1
|
Gu Y, Chen J, Wang Z, Liu C, Wang T, Kim CJ, Durikova H, Fernandes S, Johnson DN, De Rose R, Cortez-Jugo C, Caruso F. mRNA delivery enabled by metal-organic nanoparticles. Nat Commun 2024; 15:9664. [PMID: 39511206 PMCID: PMC11544223 DOI: 10.1038/s41467-024-53969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
mRNA therapeutics are set to revolutionize disease prevention and treatment, inspiring the development of platforms for safe and effective mRNA delivery. However, current mRNA delivery platforms face some challenges, including limited organ tropism for nonvaccine applications and inflammation induced by cationic nanoparticle components. Herein, we address these challenges through a versatile, noncationic nanoparticle platform whereby mRNA is assembled into a poly(ethylene glycol)-polyphenol network stabilized by metal ions. Screening a range of components and relative compositional ratios affords a library of stable, noncationic, and highly biocompatible metal-organic nanoparticles with robust mRNA transfection in vitro and in mice. Intravenous administration of the lead mRNA-containing metal-organic nanoparticles enables predominant protein expression and gene editing in the brain, liver, and kidney, while organ tropism is tuned by varying nanoparticle composition. This study opens an avenue for realizing metal-organic nanoparticle-enabled mRNA delivery, offering a modular approach to assembling mRNA therapeutics for health applications.
Collapse
Affiliation(s)
- Yuang Gu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Chang Liu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Helena Durikova
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Soraia Fernandes
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, The University of Melbourne, Parkville, VIC, Australia
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Andriopoulos V, Kornaros M. Microalgal Phenolics: Systematic Review with a Focus on Methodological Assessment and Meta-Analysis. Mar Drugs 2024; 22:460. [PMID: 39452869 PMCID: PMC11509163 DOI: 10.3390/md22100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
A critical review and analysis of the literature relevant to the phenolic content of eucaryotic microalgae was performed. Several issues were identified and discussed. In summary, the main problems with the reporting on the phenolic content of microalgae are the following: (1) despite its usefulness in the determination of phenolic content in plant samples, the Folin-Ciocalteu assay is non-suitable for microalgal research due to the high presence of interfering compounds in microalgal extracts such as chlorophyll and its derivatives in organic extracts and free aromatic amino acids or nucleotides in aqueous extracts; (2) while there is chromatographic evidence for the presence of simple phenolic acids in most microalgal clades, the lack of critical enzymes of phenolic biosynthesis in most microalgae, as well as the high variability of phenolic profiles even in the same genus, require more extensive research before conclusions are drawn; (3) the accumulation and metabolism of external phenolics by microalgae has been almost universally neglected in studies focusing on the phenolic content of microalgae, even when natural seawater or complex organic media are used in the cultivation process. Despite these issues, the literature focusing on the bioremediation of waste streams rich in phenolics through microalgae demonstrates the ability of those organisms to adsorb, internalize, and in many cases oxidize or transform a wide range of phenolic compounds, even at very high concentrations. Simple phenolics found in waste streams, such as olive mill waste, have been shown to enhance the antioxidant activity and various bioactivities of microalgal extracts, while complex biotransformation products of phenolics have also been characterized. In conclusion, the de novo biosynthesis of phenolic compounds via eucaryotic microalgae requires further investigation with better designed experiments and suitable analytical methods, while the response of microalgae to phenolic compounds in their growth medium is of great practical interest, both in terms of waste treatment and for the production of functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Vasilis Andriopoulos
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece;
- Institute of Circular Economy and Environment (ICEE), University of Patras’ Research and Development Center, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece;
- Institute of Circular Economy and Environment (ICEE), University of Patras’ Research and Development Center, 26504 Patras, Greece
| |
Collapse
|
4
|
Marques D, Moura-Louro D, Silva IP, Matos S, Santos CND, Figueira I. Unlocking the potential of low-molecular-weight (Poly)phenol metabolites: Protectors at the blood-brain barrier frontier. Neurochem Int 2024; 179:105836. [PMID: 39151552 DOI: 10.1016/j.neuint.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Neurodegenerative diseases (NDDs) are an increasing group of chronic and progressive neurological disorders that ultimately lead to neuronal cell failure and death. Despite all efforts throughout decades, their burden on individuals and society still casts one of the most massive socioeconomic problems worldwide. The neuronal failure observed in NDDs results from an intricacy of events, mirroring disease complexity, ranging from protein aggregation, oxidative stress, (neuro)inflammation, and even blood-brain barrier (BBB) dysfunction, ultimately leading to cognitive and motor symptoms in patients. As a result of such complex pathobiology, to date, there are still no effective treatments to treat/halt NDDs progression. Fortunately, interest in the bioavailable low molecular weight (LMW) phenolic metabolites derived from the metabolism of dietary (poly)phenols has been rising due to their multitargeted potential in attenuating multiple NDDs hallmarks. Even if not highly BBB permeant, their relatively high concentrations in the bloodstream arising from the intake of (poly)phenol-rich diets make them ideal candidates to act within the vasculature and particularly at the level of BBB. In this review, we highlight the most recent - though still scarce - studies demonstrating LMW phenolic metabolites' ability to modulate BBB homeostasis, including the improvement of tight and adherens junctional proteins, as well as their power to decrease pro-inflammatory cytokine secretion and oxidative stress levels in vitro and in vivo. Specific BBB-permeant LMW phenolic metabolites, such as simple phenolic sulfates, have been emerging as strong BBB properties boosters, pleiotropic compounds capable of improving cell fitness under oxidative and pro-inflammatory conditions. Nevertheless, further studies should be pursued to obtain a holistic overview of the promising role of LMW phenolic metabolites in NDDs prevention and management to fully harness their true therapeutic potential.
Collapse
Affiliation(s)
- Daniela Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Diogo Moura-Louro
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Inês P Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Sara Matos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| |
Collapse
|
5
|
Seady M, Schirmbeck G, Taday J, Fróes FT, Baú JV, Jantsch J, Guedes RP, Gonçalves CA, Leite MC. Curcumin attenuates neuroinflammatory damage induced by LPS: Implications for the role of S100B. J Nutr Biochem 2024; 135:109768. [PMID: 39278425 DOI: 10.1016/j.jnutbio.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Inflammation is a common feature of neurological disorders that alters cell function in microglia and astrocytes as well as other neuronal cell types. Astrocytes modulate blood flow, regulate glutamate metabolism, and exert antioxidant protection. When responding to inflammatory damage, astrocytes enhance immune cell infiltration and amplify inflammatory responses via the upregulation of cytokine production. Several molecules have been proposed to attenuate neuroinflammation and control neurological diseases. Curcumin gained attention due to its capacity to cross the blood-brain barrier and its well-described anti-inflammatory and antioxidant activities. Our study aimed to understand if oral curcumin administration could protect against central nervous system inflammatory damage induced by intracerebroventricular injection of LPS while focusing on astrocyte function. Despite its poor bioavailability, we found that curcumin reaches the central nervous system, prevents the locomotory damage caused by LPS, and reduces inflammatory signaling via IL-1β and COX-2. Furthermore, we observed that curcumin was protective against LPS-induced S100B secretion in the cerebrospinal fluid and GSH reduction in the hippocampal tissue. However, curcumin could not protect the animals from anhedonia, assessed by the sucrose preference test, and weight loss induced by LPS. Our results indicate that oral curcumin administration exerts a protective anti-inflammatory action in the central nervous system, attenuating the sickness behavior induced by ICV LPS. This work demonstrates that curcumin has an important modulative effect on astrocytes, thus suggesting that astrocytes are critical to the anti-inflammatory effects of curcumin.
Collapse
Affiliation(s)
- Marina Seady
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel Schirmbeck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Telles Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéfeli Vasques Baú
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Ross FC, Mayer DE, Horn J, Cryan JF, Del Rio D, Randolph E, Gill CIR, Gupta A, Ross RP, Stanton C, Mayer EA. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutr Neurosci 2024; 27:1058-1076. [PMID: 38287652 DOI: 10.1080/1028415x.2023.2298098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.
