐Feng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
- National Resource Center for Mutant MiceNanjing210023China
- Chemistry and Biomedicine Innovative CenterNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
3
|
Mu J, Zhou X, Xing Y, Zhang M, Zhang J, Li F, Ge J, Zhao M, Liu L, Gong D, Geng T. Thyroid hormone-responsive protein mediates the response of chicken liver to fasting mainly through the cytokine-cytokine receptor interaction pathway. Br Poult Sci 2023; 64:733-744. [PMID: 37565565 DOI: 10.1080/00071668.2023.2246135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
1. The objective of this study was to explore the mediating role of thyroid hormone-responsive protein (THRSP) in the response of chicken liver to fasting.2. A batch of 7-d-old chicks with similar body weights were randomly divided into the control group and the fasting group (n = 10). The control group was fed ad libitum, while the test group fasted for 24 h. The liver and pectoral muscle tissues were collected. Chicken primary hepatocytes or myocytes were treated with different concentrations of thyroxine, glucose, insulin, oleic acid and palmitic acid, separately. Chicken primary hepatocytes were transfected with THRSP overexpression vector vs. empty vector, and the cells were used for transcriptome analysis. The mRNA expression of THRSP and other genes was determined by quantitative PCR.3. The expression of THRSP in chicken liver and pectoral muscle tissues was significantly inhibited by fasting (P < 0.05). In chicken primary hepatocytes, the expression of THRSP was significantly induced by thyroxine (0.25, 0.5, 1 mmol/l), glucose (50, 100 mmol/l), and insulin (20 nmol/l), and was significantly inhibited by palmitic acid (0.125, 0.25 mmol/l). In the myocytes, expression of THRSP was significantly induced by thyroxine (0.25, 0.5, 1 mmol/l), glucose (50 mmol/l) and oleic acid (0.125, 0.25 mmol/l), was significantly inhibited by insulin (5 nmol/l) and was not significantly affected by palmitic acid.4. Transcriptome analysis showed that overexpression of THRSP significantly affected the expression of 1411 DEGs, of which 1007 were up-regulated and 404 were down-regulated. The GO term and KEGG pathway enrichment analyses showed that these DEGs were mainly enriched in the interaction between cytokine and cytokine receptor and its regulation and signal transduction, cell growth and apoptosis and its regulation, immune response and retinol metabolism.5. In conclusion, the THRSP gene mediates biological effects of fasting by influencing the expressional regulation of the genes related to biological processes such as cytokine-cytokine receptor interaction, cell growth and apoptosis, immune response, retinol metabolism, including TGM2, HSD17B2, RUNX3, IRF1, ANKRD6, UPP2, IKBKE, and PYCR1 genes, in chicken liver.
Collapse
Affiliation(s)
- J Mu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - X Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - F Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - L Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - D Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - T Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Šošić-Jurjević B, Lütjohann D, Trifunović S, Pavlović S, Borković Mitić S, Jovanović L, Ristić N, Marina L, Ajdžanović V, Filipović B. Differences in Cholesterol Metabolism, Hepato-Intestinal Aging, and Hepatic Endocrine Milieu in Rats as Affected by the Sex and Age. Int J Mol Sci 2023; 24:12624. [PMID: 37628805 PMCID: PMC10454938 DOI: 10.3390/ijms241612624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Age and sex influence serum cholesterol levels, but the underlying mechanisms remain unclear. To investigate further, we measured cholesterol, precursors (surrogate synthesis markers), degradation products (oxysterols and bile acid precursors) in serum, the liver, jejunum, and ileum, as well as serum plant sterols (intestinal absorption markers) in male and female Wistar rats (4 and 24 months old). The analysis of histomorphometric and oxidative stress parameters (superoxide dismutase, catalase, glutathione-related enzyme activities, lipid peroxide, and protein carbonyl concentrations) in the liver and jejunum offered further insights into the age- and sex-related differences. The hepatic gene expression analysis included AR, ERα, and sex-specific growth hormone-regulated (Cyp2c11 and Cyp2c12) and thyroid-responsive (Dio1, Tbg, and Spot 14) genes by qPCR. We observed age-related changes in both sexes, with greater prominence in females. Aged females had significantly higher serum cholesterol (p < 0.05), jejunum cholesterol (p < 0.05), and serum plant sterols (p < 0.05). They exhibited poorer hepato-intestinal health compared with males, which was characterized by mild liver dysfunction (hydropic degeneration, increased serum ALT, p < 0.05, and decreased activity of some antioxidant defense enzymes, p < 0.05), mononuclear inflammation in the jejunal lamina propria, and age-related decreases in jejunal catalase and glutathione peroxidase activity (p < 0.05). Aged females showed increased levels of 27-hydroxycholesterol (p < 0.05) and upregulated ERα gene expression (p < 0.05) in the liver. Our study suggests that the more significant age-related increase in serum cholesterol in females is associated with poorer hepato-intestinal health and increased jejunal cholesterol absorption. The local increase in 27-hydroxycholesterol during aging might reduce the hepatoprotective effects of endogenous estrogen in the female liver.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Svetlana Trifunović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Slađan Pavlović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.P.); (S.B.M.)
