1
|
Ayala-García P, Herrero-Gómez I, Jiménez-Guerrero I, Otto V, Moreno-de Castro N, Müsken M, Jänsch L, van Ham M, Vinardell JM, López-Baena FJ, Ollero FJ, Pérez-Montaño F, Borrero-de Acuña JM. Extracellular Vesicle-Driven Crosstalk between Legume Plants and Rhizobia: The Peribacteroid Space of Symbiosomes as a Protein Trafficking Interface. J Proteome Res 2024. [PMID: 39665174 DOI: 10.1021/acs.jproteome.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Prokaryotes and eukaryotes secrete extracellular vesicles (EVs) into the surrounding milieu to preserve and transport elevated concentrations of biomolecules across long distances. EVs encapsulate metabolites, DNA, RNA, and proteins, whose abundance and composition fluctuate depending on environmental cues. EVs are involved in eukaryote-to-prokaryote communication owing to their ability to navigate different ecological niches and exchange molecular cargo between the two domains. Among the different bacterium-host relationships, rhizobium-legume symbiosis is one of the closest known to nature. A crucial developmental stage of symbiosis is the formation of N2-fixing root nodules by the plant. These nodules contain endocytosed rhizobia─called bacteroids─confined by plant-derived peribacteroid membranes. The unrestricted interface between the bacterial external membrane and the peribacteroid membrane is the peribacteroid space. Many molecular aspects of symbiosis have been studied, but the interbacterial and interdomain molecule trafficking by EVs in the peribacteroid space has not been questioned yet. Here, we unveil intensive EV trafficking within the symbiosome interface of several rhizobium-legume dual systems by developing a robust EV isolation procedure. We analyze the EV-encased proteomes from the peribacteroid space of each bacterium-host partnership, uncovering both conserved and differential traits of every symbiotic system. This study opens the gates for designing EV-based biotechnological tools for sustainable agriculture.
Collapse
Affiliation(s)
- Paula Ayala-García
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Herrero-Gómez
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Viktoria Otto
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Natalia Moreno-de Castro
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier López-Baena
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier Ollero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Pérez-Montaño
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - José Manuel Borrero-de Acuña
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
3
|
Kaur M, Mingeot-Leclercq MP. Maintenance of bacterial outer membrane lipid asymmetry: insight into MlaA. BMC Microbiol 2024; 24:186. [PMID: 38802775 PMCID: PMC11131202 DOI: 10.1186/s12866-023-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 05/29/2024] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.
Collapse
Affiliation(s)
- M Kaur
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium
| | - M-P Mingeot-Leclercq
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium.
| |
Collapse
|
4
|
Noel HR, Keerthi S, Ren X, Winkelman JD, Troutman JM, Palmer LD. Genetic synergy between Acinetobacter baumannii undecaprenyl phosphate biosynthesis and the Mla system impacts cell envelope and antimicrobial resistance. mBio 2024; 15:e0280423. [PMID: 38364179 PMCID: PMC10936186 DOI: 10.1128/mbio.02804-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacterial pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The maintenance of lipid asymmetry (Mla) system is the main homeostatic mechanism by which Gram-negative bacteria maintain outer membrane asymmetry. Loss of the Mla system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978: 17978VU and 17978UN. Here, ∆mlaF mutants in the two ATCC 17978 strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. Although allele differences in obgE were previously reported to synergize with ∆mlaF to affect growth and stringent response, obgE alleles do not affect membrane stress resistance. Instead, a single-nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, results in decreased enzymatic rate and decrease in total Und-P levels in 17978UN compared to 17978VU. The UppSUN variant synergizes with ∆mlaF to reduce capsule and lipooligosaccharide (LOS) levels, increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier required for the biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii cell envelope and antibiotic resistance.IMPORTANCEAcinetobacter baumannii is a critical threat to global public health due to its multidrug resistance and persistence in hospital settings. Therefore, novel therapeutic approaches are urgently needed. We report that a defective undecaprenyl pyrophosphate synthase (UppS) paired with a perturbed Mla system leads to synthetically sick cells that are more susceptible to clinically relevant antibiotics and show reduced virulence in a lung infection model. These results suggest that targeting UppS or undecaprenyl species and the Mla system may resensitize A. baumannii to antibiotics in combination therapies. This work uncovers a previously unknown synergistic relationship in cellular envelope homeostasis that could be leveraged for use in combination therapy against A. baumannii.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sowmya Keerthi
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Jerry M. Troutman
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Cooper BF, Ratkevičiūtė G, Clifton LA, Johnston H, Holyfield R, Hardy DJ, Caulton SG, Chatterton W, Sridhar P, Wotherspoon P, Hughes GW, Hall SC, Lovering AL, Knowles TJ. An octameric PqiC toroid stabilises the outer-membrane interaction of the PqiABC transport system. EMBO Rep 2024; 25:82-101. [PMID: 38228789 PMCID: PMC10897342 DOI: 10.1038/s44319-023-00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.
Collapse
Affiliation(s)
- Benjamin F Cooper
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | | | - Luke A Clifton
- ISIS Pulsed Neutron & Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory Harwell Oxford Campus, OX11 OQX, Didcot, UK
| | - Hannah Johnston
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Rachel Holyfield
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - David J Hardy
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Simon G Caulton
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - William Chatterton
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Peter Wotherspoon
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Gareth W Hughes
- Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Stephen Cl Hall
- ISIS Pulsed Neutron & Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory Harwell Oxford Campus, OX11 OQX, Didcot, UK
| | - Andrew L Lovering
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK.
| |
Collapse
|
6
|
Noel HR, Keerthi S, Ren X, Winkelman JD, Troutman JM, Palmer LD. Genetic synergy in Acinetobacter baumannii undecaprenyl biosynthesis and maintenance of lipid asymmetry impacts outer membrane and antimicrobial resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.556980. [PMID: 37790371 PMCID: PMC10542541 DOI: 10.1101/2023.09.22.556980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Acinetobacter baumannii is a Gram-negative healthcare-associated pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The outer membrane has an asymmetric composition that is important for structural integrity and barrier to the environment. Therefore, Gram-negative bacteria have mechanisms to uphold this asymmetry such as the maintenance of lipid asymmetry system (Mla), which removes glycerophospholipids from the outer leaflet of the outer membrane and transports them to the inner membrane. Loss of this system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978, 17978VU and 17978UN. We show here that ΔmlaF mutants in the two strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. We used comparative genetics to identify interactions between ATCC 17978 strain alleles and mlaF to uncover the cause behind the phenotypic differences. Although allele differences in obgE were previously reported to synergize with ΔmlaF to affect growth and stringent response, we show that obgE alleles do not affect membrane stress resistance. Instead, a single nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, synergizes with ΔmlaF to increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier known to be required for biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. Our data suggest that in the absence of the Mla system, the cellular level of Und-P is critical for envelope integrity, antibiotic resistance, and lipooligosaccharide abundance. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii outer membrane and stress resistance.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Sowmya Keerthi
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, USA
| | - Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Jerry M. Troutman
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Tao X, Ouyang H, Zhou A, Wang D, Matlock H, Morgan JS, Ren AT, Mu D, Pan C, Zhu X, Han A, Zhou J. Polyethylene Degradation by a Rhodococcous Strain Isolated from Naturally Weathered Plastic Waste Enrichment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13901-13911. [PMID: 37682848 PMCID: PMC10515485 DOI: 10.1021/acs.est.3c03778] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Polyethylene (PE) is the most widely produced synthetic polymer and the most abundant plastic waste worldwide due to its recalcitrance to biodegradation and low recycle rate. Microbial degradation of PE has been reported, but the underlying mechanisms are poorly understood. Here, we isolated a Rhodococcus strain A34 from 609 day enriched cultures derived from naturally weathered plastic waste and identified the potential key PE degradation enzymes. After 30 days incubation with A34, 1% weight loss was achieved. Decreased PE molecular weight, appearance of C-O and C═O on PE, palmitic acid in the culture supernatant, and pits on the PE surface were observed. Proteomics analysis identified multiple key PE oxidation and depolymerization enzymes including one multicopper oxidase, one lipase, six esterase, and a few lipid transporters. Network analysis of proteomics data demonstrated the close relationships between PE degradation and metabolisms of phenylacetate, amino acids, secondary metabolites, and tricarboxylic acid cycles. The metabolic roadmap generated here provides critical insights for optimization of plastic degradation condition and assembly of artificial microbial communities for efficient plastic degradation.