Collapse
Affiliation(s)
- F C Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D E Mayer
- Institute of Human Nutrition, Columbia University, New York, USA
| | - J Horn
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - J F Cryan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department Anatomy & Neuroscience, University College Cork, Co. Cork, Ireland
| | - D Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - E Randolph
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - C I R Gill
- Nutrition Innovation Centre for Food and Health, Northern Ireland, UK
| | - A Gupta
- Division of Digestive Diseases, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - E A Mayer
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Li S, Cai Y, Wang S, Luo L, Zhang Y, Huang K, Guan X. Gut microbiota: the indispensable player in neurodegenerative diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7096-7108. [PMID: 38572789 DOI: 10.1002/jsfa.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
As one of the most urgent social and health problems in the world, neurodegenerative diseases have always been of interest to researchers. However, the pathological mechanisms and therapeutic approaches are not achieved. In addition to the established roles of oxidative stress, inflammation and immune response, changes of gut microbiota are also closely related to the pathogenesis of neurodegenerative diseases. Gut microbiota is the central player of the gut-brain axis, the dynamic bidirectional communication pathway between gut microbiota and central nervous system, and emerging insights have confirmed its indispensability in the development of neurodegenerative diseases. In this review, we discuss the complex relationship between gut microbiota and the central nervous system from the perspective of the gut-brain axis; review the mechanism of microbiota for the modulation different neurodegenerative diseases and discuss how different dietary patterns affect neurodegenerative diseases via gut microbiota; and prospect the employment of gut microbiota in the therapeutic approach to those diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Yuwei Cai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Shuo Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Lei Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
8
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
9
|
Foda AM, Ibrahim SS, Ibrahim SM, Elbaz EM. Pterostilbene Ameliorates Cognitive Impairment in Polycystic Ovary Syndrome Rat Model through Improving Insulin Resistance via the IRS-1/PI3K/Akt/GSK-3β Pathway: A Comparative Study with Metformin. ACS Chem Neurosci 2024; 15:3064-3077. [PMID: 39119909 DOI: 10.1021/acschemneuro.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an intricate endocrine disorder that targets millions of women globally. Recent research has drawn attention to its association with cognitive impairment and Alzheimer's disease (AD) risk, yet the exact mechanism remains elusive. This study aimed to explore the potential role of PCOS-associated insulin resistance (IR) and inflammation in linking PCOS to AD pathogenesis. It additionally investigated the therapeutic merits of pterostilbene (PTS) in ameliorating PCOS and associated cognitive deficits in comparison to metformin (MET). Rats were divided into five groups; vehicle group, PTS group [30 mg/kg, per os (p.o.) for 13 days], and the remaining three groups received letrozole (1 mg/kg, p.o. for 21 days) to represent the PCOS, PCOS + MET (300 mg/kg, p.o. for 13 days), and PCOS + PTS groups, respectively. Behavioral tests were conducted, along with a histopathological investigation of brains and ovaries. Assessment of serum hormonal profile and hippocampal IRS-1/PI3K/AKT/GSK-3β insulin signaling pathway components were performed. PTS rats exhibited improved insulin sensitivity and hormonal profile, besides enhanced neurobehavioral tests performance and histopathological findings. These effects may be attributed to modulation of the IRS-1/PI3K/AKT/GSK-3β pathway, reducing GSK-3β activity, and mitigating Tau hyperphosphorylation and Aβ accumulation in the brain. Likewise, PTS attenuated nuclear factor kappa B-mediated inflammation and reversed AChE elevation, suggesting multifaceted neuroprotective effects. Comparatively, PTS showed outcomes similar to those of MET in most parameters. The obtained findings validated that dysregulated insulin signaling in PCOS rats detrimentally affects cognitive function, which is halted by PTS, unveiling the potential of PTS as a novel therapy for PCOS and related cognitive deficits.
Collapse
Affiliation(s)
- Aliaa M Foda
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Safinaz S Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt
| | - Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
10
|
Miler M, Živanović J, Kovačević S, Vidović N, Djordjevic A, Filipović B, Ajdžanović V. Citrus Flavanone Effects on the Nrf2-Keap1/GSK3/NF-κB/NLRP3 Regulation and Corticotroph-Stress Hormone Loop in the Old Pituitary. Int J Mol Sci 2024; 25:8918. [PMID: 39201604 PMCID: PMC11354440 DOI: 10.3390/ijms25168918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Oxidative stress and inflammation are significant causes of aging. At the same time, citrus flavanones, naringenin (NAR), and hesperetin (HES) are bioactives with proven antioxidant and anti-inflammatory properties. Nevertheless, there are still no data about flavanone's influence and its potential effects on the healthy aging process and improving pituitary functioning. Thus, using qPCR, immunoblot, histological techniques, and biochemical assays, our study aimed to elucidate how citrus flavanones (15 mg/kg b.m. per os) affect antioxidant defense, inflammation, and stress hormone output in the old rat model. Our results showed that HES restores the redox environment in the pituitary by down-regulating the nuclear factor erythroid 2-related factor 2 (Nrf2) protein while increasing kelch-like ECH-associated protein 1 (Keap1), thioredoxin reductase (TrxR1), and superoxide dismutase 2 (SOD2) protein expression. Immunofluorescent analysis confirmed Nrf2 and Keap1 down- and up-regulation, respectively. Supplementation with NAR increased Keap1, Trxr1, glutathione peroxidase (Gpx), and glutathione reductase (Gr) mRNA expression. Decreased oxidative stress aligned with NLRP3 decrement after both flavanones and glycogen synthase kinase-3 (GSK3) only after HES. The signal intensity of adrenocorticotropic hormone (ACTH) cells did not change, while corticosterone levels in serum decreased after both flavanones. HES showed higher potential than NAR in affecting a redox environment without increasing the inflammatory response, while a decrease in corticosterone level has a solid link to longevity. Our findings suggest that HES could improve and facilitate redox and inflammatory dysregulation in the rat's old pituitary.
Collapse
Affiliation(s)
- Marko Miler
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| | - Jasmina Živanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.K.); (A.D.)
| | - Nevena Vidović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.K.); (A.D.)
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (J.Ž.); (B.F.); (V.A.)
| |
Collapse
|
11
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Unveiling the Therapeutic Potential of Kelulut (Stingless Bee) Honey in Alzheimer's Disease: Findings from a Rat Model Study. Antioxidants (Basel) 2024; 13:926. [PMID: 39199172 PMCID: PMC11351951 DOI: 10.3390/antiox13080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) poses a major worldwide health challenge because of its profound impact on cognitive abilities and overall well-being. Despite extensive research and numerous clinical trials, therapeutic options remain limited. Our study aimed to investigate the potential of Kelulut honey (KH) as a novel therapeutic agent for addressing the multifactorial pathology of AD. We tried to evaluate the disease-attenuating and neuroprotective potential of KH in the intrahippocampally induced AD rat model by utilizing histochemistry and enzyme-linked immunosorbent assay (ELISA) studies. A total of 26 male Sprague Dawley rats weighing ~280-380 g were randomly divided into three groups: Control, AD-induced (Aβ), and AD-induced and treated with KH (Aβ+KH). The latter two groups underwent stereotaxic surgery, where 6.25 µg of amyloid β1-42 peptides were injected intrahippocampally. One-week post-surgery, KH was administered to the treatment group at a dose of 1 g/kg body weight for a period of four weeks, after which the rats went through behavior tests. After completion of behavior analysis, the rats were sacrificed, and the brains were processed for histochemistry and ELISA studies. The open field test analysis demonstrated that KH improved the locomotion of Aβ+KH compared to Aβ (p = 0.0013). In comparison, the Morris water maze did not show any nootropic effects on cognition with a paradoxical increase in time spent in the target quadrant by the Aβ group (p = 0.029). Histochemical staining showed markedly increased Congo-red-stained amyloid plaques, which were significantly reduced in dentate gyrus of Aβ+KH compared to Aβ (p < 0.05). Moreover, significantly higher apoptosis was seen in the Aβ group compared to Aβ+KH (p < 0.01) and control groups (p < 0.001). Furthermore, the ELISA studies deduced more phosphorylated tau in the diseased group compared to Aβ+KH (p = 0.038) and controls (p = 0.016). These findings suggest that KH consumption for twenty-eight days has the potential to attenuate the pathological burden of disease while exerting neuroprotective effects in rodent models of AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| |
Collapse
|
12
|
Carecho R, Marques D, Carregosa D, Masuero D, Garcia-Aloy M, Tramer F, Passamonti S, Vrhovsek U, Ventura MR, Brito MA, Nunes Dos Santos C, Figueira I. Circulating low-molecular-weight (poly)phenol metabolites in the brain: unveiling in vitro and in vivo blood-brain barrier transport. Food Funct 2024; 15:7812-7827. [PMID: 38967492 DOI: 10.1039/d4fo01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Circulating metabolites resulting from colonic metabolism of dietary (poly)phenols are highly abundant in the bloodstream, though still marginally explored, particularly concerning their brain accessibility. Our goal is to disclose (poly)phenol metabolites' blood-brain barrier (BBB) transport, in vivo and in vitro, as well as their role at BBB level. For three selected metabolites, benzene-1,2-diol-3-sulfate/benzene-1,3-diol-2-sulfate (pyrogallol-sulfate - Pyr-sulf), benzene-1,3-diol-6-sulfate (phloroglucinol-sulfate - Phlo-sulf), and phenol-3-sulfate (resorcinol-sulfate - Res-sulf), BBB transport was assessed in human brain microvascular endothelial cells (HBMEC). Their potential in modulating in vitro BBB properties at circulating concentrations was also studied. Metabolites' fate towards the brain, liver, kidney, urine, and blood was disclosed in Wistar rats upon injection. Transport kinetics in HBMEC highlighted different BBB permeability rates, where Pyr-sulf emerged as the most in vitro BBB permeable metabolite. Pyr-sulf was also the most potent regarding BBB properties improvement, namely increased beta(β)-catenin membrane expression and reduction of zonula occludens-1 membrane gaps. Whereas no differences were observed for transferrin, increased expression of caveolin-1 upon Pyr-sulf and Res-sulf treatments was found. Pyr-sulf was also capable of modulating gene and protein expression of some solute carrier transporters. Notably, each of the injected metabolites exhibited a unique tissue distribution in vivo, with the remarkable ability to almost immediately reach the brain.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| | - Daniela Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| | - Domenico Masuero
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, Italy
| | - Mar Garcia-Aloy
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, Italy