| | - Slavica Borković Mitić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.P.); (S.B.M.)
| | - Ljubiša Jovanović
- Department of Pathology and Medical Cytology, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Koste Todorovića 26, 11000 Belgrade, Serbia;
| | - Nataša Ristić
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Ljiljana Marina
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| |
Collapse
|
5
|
Custodio RJP, Kim M, Chung YC, Kim BN, Kim HJ, Cheong JH. Thrsp Gene and the ADHD Predominantly Inattentive Presentation. ACS Chem Neurosci 2023; 14:573-589. [PMID: 36716294 DOI: 10.1021/acschemneuro.2c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are three presentations of attention-deficit/hyperactivity disorder (ADHD): the predominantly inattention (ADHD-PI), predominantly hyperactive-impulsive (ADHD-HI), and combined (ADHD-C) presentations of ADHD. These may represent distinct childhood-onset neurobehavioral disorders with separate etiologies. ADHD diagnoses are behaviorally based, so investigations into potential etiologies should be founded on behavior. Animal models of ADHD demonstrate face, predictive, and construct validity when they accurately reproduce elements of the symptoms, etiology, biochemistry, and disorder treatment. Spontaneously hypertensive rats (SHR/NCrl) fulfill many validation criteria and compare well with clinical cases of ADHD-C. Compounding the difficulty of selecting an ideal model to study specific presentations of ADHD is a simple fact that our knowledge regarding ADHD neurobiology is insufficient. Accordingly, the current review has explored a potential animal model for a specific presentation, ADHD-PI, with acceptable face, predictive, and construct validity. The Thrsp gene could be a biomarker for ADHD-PI presentation, and THRSP OE mice could represent an animal model for studying this distinct ADHD presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors─IfADo, Ardeystraße 67, 44139 Dortmund, Germany
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
6
|
A Cross-Species Analysis Reveals Dysthyroidism of the Ovaries as a Common Trait of Premature Ovarian Aging. Int J Mol Sci 2023; 24:ijms24033054. [PMID: 36769379 PMCID: PMC9918015 DOI: 10.3390/ijms24033054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Although the imbalance of circulating levels of Thyroid Hormones (THs) affects female fertility in vertebrates, its involvement in the promotion of Premature Ovarian Aging (POA) is debated. Therefore, altered synthesis of THs in both thyroid and ovary can be a trait of POA. We investigated the relationship between abnormal TH signaling, dysthyroidism, and POA in evolutionary distant vertebrates: from zebrafish to humans. Ovarian T3 signaling/metabolism was evaluated by measuring T3 levels, T3 responsive transcript, and protein levels along with transcripts governing T3 availability (deiodinases) and signaling (TH receptors) in distinct models of POA depending on genetic background and environmental exposures (e.g., diets, pesticides). Expression levels of well-known (Amh, Gdf9, and Inhibins) and novel (miR143/145 and Gas5) biomarkers of POA were assessed. Ovarian dysthyroidism was slightly influenced by genetics since very few differences were found between C57BL/6J and FVB/NJ females. However, diets exacerbated it in a strain-dependent manner. Similar findings were observed in zebrafish and mouse models of POA induced by developmental and long-life exposure to low-dose chlorpyrifos (CPF). Lastly, the T3 decrease in follicular fluids from women affected by diminished ovarian reserve, as well as of the transcripts modulating T3 signaling/availability in the cumulus cells, confirmed ovarian dysthyroidism as a common and evolutionary conserved trait of POA.
