1
|
Liu Y, Sweet IR, Boons GJ. 2,2-Difluoro Derivatives of Fucose Can Inhibit Cell Surface Fucosylation without Causing Slow Transfer to Acceptors. JACS AU 2024; 4:3953-3963. [PMID: 39483231 PMCID: PMC11522930 DOI: 10.1021/jacsau.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024]
Abstract
Fucosyl transferases (FUTs) are enzymes that transfer fucose (Fuc) from GDP-Fuc to acceptor substrates, resulting in fucosylated glycoconjugates that are involved in myriad physiological and disease processes. Previously, it has been shown that per-O-acetylated 2-F-Fuc can be taken up by cells and converted into GDP-2-F-Fuc, which is a competitive inhibitor of FUTs. Furthermore, it can act as a feedback inhibitor of de novo biosynthesis of GDP-Fuc resulting in reduced glycoconjugate fucosylation. However, GDP-2-F-Fuc and several other reported analogues are slow substrates, which can result in unintended incorporation of unnatural fucosides. Here, we describe the design, synthesis, and biological evaluation of GDP-2,2-di-F-Fuc and the corresponding prodrugs as an inhibitor of FUTs. This compound lacks the slow transfer activity observed for the monofluorinated counterpart. Furthermore, it was found that GDP-2-F-Fuc and GDP-2,2-di-F-Fuc have similar Ki values for the various human fucosyl transferases, while the corresponding phosphate prodrugs exhibit substantial differences in inhibition of cell surface fucosylation. Quantitative sugar nucleotide analysis by Liquid chromatography-mass spectrometry (LC-MS) indicates that the 2,2-di-F-Fuc prodrug has substantially greater feedback inhibitory activity. It was also found that by controlling the concentration of the inhibitor, varying degrees of inhibition of the biosynthesis of different types of fucosylated N-glycan structures can be achieved. These findings open new avenues for the modulation of fucosylation of cell surface glycoconjugates.
Collapse
Affiliation(s)
- Yanyan Liu
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Igor R. Sweet
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, 3584 CG Utrecht, The Netherlands
- Chemistry
Department, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Zhang Y, Liu Z, Wang F, Liu J, Zhang Y, Cao J, Huang G, Ma L. ent-8(14),15-Pimaradiene-2β,19-diol, a diterpene from Aleuritopteris albofusca, inhibits growth and induces protective autophagy in hepatocellular carcinoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6867-6878. [PMID: 38568289 DOI: 10.1007/s00210-024-03048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/10/2024] [Indexed: 09/25/2024]
Abstract
A new pimarane-type diterpene, ent-8(14),15-pimaradiene-2β,19-diol (JXE-23), was isolated from the fern plant Aleuritopteris albofusca by our previous work; however, the biological activity of this diterpene remains unclear. In the present study, the anti-cancer potential of JXE-23 in various cancer cells was investigated. Among MCF-7 breast cancer cells, A549 lung cancer cells, and HepG2 liver cancer cells, JXE-23 displayed significant cytotoxicity to HepG2 cells with an IC50 value of 17.20 ± 1.73 µM, while showing no obvious toxicity in normal hepatocytes HL7702. JXE-23 inhibited cell growth and colony formation in HepG2 cells. A cell cycle distribution analysis showed that JXE-23 caused G2/M cell cycle arrest. Besides, JXE-23 also suppressed the migration of HepG2 cells. Interestingly, an increase of light chain 3 II (LC3II) and Beclin 1 and a decrease of P62 have occurred in JXE-23-treated cells, as well as the formation of GFP-LC3 dots, indicative of autophagy induction by JXE-23. When combined with autophagy inhibitor 3-methyladenine and chloroquine, the cell viability was significantly reduced, suggesting that JXE-23 triggered protective autophagy in hepatoma cells. Further study showed that JXE-23 inactivated the CIP2A/p-AKT/c-Myc signaling axis in HepG2 cells. Our data provided evidence that JXE-23 inhibited cell growth, arrested cells at the G2/M phase, and induced protective autophagy in HepG2 hepatocellular carcinoma cells. JXE-23 may be a potential lead compound for anti-cancer drug development, and autophagy inhibitor treatment may provide an effective strategy for improving its anti-cancer effect.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Zi Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Fuchun Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Jian Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Yu Zhang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Jianguo Cao
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, 201418, People's Republic of China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| | - Liang Ma
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
3
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
4
|