Collapse
Affiliation(s)
- Xuanyu Tao
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Huanrong Ouyang
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aifen Zhou
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Dongyu Wang
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Hagan Matlock
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Josiah S. Morgan
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Abigail T. Ren
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Dashuai Mu
- Marine
College, Shandong University, Weihai 264105, China
| | - Chongle Pan
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Xuejun Zhu
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Jizhong Zhou
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
8
|
Bennett HM, Griffin M, Francis-Floyd R, Baker S, Camus A, Pelton C, Dill-Okubo J. Vibrio harveyi in a Caribbean spiny lobster ( Panulirus argus) with hepatopancreas necrosis. Vet Pathol 2023; 60:618-623. [PMID: 37042270 DOI: 10.1177/03009858231164754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
A Caribbean spiny lobster, Panulirus argus, was submitted for necropsy after a number of species-specific fatalities in a public aquarium. The hemolymph was opaque and did not clot and the hepatopancreas had multiple foci of necrosis centered on gram-negative bacteria. Pure cultures of Vibrio harveyi were isolated, identified initially by matrix laser desorption ionization-time of flight mass spectrometry, and confirmed by multilocus sequencing of the gyrB, recA, rpoA, and pyrH genes. As Caribbean spiny lobsters continue to be used for consumption and displayed in public aquariums, chronicling potential pathogens is warranted to inform differential diagnoses and to develop management strategies to reduce incidence of infectious disease in captive populations.
Collapse
Affiliation(s)
| | - Matt Griffin
- Mississippi State University, Mississippi State, MS
| | | | | | | | | | | |
Collapse
|
9
|
MacRae MR, Puvanendran D, Haase MAB, Coudray N, Kolich L, Lam C, Baek M, Bhabha G, Ekiert DC. Protein-protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning. J Biol Chem 2023; 299:104744. [PMID: 37100290 PMCID: PMC10245069 DOI: 10.1016/j.jbc.2023.104744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer that protects the cell from external stressors, such as antibiotics. The Mla transport system is implicated in the Maintenance of OM Lipid Asymmetry by mediating retrograde phospholipid transport across the cell envelope. Mla uses a shuttle-like mechanism to move lipids between the MlaFEDB inner membrane complex and the MlaA-OmpF/C OM complex, via a periplasmic lipid-binding protein, MlaC. MlaC binds to MlaD and MlaA, but the underlying protein-protein interactions that facilitate lipid transfer are not well understood. Here, we take an unbiased deep mutational scanning approach to map the fitness landscape of MlaC from Escherichia coli, which provides insights into important functional sites. Combining this analysis with AlphaFold2 structure predictions and binding experiments, we map the MlaC-MlaA and MlaC-MlaD protein-protein interfaces. Our results suggest that the MlaD and MlaA binding surfaces on MlaC overlap to a large extent, leading to a model in which MlaC can only bind one of these proteins at a time. Low-resolution cryo-electron microscopy (cryo-EM) maps of MlaC bound to MlaFEDB suggest that at least two MlaC molecules can bind to MlaD at once, in a conformation consistent with AlphaFold2 predictions. These data lead us to a model for MlaC interaction with its binding partners and insights into lipid transfer steps that underlie phospholipid transport between the bacterial inner and OMs.
Collapse
Affiliation(s)
- Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Dhenesh Puvanendran
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Max A B Haase
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, New York, USA
| | - Ljuvica Kolich
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Cherry Lam
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA.
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA; Department of Microbiology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
10
|
Bilsing FL, Anlauf MT, Hachani E, Khosa S, Schmitt L. ABC Transporters in Bacterial Nanomachineries. Int J Mol Sci 2023; 24:ijms24076227. [PMID: 37047196 PMCID: PMC10094684 DOI: 10.3390/ijms24076227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Members of the superfamily of ABC transporters are found in all domains of life. Most of these primary active transporters act as isolated entities and export or import their substrates in an ATP-dependent manner across biological membranes. However, some ABC transporters are also part of larger protein complexes, so-called nanomachineries that catalyze the vectorial transport of their substrates. Here, we will focus on four bacterial examples of such nanomachineries: the Mac system providing drug resistance, the Lpt system catalyzing vectorial LPS transport, the Mla system responsible for phospholipid transport, and the Lol system, which is required for lipoprotein transport to the outer membrane of Gram-negative bacteria. For all four systems, we tried to summarize the existing data and provide a structure-function analysis highlighting the mechanistical aspect of the coupling of ATP hydrolysis to substrate translocation.
Collapse
|
11
|
Forward or backward, that is the question: phospholipid trafficking by the Mla system. Emerg Top Life Sci 2022; 7:125-135. [PMID: 36459067 DOI: 10.1042/etls20220087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
The distinctive feature of Gram-negative bacteria is the presence of an asymmetric outer membrane (OM), which acts as a permeation barrier blocking the diffusion of noxious components such as antibiotics that could compromise cell survival. The outer membrane has an inner leaflet, mainly formed by phospholipids (PLs), and the outer leaflet, composed of molecules of lipopolysaccharide (LPS). Building this membrane is a very complex process as every OM element needs to be transported from the cytoplasm or the inner membrane and properly placed in the OM. In addition, the asymmetry needs to be maintained to guarantee the barrier function of the membrane. The presence of misplaced PLs in the outer leaflet of the OM causes increased permeability, endangering cell survival. The Mla system (maintenance of OM lipid asymmetry) has been linked to the removal of the misplaced PLs, restoring OM asymmetry. The Mla system has elements in all compartments of the cell envelope: the lipoprotein MlaA in complex with the trimeric porins OmpC/F in the OM, MlaC in the periplasmic space and an ABC transporter in the inner membrane called MlaFEDB. While genetic and structural work suggest that the Mla pathway is retrograde (PL movement from OM to IM), several groups have advocated that transport could happen in an anterograde fashion (from IM to OM). However, recent biochemical studies strongly support retrograde transport. This review provides an overview of the current knowledge of the Mla system from a structural point of view and addresses the latest biochemical findings and their impact in transport directionality.