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste, Italy
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige, Italy
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| |
Collapse
|
13
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
14
|
Geertsema J, Kratochvil M, González-Domínguez R, Lefèvre-Arbogast S, Low D, Du Preez A, Lee H, Urpi-Sarda M, Sánchez-Pla A, Aigner L, Samieri C, Andres-Lacueva C, Manach C, Thuret S, Lucassen P, Korosi A. Coffee polyphenols ameliorate early-life stress-induced cognitive deficits in male mice. Neurobiol Stress 2024; 31:100641. [PMID: 38827176 PMCID: PMC11140806 DOI: 10.1016/j.ynstr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Stress exposure during the sensitive period of early development has been shown to program the brain and increases the risk to develop cognitive deficits later in life. We have shown earlier that early-life stress (ES) leads to cognitive decline at an adult age, associated with changes in adult hippocampal neurogenesis and neuroinflammation. In particular, ES has been shown to affect neurogenesis rate and the survival of newborn cells later in life as well as microglia, modulating their response to immune or metabolic challenges later in life. Both of these processes possibly contribute to the ES-induced cognitive deficits. Emerging evidence by us and others indicates that early nutritional interventions can protect against these ES-induced effects through nutritional programming. Based on human metabolomics studies, we identified various coffee-related metabolites to be part of a protective molecular signature against cognitive decline in humans. Caffeic and chlorogenic acids are coffee-polyphenols and have been described to have potent anti-oxidant and anti-inflammatory actions. Therefore, we here aimed to test whether supplementing caffeic and chlorogenic acids to the early diet could also protect against ES-induced cognitive deficits. We induced ES via the limited nesting and bedding paradigm in mice from postnatal(P) day 2-9. On P2, mice received a diet to which 0.02% chlorogenic acid (5-O-caffeoylquinic acid) + 0.02% caffeic acid (3',4'-dihydroxycinnamic acid) were added, or a control diet up until P42. At 4 months of age, all mice were subjected to a behavioral test battery and their brains were stained for markers for microglia and neurogenesis. We found that coffee polyphenols supplemented early in life protected against ES-induced cognitive deficits, potentially this is mediated by the survival of neurons or microglia, but possibly other mechanisms not studied here are mediating the effects. This study provides additional support for the potential of early nutritional interventions and highlights polyphenols as nutrients that can protect against cognitive decline, in particular for vulnerable populations exposed to ES.
Collapse
Affiliation(s)
- J. Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - M. Kratochvil
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - R. González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - S. Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - D.Y. Low
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont Ferrand, France
| | - A. Du Preez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - H. Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - M. Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - A. Sánchez-Pla
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028, Barcelona, Spain
| | - L. Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020, Austria
| | - C. Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - C. Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - C. Manach
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont Ferrand, France
| | - S. Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - P.J. Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - A. Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
16
|
Przewłócka K, Korewo-Labelle D, Berezka P, Karnia MJ, Kaczor JJ. Current Aspects of Selected Factors to Modulate Brain Health and Sports Performance in Athletes. Nutrients 2024; 16:1842. [PMID: 38931198 PMCID: PMC11206260 DOI: 10.3390/nu16121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This review offers a comprehensive evaluation of current aspects related to nutritional strategies, brain modulation, and muscle recovery, focusing on their applications and the underlying mechanisms of physiological adaptation for promoting a healthy brain, not only in athletes but also for recreationally active and inactive individuals. We propose that applying the rule, among others, of good sleep, regular exercise, and a properly balanced diet, defined as "SPARKS", will have a beneficial effect on the function and regeneration processes of the gut-brain-muscle axis. However, adopting the formula, among others, of poor sleep, stress, overtraining, and dysbiosis, defined as "SMOULDER", will have a detrimental impact on the function of this axis and consequently on human health as well as on athletes. Understanding these dynamics is crucial for optimizing brain health and cognitive function. This review highlights the significance of these factors for overall well-being, suggesting that adopting the "SPARKS" approach may benefit not only athletes but also older adults and individuals with health conditions.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Division of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Paweł Berezka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| |
Collapse
|
17
|
Clifford MN, Ludwig IA, Pereira-Caro G, Zeraik L, Borges G, Almutairi TM, Dobani S, Bresciani L, Mena P, Gill CIR, Crozier A. Exploring and disentangling the production of potentially bioactive phenolic catabolites from dietary (poly)phenols, phenylalanine, tyrosine and catecholamines. Redox Biol 2024; 71:103068. [PMID: 38377790 PMCID: PMC10891336 DOI: 10.1016/j.redox.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Following ingestion of fruits, vegetables and derived products, (poly)phenols that are not absorbed in the upper gastrointestinal tract pass to the colon, where they undergo microbiota-mediated ring fission resulting in the production of a diversity of low molecular weight phenolic catabolites, which appear in the circulatory system and are excreted in urine along with their phase II metabolites. There is increasing interest in these catabolites because of their potential bioactivity and their use as biomarkers of (poly)phenol intake. Investigating the fate of dietary (poly)phenolics in the colon has become confounded as a result of the recent realisation that many of the phenolics appearing in biofluids can also be derived from the aromatic amino acids, l-phenylalanine and l-tyrosine, and to a lesser extent catecholamines, in reactions that can be catalysed by both colonic microbiota and endogenous mammalian enzymes. The available evidence, albeit currently rather limited, indicates that substantial amounts of phenolic catabolites originate from phenylalanine and tyrosine, while somewhat smaller quantities are produced from dietary (poly)phenols. This review outlines information on this topic and assesses procedures that can be used to help distinguish between phenolics originating from dietary (poly)phenols, the two aromatic amino acids and catecholamines.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Iziar A Ludwig
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Laila Zeraik
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Sara Dobani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy; Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
19
|
Domínguez-López I, López-Yerena A, Vallverdú-Queralt A, Pallàs M, Lamuela-Raventós RM, Pérez M. From the gut to the brain: the long journey of phenolic compounds with neurocognitive effects. Nutr Rev 2024:nuae034. [PMID: 38687609 DOI: 10.1093/nutrit/nuae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
The human gut microbiota is a complex community of micro-organisms that play a crucial role in maintaining overall health. Recent research has shown that gut microbes also have a profound impact on brain function and cognition, leading to the concept of the gut-brain axis. One way in which the gut microbiota can influence the brain is through the bioconversion of polyphenols to other bioactive molecules. Phenolic compounds are a group of natural plant metabolites widely available in the human diet, which have anti-inflammatory and other positive effects on health. Recent studies have also suggested that some gut microbiota-derived phenolic metabolites may have neurocognitive effects, such as improving memory and cognitive function. The specific mechanisms involved are still being studied, but it is believed that phenolic metabolites may modulate neurotransmitter signaling, reduce inflammation, and enhance neural plasticity. Therefore, to exert a protective effect on neurocognition, dietary polyphenols or their metabolites must reach the brain, or act indirectly by producing an increase in bioactive molecules such as neurotransmitters. Once ingested, phenolic compounds are subjected to various processes (eg, metabolization by gut microbiota, absorption, distribution) before they cross the blood-brain barrier, perhaps the most challenging stage of their trajectory. Understanding the role of phenolic compounds in the gut-brain axis has important implications for the development of new therapeutic strategies for neurological and psychiatric disorders. By targeting the gut microbiota and its production of phenolic metabolites, it may be possible to improve brain function and prevent cognitive decline. In this article, the current state of knowledge on the endogenous generation of phenolic metabolites by the gut microbiota and how these compounds can reach the brain and exert neurocognitive effects was reviewed.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anallely López-Yerena
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Serini S, Calviello G. Potential of Natural Phenolic Compounds against Doxorubicin-Induced Chemobrain: Biological and Molecular Mechanisms Involved. Antioxidants (Basel) 2024; 13:486. [PMID: 38671933 PMCID: PMC11047710 DOI: 10.3390/antiox13040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chemotherapy-induced cognitive impairment or "chemobrain" is a prevalent long-term complication of chemotherapy and one of the more devastating. Most of the studies performed so far to identify the cognitive dysfunctions induced by antineoplastic chemotherapies have been focused on treatment with anthracyclines, frequently administered to breast cancer patients, a population that, after treatment, shows a high possibility of long survival and, consequently, of chemobrain development. In the last few years, different possible strategies have been explored to prevent or reduce chemobrain induced by the anthracycline doxorubicin (DOX), known to promote oxidative stress and inflammation, which have been strongly implicated in the development of this brain dysfunction. Here, we have critically analyzed the results of the preclinical studies from the last few years that have evaluated the potential of phenolic compounds (PheCs), a large class of natural products able to exert powerful antioxidant and anti-inflammatory activities, in inhibiting DOX-induced chemobrain. Several PheCs belonging to different classes have been shown to be able to revert DOX-induced brain morphological damages and deficits associated with learning, memory, and exploratory behavior. We have analyzed the biological and molecular mechanisms implicated and suggested possible future perspectives in this research area.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
21
|
Kantati YT, Kodjo MK, Lefranc B, Basille-Dugay M, Hupin S, Schmitz I, Leprince J, Gbeassor M, Vaudry D. Neuroprotective Effect of Sterculia setigera Leaves Hydroethanolic Extract. J Mol Neurosci 2024; 74:44. [PMID: 38630337 DOI: 10.1007/s12031-024-02222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.