Tan Y, Zhou Y, Zhang W, Wu Z, Xu Q, Wu Q, Yang J, Lv T, Yan L, Luo H, Shi Y, Yang J. Repaglinide restrains HCC development and progression by targeting FOXO3/lumican/p53 axis. Cell Oncol (Dordr) 2024; 47:1167-1181. [PMID: 38326640 DOI: 10.1007/s13402-024-00919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE The recent focus on the roles of N-linked glycoproteins in carcinogenesis across various malignancies has prompted our exploration of aberrantly expressed glycoproteins responsible for HCC progression and potential therapeutic strategy. METHODS Mass spectrometry was applied to initially identify abnormally expressed glycoproteins in HCC, which was further assessed by immunohistochemistry (IHC) staining. The role of selected glycoprotein on HCC development and underlying mechanism was systematically investigated by colony formation, mouse xenograft, RNA-sequencing and western blot assays, etc. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to explore potential transcription factors (TFs) of selected glycoprotein. The regulation of repaglinide (RPG) on expression of lumican and downstream effectors was assessed by western blot and IHC, while its impact on malignant phenotypes of HCC was explored through in vitro and in vivo analyses, including a murine NASH-HCC model established using western diet and carbon tetrachloride (CCl4). RESULTS Lumican exhibited upregulation in both serum and tumor tissue, with elevated expression associated with an inferior prognosis in HCC patients. Knockdown of lumican resulted in significantly reduced growth of HCC in vitro and in vivo. Mechanically, lumican promoted HCC malignant phenotypes by inhibiting the p53/p21 signaling pathway. Forkhead Box O3 (FOXO3) was identified as the TF of lumican that transcriptionally enhanced its expression. Without silencing FOXO3, RPG blocked the binding of FOXO3 to the promoter region of lumican, thereby inhibiting the activation of lumican/p53/p21 axis. Mice treated with RPG developed fewer and smaller HCCs than those in the control group at 24 weeks after establishment. CONCLUSION Our results indicate that RPG prevented the development and progression of HCC via alteration of FOXO3/lumican/p53 axis.
Collapse
Affiliation(s)
- Yifei Tan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiong Wu
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Lv
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Lvnan Yan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Luo
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Yujun Shi
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jiayin Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Li Z, Yang J, Sun Y, Han S, Gong J, Zhang Y, Feng Z, Yao H, Shi P. Schisandra chinensis Bee Pollen Extract Inhibits Proliferation and Migration of Hepatocellular Carcinoma HepG2 Cells via Ferroptosis-, Wnt-, and Focal Adhesion-Signaling Pathways. Drug Des Devel Ther 2024; 18:2745-2760. [PMID: 38974120 PMCID: PMC11227337 DOI: 10.2147/dddt.s461581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.
Collapse
Affiliation(s)
- Zhiliang Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Jiali Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Yang Sun
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Shuo Han
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Jietao Gong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Yi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Zhiyuan Feng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| |
Collapse
|
6
|
Starosta RT, Lee AJ, Toolan ER, He M, Wongkittichote P, Daniel EJP, Radenkovic S, Budhraja R, Pandey A, Sharma J, Morava E, Nguyen H, Dickson PI. D-mannose as a new therapy for fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG). Mol Genet Metab 2024; 142:108488. [PMID: 38735264 DOI: 10.1016/j.ymgme.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION D-mannose is a promising new treatment for FCSK-CDG.
Collapse
Affiliation(s)
- Rodrigo Tzovenos Starosta
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA; Division of Clinical Genetics and Metabolism, University of Colorado Anschutz, Aurora, CO, USA; Graduate Program in Science: Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Angela J Lee
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth R Toolan
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Parith Wongkittichote
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Rohit Budhraja
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaiprakash Sharma
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Hoanh Nguyen
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia I Dickson
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Hartig J, Young LEA, Grimsley G, Mehta AS, Ippolito JE, Leach RJ, Angel PM, Drake RR. The glycosylation landscape of prostate cancer tissues and biofluids. Adv Cancer Res 2024; 161:1-30. [PMID: 39032948 DOI: 10.1016/bs.acr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
Collapse
Affiliation(s)
- Jordan Hartig
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - Joseph E Ippolito
- Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Robin J Leach
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peggi M Angel
- Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
8
|
Burton C, Bitaraf A, Snyder K, Zhang C, Yoder SJ, Avram D, Du D, Yu X, Lau EK. The functional role of L-fucose on dendritic cell function and polarization. Front Immunol 2024; 15:1353570. [PMID: 38646527 PMCID: PMC11026564 DOI: 10.3389/fimmu.2024.1353570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 04/23/2024] Open
Abstract
Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.
