1
|
Tan SQ, Wei HS, Li H, Li Z, Liu XX. Dissecting the role of pheromone-binding protein 2 in courtship behavior of male Grapholita molesta moths. Int J Biol Macromol 2025; 303:140606. [PMID: 39900166 DOI: 10.1016/j.ijbiomac.2025.140606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
For fruit-boring pests like Grapholita molesta, the courtship behavior of male moths is a crucial aspect that can be utilized for developing control methods. This study investigates the role of pheromone-binding proteins (PBPs) in the courtship behavior of male G. molesta moths, particularly how sex pheromone components affect PBP expression. We found that three GmolPBPs genes were mainly expressed in the antennae of adult males, with no expression in larvae or pupae. Notably, GmolPBP2 expression was significantly higher in males, while GmolPBP1 was more pronounced in females. Unmated males exposed to females or the sex pheromone component Z8-12:Ac showed marked upregulation of GmolPBPs expression. Using affinity chromatography, we purified GmolPBPs and confirmed their binding affinities. Especially for GmolPBP2, this protein had a high affinity for Z8-12:Ac and E8-12:Ac. RNA interference targeting GmolPBPs revealed that silencing GmolPBP2 significantly reduced male responses to sex pheromone components and courtship behavior towards females, while silencing GmolPBP1 and GmolPBP3 had no significant effects. These findings highlight the crucial role of GmolPBP2 in mediating male courtship behavior, emphasizing the importance of PBPs in pheromone communication and mating success in G. molesta.
Collapse
Affiliation(s)
- Shu-Qian Tan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong-Shuang Wei
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao-Xia Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Wei Z, Wang Y, Zheng K, Wang Z, Liu R, Wang P, Li Y, Gao P, Akbari OS, Yang X. Loss-of-function in testis-specific serine/threonine protein kinase triggers male infertility in an invasive moth. Commun Biol 2024; 7:1256. [PMID: 39363033 PMCID: PMC11450154 DOI: 10.1038/s42003-024-06961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Genetic biocontrol technologies present promising and eco-friendly strategies for the management of pest and insect-transmitted diseases. Although considerable advancements achieve in gene drive applications targeting mosquitoes, endeavors to combat agricultural pests have been somewhat restricted. Here, we identify that the testis-specific serine/threonine kinases (TSSKs) family is uniquely expressed in the testes of Cydia pomonella, a prominent global invasive species. We further generated male moths with disrupted the expression of TSSKs and those with TSSKs disrupted using RNA interference and CRISPR/Cas9 genetic editing techniques, resulting in significant disruptions in spermiogenesis, decreased sperm motility, and hindered development of eggs. Further explorations into the underlying post-transcriptional regulatory mechanisms reveales the involvement of lnc117962 as a competing endogenous RNA (ceRNA) for miR-3960, thereby regulating TSSKs. Notably, orchard trials demonstrates that the release of male strains can effectively suppress population growth. Our findings indicate that targeting TSSKs could serve as a feasible avenue for managing C. pomonella populations, offering significant insights and potential strategies for controlling invasive pests through genetic sterile insect technique (gSIT) technology.
Collapse
Affiliation(s)
- Zihan Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yaqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Kangwu Zheng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
| | - Ronghua Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Pengcheng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yuting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
3
|
Chai W, Mao X, Li C, Zhu L, He Z, Wang B. Mannitol mediates the mummification behavior of Thitarodes xiaojinensis larvae infected with Ophiocordyceps sinensis. Front Microbiol 2024; 15:1411645. [PMID: 39224221 PMCID: PMC11368059 DOI: 10.3389/fmicb.2024.1411645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Parasites can facilitate their own spread and reproduction by manipulating insect hosts behavior, as seen in the interaction between Thitarodes xiaojinensis and Ophiocordyceps sinensis. Infection by O. sinensis leads to the mummification of T. xiaojinensis larvae, but the underlying mechanisms remain mysterious. Methods The morphology of O. sinensis infected larvae and fungal growth were first observed. Subsequently, the metabolite changes in the larvae before and after infection with the fungus were analyzed by LC/MS and targeted metabolomics. The expression of mannitol-related genes was detected using RT-qPCR, and morphological changes in larvae were observed after injection of different concentrations of mannitol into the O. sinensis-infected larvae. Results Significant changes were found in phenotype, fungal morphology in hemocoel, larval hardness, and mannitol metabolites in infected, mummified 0 h larvae and larvae 5 days after mummification behavior. Surprisingly, the occurrence of mummification behavior was accompanied by fungal dimorphism, as well as the absence of mannitol in both infected and non-infected larvae, until the initial accumulation of mannitol and the expression of mannitol-associated genes occurred at the time of mummification behavior. The presence of mannitol may promote fungal dimorphism to mediate changes in fungal toxicity or resistance, leading to the end of the fungus-insect coexistence period and the incidence of mummification behavior. Furthermore, mannitol injections increase the mummification rate of the infected larvae without significant difference from the normal mummification phenotype. Discussion This finding suggests the importance of mannitol in the mummification of host larvae infected with O. sinensis.
Collapse
Affiliation(s)
- Wenmin Chai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xianbing Mao
- Chongqing Xinstant Biotechnology Co., Ltd., Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongyi He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Han WK, Tang FX, Gao HL, Wang Y, Yu N, Jiang JJ, Liu ZW. Co-CRISPR: A valuable toolkit for mutation enrichment in the gene editing of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:625-636. [PMID: 36169087 DOI: 10.1111/1744-7917.13122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The CRISPR/Cas9 system has been successfully applied in dozens of diverse species; although the screening of successful CRISPR/Cas9 editing events remains particularly laborious, especially for those that occur at relatively low frequency. Recently, a co-CRISPR strategy was proved to enrich the desired CRISPR events. Here, the co-CRISPR strategy was developed in the Fall armyworm, Spodoptera frugiperda, with kynurenine 3-monooxygenase gene (kmo) as a marker. The kmo mosaics induced by single-guide RNAs (sgRNAs)/Cas9 displayed the darker green color phenotype in larvae, compared with wild type (brown), and mosaic-eye adults were significantly acquired from the mosaic larvae group. In the kmo knockout strain, no significant difference was observed in larval development and adult reproduction. Acetylcholinesterase 2 (ace2) and Wnt1 were selected as target genes to construct the co-CRISPR strategy using kmo marker. By co-injection of kmo and ace2 sgRNAs, the mutant efficiency of ace2 was significantly increased in the kmo mosaic (larvae or adults) groups. Similarly, more malformed pupae with Wnt1 mutations were observed in the darker green larvae group. Taken together, these results demonstrated that kmo was a suitable visible marker gene for the application and extension of co-CRISPR strategy in Fall armyworm. Using darker green color in larvae or mosaic-eye in adults from kmo knockout as a marker, the mutant efficiency of a target gene could be enriched in a Fall armyworm group consisting of marked individuals. The co-CRISPR strategy is helpful for gene function studies by the knockout technique with no or lethal phenotypes.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao-Li Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jun Jiang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Bai Y, He Y, Shen CZ, Li K, Li DL, He ZQ. CRISPR/Cas9-Mediated genomic knock out of tyrosine hydroxylase and yellow genes in cricket Gryllus bimaculatus. PLoS One 2023; 18:e0284124. [PMID: 37036877 PMCID: PMC10085040 DOI: 10.1371/journal.pone.0284124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Gryllus bimaculatus is an emerging model organism in various fields of biology such as behavior, neurology, physiology and genetics. Recently, application of reverse genetics provides an opportunity of understanding the functional genomics and manipulating gene regulation networks with specific physiological response in G. bimaculatus. By using CRISPR/Cas9 system in G. bimaculatus, we present an efficient knockdown of Tyrosine hydroxylase (TH) and yellow-y, which are involved in insect melanin and catecholamine-biosynthesis pathway. As an enzyme catalyzing the conversion of tyrosine to 3,4-dihydroxyphenylalanine, TH confines the first step reaction in the pathway. Yellow protein (dopachrome conversion enzyme, DCE) is also involved in the melanin biosynthetic pathway. The regulation system and molecular mechanism of melanin biogenesis in the pigmentation and their physiological functions in G. bimaculatus hasn't been well defined by far for lacking of in vivo models. Deletion and insertion of nucleotides in target sites of both TH and Yellow are detected in both F0 individuals and the inheritable F1 progenies. We confirm that TH and yellow-y are down-regulated in mutants by quantitative real-time PCR analysis. Compared with the control group, mutations of TH and yellow-y genes result in defects in pigmentation. Most F0 nymphs with mutations of TH gene die by the first instar, and the only adult had significant defects in the wings and legs. However, we could not get any homozygotes of TH mutants for all the F2 die by the first instar. Therefore, TH gene is very important for the growth and development of G. bimaculatus. When the yellow-y gene is knocked out, 71.43% of G. bimaculatus are light brown, with a slight mosaic on the abdomen. The yellow-y gene can be inherited stably through hybridization experiment with no obvious phenotype except lighter cuticular color. The present loss of function study indicates the essential roles of TH and yellow in pigmentation, and TH possesses profound and extensive effects of dopamine synthesis in embryonic development in G. bimaculatus.