Collapse
Affiliation(s)
- Yendubé T Kantati
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - Magloire K Kodjo
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - Benjamin Lefranc
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France
| | - Magali Basille-Dugay
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
| | - Sébastien Hupin
- UMR 6014, Normandie Université, COBRA, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 3038, Mont Saint Aignan Cedex, FR, France
| | - Isabelle Schmitz
- UMR 6014, Normandie Université, COBRA, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 3038, Mont Saint Aignan Cedex, FR, France
- UMR 6270, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, 76000, Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, Normandie Univ, NorDiC UMR 1239, 76000, Inserm, Rouen, France
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France
| | - Messanvi Gbeassor
- Laboratory of Physiology/Pharmacology, Physiopathology Bioactive Substances and Innocuity Research Unit (PBSI), Faculty of Sciences, of Lomé, Lomé, Togo, 01BP 1515
| | - David Vaudry
- Univ Rouen Normandie, CNRS, Normandie Univ, HeRacLeS US 51 UAR 2026, 76000, Inserm, Rouen, France.
- UMR 1245, Laboratory of Cancer and Brain Genomics, Univ Rouen Normandie, Normandie Univ, 76000, Inserm, Rouen, France.
| |
Collapse
|
22
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
23
|
Lymperopoulos D, Dedemadi AG, Voulgari ML, Georgiou E, Dafnis I, Mountaki C, Panagopoulou EA, Karvelas M, Chiou A, Karathanos VT, Chroni A. Corinthian Currants Promote the Expression of Paraoxonase-1 and Enhance the Antioxidant Status in Serum and Brain of 5xFAD Mouse Model of Alzheimer's Disease. Biomolecules 2024; 14:426. [PMID: 38672443 PMCID: PMC11047902 DOI: 10.3390/biom14040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Paraoxonase-1 (PON1), a serum antioxidant enzyme, has been implicated in Alzheimer's disease (AD) pathogenesis that involves early oxidative damage. Corinthian currants and their components have been shown to display antioxidant and other neuroprotective effects in AD. We evaluated the effect of a Corinthian currant paste-supplemented diet (CurD), provided to 1-month-old 5xFAD mice for 1, 3, and 6 months, on PON1 activity and levels of oxidation markers in serum and the brain of mice as compared to a control diet (ConD) or glucose/fructose-matched diet (GFD). Administration of CurD for 1 month increased PON1 activity and decreased oxidized lipid levels in serum compared to ConD and GFD. Longer-term administration of CurD did not, however, affect serum PON1 activity and oxidized lipid levels. Furthermore, CurD administered for 1 and 3 months, but not for 6 months, increased PON1 activity and decreased free radical levels in the cortex of mice compared to ConD and GFD. To probe the mechanism for the increased PON1 activity in mice, we studied the effect of Corinthian currant polar phenolic extract on PON1 activity secreted by Huh-7 hepatocytes or HEK293 cells transfected with a PON1-expressing plasmid. Incubation of cells with the extract led to a dose-dependent increase of secreted PON1 activity, which was attributed to increased cellular PON1 expression. Collectively, our findings suggest that phenolics in Corinthian currants can increase the hepatic expression and activity of antioxidant enzyme PON1 and that a Corinthian currant-supplemented diet during the early stages of AD in mice reduces brain oxidative stress.
Collapse
Affiliation(s)
- Dimitris Lymperopoulos
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Zografou, 15784 Athens, Greece
| | - Anastasia-Georgia Dedemadi
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15784 Athens, Greece
| | - Maria-Lydia Voulgari
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15784 Athens, Greece
| | - Eirini Georgiou
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15784 Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
| | - Christina Mountaki
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
| | - Eirini A. Panagopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece (A.C.); (V.T.K.)
| | - Michalis Karvelas
- Research and Development Department, Agricultural Cooperatives’ Union of Aeghion, 25100 Aeghion, Greece;
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece (A.C.); (V.T.K.)
| | - Vaios T. Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece (A.C.); (V.T.K.)
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
24
|
Hamel R, Oyler R, Harms E, Bailey R, Rendeiro C, Jenkinson N. Dietary Cocoa Flavanols Do Not Alter Brain Excitability in Young Healthy Adults. Nutrients 2024; 16:969. [PMID: 38613003 PMCID: PMC11013095 DOI: 10.3390/nu16070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The ingestion of dietary cocoa flavanols acutely alters functions of the cerebral endothelium, but whether the effects of flavanols permeate beyond this to alter other brain functions remains unclear. Based on converging evidence, this work tested the hypothesis that cocoa flavanols would alter brain excitability in young healthy adults. In a randomised, cross-over, double-blinded, placebo-controlled design, transcranial magnetic stimulation was used to assess corticospinal and intracortical excitability before as well as 1 and 2 h post-ingestion of a beverage containing either high (695 mg flavanols, 150 mg (-)-epicatechin) or low levels (5 mg flavanols, 0 mg (-)-epicatechin) of cocoa flavanols. In addition to this acute intervention, the effects of a short-term chronic intervention where the same cocoa flavanol doses were ingested once a day for 5 consecutive days were also investigated. For both the acute and chronic interventions, the results revealed no robust alteration in corticospinal or intracortical excitability. One possibility is that cocoa flavanols yield no net effect on brain excitability, but predominantly alter functions of the cerebral endothelium in young healthy adults. Future studies should increase intervention durations to maximize the acute and chronic accumulation of flavanols in the brain, and further investigate if cocoa flavanols would be more effective at altering brain excitability in older adults and clinical populations than in younger adults.
Collapse
Affiliation(s)
- Raphael Hamel
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebecca Oyler
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Evie Harms
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rosamond Bailey
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Catarina Rendeiro
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Ned Jenkinson
- School of Sports, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
26
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
27
|
Radwan N, Khan E, Ardah MT, Kitada T, Haque ME. Ellagic Acid Prevents α-Synuclein Spread and Mitigates Toxicity by Enhancing Autophagic Flux in an Animal Model of Parkinson's Disease. Nutrients 2023; 16:85. [PMID: 38201915 PMCID: PMC10780534 DOI: 10.3390/nu16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurological disorder, pathologically characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) as well as the formation of Lewy bodies composed mainly of α-synuclein (α-syn) aggregates. It has been documented that abnormal aggregation of α-syn is one of the major causes of developing PD. In the current study, administration of ellagic acid (EA), a polyphenolic compound (10 mg/kg bodyweight), significantly decreased α-syn spreading and preserved dopaminergic neurons in a male C57BL/6 mouse model of PD. Moreover, EA altered the autophagic flux, suggesting the involvement of a restorative mechanism meditated by EA treatment. Our data support that EA could play a major role in the clearing of toxic α-syn from spreading, in addition to the canonical antioxidative role, and thus preventing dopaminergic neuronal death.
Collapse
Affiliation(s)
- Nada Radwan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.R.); (E.K.); (M.T.A.)
| | - Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.R.); (E.K.); (M.T.A.)
| | - Mustafa T. Ardah
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.R.); (E.K.); (M.T.A.)
| | - Tohru Kitada
- Otawa-Kagaku, Parkinson Clinic and Research, Kamakura 247-0061, Japan;
| | - M. Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.R.); (E.K.); (M.T.A.)
| |
Collapse
|
28
|
Ciernikova S, Sevcikova A, Mladosievicova B, Mego M. Microbiome in Cancer Development and Treatment. Microorganisms 2023; 12:24. [PMID: 38257851 PMCID: PMC10819529 DOI: 10.3390/microorganisms12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| |
Collapse
|
29
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
30
|
Hawiset T, Sriraksa N, Kamsrijai U, Praman S, Inkaew P. Neuroprotective effect of Tiliacora triandra (Colebr.) Diels leaf extract on scopolamine-induced memory impairment in rats. Heliyon 2023; 9:e22545. [PMID: 38107289 PMCID: PMC10724565 DOI: 10.1016/j.heliyon.2023.e22545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss caused from alterations in the central cholinergic system. While existing medications often have adverse effects, traditional use of Tiliacora triandra in Thailand shows its potential as a revitalizing neurotonic agent. This study explores the impact of T. triandra leaf extract on cognitive behaviors, neuronal density, and oxidative stress in male rats with scopolamine-induced cognitive impairment. Experimental groups composed of a control, vehicle, positive control meditation, and T. triandra extract-treated groups (100, 200, and 400 mg/kg BW) over 14 days, with scopolamine administration (i.p.) between days 8 and 14. Results showed significant enhancements in the discrimination ratio and spontaneous alteration behavior percentage during novel object recognition (NORT) and Y-maze tests for scopolamine-administered rats treated with T. triandra extract or donepezil. In contrast, open field test (OFT)-assessed spontaneous locomotor activity displayed no significant difference. Notably, acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels reduced significantly in scopolamine-treated rats with T. triandra extract or the positive control. Moreover, neuronal density in the hippocampal CA3 region, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities increased significantly. However, catalase (CAT) activity exhibited no significant difference. In conclusion, T. triandra leaf extract shows promise in mitigating scopolamine-induced memory deficits, potentially attributed to increased neuronal density, inhibited AChE activity, reduced MDA levels, and enhanced antioxidant activities. This extract has potential as a therapeutic agent for Alzheimer's disease-associated memory impairment.
