1
|
Kühn J, Brandsch C, Bailer AC, Kiourtzidis M, Hirche F, Chen CY, Markó L, Bartolomaeus TUP, Löber U, Michel S, Wensch-Dorendorf M, Forslund-Startceva SK, Stangl GI. UV light exposure versus vitamin D supplementation: A comparison of health benefits and vitamin D metabolism in a pig model. J Nutr Biochem 2024; 134:109746. [PMID: 39178919 DOI: 10.1016/j.jnutbio.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
There is limited data on the effect of UV light exposure versus orally ingested vitamin D3 on vitamin D metabolism and health. A 4-week study with 16 pigs (as a model for human physiology) was conducted. The pigs were either supplemented with 20 µg/d vitamin D3 or exposed to UV light for 19 min/d to standardize plasma 25-hydroxyvitamin D3 levels. Important differences were higher levels of stored vitamin D3 in skin and subcutaneous fat, higher plasma concentrations of 3-epi-25-hydroxyvitamin D3 and increases of cutaneous lumisterol3 in UV-exposed pigs compared to supplemented pigs. UV light exposure compared to vitamin D3 supplementation resulted in lower hepatic cholesterol, higher circulating plasma nitrite, a marker of the blood pressure-lowering nitric oxide, and a reduction in the release of pro- and anti-inflammatory cytokines from stimulated peripheral blood mononuclear cells. However, plasma metabolome and stool microbiome analyses did not reveal any differences between the two groups. To conclude, the current data show important health relevant differences between oral vitamin D3 supplementation and UV light exposure. The findings may also partly explain the different vitamin D effects on health parameters obtained from association and intervention studies.
Collapse
Affiliation(s)
- Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany.
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Anja C Bailer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Mikis Kiourtzidis
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| | - Samira Michel
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Monika Wensch-Dorendorf
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Berlin, Germany; Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
2
|
Nematisouldaragh D, Kirshenbaum E, Uzonna M, Kirshenbaum L, Rabinovich-Nikitin I. The Role of Retinoic-Acid-Related Orphan Receptor (RORs) in Cellular Homeostasis. Int J Mol Sci 2024; 25:11340. [PMID: 39518891 PMCID: PMC11545807 DOI: 10.3390/ijms252111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Retinoic-acid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor subfamily consisting of RORα, RORβ, and RORγ. By binding to the ROR response elements (ROREs) on target gene promoters, RORs regulate a wide variety of cellular processes, including autophagy, mitophagy, oxidative stress, and inflammation. The regulatory roles of RORs are observed in cardiac cells, hepatocytes, pulmonary epithelial cells, renal cells, immune cells, and cancer cells. A growing body of clinical and experimental evidence suggests that ROR expression levels are markedly reduced under different pathological and stress conditions, suggesting that RORs may play a critical role in the pathogenesis of a variety of disease states, including myocardial infarction, immune disorders, cancer, and metabolic syndrome. Reductions in RORs are also associated with inhibition of autophagy, increased reactive oxygen species (ROS), and increased cell death, underscoring the importance of RORs in the regulation of these processes. Herein, we highlight the relationship between RORs and homeostatic processes that influence cell viability. Understanding how these intricate processes are governed at the cellular level is of high scientific and clinical importance to develop new therapeutic strategies that modulate ROR expression and disease progression.
Collapse
Affiliation(s)
- Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Michael Uzonna
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Lorrie Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, MB R2H 2A6, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
3
|
Domżalski P, Piotrowska A, Tuckey RC, Zmijewski MA. Anticancer Activity of Vitamin D, Lumisterol and Selected Derivatives against Human Malignant Melanoma Cell Lines. Int J Mol Sci 2024; 25:10914. [PMID: 39456696 PMCID: PMC11506961 DOI: 10.3390/ijms252010914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Despite the recent development of improved methods of treating melanoma such as targeted therapy, immunotherapy or combined treatment, the number of new cases worldwide is increasing. It is well known that active metabolites of vitamin D3 and lumisterol (L3) exert photoprotective and antiproliferative effects on the skin, while UV radiation is a major environmental risk factor for melanoma. Thus, many natural metabolites and synthetic analogs of steroidal and secosteroidal molecules have been tested on various cancer cells and in animal models. In this study, we tested the anti-melanoma properties of several natural derivatives of vitamin D3 and L3 in comparison to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). A significant decrease in melanoma cell proliferation and cell mobility was observed for selected derivatives, with (25R)-27-hydroxyL3 showing the highest potency (lowest IC50) in A375 cells but lower potency in SK-MEL-28 cells, whereas the parent L3 failed to inhibit proliferation. The efficacy (% inhibition) by 1,24,25(OH)3D3 and 1,25(OH)2D3 were similar in both cell types. 1,25(OH)2D3 showed higher potency than 1,24,25(OH)3D3 in SK-MEL-28 cells, but lower potency in A375 cells for the inhibition of proliferation. As for 1,25(OH)2D3, but not the other derivatives tested, treatment of melanoma cells with 1,24,25(OH)3D3 markedly increased the expression of CYP24A1, enhanced translocation of the vitamin D receptor (VDR) from the cytoplasm to the nucleus and also decreased the expression of the proliferation marker Ki67. The effects of the other compounds tested were weaker and occurred only under certain conditions. Our data indicate that 1,24,25(OH)3D3, which has undergone the first step in 1,25(OH)2D3 inactivation by being hydroxylated at C24, still shows anti-melanoma properties, displaying higher potency than 1,25(OH)2D3 in SK-MEL-28 cells. Furthermore, hydroxylation increases the potency of some of the lumisterol hydroxy-derivatives, as in contrast to L3, (25R)-27(OH)L3 effectively inhibits proliferation and migration of the human malignant melanoma cell line A375.
Collapse
Affiliation(s)
- Paweł Domżalski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland; (P.D.); (A.P.)
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland; (P.D.); (A.P.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Michał A. Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland; (P.D.); (A.P.)
| |
Collapse
|
4
|
Slominski AT, Kim TK, Janjetovic Z, Slominski RM, Li W, Jetten AM, Indra AK, Mason RS, Tuckey RC. Biological Effects of CYP11A1-Derived Vitamin D and Lumisterol Metabolites in the Skin. J Invest Dermatol 2024; 144:2145-2161. [PMID: 39001720 PMCID: PMC11416330 DOI: 10.1016/j.jid.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 07/15/2024]
Abstract
Novel pathways of vitamin D3, lumisterol 3 (L3), and tachysterol 3 (T3) activation have been discovered, initiated by CYP11A1 and/or CYP27A1 in the case of L3 and T3. The resulting hydroxymetabolites enhance protection of skin against DNA damage and oxidative stress; stimulate keratinocyte differentiation; exert anti-inflammatory, antifibrogenic, and anticancer activities; and inhibit cell proliferation in a structure-dependent manner. They act on nuclear receptors, including vitamin D receptor, aryl hydrocarbon receptor, LXRα/β, RAR-related orphan receptor α/γ, and peroxisome proliferator-activated receptor-γ, with selectivity defined by their core structure and distribution of hydroxyl groups. They can activate NRF2 and p53 and inhibit NF-κB, IL-17, Shh, and Wnt/β-catenin signaling. Thus, they protect skin integrity and physiology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Cancer Chemoprevention Program, Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Veterans Administration Medical Center, Birmingham, Alabama, USA.
| | - Tae-Kang Kim
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M Slominski
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei Li
- Drug Discovery Center, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, Tennessee, USA
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; USA
| | - Rebecca S Mason
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
5
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
6
|
Karwaciak I, Pastwińska J, Sałkowska A, Bachorz RA, Ratajewski M. Evaluation of the activity of cardiac glycosides on RORγ and RORγT nuclear receptors. Arch Biochem Biophys 2024; 759:110085. [PMID: 38971421 DOI: 10.1016/j.abb.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cardiac glycosides, derived from plants and animals, have been recognized since ancient times. These substances hinder the function of the sodium-potassium pump within eukaryotic cells. Many reports have shown that these compounds influence the activity of nuclear receptors. Thus, we assessed the effects of various cardiac glycosides at nontoxic concentrations on RORγ and RORγT. RORγT is a crucial protein involved in the differentiation of Th17 lymphocytes. Sixteen analyzed cardiac glycosides exhibited varying toxicities in HepG2 cells, all of which demonstrated agonistic effects on RORγ, as confirmed in the RORγ-HepG2 reporter cell line. The overexpression of both the RORγ and RORγT isoforms intensified the effects of these compounds. Additionally, these glycosides induced the expression of G6PC, a gene regulated by RORγ, in HepG2 cells. Subsequently, the effects of two endogenous cardiac glycosides (marinobufagenin and ouabain) and the three most potent glycosides (bufalin, oleandrin, and telecinobufagenin) were evaluated in Th17 primary lymphocytes. All of these compounds increased the expression of the IL17A, IL17F, IFNG, and CXCL10 genes, but they exhibited varying effects on GZMB and CCL20 expression. Molecular docking analysis revealed the robust binding affinity of cardiac glycosides for the ligand binding domain of the RORγ/RORγT receptors. Thus, we demonstrated that at nontoxic concentrations, cardiac glycosides have agonistic effects on RORγ/RORγT nuclear receptors, augmenting their activity. This potential can be harnessed to modulate the phenotype of IL17-expressing cells (e.g., Th17 or Tc17 lymphocytes) in adoptive therapy for combating various types of cancer.
Collapse
Affiliation(s)
- Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232, Lodz, Poland
| | - Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232, Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232, Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, 93-232, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232, Lodz, Poland.
| |
Collapse
|
7
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
8
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
9
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
10
|
Thakur K, Khan H, Grewal AK, Singh TG. Nuclear orphan receptors: A novel therapeutic agent in neuroinflammation. Int Immunopharmacol 2023; 124:110845. [PMID: 37690241 DOI: 10.1016/j.intimp.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.