Collapse
Affiliation(s)
- Yun Bai
- School of Life Science, East China Normal University, Shanghai, China
| | - Yuan He
- School of Life Science, East China Normal University, Shanghai, China
| | - Chu-Ze Shen
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Zhu-Qing He
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Chen L, Tian Z, Hu J, Wang XY, Wang MQ, Lu W, Wang XP, Zheng XL. Molecular Characterization and Expression Patterns of Two Pheromone-Binding Proteins from the Diurnal Moth Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae). Int J Mol Sci 2022; 24:ijms24010385. [PMID: 36613830 PMCID: PMC9820377 DOI: 10.3390/ijms24010385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Sex pheromone-binding proteins (PBPs) play an important role in sex pheromone recognition in Lepidoptera. However, the mechanisms of chemical communication mediating the response to sex pheromones remain unclear in the diurnal moths of the superfamily Zygaenoidea. In this study, Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae) was used as a model insect to explore the molecular mechanism of sex pheromone perception in the superfamily Zygaenoidea. Two novel pheromone-binding proteins (PflaPBP1 and PflaPBP2) from P. flammans were identified. The two pheromone-binding proteins were predominantly expressed in the antennae of P. flammans male and female moths, in which PflaPBP1 had stronger binding affinity to the female sex pheromones Z-9-hexadecenal and (Z, Z, Z)-9, 12, 15-octadecatrienal, PflaPBP2 had stronger binding affinity only for (Z, Z, Z)-9, 12, 15-octadecatrienal, and no apparent binding affinity to Z-9-hexadecenal. The molecular docking results indicated that Ile 170 and Leu 169 are predicted to be important in the binding of the sex pheromone to PflaPBP1 and PflaPBP2. We concluded that PflaPBP1 and PflaPBP2 may be responsible for the recognition of two sex pheromone components and may function differently in female and male P. flammans. These results provide a foundation for the development of pest control by exploring sex pheromone blocking agents and the application of sex pheromones and their analogs for insect pests in the superfamily Zygaenoidea.
Collapse
Affiliation(s)
- Lian Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Xianning Academy of Agricultural Sciences, Xianning 437000, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Man-Qun Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: or ; Tel.: +86-0771-3235-612
| |
Collapse
|
7
|
Ha TS, Smith DP. Recent Insights into Insect Olfactory Receptors and Odorant-Binding Proteins. INSECTS 2022; 13:insects13100926. [PMID: 36292874 PMCID: PMC9604063 DOI: 10.3390/insects13100926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan 38453, Gyeongsangbuk-do, Korea
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
8
|
Fan XB, Mo BT, Li GC, Huang LQ, Guo H, Gong XL, Wang CZ. Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop pest moth Helicoverpa armigera. BMC Biol 2022; 20:214. [PMID: 36175945 PMCID: PMC9524114 DOI: 10.1186/s12915-022-01411-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Odorant receptors (ORs) as odorant-gated ion channels play a crucial role in insect olfaction. They are formed by a heteromultimeric complex of the odorant receptor co-receptor (Orco) and a ligand-selective Or. Other types of olfactory receptor proteins, such as ionotropic receptors (IRs) and some gustatory receptors (GRs), are also involved in the olfactory system of insects. Orco as an obligatory subunit of ORs is highly conserved, providing an opportunity to systematically evaluate OR-dependent olfactory responses. RESULTS Herein, we successfully established a homozygous mutant (Orco-/-) of Helicoverpa armigera, a notorious crop pest, using the CRISPR/Cas9 gene editing technique. We then compared the olfactory response characteristics of wild type (WT) and Orco-/- adults and larvae. Orco-/- males were infertile, while Orco-/- females were fertile. The lifespan of Orco-/- females was longer than that of WT females. The expressions of most Ors, Irs, and other olfaction-related genes in adult antennae of Orco-/- moths were not obviously affected, but some of them were up- or down-regulated. In addition, there was no change in the neuroanatomical phenotype of Orco-/- moths at the level of the antennal lobe (including the macroglomerular complex region of the male). Using EAG and SSR techniques, we discovered that electrophysiological responses of Orco-/- moths to sex pheromone components and many host plant odorants were absent. The upwind flight behaviors toward sex pheromones of Orco-/- males were severely reduced in a wind tunnel experiment. The oviposition selectivity of Orco-/- females to the host plant (green pepper) has completely disappeared, and the chemotaxis toward green pepper was also lost in Orco-/- larvae. CONCLUSIONS Our study indicates that OR-mediated olfaction is essential for pheromone communication, oviposition selection, and larval chemotaxis of H. armigera, suggesting a strategy in which mate searching and host-seeking behaviors of moth pests could be disrupted by inhibiting or silencing Orco expression.