Collapse
Affiliation(s)
- Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Napatr Sriraksa
- School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand
- Unit of Excellence in The Pulmonary and Cardiovascular Health Care, University of Phayao, Muang, Phayao, 56000, Thailand
| | | | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Prachak Inkaew
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
31
|
Ávila-Gálvez MÁ, Marques D, Figueira I, Cankar K, Bosch D, Brito MA, Dos Santos CN. Costunolide and parthenolide: Novel blood-brain barrier permeable sesquiterpene lactones to improve barrier tightness. Biomed Pharmacother 2023; 167:115413. [PMID: 37683593 DOI: 10.1016/j.biopha.2023.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sesquiterpene lactones - such as those found in chicory - are considered promising bioactive compounds. These small molecules have shown several health benefits for various diseases, including brain disorders. However, it is unknown whether these compounds can cross the blood-brain barrier (BBB), and which could be the effects on brain microvascular endothelial cells. We show that six sesquiterpene lactones evaluated in an in vitro model of the BBB have different capacities to be transported through the barrier. Costunolide presented more than 20 % of transport while lactucin, 11β-13-dihydrolactucin, 11β-13-dihydrolactucopicrin, and parthenolide presented between 10 % and 20 %, whilst almost no transport was detected for lactucopicrin. Furthermore, costunolide and parthenolide reduced P-gp ABC transporter expression alongside an increase in caveolin-1, the main protein of caveolae. Remarkably, these two compounds improved barrier tightness by increasing the expression of both tight and adherens junctions. These findings open a new avenue to explore costunolide and parthenolide as promising compounds for brain therapies.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Daniela Marques
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Katarina Cankar
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Dirk Bosch
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
32
|
Day F, O’Sullivan J, Pook C. 4-Ethylphenol-fluxes, metabolism and excretion of a gut microbiome derived neuromodulator implicated in autism. Front Mol Biosci 2023; 10:1267754. [PMID: 37900921 PMCID: PMC10602680 DOI: 10.3389/fmolb.2023.1267754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Gut-microbiome-derived metabolites, such as 4-Ethylphenol [4EP], have been shown to modulate neurological health and function. Although the source of such metabolites is becoming better understood, knowledge gaps remain as to the mechanisms by which they enter host circulation, how they are transported in the body, how they are metabolised and excreted, and the way they exert their effects. High blood concentrations of host-modified 4EP, 4-ethylphenol sulfate [4EPS], are associated with an anxiety phenotype in autistic individuals. We have reviewed the existing literature and discuss mechanisms that are proposed to contribute influx from the gut microbiome, metabolism, and excretion of 4EP. We note that increased intestinal permeability is common in autistic individuals, potentially explaining increased flux of 4EP and/or 4EPS across the gut epithelium and the Blood Brain Barrier [BBB]. Similarly, kidney dysfunction, another complication observed in autistic individuals, impacts clearance of 4EP and its derivatives from circulation. Evidence indicates that accumulation of 4EPS in the brain of mice affects connectivity between subregions, particularly those linked to anxiety. However, we found no data on the presence or quantity of 4EP and/or 4EPS in human brains, irrespective of neurological status, likely due to challenges sampling this organ. We argue that the penetrative ability of 4EP is dependent on its form at the BBB and its physicochemical similarity to endogenous metabolites with dedicated active transport mechanisms across the BBB. We conclude that future research should focus on physical (e.g., ingestion of sorbents) or metabolic mechanisms (e.g., conversion to 4EP-glucuronide) that are capable of being used as interventions to reduce the flux of 4EP from the gut into the body, increase the efflux of 4EP and/or 4EPS from the brain, or increase excretion from the kidneys as a means of addressing the neurological impacts of 4EP.
Collapse
Affiliation(s)
- Francesca Day
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| | - Justin O’Sullivan
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Australian Parkinson’s Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Chris Pook
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Le Sayec M, Carregosa D, Khalifa K, de Lucia C, Aarsland D, Santos CN, Rodriguez-Mateos A. Identification and quantification of (poly)phenol and methylxanthine metabolites in human cerebrospinal fluid: evidence of their ability to cross the BBB. Food Funct 2023; 14:8893-8902. [PMID: 37701930 PMCID: PMC10544810 DOI: 10.1039/d3fo01913f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Increasing evidence suggests that dietary (poly)phenols and methylxanthines have neuroprotective effects; however, little is known about whether they can cross the blood-brain barrier (BBB) and exert direct effects on the brain. We investigated the presence of (poly)phenol and methylxanthine metabolites in plasma and cerebrospinal fluid (CSF) from 90 individuals at risk of dementia using liquid chromatography-mass spectrometry and predicted their mechanism of transport across the BBB using in silico modelling techniques. A total of 123 and 127 metabolites were detected in CSF and plasma, respectively. In silico analysis suggests that 5 of the 20 metabolites quantified in CSF can cross the BBB by passive diffusion, while at least 9 metabolites require the aid of cell transporters to cross the BBB. Our results showed that (poly)phenols and methylxanthines are bioavailable, can cross the BBB via passive diffusion or transport carriers, and can reach brain tissues to exert neuroprotective effects.
Collapse
Affiliation(s)
- Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Khadija Khalifa
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Chiara de Lucia
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cláudia N Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
34
|
Montero-Atalaya M, Expósito S, Muñoz-Arnaiz R, Makarova J, Bartolomé B, Martín E, Moreno-Arribas MV, Herreras O. A dietary polyphenol metabolite alters CA1 excitability ex vivo and mildly affects cortico-hippocampal field potential generators in anesthetized animals. Cereb Cortex 2023; 33:10411-10425. [PMID: 37550066 PMCID: PMC10545443 DOI: 10.1093/cercor/bhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
Dietary polyphenols have beneficial effects in situations of impaired cognition in acute models of neurodegeneration. The possibility that they may have a direct effect on the electrical activity of neuronal populations has not been tested. We explored the electrophysiological action of protocatechuic acid (PCA) on CA1 pyramidal cells ex vivo and network activity in anesthetized female rats using pathway-specific field potential (FP) generators obtained from laminar FPs in cortex and hippocampus. Whole-cell recordings from CA1 pyramidal cells revealed increased synaptic potentials, particularly in response to basal dendritic excitation, while the associated evoked firing was significantly reduced. This counterintuitive result was attributed to a marked increase of the rheobase and voltage threshold, indicating a decreased ability to generate spikes in response to depolarizing current. Systemic administration of PCA only slightly altered the ongoing activity of some FP generators, although it produced a striking disengagement of infraslow activities between the cortex and hippocampus on a scale of minutes. To our knowledge, this is the first report showing the direct action of a dietary polyphenol on electrical activity, performing neuromodulatory roles at both the cellular and network levels.