Collapse
Affiliation(s)
- Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | | |
Collapse
|
11
|
Argano C, Mirarchi L, Amodeo S, Orlando V, Torres A, Corrao S. The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and Cardiovascular Disease: State of the Art. Int J Mol Sci 2023; 24:15485. [PMID: 37895163 PMCID: PMC10607188 DOI: 10.3390/ijms242015485] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In the last decade, an increasing awareness was directed to the role of Vitamin D in non-skeletal and preventive roles for chronic diseases. Vitamin D is an essential hormone in regulating calcium/phosphorous balance and in the pathogenesis of inflammation, insulin resistance, and obesity. The main forms of vitamin D, Cholecalciferol (Vitamin D3) and Ergocalciferol (Vitamin D2) are converted into the active form (1,25-dihydroxyvitamin D) thanks to two hydroxylations in the liver, kidney, pancreas, and immune cells. Some anti-inflammatory cytokines are produced at higher levels by vitamin D, while some pro-inflammatory cytokines are released at lower levels. Toll-Like Receptor (TLR) expression is increased, and a pro-inflammatory state is also linked to low levels of vitamin D. Regardless of how it affects inflammation, various pathways suggest that vitamin D directly improves insulin sensitivity and secretion. The level of vitamin D in the body may change the ratio of pro- to anti-inflammatory cytokines, which would impact insulin action, lipid metabolism, and the development and function of adipose tissue. Many studies have demonstrated an inverse relationship between vitamin D concentrations and pro-inflammatory markers, insulin resistance, glucose intolerance, metabolic syndrome, obesity, and cardiovascular disease. It is interesting to note that several long-term studies also revealed an inverse correlation between vitamin D levels and the occurrence of diabetes mellitus. Vitamin D supplementation in people has controversial effects. While some studies demonstrated improvements in insulin sensitivity, glucose, and lipid metabolism, others revealed no significant effect on glycemic homeostasis and inflammation. This review aims to provide insight into the molecular basis of the relationship between vitamin D, insulin resistance, metabolic syndrome, type 1 and 2 diabetes, gestational diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Luigi Mirarchi
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Simona Amodeo
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Valentina Orlando
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Alessandra Torres
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, [PROMISE], University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
12
|
Wu D, Nealon G, Liu Y, Kim TK, Slominski AT, Tuckey RC. Metabolism of Lumisterol 2 by CYP27A1. J Steroid Biochem Mol Biol 2023; 233:106370. [PMID: 37499840 DOI: 10.1016/j.jsbmb.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Lumisterol2 (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D2, it is present in edible mushrooms, especially after UV irradiation. Lumisterol3 is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1. These products are biologically active on human cells with actions that include photoprotection and inhibition of proliferation. The aim of this study was to test the ability of CYP11A1 and CYP27A1 to metabolise L2. Purified CYP27A1 was found to efficiently metabolise L2 to three major products and several minor products, whilst CYP11A1 did not act appreciably on L2. The three major products of CYP27A1 action on L2 were identified by mass spectrometry and NMR as 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2. Minor products included two dihydroxy L2 species, one which was identified as 24,27(OH)2L2, and another metabolite with one oxo and one hydroxyl group added. A comparison on the kinetics of the metabolism of L2 by CYP27A1 with that of the structurally similar compounds, L3 and ergosterol, was carried out with substrates incorporated into phospholipid vesicles. CYP27A1 displayed a 12-fold lower Km with L2 as substrate compared to L3 and a 5-fold lower turnover number (kcat), resulting in a 2.2 fold higher catalytic efficiency (kcat/Km) for L2 metabolism. L2 was a much better substrate for CYP27A1 than its precursor, ergosterol, with a catalytic efficiency 18-fold higher. The major CYP27A1-derived hydroxy-L2 products, 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2, inhibited the proliferation of melanoma and epidermoid cancer cell lines. In conclusion, this study shows that L2 is not metabolized appreciably by CYP11A1, but it is a good substrate for CYP27A1 which hydroxylates its side chain to produce 3 major products that display anti-proliferative activity on skin-cancer cell lines.
Collapse
Affiliation(s)
- Dongxian Wu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuchen Liu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
13
|
Jaruratanasirikul S, Boonrusmee S, Kasemsripitak S, Saengkaew T, Chimrung K, Sriplung H. Vitamin D status in non-pregnant women of reproductive age: a study in Southern Thailand. Sci Rep 2023; 13:15264. [PMID: 37709920 PMCID: PMC10502050 DOI: 10.1038/s41598-023-42557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Vitamin D inadequacy is a global problem in all age groups. Although there are various studies of vitamin D status in pregnant women in Southeast Asia, to date there are few studies from Southeast Asia examining vitamin D status in non-pregnant women of reproductive age. To examine the prevalence of vitamin D insufficiency (VDI) in healthy non-pregnant women of reproductive age in Southern Thailand, 120 healthy non-pregnant women aged 18-42 years were enrolled. Demographic and lifestyle data relevant to vitamin D assessment (sunlight exposure, nutritional intake, type of dress, sunscreen use) and biochemical studies (serum 25-hydroxyvitamin D or 25OHD, parathyroid hormone, calcium, phosphate) were obtained. VDI was classified as serum 25OHD < 20 ng/mL. The average serum 25OHD level was 23.1 ± 6.0 ng/mL. The overall prevalence of VDI was 34.1%. The average dietary intake of calcium, phosphorus and vitamin D and the average duration of sunlight exposure per week were not significantly different between the VDI women and the vitamin D sufficient (VDS) women. Logistic regression analysis found that the significant risk factors for VDI were greater body mass index and higher family income (p-values 0.01 and 0.02, respectively). The prevalence of VDI in non-pregnant women was high at 34%. As the dietary sources of vitamin D are limited and cutaneous vitamin D synthesis is limited by avoidance of sunlight exposure, vitamin D fortification in common daily foods would be an alternative option to reach the recommended vitamin D intake generally of at least 800 IU/day.
Collapse
Affiliation(s)
- Somchit Jaruratanasirikul
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, 15 Kanchanavanich Road, KhoHong District, Hat Yai, 90110, Songkhla, Thailand.
| | - Sasivara Boonrusmee
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, 15 Kanchanavanich Road, KhoHong District, Hat Yai, 90110, Songkhla, Thailand
| | - Staporn Kasemsripitak
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, 15 Kanchanavanich Road, KhoHong District, Hat Yai, 90110, Songkhla, Thailand
| | - Tansit Saengkaew
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, 15 Kanchanavanich Road, KhoHong District, Hat Yai, 90110, Songkhla, Thailand
| | - Kanjana Chimrung
- Nutrition Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Hutcha Sriplung
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| |
Collapse
|
14
|
De Silva WGM, McCarthy BY, Han J, Yang C, Holland AJA, Stern H, Dixon KM, Tang EKY, Tuckey RC, Rybchyn MS, Mason RS. The Over-Irradiation Metabolite Derivative, 24-Hydroxylumister-ol 3, Reduces UV-Induced Damage in Skin. Metabolites 2023; 13:775. [PMID: 37512482 PMCID: PMC10383208 DOI: 10.3390/metabo13070775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce "over-irradiation products" such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3.
Collapse
Affiliation(s)
| | - Bianca Yuko McCarthy
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jeremy Han
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J A Holland
- Douglas Cohen Department of Paediatric Surgery, The Children's Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harvey Stern
- Department of Plastic and Constructive Surgery, The Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Strathfield Private Hospital, Sydney, NSW 2042, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edith Kai Yan Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Robert Charles Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Novel CYP11A1-Derived Vitamin D and Lumisterol Biometabolites for the Management of COVID-19. Nutrients 2022; 14:nu14224779. [PMID: 36432468 PMCID: PMC9698837 DOI: 10.3390/nu14224779] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D deficiency is associated with a higher risk of SARS-CoV-2 infection and poor outcomes of the COVID-19 disease. However, a satisfactory mechanism explaining the vitamin D protective effects is missing. Based on the anti-inflammatory and anti-oxidative properties of classical and novel (CYP11A1-derived) vitamin D and lumisterol hydroxymetabolites, we have proposed that they would attenuate the self-amplifying damage in lungs and other organs through mechanisms initiated by interactions with corresponding nuclear receptors. These include the VDR mediated inhibition of NFκβ, inverse agonism on RORγ and the inhibition of ROS through activation of NRF2-dependent pathways. In addition, the non-receptor mediated actions of vitamin D and related lumisterol hydroxymetabolites would include interactions with the active sites of SARS-CoV-2 transcription machinery enzymes (Mpro;main protease and RdRp;RNA dependent RNA polymerase). Furthermore, these metabolites could interfere with the binding of SARS-CoV-2 RBD with ACE2 by interacting with ACE2 and TMPRSS2. These interactions can cause the conformational and dynamical motion changes in TMPRSS2, which would affect TMPRSS2 to prime SARS-CoV-2 spike proteins. Therefore, novel, CYP11A1-derived, active forms of vitamin D and lumisterol can restrain COVID-19 through both nuclear receptor-dependent and independent mechanisms, which identify them as excellent candidates for antiviral drug research and for the educated use of their precursors as nutrients or supplements in the prevention and attenuation of the COVID-19 disease.
Collapse
|
16
|
Brożyna AA, Slominski RM, Nedoszytko B, Zmijewski MA, Slominski AT. Vitamin D Signaling in Psoriasis: Pathogenesis and Therapy. Int J Mol Sci 2022; 23:ijms23158575. [PMID: 35955731 PMCID: PMC9369120 DOI: 10.3390/ijms23158575] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic, chronic, immune-mediated disease that affects approximately 2–3% of the world’s population. The etiology and pathophysiology of psoriasis are still unknown, but the activation of the adaptive immune system with the main role of T-cells is key in psoriasis pathogenesis. The modulation of the local neuroendocrine system with the downregulation of pro-inflammatory and the upregulation of anti-inflammatory messengers represent a promising adjuvant treatment in psoriasis therapies. Vitamin D receptors and vitamin D-mediated signaling pathways function in the skin and are essential in maintaining the skin homeostasis. The active forms of vitamin D act as powerful immunomodulators of clinical response in psoriatic patients and represent the effective and safe adjuvant treatments for psoriasis, even when high doses of vitamin D are administered. The phototherapy of psoriasis, especially UVB-based, changes the serum level of 25(OH)D, but the correlation of 25(OH)D changes and psoriasis improvement need more clinical trials, since contradictory data have been published. Vitamin D derivatives can improve the efficacy of psoriasis phototherapy without inducing adverse side effects. The anti-psoriatic treatment could include non-calcemic CYP11A1-derived vitamin D hydroxyderivatives that would act on the VDR or as inverse agonists on RORs or activate alternative nuclear receptors including AhR and LXRs. In conclusion, vitamin D signaling can play an important role in the natural history of psoriasis. Selective targeting of proper nuclear receptors could represent potential treatment options in psoriasis.