Collapse
|
7
|
Custodio RJP, Kim HJ, Kim J, Ortiz DM, Kim M, Buctot D, Sayson LV, Lee HJ, Kim BN, Yi EC, Cheong JH. Hippocampal dentate gyri proteomics reveals Wnt signaling involvement in the behavioral impairment in the THRSP-overexpressing ADHD mouse model. Commun Biol 2023; 6:55. [PMID: 36646879 PMCID: PMC9842619 DOI: 10.1038/s42003-022-04387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) often struggle with impaired executive function, temporal processing, and visuospatial memory, hallmarks of the predominantly inattentive presentation (ADHD-PI), subserved by the hippocampus. However, the specific genes/proteins involved and how they shape hippocampal structures to influence ADHD behavior remain poorly understood. As an exploratory tool, hippocampal dentate gyri tissues from thyroid hormone-responsive protein overexpressing (THRSP OE) mice with defining characteristics of ADHD-PI were utilized in proteomics. Integrated proteomics and network analysis revealed an altered protein network involved in Wnt signaling. Compared with THRSP knockout (KO) mice, THRSP OE mice showed impaired attention and memory, accompanied by dysregulated Wnt signaling affecting hippocampal dentate gyrus cell proliferation and expression of markers for neural stem cell (NSC) activity. Also, combined exposure to an enriched environment and treadmill exercise could improve behavioral deficits in THRSP OE mice and Wnt signaling and NSC activity. These findings show new markers specific to the ADHD-PI presentation, converging with the ancient and evolutionary Wnt signaling pathways crucial for cell fate determination, migration, polarity, and neural patterning during neurodevelopment. These findings from THRSP OE mice support the role of Wnt signaling in neurological disorders, particularly ADHD-PI presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- grid.419241.b0000 0001 2285 956XDepartment of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystr. 67, 44139 Dortmund, Germany ,grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea ,grid.411545.00000 0004 0470 4320Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si Jeollabuk-do, 54896 Republic of Korea
| | - Hee Jin Kim
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Jiyeon Kim
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Darlene Mae Ortiz
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Mikyung Kim
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea ,grid.412357.60000 0004 0533 2063Department of Chemistry & Life Science, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Danilo Buctot
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Leandro Val Sayson
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Hyun Jun Lee
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Bung-Nyun Kim
- grid.31501.360000 0004 0470 5905Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu Seoul, 03080 Republic of Korea
| | - Eugene C. Yi
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jae Hoon Cheong
- grid.411545.00000 0004 0470 4320Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si Jeollabuk-do, 54896 Republic of Korea
| |
Collapse
|
8
|
Yu ZX, Xiang C, Xu SG, Zhang YP. The clinical significance of thyroid hormone-responsive in thyroid carcinoma and its potential regulatory pathway. Medicine (Baltimore) 2022; 101:e29972. [PMID: 35945747 PMCID: PMC9351852 DOI: 10.1097/md.0000000000029972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study aimed to evaluate the clinical significance of thyroid hormone-responsive (THRSP) and explore its relevant pathways in thyroid carcinoma (THCA). The gene expression data of THRSP were obtained and the prognostic significance of THRSP in THCA was analyzed through various bioinformatics databases. Then, the factors influencing THRSP mRNA expression were explored, and the function of THRSP in predicting the lymph node metastasis (LNM) stage was determined. We further performed the enrichment analysis and constructed a protein-protein interaction (PPI) network to examine potential regulatory pathways associated with THRSP. THRSP gene expression was significantly increased in THCA compared with the normal tissues. High THRSP mRNA expression had a favorable overall survival (OS) in THCA patients (P < .05). Additionally, the mRNA expression of THRSP was related to stage, histological subtype, and methylation among THCA patients (all P < .05). Besides, THRSP served as a potent predictor in discriminating the LNM stage of thyroid cancer patients. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) on THRSP-associated genes, THRSP was positively related to metabolic pathways. The upregulation of THRSP predicted a good OS in THCA patients. Furthermore, THRSP might inhibit THCA progression through positive regulation of metabolism-associated pathways.
Collapse
Affiliation(s)
- Zhen-xing Yu
- Department of Thyroid Surgery, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-gui Xu
- Orthopedics Department, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Yang-ping Zhang
- Department of Thyroid Surgery, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
- *Correspondence: Yang-ping Zhang, Department of Thyroid Surgery, Mindong Hospital Affiliated to Fujian Medical University, No. 89 Heshan Road, Chengnan Street, Fu’an 355000, Ningde, Fujian, China (e-mail: )
| |
Collapse
|
9
|
Wang S, Pan C, Ma X, Yang C, Tang L, Huang J, Wei X, Li H, Ma Y. Identification and Functional Verification Reveals that miR-195 Inhibiting THRSP to Affect Fat Deposition in Xinyang Buffalo. Front Genet 2022; 12:736441. [PMID: 35003205 PMCID: PMC8727870 DOI: 10.3389/fgene.2021.736441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
The buffalo population is extensive in China, but its meat quality is relatively inferior. Therefore, improving meat quality should be one of the breeding goals. microRNAs (miRNAs) play an essential regulatory role in the post-transcriptional expression of genes. Some studies have reported their function regulating genes related to fat deposition and adipocyte differentiation in cattle, but there is limited reports in buffalo. We performed small RNA transcriptome sequencing of Xinyang buffalo adipose tissue between calves and adults in this study. As a result, 282 mature miRNAs were significantly differentially expressed, and co-expression analysis showed that 454 miRNAs were significantly associated with developmental stages. Target gene identification, GO (gene ontology) annotation, and KEGG analysis of miRNAs showed that miR-195, miR-192, and miR-24-3p could target key genes for lipogenesis and thus regulate adipose deposition and differentiation. Among them, miR-195 was significantly upregulated in adipose tissue and induced adipocytes of adult buffaloes, and its overexpression significantly inhibited lipid accumulation in primary adipocytes. Dual-luciferase reporter gene analysis showed that miR-195 reduced the expression of thyroid hormone response protein (THRSP) by targeting its 3′ untranslated terminal region, suggesting that miR-195 may inhibit lipid accumulation in adipocytes by regulating THRSP. The results confirmed the reliability of predictive screening of miRNAs and provided theoretical support for buffalo fattening.