Collapse
|
12
|
de Jonge EF, Vogrinec L, van Boxtel R, Tommassen J. Inactivation of the Mla system and outer-membrane phospholipase A results in disrupted outer-membrane lipid asymmetry and hypervesiculation in Bordetella pertussis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100172. [DOI: 10.1016/j.crmicr.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Ekiert DC, Coudray N, Bhabha G. Structure and mechanism of the bacterial lipid ABC transporter, MlaFEDB. Curr Opin Struct Biol 2022; 76:102429. [PMID: 35981415 PMCID: PMC9509461 DOI: 10.1016/j.sbi.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Sackett JD, Kamble N, Leach E, Schuelke T, Wilbanks E, Rowe AR. Genome-Scale Mutational Analysis of Cathode-Oxidizing Thioclava electrotropha ElOx9 T. Front Microbiol 2022; 13:909824. [PMID: 35756027 PMCID: PMC9226611 DOI: 10.3389/fmicb.2022.909824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular electron transfer (EET) – the process by which microorganisms transfer electrons across their membrane(s) to/from solid-phase materials – has implications for a wide range of biogeochemically important processes in marine environments. Though EET is thought to play an important role in the oxidation of inorganic minerals by lithotrophic organisms, the mechanisms involved in the oxidation of solid particles are poorly understood. To explore the genetic basis of oxidative EET, we utilized genomic analyses and transposon insertion mutagenesis screens (Tn-seq) in the metabolically flexible, lithotrophic Alphaproteobacterium Thioclava electrotropha ElOx9T. The finished genome of this strain is 4.3 MB, and consists of 4,139 predicted ORFs, 54 contain heme binding motifs, and 33 of those 54 are predicted to localize to the cell envelope or have unknown localizations. To begin to understand the genetic basis of oxidative EET in ElOx9T, we constructed a transposon mutant library in semi-rich media which was comprised of >91,000 individual mutants encompassing >69,000 unique TA dinucleotide insertion sites. The library was subjected to heterotrophic growth on minimal media with acetate and autotrophic oxidative EET conditions on indium tin oxide coated glass electrodes poised at –278 mV vs. SHE or un-poised in an open circuit condition. We identified 528 genes classified as essential under these growth conditions. With respect to electrochemical conditions, 25 genes were essential under oxidative EET conditions, and 29 genes were essential in both the open circuit control and oxidative EET conditions. Though many of the genes identified under electrochemical conditions are predicted to be localized in the cytoplasm and lack heme binding motifs and/or homology to known EET proteins, we identified several hypothetical proteins and poorly characterized oxidoreductases that implicate a novel mechanism(s) for EET that warrants further study. Our results provide a starting point to explore the genetic basis of novel oxidative EET in this marine sediment microbe.
Collapse
Affiliation(s)
- Joshua D Sackett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Nitin Kamble
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Edmund Leach
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Taruna Schuelke
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elizabeth Wilbanks
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Annette R Rowe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
15
|
Fereshteh S, Noori Goodarzi N, Sepehr A, Shafiei M, Ajdary S, Badmasti F. In Silico Analyses of Extracellular Proteins of Acinetobacter baumannii as Immunogenic Candidates. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e126559. [PMID: 36060914 PMCID: PMC9420209 DOI: 10.5812/ijpr-126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Background: Acinetobacter baumannii is an important nosocomial pathogen causing high morbidity and mortality in immunocompromised patients with prolonged hospitalization. Multidrug-resistant A. baumannii infections are on the rise worldwide. Therefore, the discovery of an effective vaccine against this bacterium seems necessary as a cost-effective and preventive strategy. Methods: In this present study, 35 genomes of A. baumannii strains were considered, and the extracellular proteins were selected, maximally having one transmembrane helix with high adhesion probability and no similarity to host proteins, as immunogenic candidates using the web tool Vaxign. Subsequently, the role of these selected proteins in bacterial pathogenesis was investigated using VICMpred. Then, the major histocompatibility complex class II, linear B-cell epitopes, and conservation of epitopes were identified using the Immune Epitope Database, BepiPred, and Epitope Conservancy Analysis, respectively. Finally, the B-cell discontinuous epitopes of each protein were predicted using ElliPro and plotted on the three-dimensional structure (3D) of the proteins. The role of the unknown proteins was predicted using the STRING database. Results: In this study, eight acceptable immunogenic candidates, including FilF, FimA, putative acid phosphatase, putative exported protein, subtilisin-like serine protease, and three uncharacterized proteins, were identified in A. baumannii. Conclusions: The results of the STRING database showed that these three uncharacterized proteins play a role in nutrition (heme utilization), peptide bond cleavage (serine peptidases), and cellular processes (MlaD protein). Extracellular proteins might play a catalyst role in the outer membrane protein-based vaccine of A. baumannii. Furthermore, this study proposed a list of potent immunogenic candidates of extracellular proteins.
Collapse
Affiliation(s)
| | | | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
Yeow J, Chng SS. Of zones, bridges and chaperones - phospholipid transport in bacterial outer membrane assembly and homeostasis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35384832 DOI: 10.1099/mic.0.001177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a formidable permeability barrier that protects Gram-negative bacteria from detergents and antibiotics. It possesses exquisite lipid asymmetry, requiring the placement and retention of lipopolysaccharides (LPS) in the outer leaflet, and phospholipids (PLs) in the inner leaflet. To establish OM lipid asymmetry, LPS are transported from the inner membrane (IM) directly to the outer leaflet of the OM. In contrast, mechanisms for PL trafficking across the cell envelope are much less understood. In this review, we summarize and discuss recent advances in our understanding of PL transport, making parallel comparisons to well-established pathways for OM lipoprotein (Lol) and LPS (Lpt). Insights into putative PL transport systems highlight possible connections back to the 'Bayer bridges', adhesion zones between the IM and the OM that had been observed more than 50 years ago, and proposed as passages for export of OM components, including LPS and PLs.
Collapse
Affiliation(s)
- Jiang Yeow
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
17
|
Vieni C, Coudray N, Isom GL, Bhabha G, Ekiert DC. Role of Ring6 in the function of the E. coli MCE protein LetB. J Mol Biol 2022; 434:167463. [PMID: 35077766 PMCID: PMC9112829 DOI: 10.1016/j.jmb.2022.167463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
LetB is a tunnel-forming protein found in the cell envelope of some double-membraned bacteria, and is thought to be important for the transport of lipids between the inner and outer membranes. In Escherichia coli the LetB tunnel is formed from a stack of seven rings (Ring1 - Ring7), in which each ring is composed of a homo-hexameric assembly of MCE domains. The primary sequence of each MCE domain of the LetB protein is substantially divergent from the others, making each MCE ring unique in nature. The role of each MCE domain and how it contributes to the function of LetB is not well understood. Here we probed the importance of each MCE ring for the function of LetB, using a combination of bacterial growth assays and cryo-EM. Surprisingly, we find that ΔRing3 and ΔRing6 mutants, in which Ring3 and Ring6 have been deleted, confer increased resistance to membrane perturbing agents. Specific mutations in the pore-lining loops of Ring6 similarly confer increased resistance. A cryo-EM structure of the ΔRing6 mutant shows that despite the absence of Ring6, which leads to a shorter assembly, the overall architecture is maintained, highlighting the modular nature of MCE proteins. Previous work has shown that Ring6 is dynamic and in its closed state, may restrict the passage of substrate through the tunnel. Our work suggests that removal of Ring6 may relieve this restriction. The deletion of Ring6 combined with mutations in the pore-lining loops leads to a model for the tunnel gating mechanism of LetB. Together, these results provide insight into the functional roles of individual MCE domains and pore-lining loops in the LetB protein.