Collapse
Affiliation(s)
- Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Correspondence: (A.A.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bogusław Nedoszytko
- Department of Dermatology, Allergology and Venerology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
- Cytogeneticr Laboratory, Invicta Fertility and Reproductive Centre, 80-850 Gdańsk, Poland
| | - Michal A. Zmijewski
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Laboratory Service, VA Medical Center at Birmingham, Birmingham, AL 35233, USA
- Correspondence: (A.A.B.); (A.T.S.)
| |
Collapse
|
17
|
Slominski AT, Kim TK, Slominski RM, Song Y, Janjetovic Z, Podgorska E, Reddy SB, Song Y, Raman C, Tang EKY, Fabisiak A, Brzeminski P, Sicinski RR, Atigadda V, Jetten AM, Holick MF, Tuckey RC. Metabolic activation of tachysterol 3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARγ receptors. FASEB J 2022; 36:e22451. [PMID: 35838947 PMCID: PMC9345108 DOI: 10.1096/fj.202200578r] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
CYP11A1 and CYP27A1 hydroxylate tachysterol3 , a photoproduct of previtamin D3 , producing 20S-hydroxytachysterol3 [20S(OH)T3 ] and 25(OH)T3 , respectively. Both metabolites were detected in the human epidermis and serum. Tachysterol3 was also detected in human serum at a concentration of 7.3 ± 2.5 ng/ml. 20S(OH)T3 and 25(OH)T3 inhibited the proliferation of epidermal keratinocytes and dermal fibroblasts and stimulated the expression of differentiation and anti-oxidative genes in keratinocytes in a similar manner to 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]. They acted on the vitamin D receptor (VDR) as demonstrated by image flow cytometry and the translocation of VDR coupled GFP from the cytoplasm to the nucleus of melanoma cells, as well as by the stimulation of CYP24A1 expression. Functional studies using a human aryl hydrocarbon receptor (AhR) reporter assay system revealed marked activation of AhR by 20S(OH)T3 , a smaller effect by 25(OH)T3 , and a minimal effect for their precursor, tachysterol3 . Tachysterol3 hydroxyderivatives showed high-affinity binding to the ligan-binding domain (LBD) of the liver X receptor (LXR) α and β, and the peroxisome proliferator-activated receptor γ (PPARγ) in LanthaScreen TR-FRET coactivator assays. Molecular docking using crystal structures of the LBDs of VDR, AhR, LXRs, and PPARγ revealed high docking scores for 20S(OH)T3 and 25(OH)T3 , comparable to their natural ligands. The scores for the non-genomic-binding site of the VDR were very low indicating a lack of interaction with tachysterol3 ligands. Our identification of endogenous production of 20S(OH)T3 and 25(OH)T3 that are biologically active and interact with VDR, AhR, LXRs, and PPARγ, provides a new understanding of the biological function of tachysterol3 .
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Edith K. Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anton M. Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael F. Holick
- Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Older Korean men with inadequate vitamin D status have lower odds of radiologic osteoarthritis. Sci Rep 2022; 12:11372. [PMID: 35790839 PMCID: PMC9256662 DOI: 10.1038/s41598-022-15025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Most studies on osteoarthritis (OA) and vitamin D status were performed in Whites with relatively adequate vitamin D status. Associations may differ by baseline 25-hydroxyvitamin D (25(OH)D) and race. We assessed the odds of OA and joint pain according to vitamin D status in Korean adults ≥ 50 years of age in the nationally representative Korea National Health and Nutrition Examination Survey (n = 8575). Agreement between radiologic OA (ROA) and self-reported OA were also assessed. Multivariate logistic regression was performed and participants were stratified by sex. Adults with serum 25(OH)D < 12 ng/mL and 12 to < 20 ng/mL had 26% and 18% lower odds of knee ROA, respectively, compared to those with 25(OH)D ≥ 20 ng/mL. Similar results were observed in men, but not women. No associations were found between 25(OH)D and knee ROA severity, lumbar spine ROA, symptomatic OA, or knee pain. Sensitivity of self-reported OA was low (27%), indicating a weak possibility of reverse causation. Prospective studies are required to identify the possible causality of vitamin D on OA in Korean men.
Collapse
|
19
|
Brzeminski P, Fabisiak A, Slominski RM, Kim TK, Janjetovic Z, Podgorska E, Song Y, Saleem M, Reddy SB, Qayyum S, Song Y, Tuckey RC, Atigadda V, Jetten AM, Sicinski RR, Raman C, Slominski AT. Chemical synthesis, biological activities and action on nuclear receptors of 20S(OH)D3, 20S,25(OH)2D3, 20S,23S(OH)2D3 and 20S,23R(OH)2D3. Bioorg Chem 2022; 121:105660. [PMID: 35168121 PMCID: PMC8923993 DOI: 10.1016/j.bioorg.2022.105660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/06/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022]
Abstract
New and more efficient routes of chemical synthesis of vitamin D3 (D3) hydroxy (OH) metabolites, including 20S(OH)D3, 20S,23S(OH)2D3 and 20S,25(OH)2D3, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)2D3 were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)2D3 and the lowest towards 20S(OH)D3. In conclusion, defining new routes for large scale synthesis of endogenously produced D3-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.
Collapse
|
20
|
Jia X, Cao Y, Ye L, Liu X, Huang Y, Yuan X, Lu C, Xu J, Zhu H. Vitamin D stimulates placental L-type amino acid transporter 1 (LAT1) in preeclampsia. Sci Rep 2022; 12:4651. [PMID: 35301401 PMCID: PMC8931068 DOI: 10.1038/s41598-022-08641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Vitamin D insufficiency/deficiency has been linked to an increased risk of preeclampsia. Impaired placental amino acid transport is suggested to contribute to abnormal fetal intrauterine growth in pregnancies complicated by preeclampsia. However, if vitamin D-regulated amino acid transporter is involved in the pathophysiologic mechanism of preeclampsia has not been clarified yet. The aberrant expression of key isoform of L-type amino acid transporter LAT1 was determined by western blot and immunohistochemistry in the placenta from normotensive and preeclamptic pregnancies. The role for vitamin D on placental LAT1 expression was investigated through the exposure of HTR-8/SVneo human trophoblast cells to the biologically active 1,25(OH)2D3 and the oxidative stress-inducer cobalt chloride (CoCl2). Our results showed that placental LAT1 expression was reduced in women with preeclampsia compared to normotensive pregnancies, which was associated with decreased expression of vitamin D receptor (VDR). 1,25(OH)2D3 significantly upregulated LAT1 expression in placental trophoblasts, and also prevented the decrease of mTOR activity under CoCl2-induced oxidative stress. siRNA targeting VDR significantly attenuated 1,25(OH)2D3-stimulated LAT1 expression and mTOR signaling activity. Moreover, treatment of rapamycin specifically inhibited the activity of mTOR signaling and resulted in decrease of LAT1 expression. In conclusion, LAT1 expression was downregulated in the placenta from women with preeclampsia. 1,25(OH)2D3/VDR could stimulate LAT1 expression, which was likely mediated by mTOR signaling in placental trophoblasts. Regulation on placental amino acid transport may be one of the mechanisms by which vitamin D affects fetal growth in preeclampsia.
Collapse
Affiliation(s)
- Xiaotong Jia
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Lingyu Ye
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Xueqing Liu
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Yujia Huang
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Xiaolei Yuan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Jie Xu
- Department of Physiology, Harbin Medical University, Harbin, 150081, China.
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
21
|
Skin senescence: mechanisms and impact on whole-body aging. Trends Mol Med 2022; 28:97-109. [PMID: 35012887 DOI: 10.1016/j.molmed.2021.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023]
Abstract
The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype.