Collapse
Affiliation(s)
- Marta Montero-Atalaya
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Sara Expósito
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Ricardo Muñoz-Arnaiz
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Julia Makarova
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Begoña Bartolomé
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Eduardo Martín
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - María Victoria Moreno-Arribas
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Oscar Herreras
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| |
Collapse
|
35
|
Grabska-Kobyłecka I, Szpakowski P, Król A, Książek-Winiarek D, Kobyłecki A, Głąbiński A, Nowak D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023; 15:3454. [PMID: 37571391 PMCID: PMC10420887 DOI: 10.3390/nu15153454] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
It is well known that neurodegenerative diseases' development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of these disorders and improve the quality of patients' lives who have already been diagnosed with neurodegenerative diseases. Prolonging life span in developed countries contributes to an increase in the incidence ratio of chronic age-related neurodegenerative disorders, such as PD (Parkinson's disease), AD (Alzheimer's disease), or numerous forms of age-related dementias. Dietary supplementation with neuroprotective plant-derived polyphenols might be considered an important element of healthy aging. Some polyphenols improve cognition, mood, visual functions, language, and verbal memory functions. Polyphenols bioavailability differs greatly from one compound to another and is determined by solubility, degree of polymerization, conjugation, or glycosylation resulting from chemical structure. It is still unclear which polyphenols are beneficial because their potential depends on efficient transport across the BBB (blood-brain barrier), bioavailability, and stability in the CNS (central nervous system). Polyphenols improve brain functions by having a direct impact on cells and processes in the CNS. For a direct effect, polyphenolic compounds must be able to overcome the BBB and accumulate in brain tissue. In this review, the latest achievements in studies (animal models and clinical trials) on the effect of polyphenols on brain activity and function are described. The beneficial impact of plant polyphenols on the brain may be summarized by their role in increasing brain plasticity and related cognition improvement. As reversible MAO (monoamine oxidase) inhibitors, polyphenols are mood modulators and improve neuronal self-being through an increase in dopamine, serotonin, and noradrenaline amounts in the brain tissue. After analyzing the prohealth effects of various eating patterns, it was postulated that their beneficial effects result from synergistic interactions between individual dietary components. Polyphenols act on the brain endothelial cells and improve the BBB's integrity and reduce inflammation, thus protecting the brain from additional injury during stroke or autoimmune diseases. Polyphenolic compounds are capable of lowering blood pressure and improving cerebral blood flow. Many studies have revealed that a nutritional model based on increased consumption of antioxidants has the potential to ameliorate the cognitive impairment associated with neurodegenerative disorders. Randomized clinical trials have also shown that the improvement of cognitive functions resulting from the consumption of foods rich in flavonoids is independent of age and health conditions. For therapeutic use, sufficient quantities of polyphenols must cross the BBB and reach the brain tissue in active form. An important issue in the direct action of polyphenols on the CNS is not only their penetration through the BBB, but also their brain metabolism and localization. The bioavailability of polyphenols is low. The most usual oral administration also conflicts with bioavailability. The main factors that limit this process and have an effect on therapeutic efficacy are: selective permeability across BBB, gastrointestinal transformations, poor absorption, rapid hepatic and colonic metabolism, and systemic elimination. Thus, phenolic compounds have inadequate bioavailability for human applications to have any beneficial effects. In recent years, new strategies have been attempted in order to exert cognitive benefits and neuroprotective effects. Converting polyphenols into nanostructures is one of the theories proposed to enhance their bioavailability. The following nanoscale delivery systems can be used to encapsulate polyphenols: nanocapsules, nanospheres, micelles, cyclodextrins, solid lipid nanoparticles, and liposomes. It results in great expectations for the wide-scale and effective use of polyphenols in the prevention of neurodegenerative diseases. Thus far, only natural polyphenols have been studied as neuroprotectors. Perhaps some modification of the chemical structure of a given polyphenol may increase its neuroprotective activity and transportation through the BBB. However, numerous questions should be answered before developing neuroprotective medications based on plant polyphenols.
Collapse
Affiliation(s)
- Izabela Grabska-Kobyłecka
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Aleksandra Król
- Department of Experimental Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland;
| | - Dominika Książek-Winiarek
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Andrzej Kobyłecki
- Interventional Cardiology Lab, Copernicus Hospital, Pabianicka Str. 62, 93-513 Łódź, Poland;
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| |
Collapse
|
36
|
Begdache L, Marhaba R. Bioactive Compounds for Customized Brain Health: What Are We and Where Should We Be Heading? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6518. [PMID: 37569058 PMCID: PMC10418716 DOI: 10.3390/ijerph20156518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Many strides have been made in the field of nutrition that are making it an attractive field not only to nutrition professionals but also to healthcare practitioners. Thanks to the emergence of molecular nutrition, there is a better appreciation of how the diet modulates health at the cellular and molecular levels. More importantly, the advancements in brain imaging have produced a greater appreciation of the impact of diet on brain health. To date, our understanding of the effect of nutrients on brain health goes beyond the action of vitamins and minerals and dives into the intracellular, molecular, and epigenetic effects of nutrients. Bioactive compounds (BCs) in food are gaining a lot of attention due to their ability to modulate gene expression. In addition, bioactive compounds activate some nuclear receptors that are the target of many pharmaceuticals. With the emergence of personalized medicine, gaining an understanding of the biologically active compounds may help with the customization of therapies. This review explores the prominent BCs that can impact cognitive functions and mental health to deliver a potentially prophylactic framework for practitioners. Another purpose is to identify potential gaps in the literature to suggest new research agendas for scientists.
Collapse
Affiliation(s)
- Lina Begdache
- Health and Wellness Studies Department, Binghamton University, Binghamton, NY 13902, USA
| | - Rani Marhaba
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
37
|
Gong Y, Chen A, Zhang G, Shen Q, Zou L, Li J, Miao YB, Liu W. Cracking Brain Diseases from Gut Microbes-Mediated Metabolites for Precise Treatment. Int J Biol Sci 2023; 19:2974-2998. [PMID: 37416776 PMCID: PMC10321288 DOI: 10.7150/ijbs.85259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
The gut-brain axis has been a subject of significant interest in recent years. Understanding the link between the gut and brain axis is crucial for the treatment of disorders. Here, the intricate components and unique relationship between gut microbiota-derived metabolites and the brain are explained in detail. Additionally, the association between gut microbiota-derived metabolites and the integrity of the blood-brain barrier and brain health is emphasized. Meanwhile, gut microbiota-derived metabolites with their recent applications, challenges and opportunities their pathways on different disease treatment are focus discussed. The prospective strategy of gut microbiota-derived metabolites potential applies to the brain disease treatments, such as Parkinson's disease and Alzheimer's disease, is proposed. This review provides a broad perspective on gut microbiota-derived metabolites characteristics facilitate understand the connection between gut and brain and pave the way for the development of a new medication delivery system for gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Ying Gong
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Anmei Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Guohui Zhang
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| | - Qing Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Weixin Liu
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| |
Collapse
|
38
|
Zhang W, Dong X, Huang R. Antiparkinsonian Effects of Polyphenols: A Narrative Review with a Focus on the Modulation of the Gut-brain Axis. Pharmacol Res 2023:106787. [PMID: 37224894 DOI: 10.1016/j.phrs.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China.
| |
Collapse
|
39
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
40
|
Naomi R, Yazid MD, Teoh SH, Balan SS, Shariff H, Kumar J, Bahari H, Embong H. Dietary Polyphenols as a Protection against Cognitive Decline: Evidence from Animal Experiments; Mechanisms and Limitations. Antioxidants (Basel) 2023; 12:antiox12051054. [PMID: 37237920 DOI: 10.3390/antiox12051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging evidence suggests that cognitive impairments may result from various factors, such as neuroinflammation, oxidative stress, mitochondrial damage, impaired neurogenesis, synaptic plasticity, blood-brain barrier (BBB) disruption, amyloid β protein (Aβ) deposition, and gut dysbiosis. Meanwhile, dietary polyphenol intake in a recommended dosage has been suggested to reverse cognitive dysfunction via various pathways. However, excessive intake of polyphenols could trigger unwanted adverse effects. Thus, this review aims to outline possible causes of cognitive impairments and how polyphenols alleviate memory loss via various pathways based on in vivo experimental studies. Thus, to identify potentially relevant articles, the keywords (1) nutritional polyphenol intervention NOT medicine AND neuron growth OR (2) dietary polyphenol AND neurogenesis AND memory impairment OR (3) polyphenol AND neuron regeneration AND memory deterioration (Boolean operators) were used in the Nature, PubMed, Scopus, and Wiley online libraries. Based on the inclusion and exclusion criteria, 36 research papers were selected to be further reviewed. The outcome of all the studies included supports the statement of appropriate dosage by taking into consideration gender differences, underlying conditions, lifestyle, and causative factors for cognitive decline, which will significantly boost memory power. Therefore, this review recapitulates the possible causes of cognitive decline, the mechanism of polyphenols involving various signaling pathways in modulating the memory, gut dysbiosis, endogenous antioxidants, bioavailability, dosage, and safety efficacy of polyphenols. Hence, this review is expected to provide a basic understanding of therapeutic development for cognitive impairments in the future.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Santhra Segaran Balan
- Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia
| | - Halim Shariff
- Faculty of Health Sciences, University Technology Mara (UITM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
41
|
Pyrzanowska J. Pharmacological activity of Aspalathus linearis extracts: pre-clinical research in view of prospective neuroprotection. Nutr Neurosci 2023; 26:384-402. [PMID: 35311618 DOI: 10.1080/1028415x.2022.2051955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Rooibos tea, a very popular everyday beverage made of Aspalathus linearis plant material and containing multiple polyphenolic compounds, reveals an expectation to positively affect various processes observed in the pathogenesis of neurodegenerative diseases as in the case of consumption of other polyphenol-abundant food products. METHODS This review is based on available data from pre-clinical in vitro and in vivo studies and presents a broad report on the pharmacological activity of the A. linearis extracts relevant for neurodegenerative diseases. RESULTS Flavonoids present in herbal infusions are absorbed from gastro-intestinal tract and may affect the central nervous system. The experimental investigations yield the results indicating to supporting role of A. linearis in the prevention of neurodegeneration, primarily owing to anti-oxidative and anti-inflammatory properties, anti-hyperglycaemic and anti-hyperlipidaemic effects as well as favourable impact on neurotransmission with following cognitive and behavioural after-math. DISCUSSION The multiple pharmacological activities and safety of Aspalathus linearis extracts are commented in the manuscript. The continuous rooibos tea consumption seems to be safe (despite anecdotal liver irritation); however, there is a risk of herbal-drug interactions.