Collapse
Affiliation(s)
- Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojie Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chaoyun Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Lin Tang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
10
|
Low striatal T3 is implicated in inattention and memory impairment in an ADHD mouse model overexpressing thyroid hormone-responsive protein. Commun Biol 2021; 4:1101. [PMID: 34545202 PMCID: PMC8452653 DOI: 10.1038/s42003-021-02633-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder, potentially with a biological basis; however, its exact cause remains unknown. Thyroid hormone (TH) abnormalities are more prevalent in patients with ADHD than in the general population, indicating a shared pathogenetic mechanism for these conditions. Previously, we identified that overexpression of thyroid hormone-responsive protein (THRSP), a gene highly responsive to TH status, induced inattention in male mice. Herein, we sought to explore whether TH function in THRSP-overexpressing (THRSP OE) mice influences ADHD-like (inattention) behavior. We now confirm that THRSP overexpression in male mice reproduces behavioral features of ADHD, including sustained inattention and memory impairment, accompanied by excessive theta waves that were found normal in both the THRSP-knockout and hetero groups. Physiological characterization revealed low striatal T3 levels in the THRSP OE mice due to reduced striatal T3-specific monocarboxylate transporter 8 (MCT8), indicating brain-specific hypothyroidism in this transgenic mouse strain. TH replacement for seven days rescued inattention and memory impairment and the normalization of theta waves. This study further supports the involvement of the upregulated THRSP gene in ADHD pathology and indicates that THRSP OE mice can serve as an animal model for the predominantly inattentive subtype of ADHD.
Collapse
|
11
|
Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites 2021; 11:metabo11080502. [PMID: 34436443 PMCID: PMC8398935 DOI: 10.3390/metabo11080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a vital organ that sustains multiple functions beneficial for the whole organism. It is sexually dimorphic, presenting sex-biased gene expression with implications for the phenotypic differences between males and females. Estrogens are involved in this sex dimorphism and their actions in the liver of several reptiles, fishes, amphibians, and birds are discussed. The liver participates in reproduction by producing vitellogenins (yolk proteins) and eggshell proteins under the control of estrogens that act via two types of receptors active either mainly in the cell nucleus (ESR) or the cell membrane (GPER1). Estrogens also control hepatic lipid and lipoprotein metabolisms, with a triglyceride carrier role for VLDL from the liver to the ovaries during oogenesis. Moreover, the activation of the vitellogenin genes is used as a robust biomarker for exposure to xenoestrogens. In the context of liver diseases, high plasma estrogen levels are observed in fatty liver hemorrhagic syndrome (FLHS) in chicken implicating estrogens in the disease progression. Fishes are also used to investigate liver diseases, including models generated by mutation and transgenesis. In conclusion, studies on the roles of estrogens in the non-mammalian oviparous vertebrate liver have contributed enormously to unveil hormone-dependent physiological and physiopathological processes.
Collapse
|
12
|
Ren J, Tian W, Jiang K, Wang Z, Wang D, Li Z, Yan F, Wang Y, Tian Y, Ou K, Wang H, Kang X, Li H, Liu X. Global investigation of estrogen-responsive genes regulating lipid metabolism in the liver of laying hens. BMC Genomics 2021; 22:428. [PMID: 34107898 PMCID: PMC8190866 DOI: 10.1186/s12864-021-07679-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/05/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Estrogen plays an essential role in female development and reproductive function. In chickens, estrogen is critical for lipid metabolism in the liver. The regulatory molecular network of estrogen in chicken liver is poorly understood. To identify estrogen-responsive genes and estrogen functional sites on a genome-wide scale, we determined expression profiles of mRNAs, lncRNAs, and miRNAs in estrogen-treated ((17β-estradiol)) and control chicken livers using RNA-Sequencing (RNA-Seq) and studied the estrogen receptor α binding sites by ChIP-Sequencing (ChIP-Seq). RESULTS We identified a total of 990 estrogen-responsive genes, including 962 protein-coding genes, 11 miRNAs, and 17 lncRNAs. Functional enrichment analyses showed that the estrogen-responsive genes were highly enriched in lipid metabolism and biological processes. Integrated analysis of the data of RNA-Seq and ChIP-Seq, identified 191 genes directly targeted by estrogen, including 185 protein-coding genes, 4 miRNAs, and 2 lncRNAs. In vivo and in vitro experiments showed that estrogen decreased the mRNA expression of PPARGC1B, which had been reported to be linked with lipid metabolism, by directly increasing the expression of miR-144-3p. CONCLUSIONS These results increase our understanding of the functional network of estrogen in chicken liver and also reveal aspects of the molecular mechanism of estrogen-related lipid metabolism.