Collapse
|
22
|
De Silva WGM, Han JZR, Yang C, Tongkao-On W, McCarthy BY, Ince FA, Holland AJA, Tuckey RC, Slominski AT, Abboud M, Dixon KM, Rybchyn MS, Mason RS. Evidence for Involvement of Nonclassical Pathways in the Protection From UV-Induced DNA Damage by Vitamin D-Related Compounds. JBMR Plus 2021; 5:e10555. [PMID: 34950826 PMCID: PMC8674768 DOI: 10.1002/jbm4.10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/26/2023] Open
Abstract
The vitamin D hormone, 1,25dihydroxyvitamin D3 (1,25(OH)2D3), and related compounds derived from vitamin D3 or lumisterol as a result of metabolism via the enzyme CYP11A1, have been shown, when applied 24 hours before or immediately after UV irradiation, to protect human skin cells and skin from DNA damage due to UV exposure, by reducing both cyclobutane pyrimidine dimers (CPD) and oxidative damage in the form of 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine (8‐OHdG). We now report that knockdown of either the vitamin D receptor or the endoplasmic reticulum protein ERp57 by small, interfering RNA (siRNA) abolished the reductions in UV‐induced DNA damage with 20‐hydroxyvitamin D3 or 24‐hydroxylumisterol3, as previously shown for 1,25(OH)2D3. Treatment with 1,25(OH)2D3 reduced oxygen consumption rates in UV‐exposed and sham‐exposed human keratinocytes and reduced phosphorylation of cyclic AMP response binding element protein (CREB). Both these actions have been shown to inhibit skin carcinogenesis after chronic UV exposure, consistent with the anticarcinogenic activity of 1,25(OH)2D3. The requirement for a vitamin D receptor for the photoprotective actions of 1,25(OH)2D3 and of naturally occurring CYP11A1‐derived vitamin D–related compounds may explain why mice lacking the vitamin D receptor in skin are more susceptible to UV‐induced skin cancers, whereas mice lacking the 1α‐hydroxylase and thus unable to make 1,25(OH)2D3 are not more susceptible. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Jeremy Zhuo Ru Han
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Chen Yang
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Wannit Tongkao-On
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Bianca Yuko McCarthy
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Furkan Akif Ince
- Anatomy & Histology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Andrew J A Holland
- Department of Paediatric Surgery, The Children's Hospital at Westmead University of Sydney Sydney NSW Australia
| | | | - Andrzej T Slominski
- Department of Dermatology University of Alabama at Birmingham Birmingham AL USA
| | | | - Katie Marie Dixon
- Anatomy & Histology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia
| | - Mark Stephen Rybchyn
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia.,School of Chemical Engineering University of NSW Sydney NSW Australia
| | - Rebecca Sara Mason
- Physiology, School of Medical Sciences and Bosch Institute University of Sydney Sydney NSW Australia.,School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
23
|
Slominski AT, Mahata B, Raman C, Bereshchenko O. Editorial: Steroids and Secosteroids in the Modulation of Inflammation and Immunity. Front Immunol 2021; 12:825577. [PMID: 34987528 PMCID: PMC8720852 DOI: 10.3389/fimmu.2021.825577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
- Pathology Laboratory Service, Veteran Administration Medical Center, Birmingham, AL, United States
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| | - Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
- *Correspondence: Andrzej T. Slominski, ; Bidesh Mahata, ; Chander Raman, ; Oxana Bereshchenko,
| |
Collapse
|
24
|
Tuckey RC, Tang EKY, Chen YA, Slominski AT. Selective ability of rat 7-Dehydrocholesterol reductase (DHCR7) to act on some 7-Dehydrocholesterol metabolites but not on lumisterol metabolites. J Steroid Biochem Mol Biol 2021; 212:105929. [PMID: 34098080 PMCID: PMC8403650 DOI: 10.1016/j.jsbmb.2021.105929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
7-Dehydrocholesterol reductase (DHCR7) catalyses the final step of cholesterol biosynthesis in the Kandutsch-Russel pathway, the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. 7DHC can be acted on by a range of other enzymes including CYP27A1 and CYP11A1, as well as by UVB radiation, producing a number of derivatives including hydroxy-metabolites, some of which retain the C7-C8 double bond and are biologically active. These metabolites include lumisterol (L3) which is a stereoisomer of 7DHC produced in the skin by UVB radiation of 7DHC, as well as vitamin D3. The aim of this study was to test whether these metabolites could act as substrates or inhibitors of DHCR7 in rat liver microsomes. To initially screen the ability of these metabolites to interact with the active site of DHCR7, their ability to inhibit the conversion of ergosterol to brassicasterol was measured. Sterols that significantly inhibited this reaction included 7DHC (as expected), 20S(OH)7DHC, 27(OH)DHC, 8DHC, 20S(OH)L3 and 22(OH)L3 but not 7-dehydropregnenolone (7DHP), 25(OH)7DHC, L3 or vitamin D3 and its hydroxyderivatives. Sterols that inhibited ergosterol reduction were directly tested as substrates for DHCR7. 20S(OH)7DHC, 27(OH)DHC and 7-dehydrodesmosterol were confirmed to be substrates, giving the expected product with the C7-C8 double bond removed. No products were observed from 8DHC or 20S(OH)L3 indicating that these sterols are inhibitors and not substrates of DHCR7. The resistance of lumisterol and 7DHP to reduction by DHCR7 in cells will permit other enzymes to metabolise these sterols to their active forms retaining the C7-C8 double bond, conferring specificity to their biological actions.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yunzhi A Chen
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35249, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA
| |
Collapse
|
25
|
Zelzer S, Meinitzer A, Herrmann M, Goessler W, Enko D. A Novel Method for the Determination of Vitamin D Metabolites Assessed at the Blood-Cerebrospinal Fluid Barrier. Biomolecules 2021; 11:biom11091288. [PMID: 34572501 PMCID: PMC8470512 DOI: 10.3390/biom11091288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The brain’s supply with vitamin D is poorly understood. Therefore, the present study aimed to determine 25-hydroxy vitamin D3 (25(OH)D) and 24,25-dihydroxy vitamin D (24,25(OH)2D3) in serum and cerebrospinal fluid (CSF) from individuals with intact and disturbed brain-CSF-barrier (BCB) function. In 292 pairs of serum and CSF samples the vitamin D metabolites were measured with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF/serum ratios (QALB, Q25(OH)D, Q24,25(OH)2D3) were calculated. Median (IQR) serum concentrations of 25(OH)D and 24,25(OH)2D3 were 63.8 (43.4–83.9) nmol/L and 4.2 (2.2–6.2) nmol/L. The CSF concentrations of both metabolites accounted for 3.7 and 3.3% of the respective serum concentrations. Serum 25(OH)D correlated inversely with Q25(OH)D and Q24,25(OH)2D3 implying a more efficient transport of both metabolites across the BCB when the serum concentration of 25(OH)D is low. In patients with BCB dysfunction, the CSF concentrations and the CSF/serum ratios of both vitamin D metabolites were higher than in individuals with intact BCB. The CSF concentrations of 25(OH)D and 24,25(OH)2D3 depend on BCB function and the respective serum concentrations of both metabolites. Higher vitamin D metabolite concentrations in CSF of patients with impaired BCB function may be due to passive diffusion across the BCB.
Collapse
Affiliation(s)
- Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (A.M.); (D.E.)
- Correspondence: (S.Z.); (M.H.); Tel.: +43-316-385-13145 (S.Z. & M.H.); Fax: +43-316-385-13430 (S.Z. & M.H.)
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (A.M.); (D.E.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (A.M.); (D.E.)
- Correspondence: (S.Z.); (M.H.); Tel.: +43-316-385-13145 (S.Z. & M.H.); Fax: +43-316-385-13430 (S.Z. & M.H.)
| | - Walter Goessler
- Institute of Chemistry, University of Graz, 8010 Graz, Austria;
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (A.M.); (D.E.)
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, 8700 Leoben, Austria
| |
Collapse
|
26
|
Bocheva G, Slominski RM, Slominski AT. The Impact of Vitamin D on Skin Aging. Int J Mol Sci 2021; 22:ijms22169097. [PMID: 34445803 PMCID: PMC8396468 DOI: 10.3390/ijms22169097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
The active metabolites of vitamin D3 (D3) and lumisterol (L3) exert a variety of antiaging and photoprotective effects on the skin. These are achieved through immunomodulation and include anti-inflammatory actions, regulation of keratinocytes proliferation, and differentiation programs to build the epidermal barrier necessary for maintaining skin homeostasis. In addition, they induce antioxidative responses, inhibit DNA damage and induce DNA repair mechanisms to attenuate premature skin aging and cancerogenesis. The mechanism of action would involve interaction with multiple nuclear receptors including VDR, AhR, LXR, reverse agonism on RORα and -γ, and nongenomic actions through 1,25D3-MARRS receptor and interaction with the nongenomic binding site of the VDR. Therefore, active forms of vitamin D3 including its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 derivatives as well as L3 derivatives are promising agents for the prevention, attenuation, or treatment of premature skin aging. They could be administrated orally and/or topically. Other forms of parenteral application of vitamin D3 precursor should be considered to avoid its predominant metabolism to 25(OH)D3 that is not recognized by CYP11A1 enzyme. The efficacy of topically applied vitamin D3 and L3 derivatives needs further clinical evaluation in future trials.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.B.); (A.T.S.)
| |
Collapse
|
27
|
Qayyum S, Mohammad T, Slominski RM, Hassan MI, Tuckey RC, Raman C, Slominski AT. Vitamin D and lumisterol novel metabolites can inhibit SARS-CoV-2 replication machinery enzymes. Am J Physiol Endocrinol Metab 2021; 321:E246-E251. [PMID: 34181461 PMCID: PMC8328521 DOI: 10.1152/ajpendo.00174.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin D deficiency significantly correlates with the severity of SARS-CoV-2 infection. Molecular docking-based virtual screening studies predict that novel vitamin D and related lumisterol hydroxymetabolites are able to bind to the active sites of two SARS-CoV-2 transcription machinery enzymes with high affinity. These enzymes are the main protease (Mpro) and RNA-dependent RNA polymerase (RdRP), which play important roles in viral replication and establishing infection. Based on predicted binding affinities and specific interactions, we identified 10 vitamin D3 (D3) and lumisterol (L3) analogs as likely binding partners of SARS-CoV-2 Mpro and RdRP and, therefore, tested their ability to inhibit these enzymes. Activity measurements demonstrated that 25(OH)L3, 24(OH)L3, and 20(OH)7DHC are the most effective of the hydroxymetabolites tested at inhibiting the activity of SARS-CoV-2 Mpro causing 10%-19% inhibition. These same derivatives as well as other hydroxylumisterols and hydroxyvitamin D3 metabolites inhibited RdRP by 50%-60%. Thus, inhibition of these enzymes by vitamin D and lumisterol metabolites may provide a novel approach to hindering the SARS-CoV-2 infection.NEW & NOTEWORTHY Active forms of vitamin D and lumisterol can inhibit SARS-CoV-2 replication machinery enzymes, which indicates that novel vitamin D and lumisterol metabolites are candidates for antiviral drug research.