Collapse
Affiliation(s)
- Xiao-Bin Fan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bao-Tong Mo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guo-Cheng Li
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ling-Qiao Huang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China
| | - Hao Guo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xin-Lin Gong
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chen-Zhu Wang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Si YX, Guo JM, Liao H, Li Y, Ma Y, Zhu YW, Wei ZQ, Dong SL, Yan Q. Functional differentiation of three pheromone binding proteins in Orthaga achatina using mixed-type sex pheromones. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105097. [PMID: 35715036 DOI: 10.1016/j.pestbp.2022.105097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Pheromone-binding proteins (PBPs) play important roles in perception of insect sex pheromones, functioning to recognize and transport pheromone components onto the olfactory receptors of the odorant sensing neurons. Orthaga achatina, a serious pest of camphor trees, uses a mixture of three Type I (Z11-16:OAc, Z11-16:OH and Z11-16:Ald) and one Type II (Z3,Z6,Z9,Z12,Z15-23:H) sex pheromone components in its sex communication, in which Z11-16:OAc is the major component and others are minor components. In this study, we for the first time demonstrated that the three PBPs differentiated in recognition among pheromone components in a moth using mixed-type sex pheromones. First, tissue expression study showed that all three PBPs of O. achatina were expressed only in antennae and highly male-biased, suggesting their involvement in perception of the sex pheromones. Second, the three PBPs were expressed in Escherichia coli and the binding affinities of PBPs to four sex pheromone components and some pheromone analogs were determined by the fluorescence competition binding assays. The results showed that OachPBP1 bound all four sex pheromone components with high binding affinity, while OachPBP2 had high or moderate binding affinity only to three Type I components, and OachPBP3 had high binding affinity only to three minor pheromone components. Furthermore, key amino acid residues that bind to sex pheromone components were identified in three PBPs by 3-D structure modeling and ligand molecular docking, predicting the interactions between PBPs and pheromone components. Our study provides a fundamental insight into the olfactory mechanism in moths that use mixed-type sex pheromones.
Collapse
Affiliation(s)
- Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hui Liao
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yu Li
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yu Ma
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yu-Wei Zhu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
10
|
Ye ZF, Zhang P, Gai TT, Lou JH, Dai FY, Tong XL. Sob gene is critical to wing development in Bombyx mori and Tribolium castaneum. INSECT SCIENCE 2022; 29:65-77. [PMID: 33822467 DOI: 10.1111/1744-7917.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The development of insect appendages requires the expression of multiple genes in a strict spatial and temporal order. The odd-skipped family genes are vital transcriptional factors involved in embryonic development. The development and morphogenesis of the insect wing requires multiple transcription factors to regulate the expression of wing patterning genes at the transcriptional level. However, the function of odd-related genes in insect wing morphogenesis and development during postembryonic stages is unclear. We focused on the roles of the sister of odd and bowl (sob) gene, a member of odd-skipped family genes, during the wing morphopoiesis in Bombyx mori using the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 system and in Tribolium castaneum by RNA interference. The results showed that the wings were significantly smaller and degenerated, and wing veins were indistinct in the sob gene loss-of-function group in both B. mori and T. castaneum. Quantitative real-time polymerase chain reaction revealed that the Tcsob gene regulated the expression of wing development genes, such as the cht 7 and the vg gene. The findings suggest the importance of sob gene in insect wing morphology formation during postembryonic stages.
Collapse
Affiliation(s)
- Zhan-Feng Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Pan Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Jing-Hou Lou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Han WK, Yang YL, Si YX, Wei ZQ, Liu SR, Liu XL, Yan Q, Dong SL. Involvement of GOBP2 in the perception of a sex pheromone component in both larval and adult Spodoptera litura revealed using CRISPR/Cas9 mutagenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103719. [PMID: 34999200 DOI: 10.1016/j.ibmb.2022.103719] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 05/14/2023]
Abstract
General odorant-binding proteins (GOBPs) are long considered responsible for the perception of plant odorants. In this study with the important noctuid pest Spodoptera litura, we functionally characterized that GOBP2 is also involved in the perception of sex pheromone components using in vivo CRISPR/Cas9 technique. First, the GOBP2 sgRNA and Cas9 protein were injected into the newly laid insect eggs, resulting in a 35.6% target mutagenesis in G0 moths. Then, the homozygous GOBP2 knockout strain (GOBP2-/-) was obtained after the screening of three generations. The knockout male and female moths displayed a significant reduction in EAG responses to the sex pheromone components, and the knockout females also displayed a significant reduction to plant odorants. In the behavioral assay of food choice, GOBP2-/- larvae lost the preference to artificial diet added with the major sex pheromone component Z9, E11-tetradecadienyl acetate (Z9, E11-14:Ac), whereas the WT larvae highly preferred the pheromone diet. Y-tube olfactometer assay and direct pheromone stimulation assay showed that GOBP2-/- male adults reduced significantly than WT males in percentages of choice, hair pencil displaying and mating attempt to Z9, E11-14:Ac. In the oviposition test, GOBP2-/- females showed significantly reduced preference for the soybean plants compared to the WT females. Our study demonstrated that GOBP2 plays an important role in perceiving sex pheromones in adult and larval stages, providing new insight into sex pheromone perception and a potential target for sex pheromone-based behavioral regulation in the pest.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yi-Lin Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Si-Ruo Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
12
|
Li LL, Huang JR, Xu JW, Yao WC, Yang HH, Shao L, Zhang HR, Dewer Y, Zhu XY, Zhang YN. Ligand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles. PEST MANAGEMENT SCIENCE 2022; 78:52-62. [PMID: 34418275 DOI: 10.1002/ps.6606] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Athetis lepigone, a noctuid moth feeding on more than 30 different crops worldwide, has evolved a sophisticated, sensitive, and specific chemosensory system to detect and discriminate exogenous chemicals. Odorant-binding proteins (OBPs) are the most important agent in insect chemosensory systems to be explored as an alternative target for environmentally friendly approaches to pest management. RESULTS To investigate the olfactory function of A. lepigone OBPs (AlepOBPs), AlepOBP6 was identified and expressed in Escherichia coli. The binding affinity of the recombinant OBP to 20 different ligands was then examined using a competitive binding approach. The results revealed that AlepOBP6 can bind to two sex pheromones and ten maize volatiles, and its conformation stability is pH dependent. We also carried out a structure-function study using different molecular approaches, including structure modeling, molecular docking, and a mutation functional assay to identify amino acid residues (M39, V68, W106, Q107, and Y114) involved in the binding of AlepOBP6 to both sex pheromones and maize volatiles in A. lepigone. CONCLUSION These results suggest that AlepOBP6 is likely involved in mediating the responses of A. lepigone to sex pheromones and maize volatiles, which may play a pivotal function in mating, feeding, and oviposition behaviors. This study not only provides new insight into the binding mechanism of OBPs to sex pheromones and host volatiles in moths, but also contributes to the discovery of novel target candidates for developing efficient behavior disruptors to control A. lepigone in the future. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Liang Shao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Ru Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
13
|
Pheromone binding protein is involved in temporal olfactory resolution in the silkmoth. iScience 2021; 24:103334. [PMID: 34805794 PMCID: PMC8586810 DOI: 10.1016/j.isci.2021.103334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Male moths utilize spatio-temporal female sex pheromone information to orient toward conspecific females. Pheromones are distributed as discontinuous plumes owing to air turbulence; thus, efficient tracking of intermittent stimuli is expected to require a high temporal resolution. Here, using pheromone binding protein (BmPBP1)-knockout silkmoths, we showed that a loss of functional PBP lowered the temporal sensory resolution of male antennae. This altered temporal resolution resulted in significantly reduced straight walking and longer turning behavior, which respectively occurred when males detected and lost contact with pheromones, indicating that temporal resolution was also lowered at the behavioral level. BmPBP1-knockout males required significantly longer time than wild-type males in locating pheromone sources and female moths. Our results suggest that BmPBP1 plays a critical role in determining olfactory response kinetics. Accordingly, high temporal olfactory and behavioral resolutions, as shaped by PBP, are essential for tracking pheromone plumes and locating females efficiently.