Collapse
|
18
|
Goodall ECA, Isom GL, Rooke JL, Pullela K, Icke C, Yang Z, Boelter G, Jones A, Warner I, Da Costa R, Zhang B, Rae J, Tan WB, Winkle M, Delhaye A, Heinz E, Collet JF, Cunningham AF, Blaskovich MA, Parton RG, Cole JA, Banzhaf M, Chng SS, Vollmer W, Bryant JA, Henderson IR. Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genet 2021; 17:e1009586. [PMID: 34941903 PMCID: PMC8741058 DOI: 10.1371/journal.pgen.1009586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target. All life depends on a cell envelope to enclose the chemical reactions that make life possible. But how do cell envelopes grow? How each component of the cell envelope is incorporated into the envelope at the correct amount, in the correct place, and at the correct time, to prevent cell death, has been a long-standing question in bacteriology. Using a unique combination of high throughput chemical genetic screens we identified yhcB, a conserved gene of unknown function, required for the maintenance of cell envelope integrity in Escherichia coli. Loss of YhcB results in aberrant cell size driven by the production of excess membrane phospholipids. Subsequent molecular and biochemical analyses suggest YhcB influences the spatiotemporal biogenesis of LPS, peptidoglycan and membrane phospholipids. Our data indicate YhcB is a key regulator of cell envelope growth in Gram-negative bacteria playing a crucial role in coordinating cell width, elongation, and division to maintain cell envelope integrity.
Collapse
Affiliation(s)
- Emily C. A. Goodall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| | - Georgia L. Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jessica L. Rooke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Zihao Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Isabel Warner
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bing Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoine Delhaye
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Australia
| | - Jeff A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| |
Collapse
|
19
|
Mycobacterial MCE proteins as transporters that control lipid homeostasis of the cell wall. Tuberculosis (Edinb) 2021; 132:102162. [PMID: 34952299 DOI: 10.1016/j.tube.2021.102162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023]
Abstract
Mammalian cell entry (mce) genes are not only present in genomes of pathogenic mycobacteria, including Mycobacterium tuberculosis (the causative agent of tuberculosis), but also in saprophytic and opportunistic mycobacterial species. MCE are conserved cell-wall proteins encoded by mce operons, which maintain an identical structure in all mycobacteria: two yrbE genes (A and B) followed by six mce genes (A, B, C, D, E and F). Although these proteins are known to participate in the virulence of pathogenic mycobacteria, the presence of the operons in nonpathogenic mycobacteria and other bacteria indicates that they play another role apart from host cell invasion. In this respect, more recent studies suggest that they are functionally similar to ABC transporters and form part of lipid transporters in Actinobacteria. To date, most reviews on mce operons in the literature discuss their role in virulence. However, according to data from transcriptional studies, mce genes, particularly the mce1 and mce4 operons, modify their expression according to the carbon source and upon hypoxia, starvation, surface stress and oxidative stress; which suggests a role of MCE proteins in the response of Mycobacteria to external stressors. In addition to these data, this review also summarizes the studies demonstrating the role of MCE proteins as lipid transporters as well as the relevance of their transport function in the interaction of pathogenic Mycobacteria with the hosts. Altogether, the evidence to date would indicate that MCE proteins participate in the response to the stress conditions that mycobacteria encounter during infection, by participating in the cell wall remodelling and possibly contributing to lipid homeostasis.
Collapse
|
20
|
ATP disrupts lipid-binding equilibrium to drive retrograde transport critical for bacterial outer membrane asymmetry. Proc Natl Acad Sci U S A 2021; 118:2110055118. [PMID: 34873038 DOI: 10.1073/pnas.2110055118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The hallmark of the gram-negative bacterial envelope is the presence of the outer membrane (OM). The OM is asymmetric, comprising lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet; this critical feature confers permeability barrier function against external insults, including antibiotics. To maintain OM lipid asymmetry, the OmpC-Mla system is believed to remove aberrantly localized PLs from the OM and transport them to the inner membrane (IM). Key to the system in driving lipid trafficking is the MlaFEDB ATP-binding cassette transporter complex in the IM, but mechanistic details, including transport directionality, remain enigmatic. Here, we develop a sensitive point-to-point in vitro lipid transfer assay that allows direct tracking of [14C]-labeled PLs between the periplasmic chaperone MlaC and MlaFEDB reconstituted into nanodiscs. We reveal that MlaC spontaneously transfers PLs to the IM transporter in an MlaD-dependent manner that can be further enhanced by coupled ATP hydrolysis. In addition, we show that MlaD is important for modulating productive coupling between ATP hydrolysis and such retrograde PL transfer. We further demonstrate that spontaneous PL transfer also occurs from MlaFEDB to MlaC, but such anterograde movement is instead abolished by ATP hydrolysis. Our work uncovers a model where PLs reversibly partition between two lipid-binding sites in MlaC and MlaFEDB, and ATP binding and/or hydrolysis shift this equilibrium to ultimately drive retrograde PL transport by the OmpC-Mla system. These mechanistic insights will inform future efforts toward discovering new antibiotics against gram-negative pathogens.
Collapse
|
21
|
Graham CLB, Newman H, Gillett FN, Smart K, Briggs N, Banzhaf M, Roper DI. A Dynamic Network of Proteins Facilitate Cell Envelope Biogenesis in Gram-Negative Bacteria. Int J Mol Sci 2021; 22:12831. [PMID: 34884635 PMCID: PMC8657477 DOI: 10.3390/ijms222312831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteria must maintain the ability to modify and repair the peptidoglycan layer without jeopardising its essential functions in cell shape, cellular integrity and intermolecular interactions. A range of new experimental techniques is bringing an advanced understanding of how bacteria regulate and achieve peptidoglycan synthesis, particularly in respect of the central role played by complexes of Sporulation, Elongation or Division (SEDs) and class B penicillin-binding proteins required for cell division, growth and shape. In this review we highlight relationships implicated by a bioinformatic approach between the outer membrane, cytoskeletal components, periplasmic control proteins, and cell elongation/division proteins to provide further perspective on the interactions of these cell division, growth and shape complexes. We detail the network of protein interactions that assist in the formation of peptidoglycan and highlight the increasingly dynamic and connected set of protein machinery and macrostructures that assist in creating the cell envelope layers in Gram-negative bacteria.
Collapse
Affiliation(s)
- Chris L. B. Graham
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Hector Newman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Francesca N. Gillett
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Katie Smart
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Nicholas Briggs
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| | - Manuel Banzhaf
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (C.L.B.G.); (H.N.); (F.N.G.); (K.S.); (N.B.)
| |
Collapse
|
22
|
Low WY, Chng SS. Current mechanistic understanding of intermembrane lipid trafficking important for maintenance of bacterial outer membrane lipid asymmetry. Curr Opin Chem Biol 2021; 65:163-171. [PMID: 34753108 DOI: 10.1016/j.cbpa.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria exhibits unique lipid asymmetry that makes it an effective permeability barrier against toxic molecules, including antibiotics. Central to the maintenance of OM lipid asymmetry is the OmpC-Mla (maintenance of lipid asymmetry) system, which mediates the retrograde transport of phospholipids from the outer leaflet of the OM to the inner membrane. The molecular mechanism(s) of this lipid trafficking process is not fully understood; however, recent advances in structural elucidations and biochemical reconstitutions have provided detailed new insights. Here, we present an integrated understanding of how the OmpC-Mla system transports mislocalized phospholipids across the bacterial cell envelope.
Collapse
Affiliation(s)
- Wen-Yi Low
- Department of Chemistry, National University of Singapore 117543, Singapore.