Collapse
Affiliation(s)
- Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Radomir M Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, Alabama
| |
Collapse
|
28
|
Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently? Expert Opin Drug Discov 2021; 16:1517-1535. [PMID: 34192992 DOI: 10.1080/17460441.2021.1948833] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The transcription factor retinoic acid-related orphan receptor gamma t (RORγt) has been identified as the master regulator of TH17 cell differentiation and IL-17/22 production and is therefore an attractive target for the treatment of inflammatory diseases. Several orally or topically administered small molecule RORγt inverse agonists (RIAs) have progressed up to the end of clinical Phase 2.Areas covered: Based on publications and patent evaluations this review summarizes the evolution of the chemical matter for all 16 pharmaceutical companies, who develop(ed) a clinical-stage RIAs (until March 2021). Structure proposals for some clinical stage RIAs are presented and the outcome of the clinical trials is discussed.Expert opinion: So far, the clinical trials have been plagued with a high attrition rate. Main reasons were lack of efficacy (topical) or safety signals (oral) as well as, amongst other things, thymic lymphomas as seen with BMS-986251 in a preclinical study and liver enzyme elevations in humans with VTP-43742. Possibilities to mitigate these risks could be the use of RIAs with different chemical structures not interfering with thymocytes maturation and no livertox-inducing properties. With new frontrunners (e.g., ABBV-157 (cedirogant), BI 730357 or IMU-935) this is still an exciting time for this treatment approach.
Collapse
|
29
|
Kotwan J, Kühn J, Baur AC, Stangl GI. Oral Intake of Lumisterol Affects the Metabolism of Vitamin D. Mol Nutr Food Res 2021; 65:e2001165. [PMID: 34061442 DOI: 10.1002/mnfr.202001165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/16/2021] [Indexed: 01/01/2023]
Abstract
SCOPE The treatment of food with ultraviolet-B (UV-B) light to increase the vitamin D content is accompanied by the formation of photoisomers, such as lumisterol2 . The physiological impact of photoisomers is largely unknown. METHODS AND RESULTS Three groups of C57Bl/6 mice are fed diets containing 50 µg kg-1 deuterated vitamin D3 with 0, 50 (moderate-dose) or 2000 µg kg-1 (high-dose) lumisterol2 for four weeks. Considerable quantities of lumisterol2 and vitamin D2 are found in the plasma and tissues of mice fed with 2000 µg kg-1 lumisterol2 but not in those fed 0 or 50 µg kg-1 lumisterol2 . Mice fed with 2000 µg kg-1 lumisterol2 showed strongly reduced deuterated 25-hydroxyvitamin D3 (-50%) and calcitriol (-80%) levels in plasma, accompanied by downregulated mRNA abundance of cytochrom P450 (Cyp)27b1 and upregulated Cyp24a1 in the kidneys. Increased tissue levels of vitamin D2 were also seen in mice in a second study that are kept on a diet with 0.2% UV-B exposed yeast versus those fed 0.2% untreated yeast containing iso-amounts of vitamin D2 . CONCLUSION High doses of lumisterol2 can enter the body, induce the formation of vitamin D2 , reduce the levels of 25(OH)D3 and calcitriol and strongly impact the expression of genes involved in the degradation and synthesis of bioactive vitamin D.
Collapse
Affiliation(s)
- Julia Kotwan
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anja C Baur
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
30
|
Slominski RM, Raman C, Elmets C, Jetten AM, Slominski AT, Tuckey RC. The significance of CYP11A1 expression in skin physiology and pathology. Mol Cell Endocrinol 2021; 530:111238. [PMID: 33716049 PMCID: PMC8205265 DOI: 10.1016/j.mce.2021.111238] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the protective barrier and skin immune functions in a context-dependent fashion through interactions with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
Collapse
Affiliation(s)
- R M Slominski
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Raman
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Elmets
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA
| | - A M Jetten
- Cell Biology Section, Immunity, Inflammation, Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - A T Slominski
- Department of Dermatology, USA; VA Medical Center, Birmingham, AL, USA.
| | - R C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
31
|
Xue X, De Leon-Tabaldo A, Luna-Roman R, Castro G, Albers M, Schoetens F, DePrimo S, Devineni D, Wilde T, Goldberg S, Hoffmann T, Fourie AM, Thurmond RL. Preclinical and clinical characterization of the RORγt inhibitor JNJ-61803534. Sci Rep 2021; 11:11066. [PMID: 34040108 PMCID: PMC8155022 DOI: 10.1038/s41598-021-90497-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptor retinoid-related orphan receptor gamma t (RORγt) plays a critical role in driving Th17 cell differentiation and expansion, as well as IL-17 production in innate and adaptive immune cells. The IL-23/IL-17 axis is implicated in several autoimmune and inflammatory diseases, and biologics targeting IL-23 and IL-17 have shown significant clinical efficacy in treating psoriasis and psoriatic arthritis. JNJ-61803534 is a potent RORγt inverse agonist, selectively inhibiting RORγt-driven transcription versus closely-related family members, RORα and RORβ. JNJ-61803534 inhibited IL-17A production in human CD4+ T cells under Th17 differentiation conditions, but did not inhibit IFNγ production under Th1 differentiation conditions, and had no impact on in vitro differentiation of regulatory T cells (Treg), nor on the suppressive activity of natural Tregs. In the mouse collagen-induced arthritis model, JNJ-61803534 dose-dependently attenuated inflammation, achieving ~ 90% maximum inhibition of clinical score. JNJ-61803534 significantly inhibited disease score in the imiquimod-induced mouse skin inflammation model, and dose-dependently inhibited the expression of RORγt-regulated genes, including IL-17A, IL-17F, IL-22 and IL-23R. Preclinical 1-month toxicity studies in rats and dogs identified doses that were well tolerated supporting progression into first-in-human studies. An oral formulation of JNJ-61803534 was studied in a phase 1 randomized double-blind study in healthy human volunteers to assess safety, pharmacokinetics, and pharmacodynamics. The compound was well tolerated in single ascending doses (SAD) up to 200 mg, and exhibited dose-dependent increases in exposure upon oral dosing, with a plasma half-life of 164 to 170 h. In addition, dose-dependent inhibition of ex vivo stimulated IL-17A production in whole blood was observed, demonstrating in vivo target engagement. In conclusion, JNJ-61803534 is a potent and selective RORγt inhibitor that exhibited acceptable preclinical safety and efficacy, as well as an acceptable safety profile in a healthy volunteer SAD study, with clear evidence of a pharmacodynamic effect in humans.
Collapse
Affiliation(s)
- Xiaohua Xue
- Janssen Research & Development, LLC, La Jolla, CA, USA.
| | | | | | - Glenda Castro
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Michael Albers
- Department of Research, Phenex Pharmaceuticals AG, Heidelberg, Germany
| | | | | | | | - Thomas Wilde
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Thomas Hoffmann
- Department of Research, Phenex Pharmaceuticals AG, Heidelberg, Germany
| | - Anne M Fourie
- Janssen Research & Development, LLC, La Jolla, CA, USA
| | | |
Collapse
|
32
|
Pan X, Li B, Zhang G, Gong Y, Liu R, Chen B, Li Y. Identification of RORγ as a favorable biomarker for colon cancer. J Int Med Res 2021; 49:3000605211008338. [PMID: 33947261 PMCID: PMC8113924 DOI: 10.1177/03000605211008338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the expression of retinoid-related orphan receptor gamma (RORγ)
and its potential role in the prognosis of colon cancer. Methods The Cancer Genome Atlas and GSE117606 were used to evaluate to RORγ levels in
colon cancer, and real-time quantitative polymerase chain reaction was
applied for validation. UALCAN and MEXPRESS were used to analyze the
associations of RORγ expression with clinical parameters. The survival
analysis was conducted in GEPIA. Results RORγ expression was significantly lower in colon tumors than in adjacent
normal mucosa tissues. RORγ expression was significantly associated with
tumor stage, lymph node metastasis, and liver metastasis. The area under the
curve for diagnosis was 0.71. Decreased RORγ expression was positively
correlated with the incidence of lymphatic invasion, microsatellite
instability, the presence of residual tumor, venous invasion, and copy
number variation. Overall survival was longer in patients with higher RORγ
expression, especially those with microsatellite instability-high features.
Methylation analysis revealed that hypermethylation of the RORγ promoter was
associated with the colon cancer stage. Conclusions RORγ downregulation could be a potential biomarker for colon cancer,
especially for predicting prognosis. Decreased RORγ expression in colon
tumor may be associated with promoter hypermethylation.
Collapse
Affiliation(s)
- Xiaofei Pan
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Bao Li
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Gan Zhang
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Yuyong Gong
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Rui Liu
- Department of Burns and Orthopedic Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Benxin Chen
- Department of Minimally Invasive Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Yang Li
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| |
Collapse
|
33
|
Slominski AT, Kim TK, Qayyum S, Song Y, Janjetovic Z, Oak ASW, Slominski RM, Raman C, Stefan J, Mier-Aguilar CA, Atigadda V, Crossman DK, Golub A, Bilokin Y, Tang EKY, Chen JY, Tuckey RC, Jetten AM, Song Y. Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci Rep 2021; 11:8002. [PMID: 33850196 PMCID: PMC8044163 DOI: 10.1038/s41598-021-87061-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and β revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and β in LanthaScreen TR-FRET LXRα and β coactivator assays. The majority of metabolites functioned as LXRα/β agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRβ. Molecular dynamics simulations for the selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35249, USA.
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA.