Collapse
|
14
|
Zhu X, Xu B, Qin Z, Kader A, Song B, Chen H, Liu Y, Liu W. Identification of Candidate Olfactory Genes in Scolytus schevyrewi Based on Transcriptomic Analysis. Front Physiol 2021; 12:717698. [PMID: 34671270 PMCID: PMC8521011 DOI: 10.3389/fphys.2021.717698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
The bark beetle, Scolytus schevyrewi (S. schevyrewi), is an economically important pest in China that causes serious damage to the fruit industry, particularly, in Xinjiang Province. Chemical signals play an important role in the behavior of most insects, accordingly, ecofriendly traps can be used to monitor and control the target pests in agriculture. In order to lay a foundation for future research on chemical communication mechanisms at the molecular level, we generate antennal transcriptome databases for male and female S. schevyrewi using RNA sequencing (RNA-seq) analysis. By assembling and analyzing the adult male and female antennal transcriptomes, we identified 47 odorant receptors (ORs), 22 ionotropic receptors (IRs), 22 odorant-binding proteins (OBPs), and 11 chemosensory proteins (CSPs). Furthermore, expression levels of all the candidate OBPs and CSPs were validated in different tissues of male and female adults by semiquantitative reverse transcription PCR (RT-PCR). ScosOBP2 and ScosOBP18 were highly expressed in female antennae. ScosCSP2, ScosCSP3, and ScosCSP5 were specifically expressed in the antennae of both males and females. These results provide new potential molecular targets to inform and improve future management strategies of S. schevyrewi.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bingqiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenjie Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Abudukyoum Kader
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haoyu Chen
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
15
|
Cai LJ, Zheng LS, Huang YP, Xu W, You MS. Identification and characterization of odorant binding proteins in the diamondback moth, Plutella xylostella. INSECT SCIENCE 2021; 28:987-1004. [PMID: 32436367 DOI: 10.1111/1744-7917.12817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Odorant binding proteins (OBPs) are a group of soluble proteins functioning as odorant carriers in insect antennae, mouth parts and other chemosensory organs. However, multiple insect OBPs have been detected in other tissues and various functions have been proposed. Therefore, a detailed expression profile including stages, tissues and sexes where OBPs are expressed will assist in building the links to their potential functions, enhancing the functional studies of insect OBPs. Here, we identified 39 putative OBP genes from its genome and transcriptome sequences of diamondback moth (DBM), Plutella xylostella. The expression patterns of identified PxylOBPs were further investigated from eggs, larvae, pupae, virgin adults, mated adults, larval midgut, larval heads, adult antennae, adult heads and adult tarsi. Moreover, P. xylostella larvae and adults with and without host plants for 5 h were utilized to study the interactions between OBP expression and host plants. The results showed that most PxylOBPs were highly expressed in male and female adult antennae. The expression levels of certain PxyOBPs could be regulated by mating activities and feeding host plants. This study advances our knowledge of P. xylostella OBPs, which may help develop new strategies for more environmentally sustainable management of P. xylostella.
Collapse
Affiliation(s)
- Li-Jun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Li-Shuang Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Yu-Ping Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Wei Xu
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
16
|
Guo H, Guo PP, Sun YL, Huang LQ, Wang CZ. Contribution of odorant binding proteins to olfactory detection of (Z)-11-hexadecenal in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103554. [PMID: 33600999 DOI: 10.1016/j.ibmb.2021.103554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 05/14/2023]
Abstract
Helicoverpa armigera utilizes (Z)-11-hexadecenal (Z11-16:Ald) as its major sex pheromone component. Three pheromone binding proteins (PBPs) and two general odorant binding proteins (GOBPs) are abundantly expressed in the male antennae of H. armigera. However, their precise roles in the olfactory detection of Z11-16:Ald remain enigmatic. To answer this question, we first synthesized the antibody against HarmOR13, an olfactory receptor (OR) primarily responding to Z11-16:Ald and mapped the local associations between PBPs/GOBPs and HarmOR13. Immunostaining showed that HarmPBPs and HarmGOBPs were localized in the supporting cells of trichoid sensilla and basiconic sensilla respectively. In particular, HarmPBP1 and HarmPBP2 were colocalized in the cells surrounding the olfactory receptor neurons (ORNs) expressing HarmOR13. Next, using two noninterfering binary expression tools, we heterologously expressed HarmPBP1, HarmPBP2 and HarmOR13 in Drosophila T1 sensilla to validate the functional interplay between PBPs and HarmOR13. We found that the addition of HarmPBP1 or HarmPBP2, not HarmPBP3, significantly increased HarmOR13's response to Z11-16:Ald. However, the presence of either HarmPBP1 or HarmPBP2 was ineffective to change the tuning breadth of HarmOR13 and modulate the response kinetics of this receptor. Taken together, this work demonstrates both HarmPBP1 and HarmPBP2 are involved in Z11-16:Ald detection. Our results support the idea that PBPs can contribute to the peripheral olfactory sensitivity but do little in modulating the selectivity and the response kinetics of corresponding ORs.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ping-Ping Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ya-Lan Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; Forest College, Henan University of Science and Technology, Luoyang, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
17
|
Liu XL, Han WK, Ze LJ, Peng YC, Yang YL, Zhang J, Yan Q, Dong SL. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Protein 9 Mediated Knockout Reveals Functions of the yellow-y Gene in Spodoptera litura. Front Physiol 2021; 11:615391. [PMID: 33519520 PMCID: PMC7839173 DOI: 10.3389/fphys.2020.615391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Yellow genes are thought to be involved in the melanin biosynthetic pathway and play a crucial role in pigmentation reactions in insects. However, little research has been done on yellow genes in lepidopteran pests. To clarify the function of one of the yellow genes (yellow-y) in Spodoptera litura, we cloned the full-length of yellow-y, and investigated its spatial and temporal expression profiles by quantitative real-time PCR (qPCR). It revealed that yellow-y was highly expressed in larva of fourth, fifth, and sixth instars, as well as in epidermis (Ep), fat bodies (FB), Malpighian tubes (MT), and midguts (MG) of the larvae; whereas it was expressed in very low levels in different tissues of adults, and was almost undetected in pupa. This expression profile suggests an important role of yellow-y in larvae, minor role in adults, and no role in pupae. To confirm this, we disrupted yellow-y using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, and obtained G0 insects with mutation in yellow-y. The mutation in yellow-y clearly rendered the larvae body, a color yellower than that of wide type insects, and in addition, the mutation resulted in abnormal segmentation and molting for older larvae. The mutation of yellow-y also made various adult tissues (antennae, proboscis, legs, and wings) yellowish. However, the mutation had no effect on pigmentation of the pupal cuticle. Taken together, our study clearly demonstrated the role of yellow-y not only in the body pigmentation of larvae and adults, and but also in segmentation and molting of larvae, providing new insights into the physiology of larval development, as well as a useful marker gene for genome editing based studies.