Collapse
Affiliation(s)
- Chase Burton
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Amirreza Bitaraf
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kara Snyder
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Sean J. Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eric K. Lau
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
9
|
Čaval T, Xu G, Baniasad M, Chu CW, Rice R, Hundal I, Czerwieniec G, Schwarz F. Mass Spectrometry Analysis of Glycopeptides Enriched by Anion Exchange-Mediated Methods Reveals PolyLacNAc-Extended N-Glycans in Integrins and Tetraspanins in Melanoma Cells. Anal Chem 2024; 96:5086-5094. [PMID: 38513651 PMCID: PMC10993200 DOI: 10.1021/acs.analchem.3c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Glycosylation is a key modulator of the functional state of proteins. Recent developments in large-scale analysis of intact glycopeptides have enabled the identification of numerous glycan structures that are relevant in pathophysiological processes. However, one motif found in N-glycans, poly-N-acetyllactosamine (polyLacNAc), still poses a substantial challenge to mass spectrometry-based glycoproteomic analysis due to its relatively low abundance and large size. In this work, we developed approaches for the systematic mapping of polyLacNAc-elongated N-glycans in melanoma cells. We first evaluated five anion exchange-based matrices for enriching intact glycopeptides and selected two materials that provided better overall enrichment efficiency. We then tested the robustness of the methodology by quantifying polyLacNAc-containing glycopeptides as well as changes in protein fucosylation and sialylation. Finally, we applied the optimal enrichment methods to discover glycopeptides containing polyLacNAc motifs in melanoma cells and found that integrins and tetraspanins are substantially modified with these structures. This study demonstrates the feasibility of glycoproteomic approaches for identification of glycoproteins with polyLacNAc motifs.
Collapse
Affiliation(s)
| | | | - Maryam Baniasad
- InterVenn Biosciences, 2 Tower Place Fifth Floor, South San Francisco, California 94080, United States
| | - Chih-Wei Chu
- InterVenn Biosciences, 2 Tower Place Fifth Floor, South San Francisco, California 94080, United States
| | - Rachel Rice
- InterVenn Biosciences, 2 Tower Place Fifth Floor, South San Francisco, California 94080, United States
| | - Itati Hundal
- InterVenn Biosciences, 2 Tower Place Fifth Floor, South San Francisco, California 94080, United States
| | - Gregg Czerwieniec
- InterVenn Biosciences, 2 Tower Place Fifth Floor, South San Francisco, California 94080, United States
| | - Flavio Schwarz
- InterVenn Biosciences, 2 Tower Place Fifth Floor, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Shi M, Nan XR, Liu BQ. The Multifaceted Role of FUT8 in Tumorigenesis: From Pathways to Potential Clinical Applications. Int J Mol Sci 2024; 25:1068. [PMID: 38256141 PMCID: PMC10815953 DOI: 10.3390/ijms25021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.
Collapse
Affiliation(s)
| | | | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China; (M.S.); (X.-R.N.)
| |
Collapse
|
11
|
Orozco-Moreno M, Visser EA, Hodgson K, Hipgrave Ederveen AL, Bastian K, Goode EA, Öztürk Ö, Pijnenborg JFA, Eerden N, Moons SJ, Rossing E, Wang N, de Haan N, Büll C, Boltje TJ, Munkley J. Targeting aberrant sialylation and fucosylation in prostate cancer cells using potent metabolic inhibitors. Glycobiology 2023; 33:1155-1171. [PMID: 37847613 PMCID: PMC10876042 DOI: 10.1093/glycob/cwad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Aberrant glycosylation is a hallmark of cancer and is not just a consequence, but also a driver of a malignant phenotype. In prostate cancer, changes in fucosylated and sialylated glycans are common and this has important implications for tumor progression, metastasis, and immune evasion. Glycans hold huge translational potential and new therapies targeting tumor-associated glycans are currently being tested in clinical trials for several tumor types. Inhibitors targeting fucosylation and sialylation have been developed and show promise for cancer treatment, but translational development is hampered by safety issues related to systemic adverse effects. Recently, potent metabolic inhibitors of sialylation and fucosylation were designed that reach higher effective concentrations within the cell, thereby rendering them useful tools to study sialylation and fucosylation as potential candidates for therapeutic testing. Here, we investigated the effects of global metabolic inhibitors of fucosylation and sialylation in the context of prostate cancer progression. We find that these inhibitors effectively shut down the synthesis of sialylated and fucosylated glycans to remodel the prostate cancer glycome with only minor apparent side effects on other glycan types. Our results demonstrate that treatment with inhibitors targeting fucosylation or sialylation decreases prostate cancer cell growth and downregulates the expression of genes and proteins important in the trajectory of disease progression. We anticipate our findings will lead to the broader use of metabolic inhibitors to explore the role of fucosylated and sialylated glycans in prostate tumor pathology and may pave the way for the development of new therapies for prostate cancer.