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore 117543, Singapore; Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS) 117456, Singapore.
| |
Collapse
|
23
|
Guan Q, Garbati M, Mfarrej S, AlMutairi T, Laval T, Singh A, Fagbo S, Smyth A, Browne J, urRahman M, Alruwaili A, Hoosen A, Meehan C, Nakajima C, Suzuki Y, Demangel C, Bhatt A, Gordon S, AlAsmari F, Pain A. Insights into the ancestry evolution of the Mycobacterium tuberculosis complex from analysis of Mycobacterium riyadhense. NAR Genom Bioinform 2021; 3:lqab070. [PMID: 34396095 PMCID: PMC8356964 DOI: 10.1093/nargab/lqab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
Current evolutionary scenarios posit the emergence of Mycobacterium tuberculosis from an environmental saprophyte through a cumulative process of genome adaptation. Mycobacterium riyadhense, a related bacillus, is being increasingly isolated from human clinical cases with tuberculosis-like symptoms in various parts of the world. To elucidate the evolutionary relationship between M. riyadhense and other mycobacterial species, including members of the M. tuberculosis complex (MTBC), eight clinical isolates of M. riyadhense were sequenced and analyzed. We show, among other features, that M. riyadhense shares a large number of conserved orthologs with M. tuberculosis and shows the expansion of toxin/antitoxin pairs, PE/PPE family proteins compared with other non-tuberculous mycobacteria. We observed M. riyadhense lacks wecE gene which may result in the absence of lipooligosaccharides (LOS) IV. Comparative transcriptomic analysis of infected macrophages reveals genes encoding inducers of Type I IFN responses, such as cytosolic DNA sensors, were relatively less expressed by macrophages infected with M. riyadhense or M. kansasii, compared to BCG or M. tuberculosis. Overall, our work sheds new light on the evolution of M. riyadhense, its relationship to the MTBC, and its potential as a system for the study of mycobacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Qingtian Guan
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, 23955, Saudi Arabia
| | - Musa Garbati
- King Fahad Medical City (KFMC), Riyadh, 11525, Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, 23955, Saudi Arabia
| | | | - Thomas Laval
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, 75205 CEDEX 13, Paris, France
| | | | | | | | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 W6F6, Ireland
| | | | - Alya Alruwaili
- King Fahad Medical City (KFMC), Riyadh, 11525, Saudi Arabia
| | - Anwar Hoosen
- King Fahad Medical City (KFMC), Riyadh, 11525, Saudi Arabia
| | - Conor J Meehan
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1AZ, UK
| | - Chie Nakajima
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
- Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | - Yasuhiko Suzuki
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
- Research Center for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | | | | | | | | | - Arnab Pain
- To whom correspondence should be addressed. Tel: +966 54 470 0687;
| |
Collapse
|
24
|
Dutta A, Chandravanshi M, Kanaujia SP. Conserved features of the MlaD domain aid the trafficking of hydrophobic molecules. Proteins 2021; 89:1473-1488. [PMID: 34196044 DOI: 10.1002/prot.26168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/09/2022]
Abstract
In Gram-negative bacteria, the maintenance of lipid asymmetry (Mla) system is involved in the transport of phospholipids between the inner (IM) and outer membrane. The Mla system utilizes a unique IM-associated periplasmic solute-binding protein, MlaD, which possesses a conserved domain, MlaD domain. While proteins carrying the MlaD domain are known to be primarily involved in the trafficking of hydrophobic molecules, not much is known about this domain itself. Thus, in this study, the characterization of the MlaD domain employing bioinformatics analysis is reported. The profiling of the MlaD domain of different architectures reveals the abundance of glycine and hydrophobic residues and the lack of cysteine residues. The domain possesses a conserved N-terminal region and a well-preserved glycine residue that constitutes a consensus motif across different architectures. Phylogenetic analysis shows that the MlaD domain archetypes are evolutionarily closer and marked by the conservation of a functionally crucial pore loop located at the C-terminal region. The study also establishes the critical role of the domain-associated permeases and the driving forces governing the transport of hydrophobic molecules. This sheds sufficient light on the structure-function-evolutionary relationship of MlaD domain. The hexameric interface analysis reveals that the MlaD domain itself is not a sole player in the oligomerization of the proteins. Further, an operonic and interactome map analysis reveals that the Mla and the Mce systems are dependent on the structural homologs of the nuclear transport factor 2 superfamily.
Collapse
Affiliation(s)
- Angshu Dutta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
25
|
Mann D, Fan J, Somboon K, Farrell DP, Muenks A, Tzokov SB, DiMaio F, Khalid S, Miller SI, Bergeron JRC. Structure and lipid dynamics in the maintenance of lipid asymmetry inner membrane complex of A. baumannii. Commun Biol 2021; 4:817. [PMID: 34188171 PMCID: PMC8241846 DOI: 10.1038/s42003-021-02318-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Multi-resistant bacteria are a major threat in modern medicine. The gram-negative coccobacillus Acinetobacter baumannii currently leads the WHO list of pathogens in critical need for new therapeutic development. The maintenance of lipid asymmetry (MLA) protein complex is one of the core machineries that transport lipids from/to the outer membrane in gram-negative bacteria. It also contributes to broad-range antibiotic resistance in several pathogens, most prominently in A. baumannii. Nonetheless, the molecular details of its role in lipid transport has remained largely elusive. Here, we report the cryo-EM maps of the core MLA complex, MlaBDEF, from the pathogen A. baumannii, in the apo-, ATP- and ADP-bound states, revealing multiple lipid binding sites in the cytosolic and periplasmic side of the complex. Molecular dynamics simulations suggest their potential trajectory across the membrane. Collectively with the recently-reported structures of the E. coli orthologue, this data also allows us to propose a molecular mechanism of lipid transport by the MLA system. Daniel Mann et al. describe a higher-resolution structure of the maintenance of lipid asymmetry inner membrane complex (MlaBDEF) in the Gram-negative pathogen, Acinetobacter baumannii. With this improved structural map, the authors clarify the secondary structure elements of MlaE helices and report on potential lipid dynamics by the MLA system that could inform the development of future therapeutics against A. baumannii infection.
Collapse
Affiliation(s)
- Daniel Mann
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK.,Ernst-Ruska-Centre 3, Forschungszentrum Jülich, Germany
| | - Junping Fan
- Department of Microbiology, The University of Washington, Seattle, USA.,Department of Chemical Biology, Peking University, Beijing, China
| | - Kamolrat Somboon
- Department of Chemistry, University of Southampton, Southampton, UK
| | - Daniel P Farrell
- Department of Biochemistry, The University of Washington, Seattle, USA
| | - Andrew Muenks
- Department of Biochemistry, The University of Washington, Seattle, USA
| | - Svetomir B Tzokov
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Frank DiMaio
- Department of Biochemistry, The University of Washington, Seattle, USA
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Southampton, UK
| | - Samuel I Miller
- Department of Microbiology, The University of Washington, Seattle, USA.,Department of Genetics, The University of Washington, Seattle, USA.,Department of Medicine, The University of Washington, Seattle, USA
| | - Julien R C Bergeron
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK. .,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
26
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Zhou C, Shi H, Zhang M, Zhou L, Xiao L, Feng S, Im W, Zhou M, Zhang X, Huang Y. Structural Insight into Phospholipid Transport by the MlaFEBD Complex from P. aeruginosa. J Mol Biol 2021; 433:166986. [PMID: 33845086 DOI: 10.1016/j.jmb.2021.166986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria, which consists of lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet, plays a key role in antibiotic resistance and pathogen virulence. The maintenance of lipid asymmetry (Mla) pathway is known to be involved in PL transport and contributes to the lipid homeostasis of the OM, yet the underlying molecular mechanism and the directionality of PL transport in this pathway remain elusive. Here, we reported the cryo-EM structures of the ATP-binding cassette (ABC) transporter MlaFEBD from P. areuginosa, the core complex in the Mla pathway, in nucleotide-free (apo)-, ADP (ATP + vanadate)- and ATP (AMPPNP)-bound states as well as the structures of MlaFEB from E. coli in apo- and AMPPNP-bound states at a resolution range of 3.4-3.9 Å. The structures show that the MlaFEBD complex contains a total of twelve protein molecules with a stoichiometry of MlaF2E2B2D6, and binds a plethora of PLs at different locations. In contrast to canonical ABC transporters, nucleotide binding fails to trigger significant conformational changes of both MlaFEBD and MlaFEB in the nucleotide-binding and transmembrane domains of the ABC transporter, correlated with their low ATPase activities exhibited in both detergent micelles and lipid nanodiscs. Intriguingly, PLs or detergents appeared to relocate to the membrane-proximal end from the distal end of the hydrophobic tunnel formed by the MlaD hexamer in MlaFEBD upon addition of ATP, indicating that retrograde PL transport might occur in the tunnel in an ATP-dependent manner. Site-specific photocrosslinking experiment confirms that the substrate-binding pocket in the dimeric MlaE and the MlaD hexamer are able to bind PLs in vitro, in line with the notion that MlaFEBD complex functions as a PL transporter.