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Yi-Lin Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Zhang XQ, Mang DZ, Liao H, Ye J, Qian JL, Dong SL, Zhang YN, He P, Zhang QH, Purba ER, Zhang LW. Functional Disparity of Three Pheromone-Binding Proteins to Different Sex Pheromone Components in Hyphantria cunea (Drury). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:55-66. [PMID: 33356240 DOI: 10.1021/acs.jafc.0c04476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyphantria cunea (Drury) is a destructive invasive pest species in China that uses type II sex pheromone components. To date, however, the binding mechanisms of its sex pheromone components to their respective pheromone-binding proteins (HcunPBPs 1/2/3) have not been explored. In the current study, all three HcunPBPs were expressed in the antennae of both sexes. The prokaryotic expression and ligand binding assays were employed to study the binding of the moth's four sex pheromone components, including two aldehydes and two epoxides, and 24 plant volatiles to the HcunPBPs. Our results showed that the abilities of these HcunPBPs to bind to the aldehydes were significantly different from binding to the epoxides. These three HcunPBPs also selectively bind to some of the plant volatiles tested. Our molecular docking results indicated that some crucial hydrophobic residues might play a role in the binding of HcunPBPs to their sex pheromone components. Three HcunPBPs have different selectivities for pheromone components with both major and minor structural differences. Our study provides a fundamental insight into the olfactory mechanism of moths at the molecular level, especially for moth species that use various type II pheromone components.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ding-Ze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Hui Liao
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Ye
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Li Qian
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Shuang-Lin Dong
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, Washington 99216, United States
| | - Endang R Purba
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Abstract
The sense of smell enables insects to recognize olfactory signals crucial for survival and reproduction. In insects, odorant detection highly depends on the interplay of distinct proteins expressed by specialized olfactory sensory neurons (OSNs) and associated support cells which are housed together in chemosensory units, named sensilla, mainly located on the antenna. Besides odorant-binding proteins (OBPs) and olfactory receptors, so-called sensory neuron membrane proteins (SNMPs) are indicated to play a critical role in the detection of certain odorants. SNMPs are insect-specific membrane proteins initially identified in pheromone-sensitive OSNs of Lepidoptera and are indispensable for a proper detection of pheromones. In the last decades, genome and transcriptome analyses have revealed a wide distribution of SNMP-encoding genes in holometabolous and hemimetabolous insects, with a given species expressing multiple subtypes in distinct cells of the olfactory system. Besides SNMPs having a neuronal expression in subpopulations of OSNs, certain SNMP types were found expressed in OSN-associated support cells suggesting different decisive roles of SNMPs in the peripheral olfactory system. In this review, we will report the state of knowledge of neuronal and non-neuronal members of the SNMP family and discuss their possible functions in insect olfaction.
Collapse
Affiliation(s)
- Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
20
|
Liu Y, Hu Y, Bi J, Kong X, Long G, Zheng Y, Liu K, Wang Y, Xu H, Guan C, Ai H. Odorant-binding proteins involved in sex pheromone and host-plant recognition of the sugarcane borer Chilo infuscatellus (Lepidoptera: Crambidae). PEST MANAGEMENT SCIENCE 2020; 76:4064-4076. [PMID: 32542949 DOI: 10.1002/ps.5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pheromone-binding proteins (PBPs) are responsible for transporting sex pheromones and general odorant-binding proteins (GOBPs) have been proposed to transport host-plant volatiles. A large number of OBPs have been identified from Lepidoptera species. However, olfactory molecular biology and physiology studies on PBP and GOBP in sugarcane pests are limited. Chilo infuscatellus is one of the most widely distributed pests in sugarcane-producing areas. RESULTS Three PBPs (CinfPBP1, CinfPBP2 and CinfPBP3) and two GOBPs (CinfGOBP1 and CinfGOBP2) were identified, and five olfactory gene transcripts were abundantly expressed in antennae of C. infuscatellus. Binding assays showed that CinfPBP1-3 exhibited strong binding affinity for the sex pheromone components Z11-16:OH and 16:OH of C. infuscatellus. Meanwhile, CinfGOBP1-2 had high binding affinity with host-plant volatiles from sugarcane (Saccharum officinarum). Field-trapping results suggested that four volatile components, octadecane, (Z)-3-hexen-1-ol, α-terpineol and hexadecane from host plants and sex pheromone mixed baits have synergistic roles in attracting C. infuscatellus adult moths. CONCLUSION Functional characterization of CinfPBPs and CinfGOBPs in C. infuscatellus could help us find new environmentally friendly alternatives to conventional pest control using pesticides in sugarcane fields. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuying Liu
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuwei Hu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Jie Bi
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaotong Kong
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guangyan Long
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya Zheng
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yufeng Wang
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hanliang Xu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Chuxiong Guan
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Hui Ai
- Institute of Evolution and Ecology, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
21
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
22
|
Silencing of OBP genes: Generation of loss-of-function mutants of PBP by genome editing. Methods Enzymol 2020. [PMID: 32828259 DOI: 10.1016/bs.mie.2020.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Pheromone binding proteins (PBPs) are small soluble proteins (about 15kDa) that play striking roles in the detection of sex pheromones in insects. Many studies including structural analysis, binding simulation, and in vitro assays have been performed to clarify the modes of action of PBPs. Although these studies have provided valuable contributions toward the understanding of which key amino acid components contribute to the correct folding of PBPs and their binding affinities to sex pheromones, the functional characteristics of PBPs in the natural environment is still obscure. Recent developments in genome editing have begun to enable the functional examination of PBPs in in vivo. Among insect PBPs, BmPBP1 is one of the most well-characterized, there being rich understanding of its structure, biochemical analysis, binding affinity, localization, and the relationship between the type of olfactory receptors and its expression. A recent study has shown that BmPBP1 contributes sensitivity, but not selectivity of sex pheromone detection in the silkmoth Bombyx mori. In this chapter, based on a current report of the functional characterization of BmPBP1 using genome editing, we provide one example of a useful analytical method to clarify the functional role of PBP in vivo.