Collapse
Affiliation(s)
- Junxiao Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dandan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kepeng Ou
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hongjun Wang
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
13
|
Hu Q, Ma X, Li C, Zhou C, Chen J, Gu X. Downregulation of THRSP Promotes Hepatocellular Carcinoma Progression by Triggering ZEB1 Transcription in an ERK-dependent Manner. J Cancer 2021; 12:4247-4256. [PMID: 34093825 PMCID: PMC8176411 DOI: 10.7150/jca.51657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 05/01/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Thyroid hormone responsive (THRSP) gene is primarily known for regulating responses to thyroid hormones, but its expression has been correlated with differential outcomes in some cancers. To date, however, its role in the progression of HCC remains unknown. Methods: The mRNA and protein expression of THRSP was measured in HCC tissues and cell lines via qPCR and western blot assays. Lentiviral transfection was used to establish stable cell lines overexpressing THRSP and shRNA was used to silence THRSP. The effects of THRSP on cell growth were then determined in vivo and in vitro. Cell migration and invasion of HCC cells were investigated using transwell and wound healing assays. Results: In tissue samples from patients, HCC tissues had decreased THRSP expression relative to adjacent healthy tissues. Further, patients with decreased THRSP protein and mRNA expression had worse outcomes. Knockdown of THRSP led to increased cell growth, migration, and invasion of HCC cells, and THRSP overexpression exerted an anti-tumor effect in vivo and in vitro. We found that increased expression of THRSP inhibited hepatocellular carcinogenesis by inhibiting the process of epithelial-to-mesenchymal transition through acting on the ERK/ZEB1 signaling pathway. Conclusion: THRSP may act as a functional tumor suppressor and was frequently reduced in HCC tissue samples. We identified a novel pathway for the THRSP/ERK/ZEB1-regulated suppression of HCC tumorigenesis and invasion. Restoring THRSP expression may represent a promising approach for HCC therapies.
Collapse
Affiliation(s)
- Qiong Hu
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Chuner Li
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Chenhao Zhou
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Jiayao Chen
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Xuechun Gu
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| |
Collapse
|
14
|
Corbett RJ, Te Pas MFW, van den Brand H, Groenen MAM, Crooijmans RPMA, Ernst CW, Madsen O. Genome-Wide Assessment of DNA Methylation in Chicken Cardiac Tissue Exposed to Different Incubation Temperatures and CO 2 Levels. Front Genet 2020; 11:558189. [PMID: 33193638 PMCID: PMC7655987 DOI: 10.3389/fgene.2020.558189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Temperature and CO2 concentration during incubation have profound effects on broiler chick development, and numerous studies have identified significant effects on hatch heart weight (HW) as a result of differences in these parameters. Early life environment has also been shown to affect broiler performance later in life; it has thus been suggested that epigenetic mechanisms may mediate long-term physiological changes induced by environmental stimuli. DNA methylation is an epigenetic modification that can confer heritable changes in gene expression. Using reduced-representation bisulfite sequencing (RRBS), we assessed DNA methylation patterns in cardiac tissue of 84 broiler hatchlings incubated at two egg shell temperatures (EST; 37.8°C and 38.9°C) and three CO2 concentrations (0.1%, 0.4%, and 0.8%) from day 8 of incubation onward. We assessed differential methylation between EST treatments and identified 2,175 differentially methylated (DM) CpGs (1,121 hypermethylated, 1,054 hypomethylated at 38.9° vs. 37.8°) in 269 gene promoters and 949 intragenic regions. DM genes (DMGs) were associated with heart developmental processes, including cardiomyocyte proliferation and differentiation. We identified enriched binding motifs among DM loci, including those for transcription factors associated with cell proliferation and heart development among hypomethylated CpGs that suggest increased binding ability at higher EST. We identified 9,823 DM CpGs between at least two CO2 treatments, with the greatest difference observed between 0.8 and 0.1% CO2 that disproportionately impacted genes involved in cardiac muscle development and response to low oxygen levels. Using HW measurements from the same chicks, we performed an epigenome-wide association study (EWAS) for HW, and identified 23 significantly associated CpGs, nine of which were also DM between ESTs. We found corresponding differences in transcript abundance between ESTs in three DMGs (ABLIM2, PITX2, and THRSP). Hypomethylation of an exonic CpG in PITX2 at 38.9°C was associated with increased expression, and suggests increased cell proliferation in broiler hatchlings incubated at higher temperatures. Overall, these results identified numerous epigenetic associations between chick incubation factors and heart development that may manifest in long-term differences in animal performance.