Collapse
Affiliation(s)
- Changping Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Huigang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Manfeng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Le Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Shasha Feng
- Departments of Biological Sciences and Chemistry, Lehigh University, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, PA 18015, USA
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiao Ling Wei Street, Nanjing 210094, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China.
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China.
| |
Collapse
|
29
|
Wilson A, Ruiz N. Transport of lipopolysaccharides and phospholipids to the outer membrane. Curr Opin Microbiol 2021; 60:51-57. [PMID: 33601322 DOI: 10.1016/j.mib.2021.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/27/2022]
Abstract
Cells must build and maintain at least one membrane that surrounds essential cellular components and provides structural integrity. Gram-negative bacteria possess an inner membrane, which separates the aqueous cytoplasmic and periplasmic compartments, and an outer membrane, which surrounds the periplasm. The outer membrane is an asymmetric bilayer with phospholipids in its inner leaflet and lipopolysaccharides in its outer leaflet. This structure provides cellular integrity and prevents the entry of many toxic compounds into the cell. Constructing the outer membrane is challenging, since its lipid constituents must be synthesized within the inner membrane, transported across the periplasm, and ultimately assembled into an asymmetric structure. This review highlights major recent advances in our understanding of the mechanism and structure of the intermembrane, multi-protein machine that transports lipopolysaccharide across the cell envelope. Although our understanding of phospholipid transport is very limited, we also provide a brief update on this topic.
Collapse
Affiliation(s)
- Andrew Wilson
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
30
|
Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC, Bhabha G. LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope. Cell 2021; 181:653-664.e19. [PMID: 32359438 DOI: 10.1016/j.cell.2020.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 01/20/2023]
Abstract
Gram-negative bacteria are surrounded by an outer membrane composed of phospholipids and lipopolysaccharide, which acts as a barrier and contributes to antibiotic resistance. The systems that mediate phospholipid trafficking across the periplasm, such as MCE (Mammalian Cell Entry) transporters, have not been well characterized. Our ~3.5 Å cryo-EM structure of the E. coli MCE protein LetB reveals an ~0.6 megadalton complex that consists of seven stacked rings, with a central hydrophobic tunnel sufficiently long to span the periplasm. Lipids bind inside the tunnel, suggesting that it functions as a pathway for lipid transport. Cryo-EM structures in the open and closed states reveal a dynamic tunnel lining, with implications for gating or substrate translocation. Our results support a model in which LetB establishes a physical link between the two membranes and creates a hydrophobic pathway for the translocation of lipids across the periplasm.
Collapse
Affiliation(s)
- Georgia L Isom
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Mark R MacRae
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Collin T McManus
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Damian C Ekiert
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Bishop RE. Phospholipid transporter shifts into reverse. Nat Struct Mol Biol 2020; 28:8-10. [PMID: 33361785 DOI: 10.1038/s41594-020-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Russell E Bishop
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
32
|
Bryant JA, Morris FC, Knowles TJ, Maderbocus R, Heinz E, Boelter G, Alodaini D, Colyer A, Wotherspoon PJ, Staunton KA, Jeeves M, Browning DF, Sevastsyanovich YR, Wells TJ, Rossiter AE, Bavro VN, Sridhar P, Ward DG, Chong ZS, Goodall EC, Icke C, Teo AC, Chng SS, Roper DI, Lithgow T, Cunningham AF, Banzhaf M, Overduin M, Henderson IR. Structure of dual BON-domain protein DolP identifies phospholipid binding as a new mechanism for protein localisation. eLife 2020; 9:62614. [PMID: 33315009 PMCID: PMC7806268 DOI: 10.7554/elife.62614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The Gram-negative outer-membrane envelops the bacterium and functions as a permeability barrier against antibiotics, detergents, and environmental stresses. Some virulence factors serve to maintain the integrity of the outer membrane, including DolP (formerly YraP) a protein of unresolved structure and function. Here, we reveal DolP is a lipoprotein functionally conserved amongst Gram-negative bacteria and that loss of DolP increases membrane fluidity. We present the NMR solution structure for Escherichia coli DolP, which is composed of two BON domains that form an interconnected opposing pair. The C-terminal BON domain binds anionic phospholipids through an extensive membrane:protein interface. This interaction is essential for DolP function and is required for sub-cellular localisation of the protein to the cell division site, providing evidence of subcellular localisation of these phospholipids within the outer membrane. The structure of DolP provides a new target for developing therapies that disrupt the integrity of the bacterial cell envelope.
Collapse
Affiliation(s)
- Jack Alfred Bryant
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Faye C Morris
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Timothy J Knowles
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Riyaz Maderbocus
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Eva Heinz
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Dema Alodaini
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Adam Colyer
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Peter J Wotherspoon
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Kara A Staunton
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Mark Jeeves
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Douglas F Browning
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | | | - Timothy J Wells
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Vassiliy N Bavro
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Douglas G Ward
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Zhi-Soon Chong
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Emily Ca Goodall
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | - Alvin Ck Teo
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - David I Roper
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Adam F Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute of Inflammation and Immunotherapy, University of Birmingham, Edgbaston, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Michael Overduin
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom.,Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G, Ekiert DC. Structure of bacterial phospholipid transporter MlaFEDB with substrate bound. eLife 2020; 9:e62518. [PMID: 33236984 PMCID: PMC7790496 DOI: 10.7554/elife.62518] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
In double-membraned bacteria, phospholipid transport across the cell envelope is critical to maintain the outer membrane barrier, which plays a key role in virulence and antibiotic resistance. An MCE transport system called Mla has been implicated in phospholipid trafficking and outer membrane integrity, and includes an ABC transporter, MlaFEDB. The transmembrane subunit, MlaE, has minimal sequence similarity to other transporters, and the structure of the entire inner-membrane MlaFEDB complex remains unknown. Here, we report the cryo-EM structure of MlaFEDB at 3.05 Å resolution, revealing distant relationships to the LPS and MacAB transporters, as well as the eukaryotic ABCA/ABCG families. A continuous transport pathway extends from the MlaE substrate-binding site, through the channel of MlaD, and into the periplasm. Unexpectedly, two phospholipids are bound to MlaFEDB, suggesting that multiple lipid substrates may be transported each cycle. Our structure provides mechanistic insight into substrate recognition and transport by MlaFEDB.