Collapse
|
23
|
Wang S, Minter M, Homem RA, Michaelson LV, Venthur H, Lim KS, Withers A, Xi J, Jones CM, Zhou J. Odorant binding proteins promote flight activity in the migratory insect,
Helicoverpa armigera. Mol Ecol 2020; 29:3795-3808. [DOI: 10.1111/mec.15556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/27/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Shang Wang
- College of Plant Sciences Jilin University Changchun China
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| | - Melissa Minter
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
- Department of Biology University of York York UK
| | - Rafael A. Homem
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| | | | - Herbert Venthur
- Laboratorio de Química Ecológica Departamento de Ciencias Químicas y Recursos Naturales Universidad de La Frontera Temuco Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA) Universidad de La Frontera Temuco Chile
| | - Ka S. Lim
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| | - Amy Withers
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Jinghui Xi
- College of Plant Sciences Jilin University Changchun China
| | - Christopher M. Jones
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
- Vector Biology Department Liverpool School of Tropical Medicine Liverpool UK
| | - Jing‐Jiang Zhou
- College of Plant Sciences Jilin University Changchun China
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| |
Collapse
|
24
|
Li MY, Jiang XY, Qi YZ, Huang YJ, Li SG, Liu S. Identification and Expression Profiles of 14 Odorant-Binding Protein Genes From Pieris rapae (Lepidoptera: Pieridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5901940. [PMID: 32889524 PMCID: PMC7474526 DOI: 10.1093/jisesa/ieaa087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 06/11/2023]
Abstract
The small white butterfly, Pieris rapae (L.), is an important insect pest of Brassica crops. This species utilize olfactory cues to find their hosts and mates. However, the molecular mechanism underlying the olfactory perception in this species remains unclear. Here, we identified 14 odorant-binding proteins (OBP) genes-essential for insect olfaction-in P. rapae by exploring a previously published transcriptome dataset. Proteins encoded by all of these genes contain N-terminal signal peptides and six positionally conserved cysteine residues, which are characteristic of insect OBPs. These OBPs displayed high amino acid identity with their respective orthologs in other lepidopterans, and several conserved motifs were identified within these OBPs. Phylogenetic analysis showed that these OBPs were well segregated from each other and clustered into different branches. PrapOBP1 and PrapOBP2 were clustered into the 'general odorant-binding protein' clade, and PrapOBP3 and PrapOBP4 fall into the 'pheromone-binding protein' clade. The 14 OBP genes were located on seven genomic scaffolds. Of these, PrapOBP1, 2, 3, and 4 were located on scaffold332, whereas PrapOBP5, 6, 7, 8, and 9 were located on scaffold116. Ten of the 14 genes had antenna-biased expression. Of these, PrapOBP1, 2, 4, and 13 were enriched in male antennae, whereas PrapOBP7 and PrapOBP10 were female-biased. Our findings suggest that these OBPs may be involved in olfactory communication. To the best of our knowledge, this is the first report on the identification and characterization of OBPs in P. rapae, and our findings provide a solid foundation for studying the functions of these genes.
Collapse
Affiliation(s)
- Mao-Ye Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiu-Yun Jiang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu-Zhe Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuan-Jie Huang
- People’s Government of Fenshui Town, Tonglu County, Hangzhou, China
| | - Shi-Guang Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Su Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
25
|
Li X, Liu Q, Liu H, Bi H, Wang Y, Chen X, Wu N, Xu J, Zhang Z, Huang Y, Chen H. Mutation of doublesex in Hyphantria cunea results in sex-specific sterility. PEST MANAGEMENT SCIENCE 2020; 76:1673-1682. [PMID: 31749278 DOI: 10.1002/ps.5687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The gene doublesex (dsx) plays pivotal roles in sex determination and controls sexually dimorphic development in certain insects. Importantly, it also displays a potential candidate target for pest management due to its sex-specific splicing. Therefore, we used CRISPR/Cas9-mediated gene disruption to investigate the function of dsx in Hyphantria cunea, an invasive forest pest. RESULT In the present study, we identified the dsx gene from H. cunea which showed a sex-biased expression pattern that was different from other lepidopteran insects. Referring to sex-specific functional analyses in Bombyx mori, we performed a site-specific knockout of the Hcdsx gene by using a CRISPR/Cas9 system, which induced severe abnormalities in external genitalia and some incomplete sex reversal phenotypes, which in turn led to reduced sex-specific fecundity. An alternative splicing pattern of Hcdsx was altered by CRISPR/Cas9-induced mutation, and alterations in splicing affected expression of downstream genes encoding pheromone binding protein 1, vg1 and vg2 (encoding vitellogenin), which contributed to the sex-specific sterility phenotypes in the Hcdsx mutants. CONCLUSION The Hcdsx gene plays important roles in sexual differentiation in H. cunea. Disruption of Hcdsx induced sex-specific sterility, demonstrating a potential application in control of this pest. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Li
- College of Forestry, Northwest A&F University, Yangling, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Qun Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Xien Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Shiota Y, Sakurai T. Molecular Mechanisms of Sex Pheromone Reception in Moths. INSECT SEX PHEROMONE RESEARCH AND BEYOND 2020. [DOI: 10.1007/978-981-15-3082-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Zhu GH, Zheng MY, Sun JB, Khuhro SA, Yan Q, Huang Y, Syed Z, Dong SL. CRISPR/Cas9 mediated gene knockout reveals a more important role of PBP1 than PBP2 in the perception of female sex pheromone components in Spodoptera litura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103244. [PMID: 31560967 DOI: 10.1016/j.ibmb.2019.103244] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Three different pheromone binding proteins (PBPs) can typically be found in the sensilla lymph of noctuid moth antennae, but their relative contributions in perception of the sex pheromone is rarely verified in vivo. Previously, we demonstrated that SlitPBP3 plays a minor role in the sex pheromone detection in Spodoptera litura using the CRISPR/Cas9 system. In the present study, the roles of two other SlitPBPs (SlitPBP1 and SlitPBP2) are further verified using the same system. First, by co-injection of Cas9 mRNA/sgRNA into newly laid eggs, a high rate of target mutagenesis was induced, 51.5% for SlitPBP1 and 46.8% for SlitPBP2 as determined by restriction enzyme assay. Then, the homozygous SlitPBP1 and SlitPBP2 knockout lines were obtained by cross-breeding. Finally, using homozygous knockout male moths, we performed electrophysiological (EAG recording) and behavioral analyses. Results showed that knockout of either SlitPBP1 or SlitPBP2 in males decreased EAG response to each of the 3 sex pheromone components (Z9,E11-14:Ac, Z9,E12-14:Ac and Z9-14:Ac) by 53%, 60% and 63% (for SlitPBP1 knockout) and 40%, 43% and 46% (for SlitPBP2 knockout), respectively. These decreases in EAG responses were similar among 3 pheromone components, but were more pronounced in SlitPBP1 knockout males than in SlitPBP2 knockout males. Consistently, behavioral assays with the major component (Z9,E11-14:Ac) showed that SlitPBP1 knockout males responded in much lower percentages than SlitPBP2 knockout males in terms of orientation to the pheromone, along with reduction in close range behaviors such as hairpencil display and mating attempt. Taken together, this study provides direct functional evidence for the roles of SlitPBP1 and SlitPBP2, as well as their relative importance (SlitPBP1 > SlitPBP2) in the sex pheromone perception. This information is valuable in understanding mechanisms of sex pheromone perception and may facilitate the development of PBP-targeted pest control techniques.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Mei-Yan Zheng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Bin Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sajjad Ali Khuhro
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Yan
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Shanghai, 200032, China
| | | | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Scheuermann EA, Smith DP. Odor-Specific Deactivation Defects in a Drosophila Odorant-Binding Protein Mutant. Genetics 2019; 213:897-909. [PMID: 31492805 PMCID: PMC6827369 DOI: 10.1534/genetics.119.302629] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Insect odorant-binding proteins (OBPs) are a large, diverse group of low-molecular weight proteins secreted into the fluid bathing olfactory and gustatory neuron dendrites. The best-characterized OBP, LUSH (OBP76a) enhances pheromone sensitivity enabling detection of physiological levels of the male-specific pheromone, 11-cis vaccenyl acetate. The role of the other OBPs encoded in the Drosophila genome is largely unknown. Here, using clustered regularly interspaced short palindromic repeats/Cas9, we generated and characterized the loss-of-function phenotype for two genes encoding homologous OBPs, OS-E (OBP83b) and OS-F (OBP83a). Instead of activation defects, these extracellular proteins are required for normal deactivation of odorant responses to a subset of odorants. Remarkably, odorants detected by the same odorant receptor are differentially affected by the loss of the OBPs, revealing an odorant-specific role in deactivation kinetics. In stark contrast to lush mutants, the OS-E/F mutants have normal activation kinetics to the affected odorants, even at low stimulus concentrations, suggesting that these OBPs are not competing for these ligands with the odorant receptors. We also show that OS-E and OS-F are functionally redundant as either is sufficient to revert the mutant phenotype in transgenic rescue experiments. These findings expand our understanding of the roles of OBPs to include the deactivation of odorant responses.