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Allen S W Oak
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Radomir M Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Oncology, Nicolaus Copernicus University Medical College, Romanowskiej str. 2, 85-796, Bydgoszcz, Poland
| | - Carlos A Mier-Aguilar
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - David K Crossman
- Department of Genetics, Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | | | | | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby 803, Birmingham, AL, 35249, USA.
| |
Collapse
|
34
|
Zhang J, Feng M, Pan L, Wang F, Wu P, You Y, Hua M, Zhang T, Wang Z, Zong L, Han Y, Guan W. Effects of vitamin D deficiency on the improvement of metabolic disorders in obese mice after vertical sleeve gastrectomy. Sci Rep 2021; 11:6036. [PMID: 33727603 PMCID: PMC7971024 DOI: 10.1038/s41598-021-85531-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/28/2021] [Indexed: 01/31/2023] Open
Abstract
Vertical sleeve gastrectomy (VSG) is one of the most commonly performed clinical bariatric surgeries for the remission of obesity and diabetes. Its effects include weight loss, improved insulin resistance, and the improvement of hepatic steatosis. Epidemiologic studies demonstrated that vitamin D deficiency (VDD) is associated with many diseases, including obesity. To explore the role of vitamin D in metabolic disorders for patients with obesity after VSG. We established a murine model of diet-induced obesity + VDD, and we performed VSGs to investigate VDD's effects on the improvement of metabolic disorders present in post-VSG obese mice. We observed that in HFD mice, the concentration of VitD3 is four fold of HFD + VDD one. In the post-VSG obese mice, VDD attenuated the improvements of hepatic steatosis, insulin resistance, intestinal inflammation and permeability, the maintenance of weight loss, the reduction of fat loss, and the restoration of intestinal flora that were weakened. Our results suggest that in post-VSG obese mice, maintaining a normal level of vitamin D plays an important role in maintaining the improvement of metabolic disorders.
Collapse
Affiliation(s)
- Jie Zhang
- grid.428392.60000 0004 1800 1685Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China ,grid.268415.cDepartment of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Min Feng
- grid.428392.60000 0004 1800 1685Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 China
| | - Lisha Pan
- grid.13291.380000 0001 0807 1581Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Feng Wang
- grid.428392.60000 0004 1800 1685Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China ,grid.428392.60000 0004 1800 1685Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 China
| | - Pengfei Wu
- grid.13291.380000 0001 0807 1581Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Yang You
- grid.13291.380000 0001 0807 1581Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Meiyun Hua
- grid.13291.380000 0001 0807 1581Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Tianci Zhang
- grid.13291.380000 0001 0807 1581Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Zheng Wang
- grid.268415.cDepartment of Pathology, The First Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Liang Zong
- grid.254020.10000 0004 1798 4253Department of Gastrointestinal Surgery, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi China
| | - Yuanping Han
- grid.13291.380000 0001 0807 1581Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Wenxian Guan
- grid.428392.60000 0004 1800 1685Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China ,grid.428392.60000 0004 1800 1685Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008 China
| |
Collapse
|
35
|
Moin ASM, Sathyapalan T, Butler AE, Atkin SL. Vitamin D Association With Macrophage-Derived Cytokines in Polycystic Ovary Syndrome: An Enhanced Risk of COVID-19 Infection? Front Endocrinol (Lausanne) 2021; 12:638621. [PMID: 33716989 PMCID: PMC7947877 DOI: 10.3389/fendo.2021.638621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Women with polycystic ovary syndrome (PCOS) often have vitamin D deficiency, a known risk factor for severe COVID-19 disease. Alveolar macrophage-derived cytokines contribute to the inflammation underlying pulmonary disease in COVID-19. We sought to determine if basal macrophage activation, as a risk factor for COVID-19 infection, was present in PCOS and, if so, was further enhanced by vitamin D deficiency. METHODS A cross-sectional study in 99 PCOS and 68 control women who presented sequentially. Plasma levels of a macrophage-derived cytokine panel were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. Vitamin D was measured by tandem mass spectroscopy. RESULTS Vitamin D was lower in PCOS women (p<0.0001) and correlated negatively with body mass index (BMI) in PCOS (r=0.28, p=0.0046). Basal macrophage activation markers CXCL5, CD163 and MMP9 were elevated, whilst protective CD200 was decreased (p<0.05); changes in these variables were related to, and fully accounted for, by BMI. PCOS and control women were then stratified according to vitamin D concentration. Vitamin D deficiency was associated with decreased CD80 and IFN-γ in PCOS and IL-12 in both groups (p<0.05). These factors, important in initiating and maintaining the immune response, were again accounted for by BMI. CONCLUSION Basal macrophage activation was higher in PCOS with macrophage changes related with increased infection risk associating with vitamin D; all changes were BMI dependent, suggesting that obese PCOS with vitamin D deficiency may be at greater risk of more severe COVID-19 infection, but that it is obesity-related rather than an independent PCOS factor.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Alexandra E. Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- *Correspondence: Alexandra E. Butler, ;
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Manama, Bahrain
| |
Collapse
|
36
|
Hydroxylumisterols, Photoproducts of Pre-Vitamin D3, Protect Human Keratinocytes against UVB-Induced Damage. Int J Mol Sci 2020; 21:ijms21249374. [PMID: 33317048 PMCID: PMC7763359 DOI: 10.3390/ijms21249374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Lumisterol (L3) is a stereoisomer of 7-dehydrocholesterol and is produced through the photochemical transformation of 7-dehydrocholesteol induced by high doses of UVB. L3 is enzymatically hydroxylated by CYP11A1, producing 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3. Hydroxylumisterols function as reverse agonists of the retinoic acid-related orphan receptors α and γ (RORα/γ) and can interact with the non-genomic binding site of the vitamin D receptor (VDR). These intracellular receptors are mediators of photoprotection and anti-inflammatory activity. In this study, we show that L3-hydroxyderivatives significantly increase the expression of VDR at the mRNA and protein levels in keratinocytes, both non-irradiated and after UVB irradiation. L3-hydroxyderivatives also altered mRNA and protein levels for RORα/γ in non-irradiated cells, while the expression was significantly decreased in UVB-irradiated cells. In UVB-irradiated keratinocytes, L3-hydroxyderivatives inhibited nuclear translocation of NFκB p65 by enhancing levels of IκBα in the cytosol. This anti-inflammatory activity mediated by L3-hydroxyderivatives through suppression of NFκB signaling resulted in the inhibition of the expression of UVB-induced inflammatory cytokines, including IL-17, IFN-γ, and TNF-α. The L3-hydroxyderivatives promoted differentiation of UVB-irradiated keratinocytes as determined from upregulation of the expression at the mRNA of involucrin (IVL), filaggrine (FLG), and keratin 14 (KRT14), downregulation of transglutaminase 1 (TGM1), keratins including KRT1, and KRT10, and stimulation of ILV expression at the protein level. We conclude that CYP11A1-derived hydroxylumisterols are promising photoprotective agents capable of suppressing UVB-induced inflammatory responses and restoring epidermal function through targeting the VDR and RORs.
Collapse
|
37
|
Brożyna AA, Kim TK, Zabłocka M, Jóźwicki W, Yue J, Tuckey RC, Jetten AM, Slominski AT. Association among Vitamin D, Retinoic Acid-Related Orphan Receptors, and Vitamin D Hydroxyderivatives in Ovarian Cancer. Nutrients 2020; 12:E3541. [PMID: 33227893 PMCID: PMC7699234 DOI: 10.3390/nu12113541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin D and its derivatives, acting via the vitamin D receptor (VDR) and retinoic acid-related orphan receptors γ and α (RORγ and RORα), show anticancer properties. Since pathological conditions are characterized by disturbances in the expression of these receptors, in this study, we investigated their expression in ovarian cancers (OCs), as well as explored the phenotypic effects of vitamin D hydroxyderivatives and RORγ/α agonists on OC cells. The VDR and RORγ showed both a nuclear and a cytoplasmic location, and their expression levels were found to be reduced in the primary and metastatic OCs in comparison to normal ovarian epithelium, as well as correlated to the tumor grade. This reduction in VDR and RORγ expression correlated with a shorter overall disease-free survival. VDR, RORγ, and RORα were also detected in SKOV-3 and OVCAR-3 cell lines with increased expression in the latter line. 20-Hydroxy-lumisterol3 (20(OH)L3) and synthetic RORα/RORγ agonist SR1078 inhibited proliferation only in the OVCAR-3 line, while 20-hydroxyvitamin-D3 (20(OH)D3) only inhibited SKOV-3 cell proliferation. 1,25(OH)2D3, 20(OH)L3, and SR1078, but not 20(OH)D3, inhibited spheroid formation in SKOV-3 cells. In summary, decreases in VDR, RORγ, and RORα expression correlated with an unfavorable outcome for OC, and compounds targeting these receptors had a context-dependent anti-tumor activity in vitro. We conclude that VDR and RORγ expression can be used in the diagnosis and prognosis of OC and suggest their ligands as potential candidates for OC therapy.
Collapse
Affiliation(s)
- Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Marzena Zabłocka
- Department of Tumor Pathology and Pathomorphology, Oncology Centre—Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, 85-796 Bydgoszcz, Poland;
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Department of Oncology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Anton M. Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Laboratory Service of the VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
38
|
Lote-Oke R, Pawar J, Kulkarni S, Sanas P, Kajale N, Gondhalekar K, Khadilkar V, Kamat S, Khadilkar A. A LC-MS method for 25-hydroxy-vitamin D3 measurements from dried blood spots for an epidemiological survey in India. Sci Rep 2020; 10:19873. [PMID: 33199793 PMCID: PMC7670412 DOI: 10.1038/s41598-020-76955-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Vitamin D, a secosteroid, plays an important role in several physiological processes, and its deficiency can lead to numerous pathophysiological conditions in humans. The primary objective of this study was to develop and validate the robustness of a mass spectrometry-based method capable of quantifying 25(OH)D3 for an upcoming epidemiological survey in India and to pilot test it on healthy volunteers. We first describe the development and validation of various experimental parameters that ascertain the robustness and reliability of 25-hydroxy-vitamin D3 (25(OH)D3) extractions and quantitative measurements from Dried Blood Spot (DBS) samples, where we used eight disks of 3 mm each, punched from the circular spot covering the entire circumference of the spot. Next, we conducted a pilot study, comparing 25(OH)D3 levels from serum and DBS samples from 45 participants using a protocol developed for specifically this purpose. We found that the mean 25(OH)D3 concentrations in DBS samples were comparable to the serum levels (P > 0.05). In summary, our extraction and LC–MS protocol for quantitative 25(OH)D3 measurements are robust and reproducible, and will serve as an invaluable tool for upcoming epidemiological surveys in India and perhaps around the world.