Collapse
Affiliation(s)
- Ryan J Corbett
- Genetics and Genome Sciences Graduate Program, Michigan State University, East Lansing, MI, United States
| | - Marinus F W Te Pas
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| | - Henry van den Brand
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| | | | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Association of a new 99-bp indel of the CEL gene promoter region with phenotypic traits in chickens. Sci Rep 2020; 10:3215. [PMID: 32081917 PMCID: PMC7035288 DOI: 10.1038/s41598-020-60168-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Carboxyl ester lipase (CEL) encodes a cholesterol ester hydrolase that is secreted into the duodenum as a component of pancreatic juice. The objective of this study was to characterize the CEL gene, investigate the association between the CEL promoter variants and chicken phenotypic traits, and explore the CEL gene regulatory mechanism. An insertion/deletion (indel) caused by a 99-bp insertion fragment was shown for the first time in the chicken CEL promoter, and large differences in allelic frequency were found among commercial breeds, indigenous and feral birds. Association analysis demonstrated that this indel site had significant effects on shank length, shank girth, chest breadth at 8 weeks (p < 0.01), evisceration weight, sebum weight, breast muscle weight, and leg weight (p < 0.05). Tissue expression profiles showed extremely high levels of the CEL gene in pancreatic tissue. Moreover, the expression levels of the genes APOB, MTTP, APOV1 and SREBF1, which are involved in lipid transport, were significantly reduced by adding a 4% oxidized soybean oil diet treatment at the individual level and transfecting the embryonic primary hepatocytes with a CEL-overexpression vector. Interestingly, the results showed that the expression level of the II homozygous genotype was significantly higher than that of the ID and DD genotypes, while individuals with DD genotypes had higher phenotypic values. Therefore, these data suggested that the CEL gene might affect body growth by participating in hepatic lipoprotein metabolism and that the 99-bp indel polymorphism could be a potentially useful genetic marker for improving the economically important traits of chickens.
Collapse
|
16
|
Crump D, Williams KL, Chiu S, Periard L, Letcher RJ. A rapid method of preparing complex organohalogen extracts from avian eggs: Applications to in vitro toxicogenomics screening. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:811-819. [PMID: 30657196 DOI: 10.1002/etc.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Double-crested cormorants are piscivorous birds that breed in variably contaminated colonies across the Laurentian Great Lakes of North America. Collection and preparation of environmentally relevant extracts from eggs that contain variable concentrations of organohalogen contaminants represents a minimally invasive approach to characterize potential effects of exposure using in vitro bioassays. In the present study, a rapid, efficient lipid freeze-filtration extraction method was used to prepare extracts from double-crested cormorant eggs collected from 5 breeding colonies that had variable organohalogen contaminant burdens. Extracts, solubilized in dimethyl sulfoxide, were administered to chicken embryonic hepatocytes (CEHs) to determine effects on cell viability, 7-ethoxyresorufin-O-deethylase (EROD) activity, and messenger RNA expression using a chicken ToxChip polymerase chain reaction (PCR) array. The EROD median effect concentration (EC50) values were lower for extracts with greater organohalogen contaminant burdens and thus permitted an initial ranking of colonies based on the efficacy of eliciting an aryl hydrocarbon receptor-mediated response. The ToxChip PCR array data provided a more exhaustive, pathway-based evaluation of extract effects; variability in the transcriptomic profiles was associated with organohalogen contaminant burdens. For example, extracts from Mud Island (Detroit River, MI, USA) had among the highest organohalogen contaminant burdens and elicited a greater biochemical (EROD EC50 = 0.005) and transcriptomic response (22/43 genes altered on the array) in CEHs compared with the least contaminated site, which was Mandarte Island (BC, Canada; EROD EC50 = 0.172; 8/43 genes altered). Avian eggs represent a useful biomonitoring tool for determining complex mixture effects, and the combination of a rapid extraction method, an in vitro bioassay, and targeted endpoint evaluation (biochemical and transcriptomic) shows great promise as an environmental effects monitoring approach. Environ Toxicol Chem 2019;38:811-819. © 2019 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Kim L Williams
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Luke Periard
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
The serum level of a novel lipogenic protein Spot 14 was reduced in metabolic syndrome. PLoS One 2019; 14:e0212341. [PMID: 30763384 PMCID: PMC6375670 DOI: 10.1371/journal.pone.0212341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Spot 14 (S14) protein is primarily expressed in adipogenic tissues. Compared to wild type, S14 knockout mice had better resistance to diet-induced obesity and glucose tolerance. However, the association between serum S14 level and metabolic variables in humans has never been investigated. The objectives of this study were to evaluate the associations between serum S14 concentrations with components of metabolic syndrome (MetS). A total of 327 subjects were recruited in this cross-sectional study and categorized by presence of MetS. The mean serum levels of S14 were significantly lower in subjects with MetS than those without (87.1±26.3 μg/L vs. 107.3±40.2 μg/L, p<0.001). In addition, the subjects with central obesity, low high density lipoprotein-C (HDL-C) or hypertriglyceridemia also had significantly lower S14 levels in comparison to those without. Adjusted with age and sex, diagnosis of MetS (β = -0.227, p<0.001), central obesity (β = -0.176, p = 0.001), low HDL-C (β = -0.149, p = 0.005), and high triglyceride (TG) (β = -0.198, p<0.001) were negatively associated with log transformation of serum S14 levels (logS14). With 25% logS14 increased, the risk of MetS (OR 0.65, 95% CI, 0.51-0.82, p<0.001), central obesity (OR 0.72, 95% CI, 0.58-0.89, p = 0.002), low HDL-C (OR 0.76, 95% CI, 0.61-0.95, p = 0.015) or high TG (OR 0.65, 95% CI, 0.51-0.83, p = 0.001) was reduced with a dose response trend. Our analysis revealed that patients with MetS had lower serum S14 levels than those without. Negative associations existed between MetS, central obesity, high TG, low HDL-C and logS14.