Collapse
Affiliation(s)
- Elizabeth A Scheuermann
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Dean P Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
29
|
Kotwica-Rolinska J, Chodakova L, Chvalova D, Kristofova L, Fenclova I, Provaznik J, Bertolutti M, Wu BCH, Dolezel D. CRISPR/Cas9 Genome Editing Introduction and Optimization in the Non-model Insect Pyrrhocoris apterus. Front Physiol 2019; 10:891. [PMID: 31379599 PMCID: PMC6644776 DOI: 10.3389/fphys.2019.00891] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The CRISPR/Cas9 technique is widely used in experimentation with human cell lines as well as with other model systems, such as mice Mus musculus, zebrafish Danio reiro, and the fruit fly Drosophila melanogaster. However, publications describing the use of CRISPR/Cas9 for genome editing in non-model organisms, including non-model insects, are scarce. The introduction of this relatively new method presents many problems even for experienced researchers, especially with the lack of procedures to tackle issues concerning the efficiency of mutant generation. Here we present a protocol for efficient genome editing in the non-model insect species Pyrrhocoris apterus. We collected data from several independent trials that targeted several genes using the CRISPR/Cas9 system and determined that several crucial optimization steps led to a remarkably increased efficiency of mutant production. The main steps are as follows: the timing of embryo injection, the use of the heteroduplex mobility assay as a screening method, in vivo testing of sgRNA efficiency, and G0 germline mosaicism screening. The timing and the method of egg injections used here need to be optimized for other species, but other here-described optimization solutions can be applied immediately for genome editing in other insect species.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Lenka Chodakova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Daniela Chvalova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Lucie Kristofova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Iva Fenclova
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Jan Provaznik
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Maly Bertolutti
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
| | - Bulah Chia-Hsiang Wu
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - David Dolezel
- Laboratory of Molecular Chronobiology, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre Czech Academy of Sciences, České Budějovice, Czechia
- Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
30
|
Dong X, Liao H, Zhu G, Khuhro SA, Ye Z, Yan Q, Dong S. CRISPR/Cas9-mediated PBP1 and PBP3 mutagenesis induced significant reduction in electrophysiological response to sex pheromones in male Chilo suppressalis. INSECT SCIENCE 2019; 26:388-399. [PMID: 29058383 PMCID: PMC7379591 DOI: 10.1111/1744-7917.12544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 05/12/2023]
Abstract
Pheromone-binding proteins (PBPs) are thought to bind and transport sex pheromones onto the olfactory receptors on the dendrite membrane of olfactory neurons, and thus play a vital role in sex pheromone perception. However, the function of PBPs has rarely been demonstrated in vivo. In this study, two PBPs (PBP1 and PBP3) of Chilo suppressalis, one of the most notorious pyralid pests, were in vivo functionally characterized using insects with the PBP gene knocked out by the CRISPR/Cas9 system. First, through direct injection of PBP-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, a high rate of target-gene editing (checked with polled eggs) was induced at 24 h after injection, 21.3% for PBP1-sgRNA injected eggs and 19.5% for PBP3-sgRNA injected eggs. Second, by an in-crossing strategy, insects with mutant PBP1 or PBP3 (both with a premature stop codon) were screened, and homozygous mutants were obtained in the G3 generation. Third, the mutant insects were measured for electroantennogram (EAG) response to female sex pheromones. As a result, both PBP mutant males displayed significant reduction in EAG response, and this reduction in PBP1 mutants was higher than that in PBP3 mutants, indicating a more important role of PBP1. Finally, the relative importance of two PBPs and the possible off target effect induced by sgRNA-injection are discussed. Taken together, our study provides a deeper insight into the function of and interaction between different PBP genes in sex pheromone perception of C. suppressalis, as well as a valuable reference in methodology for gene functional study in other genes and other moth species.
Collapse
Affiliation(s)
- Xiao‐Tong Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Hui Liao
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Guan‐Heng Zhu
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Sajjad Ali Khuhro
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Zhan‐Feng Ye
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Qi Yan
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Shuang‐Lin Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| |
Collapse
|
31
|
Zhang YN, Zhang XQ, Zhu GH, Zheng MY, Yan Q, Zhu XY, Xu JW, Zhang YY, He P, Sun L, Palli SR, Zhang LW, Dong SL. A Δ9 desaturase (SlitDes11) is associated with the biosynthesis of ester sex pheromone components in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:152-159. [PMID: 31027575 DOI: 10.1016/j.pestbp.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Sex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis. First, through the direct injection of SlitDes11-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, gene editing was induced in around 30% of eggs 24 h after injection and was induced in 20.8% of the resulting adult moths. Second, using a sibling-crossing strategy, insects with mutant SlitDes11 (bearing a premature stop codon) were selected, and homozygous mutants were obtained in the G5 generation. Third, pheromone gland extracts of adult female homozygous SlitDes11 mutants were analyzed using Gas chromatography (GC). The results showed that titers of all three ester sex pheromone components; Z9, E11-14:Ac, Z9,E12-14:Ac, and Z9-14:Ac; were reduced by 62.40%, 78.50%, and 72.50%, respectively. This study provides the first direct evidence for the role of SlitDes11 in sex pheromone biosynthesis in S. litura, and indicates the gene could be as potential target to disrupt sexual communication in S. litura for developing a new pollution-free insecticide.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guan-Heng Zhu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China; Department of Entomology, University of Kentucky, Lexington, USA
| | - Mei-Yan Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yun-Ying Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | | | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
32
|
In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori. Sci Rep 2018; 8:13529. [PMID: 30202026 PMCID: PMC6131395 DOI: 10.1038/s41598-018-31978-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/31/2018] [Indexed: 11/11/2022] Open
Abstract
Male moths detect sex pheromones emitted by conspecific females with high sensitivity and specificity by the olfactory sensilla on their antennae. Pheromone binding proteins (PBPs) are highly enriched in the sensillum lymph of pheromone sensitive olfactory sensilla and are supposed to contribute to the sensitivity and selectivity of pheromone detection in moths. However, the functional role of PBPs in moth sex pheromone detection in vivo remains obscure. In the silkmoth, Bombyx mori, female moths emit bombykol as a single attractive sex pheromone component along with a small amount of bombykal that negatively modulates the behavioural responses to bombykol. A pair of olfactory receptor neurons, specifically tuned to bombykol or bombykal, co-localise in the trichodeum sensilla, the sensillum lymph of which contains a single PBP, namely, BmPBP1. We analysed the roles of BmPBP1 using BmPBP1-knockout silkmoth lines generated by transcription activator-like effector nuclease-mediated gene targeting. Electroantennogram analysis revealed that the peak response amplitudes of BmPBP1-knockout male antennae to bombykol and bombykal were significantly reduced by a similar percentage when compared with those of the wild-type males. Our results indicate that BmPBP1 plays a crucial role in enhancing the sensitivity, but not the selectivity, of sex pheromone detection in silkmoths.