Collapse
Affiliation(s)
- Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Applied Bioinformatics Laboratories, New York University School of MedicineNew YorkUnited States
| | - Georgia L Isom
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Mark R MacRae
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Mariyah N Saiduddin
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Damian C Ekiert
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
| |
Collapse
|
34
|
|
35
|
Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q, Li Y. Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res 2020; 30:1127-1135. [PMID: 32884137 PMCID: PMC7784689 DOI: 10.1038/s41422-020-00404-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
In Gram-negative bacteria, phospholipids are major components of the inner membrane and the inner leaflet of the outer membrane, playing an essential role in forming the unique dual-membrane barrier to exclude the entry of most antibiotics. Understanding the mechanisms of phospholipid translocation between the inner and outer membrane represents one of the major challenges surrounding bacterial phospholipid homeostasis. The conserved MlaFEDB complex in the inner membrane functions as an ABC transporter to drive the translocation of phospholipids between the inner membrane and the periplasmic protein MlaC. However, the mechanism of phospholipid translocation remains elusive. Here we determined three cryo-EM structures of MlaFEDB from Escherichia coli in its nucleotide-free and ATP-bound conformations, and performed extensive functional studies to verify and extend our findings from structural analyses. Our work reveals unique structural features of the entire MlaFEDB complex, six well-resolved phospholipids in three distinct cavities, and large-scale conformational changes upon ATP binding. Together, these findings define the cycle of structural rearrangement of MlaFEDB in action, and suggest that MlaFEDB uses an extrusion mechanism to extract and release phospholipids through the central translocation cavity.
Collapse
Affiliation(s)
- Ximin Chi
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qiongxuan Fan
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Ke Liang
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Li Wan
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qiang Zhou
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Yanyan Li
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
36
|
Kolich LR, Chang YT, Coudray N, Giacometti SI, MacRae MR, Isom GL, Teran EM, Bhabha G, Ekiert DC. Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation. eLife 2020; 9:e60030. [PMID: 32602838 PMCID: PMC7367683 DOI: 10.7554/elife.60030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
ABC transporters facilitate the movement of diverse molecules across cellular membranes, but how their activity is regulated post-translationally is not well understood. Here we report the crystal structure of MlaFB from E. coli, the cytoplasmic portion of the larger MlaFEDB ABC transporter complex, which drives phospholipid trafficking across the bacterial envelope to maintain outer membrane integrity. MlaB, a STAS domain protein, binds the ABC nucleotide binding domain, MlaF, and is required for its stability. Our structure also implicates a unique C-terminal tail of MlaF in self-dimerization. Both the C-terminal tail of MlaF and the interaction with MlaB are required for the proper assembly of the MlaFEDB complex and its function in cells. This work leads to a new model for how an important bacterial lipid transporter may be regulated by small proteins, and raises the possibility that similar regulatory mechanisms may exist more broadly across the ABC transporter family.
Collapse
Affiliation(s)
- Ljuvica R Kolich
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Ya-Ting Chang
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
- Applied Bioinformatics Laboratory, New York University School of MedicineNew YorkUnited States
| | - Sabrina I Giacometti
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Mark R MacRae
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Georgia L Isom
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Evelyn M Teran
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
| |
Collapse
|
37
|
Ching C, Zaman MH. Development and selection of low-level multi-drug resistance over an extended range of sub-inhibitory ciprofloxacin concentrations in Escherichia coli. Sci Rep 2020; 10:8754. [PMID: 32471975 PMCID: PMC7260183 DOI: 10.1038/s41598-020-65602-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 01/13/2023] Open
Abstract
To better combat bacterial antibiotic resistance, a growing global health threat, it is imperative to understand its drivers and underlying biological mechanisms. One potential driver of antibiotic resistance is exposure to sub-inhibitory concentrations of antibiotics. This occurs in both the environment and clinic, from agricultural contamination to incorrect dosing and usage of poor-quality medicines. To better understand this driver, we tested the effect of a broad range of ciprofloxacin concentrations on antibiotic resistance development in Escherichia coli. We observed the emergence of stable, low-level multi-drug resistance that was both time and concentration dependent. Furthermore, we identified a spectrum of single mutations in strains with resistant phenotypes, both previously described and novel. Low-level class-wide resistance, which often goes undetected in the clinic, may allow for bacterial survival and establishment of a reservoir for outbreaks of high-level antibiotic resistant infections.
Collapse
Affiliation(s)
- Carly Ching
- Boston University, Department of Biomedical Engineering, Boston, MA, USA
| | - Muhammad H Zaman
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston University, Boston, MA, USA.
| |
Collapse
|
38
|
Hemati Z, Derakhshandeh A, Haghkhah M, Chaubey KK, Gupta S, Singh M, Singh SV, Dhama K. Mammalian cell entry operons; novel and major subset candidates for diagnostics with special reference to Mycobacterium avium subspecies paratuberculosis infection. Vet Q 2020; 39:65-75. [PMID: 31282842 PMCID: PMC6830979 DOI: 10.1080/01652176.2019.1641764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian cell entry (mce) genes are the components of the mce operon and play a vital role in the entry of Mycobacteria into the mammalian cell and their survival within phagocytes and epithelial cells. Mce operons are present in the DNA of Mycobacteria and translate proteins associated with the invasion and long-term existence of these pathogens in macrophages. The exact mechanism of action of mce genes and their functions are not clear yet. However, with the loss of these genes Mycobacteria lose their pathogenicity. Mycobacterium avium subspecies paratuberculosis (MAP), the etiological agent of Johne’s disease, is the cause of chronic enteritis of animals and significantly affects economic impact on the livestock industry. Since MAP is not inactivated during pasteurization, human population is continuously at the risk of getting exposed to MAP infection through consumption of dairy products. There is need for new candidate genes and/or proteins for developing improved diagnostic assays for the diagnosis of MAP infection and for the control of disease. Increasing evidences showed that expression of mce genes is important for the virulence of MAP. Whole-genome DNA microarray representing MAP revealed that there are 14 large sequence polymorphisms with LSPP12 being the most widely conserved MAP-specific region that included a cluster of six homologs of mce-family involved in lipid metabolism. On the other hand, LSP11 comprising part of mce2 operon was absent in MAP isolates. This review summarizes the advancement of research on mce genes of Mycobacteria with special reference to the MAP infection.
Collapse
Affiliation(s)
- Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Kundan Kumar Chaubey
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Manju Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Shoorvir V Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Kuldeep Dhama
- Department of Pathology, Indian Veterinary Research Institute , Bareilly , India
| |
Collapse
|
39
|
Liu C, Ma J, Wang J, Wang H, Zhang L. Cryo-EM Structure of a Bacterial Lipid Transporter YebT. J Mol Biol 2019; 432:1008-1019. [PMID: 31870848 DOI: 10.1016/j.jmb.2019.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is asymmetric, with lipopolysaccharides (LPSs) on the outer surface and phospholipids (PLs) on the inner surface. This unique organization of OM makes Gram-negative bacteria resistant to many toxic chemicals. How this asymmetric distribution of lipids is maintained has been studied for decades with previous reports of an Mla (Maintenance of OM Lipid Asymmetry) system to be involved. Furthermore, the OM of Gram-negative bacteria is about 20 nm away from inner membrane (IM) where the lipids are synthesized. Therefore, how nascent lipids travel across the periplasmic space and arrive at the inner surface of OM is another interesting question. YebT is a homologue of MlaD in the Mla pathway, but its role in lipid distribution of the OM and IM is largely unknown. Here we report the first high-resolution (~3.0 Å) cryo-EM structure of full-length E. coli YebT in a substrate-bound state. Our structure with details of lipid interaction indicates that YebT is a lipid transporter spanning between IM and OM. We also demonstrate the symmetry mismatch in YebT and the existence of many other conformations of YebT revealing the intrinsic dynamics of this lipid channel. And a brief discussion on possible mechanisms of lipid transport is also included.