Collapse
|
18
|
Pagé-Larivière F, Chiu S, Jones SP, Farhat A, Crump D, O'Brien JM. Prioritization of 10 organic flame retardants using an avian hepatocyte toxicogenomic assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3134-3144. [PMID: 30133003 DOI: 10.1002/etc.4260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
As the number of chemicals developed and used by industry increases, the inherent limitations of traditional toxicology approaches become an unavoidable issue. To help meet the demand for toxicity evaluation, new methods, such as high-throughput toxicity screening, are currently being developed to permit rapid determination of toxic, molecular, and/or biochemical effects of a wide range of chemicals. In the present study, we demonstrate the utility of an avian in vitro toxicogenomics screening approach to determine the cytotoxic and transcriptomic effects of 10 organic flame retardants (OFRs) currently of international priority for ecological risk evaluation to prioritize and inform future toxicological studies. Hepatocytes from 2 avian species, chicken and double-crested cormorant, were prepared and exposed for 24 h to various concentrations (0-300 μM) of the following 10 OFRs: Chemical Abstracts Service registration numbers 29761-21-5, 56803-37-3 (p-tert-butylphenyl diphenyl phosphate [BPDP]), 65652-41-7, 68937-41-7 (phenol, isopropylated, phosphate [3:1] [IPPP]), 95906-11-9, 19186-97-1, 26040-51-7, 35948-25-5, 21850-44-2, and 25713-60-4. Cell viability, the 7-ethoxyresorufin-O-deethylase assay, and transcriptomic analysis using species-specific ToxChip polymerase chain reaction arrays were performed to evaluate the in vitro effect of these OFRs. Of the 10 OFRs assessed, BPDP and IPPP elicited the strongest cytotoxic and transcriptomic responses in both chicken and double-crested cormorant hepatocytes and are therefore recommended as priority candidates for further wildlife toxicological investigations. Environ Toxicol Chem 2018;37:3134-3144. © 2018 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Florence Pagé-Larivière
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Stephanie P Jones
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Amani Farhat
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Cogburn LA, Trakooljul N, Chen C, Huang H, Wu CH, Carré W, Wang X, White HB. Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). BMC Genomics 2018; 19:695. [PMID: 30241500 PMCID: PMC6151027 DOI: 10.1186/s12864-018-5080-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Although hatching is perhaps the most abrupt and profound metabolic challenge that a chicken must undergo; there have been no attempts to functionally map the metabolic pathways induced in liver during the embryo-to-hatchling transition. Furthermore, we know very little about the metabolic and regulatory factors that regulate lipid metabolism in late embryos or newly-hatched chicks. In the present study, we examined hepatic transcriptomes of 12 embryos and 12 hatchling chicks during the peri-hatch period—or the metabolic switch from chorioallantoic to pulmonary respiration. Results Initial hierarchical clustering revealed two distinct, albeit opposing, patterns of hepatic gene expression. Cluster A genes are largely lipolytic and highly expressed in embryos. While, Cluster B genes are lipogenic/thermogenic and mainly controlled by the lipogenic transcription factor THRSPA. Using pairwise comparisons of embryo and hatchling ages, we found 1272 genes that were differentially expressed between embryos and hatchling chicks, including 24 transcription factors and 284 genes that regulate lipid metabolism. The three most differentially-expressed transcripts found in liver of embryos were MOGAT1, DIO3 and PDK4, whereas THRSPA, FASN and DIO2 were highest in hatchlings. An unusual finding was the “ectopic” and extremely high differentially expression of seven feather keratin transcripts in liver of 16 day embryos, which coincides with engorgement of liver with yolk lipids. Gene interaction networks show several transcription factors, transcriptional co-activators/co-inhibitors and their downstream genes that exert a ‘ying-yang’ action on lipid metabolism during the embryo-to-hatching transition. These upstream regulators include ligand-activated transcription factors, sirtuins and Kruppel-like factors. Conclusions Our genome-wide transcriptional analysis has greatly expanded the hepatic repertoire of regulatory and metabolic genes involved in the embryo-to-hatchling transition. New knowledge was gained on interactive transcriptional networks and metabolic pathways that enable the abrupt switch from ectothermy (embryo) to endothermy (hatchling) in the chicken. Several transcription factors and their coactivators/co-inhibitors appear to exert opposing actions on lipid metabolism, leading to the predominance of lipolysis in embryos and lipogenesis in hatchlings. Our analysis of hepatic transcriptomes has enabled discovery of opposing, interconnected and interdependent transcriptional regulators that provide precise ying-yang or homeorhetic regulation of lipid metabolism during the critical embryo-to-hatchling transition. Electronic supplementary material The online version of this article (10.1186/s12864-018-5080-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| | - Nares Trakooljul