Collapse
Affiliation(s)
- Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| |
Collapse
|
42
|
Soto-Huelin B, Babiy B, Pastor O, Díaz-García M, Toledano-Zaragoza A, Frutos MD, Espín JC, Tomás-Barberán FA, Busto R, Ledesma MD. Ellagic acid and its metabolites urolithins A/B ameliorate most common disease phenotypes in cellular and mouse models for lysosomal storage disorders by enhancing extracellular vesicle secretion. Neurobiol Dis 2023; 182:106141. [PMID: 37121555 DOI: 10.1016/j.nbd.2023.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
Niemann Pick diseases types A (NPDA) and C (NPDC) are lysosomal storage disorders (LSDs) leading to cognitive impairment, neurodegeneration, and early death. NPDA and NPDC have different genetic origins, being caused by mutations in the acid sphingomyelinase (ASM) or the cholesterol transport protein NPC1, respectively. However, they share a common pathological hallmark in the accumulation of lipids in the endolysosomal compartment. Here, we tested the hypothesis that polyphenols reduce lipid overload in NPD cells by enhancing the secretion of extracellular vesicles (ECVs). We show that among the polyphenols tested, the ellagic acid metabolites, urolithin A and B, were the safest and most efficient in increasing ECV secretion. They reduced levels of accumulating lipids and lysosomal size and permeabilization in cultured bone marrow-derived macrophages and neurons from ASMko and NPC1 mutant mice, which mimic NPDA and NPDC, respectively. Moreover, oral treatment with ellagic acid reduced lipid levels, ameliorated lysosomal alterations, and diminished microglia activation in the brain of NPD mice. These results support the therapeutic value of ECV secretion and polyphenols for NPDs, which may also help treat other LSDs characterized by intracellular lipid overload.
Collapse
Affiliation(s)
| | - Bohdan Babiy
- Servicio de Bioquímica-Clínica, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Oscar Pastor
- Servicio de Bioquímica-Clínica, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Mario Díaz-García
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain
| | | | - María Dolores Frutos
- Food and Health Laboratory, Department of Food Science and Technology, CEBAS-CSIC, Murcia 30100, Spain
| | - Juan Carlos Espín
- Food and Health Laboratory, Department of Food Science and Technology, CEBAS-CSIC, Murcia 30100, Spain
| | | | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain.
| | | |
Collapse
|
43
|
Sarubbo F, Moranta D, Tejada S, Jiménez M, Esteban S. Impact of Gut Microbiota in Brain Ageing: Polyphenols as Beneficial Modulators. Antioxidants (Basel) 2023; 12:antiox12040812. [PMID: 37107187 PMCID: PMC10134998 DOI: 10.3390/antiox12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Brain ageing is a complex physiological process that includes several mechanisms. It is characterized by neuronal/glial dysfunction, alterations in brain vasculature and barriers, and the decline in brain repair systems. These disorders are triggered by an increase in oxidative stress and a proinflammatory state, without adequate antioxidant and anti-inflammatory systems, as it occurs in young life stages. This state is known as inflammaging. Gut microbiota and the gut–brain axis (GBA) have been associated with brain function, in a bidirectional communication that can cause loss or gain of the brain’s functionality. There are also intrinsic and extrinsic factors with the ability to modulate this connection. Among the extrinsic factors, the components of diet, principally natural components such as polyphenols, are the most reported. The beneficial effects of polyphenols in brain ageing have been described, mainly due to their antioxidants and anti-inflammatory properties, including the modulation of gut microbiota and the GBA. The aim of this review was, by following the canonical methodology for a state-of-the-art review, to compose the existing evidenced picture of the impact of the gut microbiota on ageing and their modulation by polyphenols as beneficial molecules against brain ageing.
Collapse
Affiliation(s)
- Fiorella Sarubbo
- Neurophysiology Lab, Biology Department, Science Faculty, University of the Balearic Islands (UIB), Crta. Valldemossa km 7.5, 07122 Palma, Spain
- Research Unit, Son Llàtzer University Hospital (HUSLL), Crta. Manacor km 4, 07198 Palma, Spain
- Group of Neurophysiology, Behavioral Studies and Biomarkers, Health Research Institute of the Balearic Islands (IdISBa), 07198 Palma, Spain
- Correspondence: ; Tel.: +34-871202022
| | - David Moranta
- Neurophysiology Lab, Biology Department, Science Faculty, University of the Balearic Islands (UIB), Crta. Valldemossa km 7.5, 07122 Palma, Spain
- Group of Neurophysiology, Behavioral Studies and Biomarkers, Health Research Institute of the Balearic Islands (IdISBa), 07198 Palma, Spain
| | - Silvia Tejada
- Neurophysiology Lab, Biology Department, Science Faculty, University of the Balearic Islands (UIB), Crta. Valldemossa km 7.5, 07122 Palma, Spain
- Group of Neurophysiology, Behavioral Studies and Biomarkers, Health Research Institute of the Balearic Islands (IdISBa), 07198 Palma, Spain
- CIBERON (Physiopathology of Obesity and Nutrition), 28029 Madrid, Spain
| | - Manuel Jiménez
- Neurophysiology Lab, Biology Department, Science Faculty, University of the Balearic Islands (UIB), Crta. Valldemossa km 7.5, 07122 Palma, Spain
- Group of Neurophysiology, Behavioral Studies and Biomarkers, Health Research Institute of the Balearic Islands (IdISBa), 07198 Palma, Spain
| | - Susana Esteban
- Neurophysiology Lab, Biology Department, Science Faculty, University of the Balearic Islands (UIB), Crta. Valldemossa km 7.5, 07122 Palma, Spain
- Group of Neurophysiology, Behavioral Studies and Biomarkers, Health Research Institute of the Balearic Islands (IdISBa), 07198 Palma, Spain
| |
Collapse
|
44
|
Sales D, Lin E, Stoffel V, Dickson S, Khan ZK, Beld J, Jain P. Apigenin improves cytotoxicity of antiretroviral drugs against HTLV-1 infected cells through the modulation of AhR signaling. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:49-62. [PMID: 37027342 PMCID: PMC10070013 DOI: 10.1515/nipt-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/19/2023]
Abstract
Objectives HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory autoimmune disease characterized by high levels of infected immortalized T cells in circulation, which makes it difficult for antiretroviral (ART) drugs to work effectively. In previous studies, we established that Apigenin, a flavonoid, can exert immunomodulatory effects to reduce neuroinflammation. Flavonoids are natural ligands for the aryl hydrocarbon receptor (AhR), which is a ligand activated endogenous receptor involved in the xenobiotic response. Consequently, we tested Apigenin's synergy in combination with ART against the survival of HTLV-1-infected cells. Methods First, we established a direct protein-protein interaction between Apigenin and AhR. We then demonstrated that Apigenin and its derivative VY-3-68 enter activated T cells, drive nuclear shuttling of AhR, and modulate its signaling both at RNA and protein level. Results In HTLV-1 producing cells with high AhR expression, Apigenin cooperates with ARTs such as Lopinavir (LPN) and Zidovudine (AZT), to impart cytotoxicity by exhibiting a major shift in IC50 that was reversed upon AhR knockdown. Mechanistically, Apigenin treatment led to an overall downregulation of NF-κB and several other pro-cancer genes involved in survival. Conclusions This study suggest the potential combinatorial use of Apigenin with current first-line antiretrovirals for the benefit of patients affected by HTLV-1 associated pathologies.
Collapse
Affiliation(s)
- Dominic Sales
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Victoria Stoffel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shallyn Dickson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
45
|
Arcusa R, Carillo JÁ, Cerdá B, Durand T, Gil-Izquierdo Á, Medina S, Galano JM, Zafrilla MP, Marhuenda J. Ability of a Polyphenol-Rich Nutraceutical to Reduce Central Nervous System Lipid Peroxidation by Analysis of Oxylipins in Urine: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Antioxidants (Basel) 2023; 12:antiox12030721. [PMID: 36978969 PMCID: PMC10045327 DOI: 10.3390/antiox12030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Isoprostanes (IsoPs) are lipid peroxidation biomarkers that reveal the oxidative status of the organism without specifying which organs or tissues it occurs in. Similar compounds have recently been identified that can assess central nervous system (CNS) lipid peroxidation status, usually oxidated by reactive oxygen species. These compounds are the neuroprostanes (NeuroPs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the F2t-dihomo-isoprotanes derived from adrenic acid (AdA). The aim of the present investigation was to evaluate whether the long-term nutraceutical consumption of high polyphenolic contents (600 mg) from fruits (such as berries) and vegetables shows efficacy against CNS lipid peroxidation in urine biomarkers. A total of 92 subjects (47 females, 45 males, age 34 ± 11 years old, weight 73.10 ± 14.29 kg, height 1.72 ± 9 cm, body mass index (BMI) 24.40 ± 3.43 kg/m2) completed a randomized, cross-over, double-blind study after an intervention of two periods of 16 weeks consuming either extract (EXT) or placebo (PLA) separated by a 4-week washout period. The results showed significant reductions in three AdA-derived metabolites, namely, 17-epi-17-F2t-dihomo-IsoPs (Δ −1.65 ng/mL; p < 0.001), 17-F2t-dihomo-IsoPs (Δ −0.17 ng/mL; p < 0.015), and ent-7(RS)-7-F2t-dihomo-IsoPs (Δ −1.97 ng/mL; p < 0.001), and one DHA-derived metabolite, namely, 4-F4t-NeuroP (Δ −7.94 ng/mL; p < 0.001), after EXT consumption, which was not observed after PLA consumption. These data seem to show the effectiveness of the extract for preventing CNS lipid peroxidation, as determined by measurements of oxylipins in urine through Ultra-High-Performance Liquid Chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-ESI-MS/MS).