Collapse
Affiliation(s)
- Rashmi Lote-Oke
- Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | - Jwala Pawar
- Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | - Shriram Kulkarni
- Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | - Prasanna Sanas
- Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | - Neha Kajale
- Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | | | - Vaman Khadilkar
- Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | - Siddhesh Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
39
|
Marini F, Falcini F, Stagi S, Fabbri S, Ciuffi S, Rigante D, Cerinic MM, Brandi ML. Study of vitamin D status and vitamin D receptor polymorphisms in a cohort of Italian patients with juvenile idiopathic arthritis. Sci Rep 2020; 10:17550. [PMID: 33067526 PMCID: PMC7567873 DOI: 10.1038/s41598-020-74861-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic arthritis of children and adolescents. Autoimmune mechanisms are suspected to have a central role in its development. Vitamin D is an immuno-modulator in a variety of conditions, including autoimmune diseases. Low levels of vitamin D have commonly been found in JIA patients, but the influence of this hormone insufficiency in JIA pathogenesis is still unclear. Vitamin D receptor (VDR) mediates a great majority of vitamin D biological activities; specific polymorphisms of the VDR gene have been associated with different biologic responses to vitamin D. In this study, we analysed clinical characteristics of a cohort of 103 Italian JIA patients. The distribution of VDR polymorphisms in affected patients versus healthy controls was evaluated, as well as if and how these polymorphic variants associate with different disease presentations (active disease vs non-active disease), different JIA subtypes, serum levels of 25-hydroxy-vitamin D and parathyroid hormone (PTH), and lumbar spine Z-score values (osteopenia vs normal bone mineral density). A great majority of our JIA patients (84.5%) showed a suboptimal vitamin D status, in many cases (84.1%) not solved by vitamin D supplementation. Vitamin D status resulted to be independent of VDR genotypes. ApaI genotypes showed a highly significant different distribution between JIA patients and unaffected controls, with both the TT genotype and the T allele significantly more frequent in patient group.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Fernanda Falcini
- Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| | - Stefano Stagi
- Health' Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy
| | - Sergio Fabbri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Rome, Italy.,Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Palagi 1, 50139, Florence, Italy.
| |
Collapse
|
40
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
41
|
Vitamin D supplementation and the outcomes of critically ill adult patients: a systematic review and meta-analysis of randomized controlled trials. Sci Rep 2020; 10:14261. [PMID: 32868842 PMCID: PMC7459294 DOI: 10.1038/s41598-020-71271-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 11/15/2022] Open
Abstract
This meta-analysis assessed the association between vitamin D supplementation and the outcomes of critically ill adult patients. A literature search was conducted using the PubMed, Web of Science, EBSCO, Cochrane Library, Ovid MEDLINE, and Embase databases until March 21, 2020. We only included randomized controlled trials (RCTs) comparing the efficacy of vitamin D supplementation with placebo in critically ill adult patients. The primary outcome was their 28-day mortality. Overall, 9 RCTs with 1867 patients were included. In the pooled analysis of the 9 RCTs, no significant difference was observed in 28-day mortality between the vitamin D supplementation and placebo groups (20.4% vs 21.7%, OR, 0.73; 95% CI, 0.46–1.15; I2 = 51%). This result did not change as per the method of vitamin D supplementation (enteral route only: 19.9% vs 18.2%, OR, 1.19; 95% CI, 0.88–1.57; I2 = 10%; intramuscular or intravenous injection route: 25.6% vs 40.8%, OR, 0.48; 95% CI, 0.21–1.06; I2 = 19%) or daily dose (high dose: 20.9% vs 19.8%, OR, 0.83; 95% CI, 0.51–1.36; I2 = 53%; low dose: 15.6% vs 21.3%, OR, 0.74; 95% CI, 0.32–1.68; I2 = 0%). No significant difference was observed between the vitamin D supplementation and placebo groups regarding the length of ICU stay (standard mean difference [SMD], − 0.30; 95% CI, − 0.61 to 0.01; I2 = 60%), length of hospital stay (SMD, − 0.17; 95% CI, − 041 to 0.08; I2 = 65%), and duration of mechanical ventilation (SMD, − 0.41; 95% CI, − 081 to 0.00; I2 = 72%). In conclusion, this meta-analysis suggested that the administration of vitamin D did not provide additional advantages over placebo for critically ill patients. However, additional studies are needed to confirm our findings.
Collapse
|
42
|
Chaiprasongsuk A, Janjetovic Z, Kim TK, Tuckey RC, Li W, Raman C, Panich U, Slominski AT. CYP11A1-derived vitamin D 3 products protect against UVB-induced inflammation and promote keratinocytes differentiation. Free Radic Biol Med 2020; 155:87-98. [PMID: 32447000 PMCID: PMC7339935 DOI: 10.1016/j.freeradbiomed.2020.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 01/09/2023]
Abstract
UVB radiation mediates inflammatory responses causing skin damage and defects in epidermal differentiation. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) interacts with the vitamin D3 receptor (VDR) to regulate inflammatory responses. Additionally, 1,25(OH)2D3/VDR signaling represents a potential therapeutic target in the treatment of skin disorders associated with inflammation and poor differentiation of keratinocytes. Since the protective effect of 1,25(OH)2D3 against UVB-induced skin damage and inflammation is recognized, CYP11A1-derived vitamin D3-hydroxyderivatives including 20(OH)D3, 1,20(OH)2D3, 20,23(OH)2D3 and 1,20,23(OH)3D3 were tested for their anti-inflammatory and skin protection properties in UVB-irradiated human epidermal keratinocytes (HEKn). HEKn were treated with secosteroids for 24 h pre- and post-UVB (50 mJ/cm2) irradiation. Secosteroids modulated the expression of the inflammatory response genes (IL-17, NF-κB p65, and IκB-α), reducing nuclear-NF-κB-p65 activity and increasing cytosolic-IκB-α expression as well as that of pro-inflammatory mediators, IL-17, TNF-α, and IFN-γ. They stimulated the expression of involucrin (IVL) and cytokeratin 10 (CK10), the major markers of epidermal differentiation, in UVB-irradiated cells. We conclude that CYP11A1-derived hydroxyderivatives inhibit UVB-induced epidermal inflammatory responses through activation of IκB-α expression and suppression of NF-kB-p65 activity and its downstream signaling cytokines, TNF-α, and IFN-γ, as well as by inhibiting IL-17 production and activating epidermal differentiation.
Collapse
Affiliation(s)
- Anyamanee Chaiprasongsuk
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chander Raman
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
43
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
44
|
Soeberdt M, Kilic A, Abels C. Current and emerging treatments targeting the neuroendocrine system for disorders of the skin and its appendages. Exp Dermatol 2020; 29:801-813. [DOI: 10.1111/exd.14145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| |
Collapse
|
45
|
Kim TK, Atigadda V, Brzeminski P, Fabisiak A, Tang EKY, Tuckey RC, Slominski AT. Detection of 7-Dehydrocholesterol and Vitamin D3 Derivatives in Honey. Molecules 2020; 25:E2583. [PMID: 32498437 PMCID: PMC7321140 DOI: 10.3390/molecules25112583] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
20(S)-Hydroxyvitamin D3 (20(OH)D3) is an endogenous metabolite produced by the action of CYP11A1 on the side chain of vitamin D3 (D3). 20(OH)D3 can be further hydroxylated by CYP11A1, CYP27A1, CYP24A1 and/or CYP27B1 to several hydroxyderivatives. CYP11A1 also hydroxylates D3 to 22-monohydroxyvitamin D3 (22(OH)D3), which is detectable in the epidermis. 20-Hydroxy-7-dehydrocholesterol (20(OH)-7DHC) has been detected in the human epidermis and can be phototransformed into 20(OH)D3 following the absorption of ultraviolet B (UVB) energy by the B-ring. 20(OH)D3 and its hydroxyderivatives have anti-inflammatory, pro-differentiation and anti-proliferative effects, comparable to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Since cytochromes P450 with 20- or 25-hydroxylase activity are found in insects participating in ecdysone synthesis from 7-dehydrocholesterol (7DHC), we tested whether D3-hydroxyderivatives are present in honey, implying their production in bees. Honey was collected during summer in the Birmingham area of Alabama or purchased commercially and extracted and analyzed using LC-MS. We detected a clear peak of m/z = 423.324 [M + Na]+ for 20(OH)D3 corresponding to a concentration in honey of 256 ng/g. We also detected peaks of m/z = 383.331 [M + H - H2O]+ for 20(OH)-7DHC and 25(OH)D3 with retention times corresponding to the standards. We further detected species with m/z = 407.329 [M + Na]+ corresponding to the RT of 7DHC, D3 and lumisterol3 (L3). Similarly, peaks with m/z = 399.326 [M + H - H2O]+ were detected at the RT of 1,25(OH)2D3 and 1,20-dihydroxyvitamin D3 (1,20(OH)2D3). Species corresponding to 20-monohydroxylumisterol3 (20(OH)L3), 22-monohydroxyvitamin D3 (22(OH)D3), 20,23-dihydroxyvitamin D3 (20,23(OH)2D3), 20,24/25/26-dihydroxyvitamin D3 (20,24/25/26(OH)2D3) and 1,20,23/24/25/26-trihydroxyvitamin D3 (1,20,23/24/25/26(OH)3D3) were not detectable above the background. In conclusion, the presence of 7DHC and D3 and of species corresponding to 20(OH)-7DHC, 20(OH)D3, 1,20(OH)2D3, 25(OH)D3 and 1,25(OH)2D3 in honey implies their production in bees, although the precise biochemistry and photochemistry of these processes remain to be defined.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- VA Medical Center, Birmingham, Birmingham, AL 35294, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
| | - Pawel Brzeminski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Edith K. Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.K.Y.T.); (R.C.T.)
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.K.Y.T.); (R.C.T.)