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Present Address: Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Wilfrid Carré
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033, Rennes, France
| | - Xiaofei Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Harold B White
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
20
|
Custodio RJP, Botanas CJ, de la Peña JB, Dela Peña IJ, Kim M, Sayson LV, Abiero A, Ryoo ZY, Kim BN, Kim HJ, Cheong JH. Overexpression of the Thyroid Hormone-Responsive (THRSP) Gene in the Striatum Leads to the Development of Inattentive-like Phenotype in Mice. Neuroscience 2018; 390:141-150. [PMID: 30138648 DOI: 10.1016/j.neuroscience.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/03/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 8-12% of children globally. Factor analyses have divided ADHD symptoms into two domains: inattention and a combination of hyperactivity and impulsivity. The identification of domain-specific genetic risk variants may help uncover potential genetic mechanisms underlying ADHD. We have previously identified that thyroid hormone-responsive (THRSP) gene expression is upregulated in spontaneously hypertensive rats (SHR/NCrl) and Wistar-Kyoto (WKY/NCrl) rats which exhibited inattention behavior. Thus, we established a line of THRSP overexpressing (OE) mice and assessed their behavior through an array of behavioral tests. The gene and protein overexpression of THRSP in the striatum (STR) was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The THRSP OE mice exhibited inattention in the novel-object recognition and Y-maze test, but not hyperactivity in the open-field test and impulsivity in the cliff-avoidance and delay-discounting task. We have also found that expression of dopamine-related genes (dopamine transporter, tyrosine hydroxylase, and dopamine D1 and D2 receptors) in the STR increased. Treatment with methylphenidate (5 mg/kg), the most commonly used medication for ADHD, improved attention and normalized expression levels of dopamine-related genes in THRSP OE mice. Our findings suggest that THRSP plays a role in the inattention phenotype of ADHD and that the THRSP OE mice may be used as an animal model to elucidate the genetic mechanisms of the disorder.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea; Department of Biological Sciences, University of Texas Dallas, Richardson, TX 75080, United States
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea
| | - Bung-Nyun Kim
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea.
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea.
| |
Collapse
|
21
|
Tian W, Zheng H, Yang L, Li H, Tian Y, Wang Y, Lyu S, Brockmann GA, Kang X, Liu X. Dynamic Expression Profile, Regulatory Mechanism and Correlation with Egg-laying Performance of ACSF Gene Family in Chicken (Gallus gallus). Sci Rep 2018; 8:8457. [PMID: 29855539 PMCID: PMC5981300 DOI: 10.1038/s41598-018-26903-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/21/2018] [Indexed: 01/03/2023] Open
Abstract
Acyl-CoA synthetases (ACSs) are responsible for acyl-CoA synthesis from nonpolar hydrophilic fatty acids and play a vital role in many metabolic processes. As a category of ACS isozymes, members of ACS family (ACSF1-3) participate in lipid metabolism; however, their expression patterns, regulatory mechanisms and effects on egg-laying performance in chicken are poorly understood. Our in vivo and in vitro studies showed that ACSF1-3 genes were extensively expressed, and their expression levels changed dynamically in the liver among different development stages. Moreover, ACSF1 expression was upregulated and ACSF2 expression was downregulated by estrogen, but ACSF3 showed no response to estrogen treatment. The regulatory effect of estrogen on ACSF1 expression was mediated via ERα. The ACSF2 was highly expressed in the liver in peak-laying hens compared with pre-laying and late-laying hens, and also highly expressed in the liver continued egg-laying hens compared with inactive egg-laying hens. It is suggested that hepatic ACSF2 expression level might relate to egg-laying performance in chicken. In conclusion, the expression of ACSF1 was upregulated by estrogen via ERα, and the expression of ACSF2 was downregulated by estrogen and might be related to egg-laying performance in chicken.
Collapse
Affiliation(s)
- Weihua Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hang Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liyu Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Shijie Lyu
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universit€at zu Berlin, Invalidenstraße 42, Berlin, 10115, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universit€at zu Berlin, Invalidenstraße 42, Berlin, 10115, Germany
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| |
Collapse
|