Collapse
Affiliation(s)
- Chuan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Jinying Ma
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Hongwei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Li Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
40
|
Powers MJ, Trent MS. Intermembrane transport: Glycerophospholipid homeostasis of the Gram-negative cell envelope. Proc Natl Acad Sci U S A 2019; 116:17147-17155. [PMID: 31420510 PMCID: PMC6717313 DOI: 10.1073/pnas.1902026116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This perspective addresses recent advances in lipid transport across the Gram-negative inner and outer membranes. While we include a summary of previously existing literature regarding this topic, we focus on the maintenance of lipid asymmetry (Mla) pathway. Discovered in 2009 by the Silhavy group [J. C. Malinverni, T. J. Silhavy, Proc. Natl. Acad. Sci. U.S.A. 106, 8009-8014 (2009)], Mla has become increasingly appreciated for its role in bacterial cell envelope physiology. Through the work of many, we have gained an increasingly mechanistic understanding of the function of Mla via genetic, biochemical, and structural methods. Despite this, there is a degree of controversy surrounding the directionality in which Mla transports lipids. While the initial discovery and subsequent studies have posited that it mediated retrograde lipid transport (removing glycerophospholipids from the outer membrane and returning them to the inner membrane), others have asserted the opposite. This Perspective aims to lay out the evidence in an unbiased, yet critical, manner for Mla-mediated transport in addition to postulation of mechanisms for anterograde lipid transport from the inner to outer membranes.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, GA 30602
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, GA 30602
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
41
|
Abstract
The outer membrane (OM) of Gram-negative bacteria exhibits unique lipid asymmetry, with lipopolysaccharides (LPS) residing in the outer leaflet and phospholipids (PLs) in the inner leaflet. This asymmetric bilayer protects the bacterium against intrusion of many toxic substances, including antibiotics and detergents, yet allows acquisition of nutrients necessary for growth. To build the OM and ensure its proper function, the cell produces OM constituents in the cytoplasm or inner membrane and transports these components across the aqueous periplasmic space separating the two membranes. Of note, the processes by which the most basic membrane building blocks, i.e. PLs, are shuttled across the cell envelope remain elusive. This review highlights our current understanding (or lack thereof) of bacterial PL trafficking, with a focus on recent developments in the field. We adopt a mechanistic approach and draw parallels and comparisons with well-characterized systems, particularly OM lipoprotein and LPS transport, to illustrate key challenges in intermembrane lipid trafficking. Pathways that transport PLs across the bacterial cell envelope are fundamental to OM biogenesis and homeostasis and are potential molecular targets that could be exploited for antibiotic development.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
42
|
Phospholipid retention in the absence of asymmetry strengthens the outer membrane permeability barrier to last-resort antibiotics. Proc Natl Acad Sci U S A 2018; 115:E8518-E8527. [PMID: 30087182 DOI: 10.1073/pnas.1806714115] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is a critical barrier that prevents entry of noxious compounds. Integral to this functionality is the presence of lipopolysaccharide (LPS) or lipooligosaccharide (LOS), a molecule that is located exclusively in the outer leaflet of the outer membrane. Its lipid anchor, lipid A, is a glycolipid whose hydrophobicity and net negative charge are primarily responsible for the robustness of the membrane. Because of this, lipid A is a hallmark of Gram-negative physiology and is generally essential for survival. Rare exceptions have been described, including Acinetobacter baumannii, which can survive in the absence of lipid A, albeit with significant growth and membrane permeability defects. Here, we show by an evolution experiment that LOS-deficient A. baumannii can rapidly improve fitness over the course of only 120 generations. We identified two factors which negatively contribute to fitness in the absence of LOS, Mla and PldA. These proteins are involved in glycerophospholipid transport (Mla) and lipid degradation (PldA); both are active only on mislocalized, surface-exposed glycerophospholipids. Elimination of these two mechanisms was sufficient to cause a drastic fitness improvement in LOS-deficient A. baumannii The LOS-deficient double mutant grows as robustly as LOS-positive wild-type bacteria while remaining resistant to the last-resort polymyxin antibiotics. These data provide strong biological evidence for the directionality of Mla-mediated glycerophospholipid transport in Gram-negative bacteria and furthers our knowledge of asymmetry-maintenance mechanisms in the context of the outer membrane barrier.
Collapse
|
43
|
Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways. Sci Rep 2018; 8:6872. [PMID: 29720703 PMCID: PMC5932069 DOI: 10.1038/s41598-018-25232-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/13/2018] [Indexed: 01/02/2023] Open
Abstract
Airway infection by nontypeable Haemophilus influenzae (NTHi) associates to chronic obstructive pulmonary disease (COPD) exacerbation and asthma neutrophilic airway inflammation. Lipids are key inflammatory mediators in these disease conditions and consequently, NTHi may encounter free fatty acids during airway persistence. However, molecular information on the interplay NTHi-free fatty acids is limited, and we lack evidence on the importance of such interaction to infection. Maintenance of the outer membrane lipid asymmetry may play an essential role in NTHi barrier function and interaction with hydrophobic molecules. VacJ/MlaA-MlaBCDEF prevents phospholipid accumulation at the bacterial surface, being the only system involved in maintaining membrane asymmetry identified in NTHi. We assessed the relationship among the NTHi VacJ/MlaA outer membrane lipoprotein, bacterial and exogenous fatty acids, and respiratory infection. The vacJ/mlaA gene inactivation increased NTHi fatty acid and phospholipid global content and fatty acyl specific species, which in turn increased bacterial susceptibility to hydrophobic antimicrobials, decreased NTHi epithelial infection, and increased clearance during pulmonary infection in mice with both normal lung function and emphysema, maybe related to their shared lung fatty acid profiles. Altogether, we provide evidence for VacJ/MlaA as a key bacterial factor modulating NTHi survival at the human airway upon exposure to hydrophobic molecules.
Collapse
|
44
|
Wilburn KM, Fieweger RA, VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4931720. [PMID: 29718271 PMCID: PMC6251666 DOI: 10.1093/femspd/fty021] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/06/2018] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis is a distinctive disease in which the causative agent, Mycobacterium tuberculosis, can persist in humans for decades by avoiding clearance from host immunity. During infection, M. tuberculosis maintains viability by extracting and utilizing essential nutrients from the host, and this is a prerequisite for all of the pathogenic activities that are deployed by the bacterium. In particular, M. tuberculosis preferentially acquires and metabolizes host-derived lipids (fatty acids and cholesterol), and the bacterium utilizes these substrates to cause and maintain disease. In this review, we discuss our current understanding of lipid utilization by M. tuberculosis, and we describe how these pathways promote pathogenesis to fuel metabolic processes in the bacillus. Finally, we highlight weaknesses in these pathways that potentially can be targeted for drug discovery.
Collapse
Affiliation(s)
- Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|