Collapse
|
33
|
Identification and characterization of chemosensory genes in the antennal transcriptome of Spodoptera exigua. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:54-65. [DOI: 10.1016/j.cbd.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 01/13/2023]
|
34
|
Huang GZ, Liu JT, Zhou JJ, Wang Q, Dong JZ, Zhang YJ, Li XC, Li J, Gu SH. Expressional and functional comparisons of two general odorant binding proteins in Agrotis ipsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:34-47. [PMID: 29778539 DOI: 10.1016/j.ibmb.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Insect general odorant binding proteins (GOBPs) have been long thought to bind and transport host plant volatiles to the olfactory receptors on the dendrite membrane of the olfactory neurons. Recent studies indicate that they can also bind female sex pheromones. In present study, two GOBP genes, AipsGOBP1 and AipsGOBP2 were cloned from the adult antennae of Agrotis ipsilon. Tissue expression profiles indicated that both of them are antennae-specific and more abundant in the female antennae than in the male antennae. Temporal expression profiles showed that both AipsGOBP1 and AipsGOBP2 began to express in antennae 3 days prior to adult emergence from pupae, and reached their highest expression level 3 and 4 days after adult emergence, respectively. Mating increased their expression in the female antennae but reduced their expression in the male antennae. In situ hybridization and immunolocalization demonstrated that both AipsGOBP1 and AipsGOBP2 are expressed and co-localized in sensilla basiconica and sensilla trichodea of both sexes. AipsGOBP2 exhibited a high binding affinity in vitro with the two major sex pheromone components Z7-12:Ac and Z9-14:Ac and the four plant volatiles cis-3-hexen-1-ol, oleic acid, dibutyl phthalate and β-caryophyllene with Ki values less than 5 μM. AipsGOBP1, on the other hand, showed medium binding affinities with the five A. ipsilon sex pheromones and six plant volatiles. AipsGOBP2 also showed a broader ligand-binding spectrum and a greater ligand-binding affinity than AipsGOBP1 with the tested aldehyde and alcohol sex pheromones of Lepidoptera species. Taken together, our results indicate that AipsGOBP2 may play greater roles than AipsGOBP1 does in binding sex pheromones and host plant volatiles.
Collapse
Affiliation(s)
- Guang-Zhen Huang
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jing-Tao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China; College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jian-Zhen Dong
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xian-Chun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China; Department of Entomology and BIO5 Institute, University of Arizona, Tucson, USA
| | - Jing Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China.
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
35
|
Ma L, Li Z, Zhang W, Cai X, Luo Z, Zhang Y, Chen Z. The Odorant Binding Protein 6 Expressed in Sensilla Chaetica Displays Preferential Binding Affinity to Host Plants Volatiles in Ectropis obliqua. Front Physiol 2018; 9:534. [PMID: 29867573 PMCID: PMC5967201 DOI: 10.3389/fphys.2018.00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
The monophagous tea geometrid Ectropis obliqua selectively feed on tea plants, requiring the specialized chemosensory system to forage for certain host. A deep insight into the molecular basis would accelerate the design of insect-behavior-modifying stimuli. In the present study, we focused on the odorant-binding protein 6 (EoblOBP6) with the high abundance in legs transcriptome of E. obliqua moths. qRT-PCR coupled with western blot analyses revealed the dual expression pattern of EoblOBP6 in antennae and legs. Cellular immunolocalization indicated that EoblOBP6 was predominantly labeled in the outer sensillum lymph of uniporous sensilla chaetica, which is not innervated by sensory neurons. No specific staining was observed in other sensillum types. The fluorescence competition assay showed a relatively narrow binding spectrum of recombinant EoblOBP6. EoblOBP6 could not only bind with intact tea plant volatiles benzaldehyde but also display high binding ability to nerolidol and α-farnesene which are tea plant volatiles dramatically induced by herbivore infestation. Besides, EoblOBP6 tightly bound to the aversive bitter alkaloid berberine. Taken together, EoblOBP6 displayed an unusual expression in sensilla chaetica, exhibited the potential involvement in olfaction and gustation, and may play a functional role in host location of female E. obliqua moths.
Collapse
Affiliation(s)
- Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
36
|
Zhang YN, Qian JL, Xu JW, Zhu XY, Li MY, Xu XX, Liu CX, Xue T, Sun L. Identification of Chemosensory Genes Based on the Transcriptomic Analysis of Six Different Chemosensory Organs in Spodoptera exigua. Front Physiol 2018; 9:432. [PMID: 29740343 PMCID: PMC5928209 DOI: 10.3389/fphys.2018.00432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Insects have a complex chemosensory system that accurately perceives external chemicals and plays a pivotal role in many insect life activities. Thus, the study of the chemosensory mechanism has become an important research topic in entomology. Spodoptera exigua Hübner (Lepidoptera: Noctuidae) is a major agricultural polyphagous pest that causes significant agricultural economic losses worldwide. However, except for a few genes that have been discovered, its olfactory and gustatory mechanisms remain uncertain. In the present study, we acquired 144,479 unigenes of S. exigua by assembling 65.81 giga base reads from 6 chemosensory organs (female and male antennae, female and male proboscises, and female and male labial palps), and identified many differentially expressed genes in the gustatory and olfactory organs. Analysis of the transcriptome data obtained 159 putative chemosensory genes, including 24 odorant binding proteins (OBPs; 3 were new), 19 chemosensory proteins (4 were new), 64 odorant receptors (57 were new), 22 ionotropic receptors (16 were new), and 30 new gustatory receptors. Phylogenetic analyses of all genes and SexiGRs expression patterns using quantitative real-time polymerase chain reactions were investigated. Our results found that several of these genes had differential expression features in the olfactory organs compared to the gustatory organs that might play crucial roles in the chemosensory system of S. exigua, and could be utilized as targets for future functional studies to assist in the interpretation of the molecular mechanism of the system. They could also be used for developing novel behavioral disturbance agents to control the population of the moths in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Li Qian
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Meng-Ya Li
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Xue Xu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Chun-Xiang Liu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Tao Xue
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|