Collapse
Affiliation(s)
- Raúl Arcusa
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Juan Ángel Carillo
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Begoña Cerdá
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France; (T.D.); (J.-M.G.)
| | - Ángel Gil-Izquierdo
- Research Group on Quality Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (Á.G.-I.); (S.M.)
| | - Sonia Medina
- Research Group on Quality Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (Á.G.-I.); (S.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France; (T.D.); (J.-M.G.)
| | - María Pilar Zafrilla
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
- Correspondence: ; Tel.: +34-685-607-716
| | - Javier Marhuenda
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| |
Collapse
|
46
|
Vinci G, Prencipe SA, Armeli F, Businaro R. A Multimethodological Approach for the Valorization of "Senatore Cappelli" Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5057. [PMID: 36981970 PMCID: PMC10048793 DOI: 10.3390/ijerph20065057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Wheat is the third most cultivated cereal in the world and represents the major contributor to human nutrition. Milling wheat by-products such as husks (17-20% of the total processing output weight), even if still containing high-value-added bioactive compounds, are often left untreated or unused, thus resulting in environmental and human health burdens. In these regards, the present study is aimed at evaluating in a multimethodological approach the nutraceutical properties of durum wheat husks belonging to the ancient cultivar "Senatore Cappelli", thus assessing their potential as bioactive compound sources in terms of phytochemical, cytotoxic, and nutraceutical properties. By means of HPLC-FD analyses, wheat husk samples analyzed revealed a higher content of serotonin, amounting to 35% of the total BAs, and were confirmed to occur at biogenic amines quality index (BAQI) values <10 mg/100 g. In addition, spectrophotometric assays showed a significant variable content in the phenolic (189.71-351.14 mg GAE/100 g) and antioxidant compounds (31.23-37.84 mg TE/100 g) within the wheat husk samples analyzed, according to the different cultivar areas of origin. Considering wheat husk extracts' anti-inflammatory and antioxidant activity, in vitro analyses were performed on BV-2 murine microglia cells cultured in the presence or absence of LPS, thus evaluating their ability to promote microglia polarization towards an anti-inflammatory phenotype. Cytotoxicity assays showed that wheat extracts do not affect microglia viability. Wheat husks activity on microglial polarization was assessed by analyzing the expression of M1 and M2 markers' mRNA by RT-PCR. Wheat husk antioxidant activity was assessed by analysis of NRF2 and SOD1 mRNA expression. Moreover, the sustainability assessment for the recovery of bioactive components from wheat by-products was carried out by applying the life cycle assessment (LCA) methodology using SimaPro v9.2.2. software.
Collapse
Affiliation(s)
- Giuliana Vinci
- Department of Management, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
47
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
48
|
Gentile MT, Camerino I, Ciarmiello L, Woodrow P, Muscariello L, De Chiara I, Pacifico S. Neuro-Nutraceutical Polyphenols: How Far Are We? Antioxidants (Basel) 2023; 12:antiox12030539. [PMID: 36978787 PMCID: PMC10044769 DOI: 10.3390/antiox12030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The brain, composed of billions of neurons, is a complex network of interacting dynamical systems controlling all body functions. Neurons are the building blocks of the nervous system and their impairment of their functions could result in neurodegenerative disorders. Accumulating evidence shows an increase of brain-affecting disorders, still today characterized by poor therapeutic options. There is a strong urgency to find new alternative strategies to prevent progressive neuronal loss. Polyphenols, a wide family of plant compounds with an equally wide range of biological activities, are suitable candidates to counteract chronic degenerative disease in the central nervous system. Herein, we will review their role in human healthcare and highlight their: antioxidant activities in reactive oxygen species-producing neurodegenerative pathologies; putative role as anti-acetylcholinesterase inhibitors; and protective activity in Alzheimer’s disease by preventing Aβ aggregation and tau hyperphosphorylation. Moreover, the pathology of these multifactorial diseases is also characterized by metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), most important for cellular function. In this scenario, polyphenols’ action as natural chelators is also discussed. Furthermore, the critical importance of the role exerted by polyphenols on microbiota is assumed, since there is a growing body of evidence for the role of the intestinal microbiota in the gut–brain axis, giving new opportunities to study molecular mechanisms and to find novel strategies in neurological diseases.
Collapse
|
49
|
Swer NM, Venkidesh BS, Murali TS, Mumbrekar KD. Gut microbiota-derived metabolites and their importance in neurological disorders. Mol Biol Rep 2023; 50:1663-1675. [PMID: 36399245 PMCID: PMC9889412 DOI: 10.1007/s11033-022-08038-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
Abstract
Microbial-derived metabolites are the intermediate or end products of bacterial digestion. They are one of the most important molecules for the gut to connect with the brain. Depending on the levels of specific metabolites produced in the host, it can exert beneficial or detrimental effects on the brain and have been linked to several neurodegenerative and neuropsychiatric disorders. However, the underlying mechanisms remain largely unexplored. Insight into these mechanisms could reveal new pathways or targets, resulting in novel treatment approaches targeting neurodegenerative diseases. We have reviewed selected metabolites, including short-chain fatty acids, aromatic amino acids, trimethylamine-N-oxide, urolithin A, anthocyanins, equols, imidazole, and propionate to highlight their mechanism of action, underlying role in maintaining intestinal homeostasis and regulating neuro-immunoendocrine function. Further discussed on how altered metabolite levels can influence the gut-brain axis could lead to new prevention strategies or novel treatment approaches to neural disorders.
Collapse
Affiliation(s)
- Nicole Mary Swer
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - B S Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
50
|
Crescitelli MC, Simon I, Ferrini L, Calvo H, Torres AM, Cabero I, Panedas MM, Rauschemberger MB, Aguirre MV, Rodríguez JP, Hernández M, Nieto ML. Anti-Neuroinflammatory Potential of a Nectandra angustifolia ( Laurel Amarillo) Ethanolic Extract. Antioxidants (Basel) 2023; 12:antiox12020232. [PMID: 36829791 PMCID: PMC9952224 DOI: 10.3390/antiox12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Microglia, the resident macrophage-like population in the CNS, plays an important role in the pathogenesis of many neurodegenerative disorders. Nectandra genus is known to produce different metabolites with anti-inflammatory, anti-oxidant and analgesic properties. Although the species Nectandra angustifolia is popularly used for the treatment of different types of inflammatory processes, its biological effects on neuroinflammation have not yet been addressed. In this study, we have investigated the role of a Nectandra angustifolia ethanolic extract (NaE) in lipopolysaccharide (LPS)-induced neuroinflammation in vitro and in vivo. In LPS-activated BV2 microglial cells, NaE significantly reduced the induced proinflammatory mediators TNF-α, IL-1β, IL-6, COX-2 and iNOS, as well as NO accumulation, while it promoted IL-10 secretion and YM-1 expression. Likewise, reduced CD14 expression levels were detected in microglial cells in the NaE+LPS group. NaE also attenuated LPS-induced ROS and lipid peroxidation build-up in BV2 cells. Mechanistically, NaE prevented NF-κB and MAPKs phosphorylation, as well as NLRP3 upregulation when added before LPS stimulation, although it did not affect the level of some proteins related to antioxidant defense such as Keap-1 and HO-1. Additionally, we observed that NaE modulated some activated microglia functions, decreasing cell migration, without affecting their phagocytic capabilities. In LPS-injected mice, NaE pre-treatment markedly suppressed the up-regulated TNF-α, IL-6 and IL-1β mRNA expression induced by LPS in brain. Our findings indicate that NaE is beneficial in preventing the neuroinflammatory response both in vivo and in vitro. NaE may regulate microglia homeostasis, not only restraining activation of LPS towards the M1 phenotype but promoting an M2 phenotype.
Collapse
Affiliation(s)
- María Carla Crescitelli
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
- Cátedra de Inmunología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Inmaculada Simon
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Leandro Ferrini
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
- Laboratorio de Productos Naturales Prof. Armando Ricciardi (LabProdNat), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Hugo Calvo
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Ana M. Torres
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
- Laboratorio de Productos Naturales Prof. Armando Ricciardi (LabProdNat), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Isabel Cabero
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Mónica Macías Panedas
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Maria B. Rauschemberger
- Cátedra de Inmunología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Maria V. Aguirre
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Marita Hernández
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - María Luisa Nieto
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
- Correspondence: ; Tel.: +34-983184836
| |
Collapse
|