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- VA Medical Center, Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Slominski AT, Chaiprasongsuk A, Janjetovic Z, Kim TK, Stefan J, Slominski RM, Hanumanthu VS, Raman C, Qayyum S, Song Y, Song Y, Panich U, Crossman DK, Athar M, Holick MF, Jetten AM, Zmijewski MA, Zmijewski J, Tuckey RC. Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem Biophys 2020; 78:165-180. [PMID: 32441029 PMCID: PMC7347247 DOI: 10.1007/s12013-020-00913-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
We have previously described new pathways of vitamin D3 activation by CYP11A1 to produce a variety of metabolites including 20(OH)D3 and 20,23(OH)2D3. These can be further hydroxylated by CYP27B1 to produce their C1α-hydroxyderivatives. CYP11A1 similarly initiates the metabolism of lumisterol (L3) through sequential hydroxylation of the side chain to produce 20(OH)L3, 22(OH)L3, 20,22(OH)2L3 and 24(OH)L3. CYP11A1 also acts on 7-dehydrocholesterol (7DHC) producing 22(OH)7DHC, 20,22(OH)27DHC and 7-dehydropregnenolone (7DHP) which can be converted to the D3 and L3 configurations following exposure to UVB. These CYP11A1-derived compounds are produced in vivo and are biologically active displaying anti-proliferative, anti-inflammatory, anti-cancer and pro-differentiation properties. Since the protective role of the classical form of vitamin D3 (1,25(OH)2D3) against UVB-induced damage is recognized, we recently tested whether novel CYP11A1-derived D3- and L3-hydroxyderivatives protect against UVB-induced damage in epidermal human keratinocytes and melanocytes. We found that along with 1,25(OH)2D3, CYP11A1-derived D3-hydroxyderivatives and L3 and its hydroxyderivatives exert photoprotective effects. These included induction of intracellular free radical scavenging and attenuation and repair of DNA damage. The protection of human keratinocytes against DNA damage included the activation of the NRF2-regulated antioxidant response, p53-phosphorylation and its translocation to the nucleus, and DNA repair induction. These data indicate that novel derivatives of vitamin D3 and lumisterol are promising photoprotective agents. However, detailed mechanisms of action, and the involvement of specific nuclear receptors, other vitamin D binding proteins or mitochondria, remain to be established.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA.
- Veteran Administration Medical Center, Birmingham, Al, USA.
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Radomir M Slominski
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Vidya Sagar Hanumanthu
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Chander Raman
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | | | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | - Jaroslaw Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
47
|
Slominski AT, Kim TK, Kleszczyński K, Semak I, Janjetovic Z, Sweatman T, Skobowiat C, Steketee JD, Lin Z, Postlethwaite A, Li W, Reiter RJ, Tobin DJ. Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells. J Pineal Res 2020; 68:e12626. [PMID: 31770455 PMCID: PMC7007327 DOI: 10.1111/jpi.12626] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Tryptophan hydroxylase (TPH) activity was detected in cultured epidermal melanocytes and dermal fibroblasts with respective Km of 5.08 and 2.83 mM and Vmax of 80.5 and 108.0 µmol/min. Low but detectable TPH activity was also seen in cultured epidermal keratinocytes. Serotonin and/or its metabolite and precursor to melatonin, N-acetylserotonin (NAS), were identified by LC/MS in human epidermis and serum. Endogenous epidermal levels were 113.18 ± 13.34 and 43.41 ± 12.45 ng/mg protein for serotonin (n = 8/8) and NAS (n = 10/13), respectively. Their production was independent of race, gender, and age. NAS was also detected in human serum (n = 13/13) at a concentration 2.44 ± 0.45 ng/mL, while corresponding serotonin levels were 295.33 ± 17.17 ng/mL (n = 13/13). While there were no differences in serum serotonin levels, serum NAS levels were slightly higher in females. Immunocytochemistry studies showed localization of serotonin to epidermal and follicular keratinocytes, eccrine glands, mast cells, and dermal fibrocytes. Endogenous production of serotonin in cultured melanocytes, keratinocytes, and dermal fibroblasts was modulated by UVB. In conclusion, serotonin and NAS are produced endogenously in the epidermal, dermal, and adnexal compartments of human skin and in cultured skin cells. NAS is also detectable in human serum. Both serotonin and NAS inhibited melanogenesis in human melanotic melanoma at concentrations of 10-4 -10-3 M. They also inhibited growth of melanocytes. Melanoma cells were resistant to NAS inhibition, while serotonin inhibited cell growth only at 10-3 M. In summary, we characterized a serotonin-NAS system in human skin that is a part of local neuroendocrine system regulating skin homeostasis.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, and Birmingham, AL, USA
- Department of Dermatology,VA Medical Center; Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, and Birmingham, AL, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk, Belarus
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, and Birmingham, AL, USA
| | | | - Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Zongtao Lin
- Departments of Pharmaceutical Sciences, Memphis, TN 38163, USA
| | - Arnold Postlethwaite
- Departments of Medicine, Division of Rheumatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Departments of VA Medical Center, Memphis, TN 38163, USA
| | - Wei Li
- Departments of Pharmaceutical Sciences, Memphis, TN 38163, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM, Guroji P, Reichrath J, Elmets C, Athar M. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:257-283. [PMID: 32918223 PMCID: PMC7490773 DOI: 10.1007/978-3-030-46227-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- VA Medical Center, Birmingham, AL, USA.
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M Slominski
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rebecca S Mason
- Physiology & Bosch Institute, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
49
|
Nagata A, Akagi Y, Asano L, Kotake K, Kawagoe F, Mendoza A, Masoud SS, Usuda K, Yasui K, Takemoto Y, Kittaka A, Nagasawa K, Uesugi M. Synthetic Chemical Probes That Dissect Vitamin D Activities. ACS Chem Biol 2019; 14:2851-2858. [PMID: 31618573 DOI: 10.1021/acschembio.9b00718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D3 metabolites are capable of controlling gene expression in mammalian cells through two independent pathways: vitamin D receptor (VDR) and sterol regulatory element-binding protein (SREBP) pathways. In the present study, we dissect the complex biological activity of vitamin D by designing synthetic vitamin D3 analogs specific for VDR or SREBP pathway, i.e., a VDR activator that lacks SREBP inhibitory activity, or an SREBP inhibitor devoid of VDR activity. These synthetic vitamin D probes permitted identification of one of the vitamin D-responsive genes, Soat1, as an SREBP-suppressed gene. The chemical probes developed in the present study may prove useful in dissecting the intricate interplay of vitamin D actions, thereby providing insights into how vitamin D target genes are regulated.
Collapse
Affiliation(s)
- Akiko Nagata
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Yusuke Akagi
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | | | | | - Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | | | - Shadi Sedghi Masoud
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Kosuke Usuda
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Koji Yasui
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | | | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Motonari Uesugi
- CREST, AMED 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
50
|
Brożyna AA, Jóźwicki W, Jetten AM, Slominski AT. On the relationship between VDR, RORα and RORγ receptors expression and HIF1-α levels in human melanomas. Exp Dermatol 2019; 28:1036-1043. [PMID: 31287590 PMCID: PMC6715521 DOI: 10.1111/exd.14002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
We analysed the correlation between the expression of HIF-1α (hypoxia-inducible factor 1 alpha), the nuclear receptors: VDR (vitamin D receptor), RORα (retinoic acid receptor-related orphan receptor alpha), and RORγ and CYP24A1 (cytochrome P450 family 24 subfamily A member 1) and CYP27B1 (cytochrome P450 family 27 subfamily B member 1), enzymes involved in vitamin D metabolism. In primary and metastatic melanomas, VDR negatively correlated with nuclear HIF-1α expression (r = -.2273, P = .0302; r = -.5081, P = .0011). Furthermore, the highest HIF-1α expression was observed in pT3-pT4 VDR-negative melanomas. A comparative analysis of immunostained HIF-1α and CYP27B1 and CYP24A1 showed lack of correlation between these parameters both in primary tumors and melanoma metastases. In contrast, RORα expression correlated positively with nuclear HIF-1α expression in primary and metastatic lesions (r = .2438, P = .0175; r = .3662, P = .0166). Comparable levels of HIF-1α expression pattern was observed in localized and advanced melanomas. RORγ in primary melanomas correlated also positively with nuclear HIF-1α expression (r = .2743, P = .0129). HIF-1α expression was the lowest in localized RORγ-negative melanomas. In addition, HIF-1α expression correlated with RORγ-positive lymphocytes in melanoma metastases. We further found that in metastatic lymph nodes FoxP3 immunostaining correlated positively with HIF-1α and RORγ expression in melanoma cells (r = .3667; P = .0327; r = .4208, P = .0129). In summary, our study indicates that the expression of VDR, RORα and RORγ in melanomas is related to hypoxia and/or HIF1-α activity, which also affects FoxP3 expression in metastatic melanoma. Therefore, the hypoxia can affect tumor biology by changing nuclear receptors expression and molecular pathways regulated by nuclear receptors and immune responses.
Collapse
MESH Headings
- 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/analysis
- Adult
- Aged
- Aged, 80 and over
- Cell Hypoxia
- Cell Nucleus/chemistry
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Lymphocytes/chemistry
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/secondary
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/biosynthesis
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Receptors, Calcitriol/biosynthesis
- Receptors, Calcitriol/genetics
- Single-Blind Method
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- T-Lymphocytes, Regulatory/immunology
- Vitamin D3 24-Hydroxylase/analysis
Collapse
Affiliation(s)
- Anna A. Brożyna
- Department of Human Biology, Faculty of Biology and
Environmental Protection, Nicolaus Copernicus University in Toruń, 87-100
Toruń, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology
Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz,
Poland
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology
Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz,
Poland
- Department of Tumor Pathology and Pathomorphology, Faculty
of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz,
Bydgoszcz, Poland
| | - Anton M. Jetten
- Cell Biology Section, Inflammation, Immunity and Disease
Laboratory, National Institute of Environmental Health Sciences, National Institutes
of Health, Research Triangle Park, NC, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center,
Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
- Laboratory Service of the VA Medical Center, Birmingham,
AL, USA
| |
Collapse
|