Collapse
Affiliation(s)
- Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Eline A Visser
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Agnes L Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Kayla Bastian
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| | - Özden Öztürk
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | - Nienke Eerden
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
- GlycoTherapeutics B.V., Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Sam J Moons
- Synvenio B.V., Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Rd, Sheffield, Yorkshire S10 2RX, United Kingdom
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Christian Büll
- Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Central Parkway, Newcastle-upon-Tyne, Tyne and Wear NE1 3BZ, United Kingdom
| |
Collapse
|
12
|
Guo Y, Hao Y, Shen L, Du Y, Wang X, Gao L, Feng X, Zhai Y, Liu Z, Xu E, Yang Y, Xi Y, Yang B, Zhang L. TSTA3 overexpression promotes malignant characteristics in LUSC by regulating LAMP2-mediated autophagy and tumor microenvironment. Cancer Cell Int 2023; 23:285. [PMID: 37986192 PMCID: PMC10662648 DOI: 10.1186/s12935-023-03109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND TSTA3 gene encoding GDP-L-fucose synthase has recently been proved to be closely related to the prognosis of patients with various tumors. However, its role in lung cancer is still unclear. The purpose of this study is to explore the expression level, prognostic effect, potential function and mechanism of TSTA3 in lung cancer. METHODS Based on TCGA database, Kaplan-Meier and COX regression was used to analyze the relationship between TSTA3 expression and prognosis of lung cancer patients. Immunohistochemistry was used to determine the TSTA3 protein expression in lung cancer and normal tissues. The function of TSTA3 in lung squamous cell carcinoma (LUSC) cell was determined by CCK8, colony formation, transwell assay in vitro and subcutaneous xenografts in vivo. Transcriptome analysis, Lyso-Tracker Red staining and rescue experiment were used to explore the possible underlying mechanism. RESULTS The expression of TSTA3 was significantly increased in lung cancer, especially in LUSC, and was significantly correlated with the malignant characteristics of LUSC. COX regression analysis showed that the high expression of TSTA3 was an independent prognostic factor in LUSC patients. This was also confirmed by immunohistochemical staining. Compared with the control group, the proliferation, colony formation, invasion and migration ability of LUSC cells with TSTA3 overexpression was enhanced. Similarly, the ability of cell proliferation, colony formation, invasion and migration were weakened after transient knockdown of TSTA3. In vivo experiment showed that compared with control group, TSTA3 overexpression significantly promoted the growth of tumor and shortened survival time. In addition, transcriptome sequencing analysis showed that the differentially expressed genes between TSTA3 overexpression and control group was mainly concentrated in the lysosome pathway. Further study found that TSTA3 might affect the proliferation, invasion and migration of LUSC by regulating the expression of lysosome-associated membrane protein 2 (LAMP2) in LUSC. CONCLUSION The expression level of TSTA3 in LUSC is significantly higher than that in normal tissues. High expression of TSTA3 is associated with poor prognosis of LUSC patients. TSTA3 may affect the proliferation, invasion and migration of LUSC by regulating LAMP2.
Collapse
Affiliation(s)
- Yanlin Guo
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yanlong Hao
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Liuyi Shen
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yu Du
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaohui Wang
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Lvye Gao
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xuefei Feng
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yuanfang Zhai
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zhifei Liu
- Fifth Middle School of Taiyuan, Taiyuan, Shanxi, China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Yue Yang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Bin Yang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, 030001, People's Republic of China.
| | - Ling Zhang
- Basic Medical Sciences Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
13
|
Zhang NZ, Zhao LF, Zhang Q, Fang H, Song WL, Li WZ, Ge YS, Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J Gastrointest Oncol 2023; 15:1119-1134. [PMID: 37546555 PMCID: PMC10401475 DOI: 10.4251/wjgo.v15.i7.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Glycosylation is a common post-translational modification in eukaryotic cells. It is involved in the production of many biologically active glycoproteins and the regulation of protein structure and function. Core fucosylation plays a vital role in the immune response. Most immune system molecules are core fucosylated glycoproteins such as complements, cluster differentiation antigens, immunoglobulins, cytokines, major histocompatibility complex molecules, adhesion molecules, and immune molecule synthesis-related transcription factors. These core fucosylated glycoproteins play important roles in antigen recognition and clearance, cell adhesion, lymphocyte activation, apoptosis, signal transduction, and endocytosis. Core fucosylation is dominated by fucosyltransferase 8 (Fut8), which catalyzes the addition of α-1,6-fucose to the innermost GlcNAc residue of N-glycans. Fut8 is involved in humoral, cellular, and mucosal immunity. Tumor immunology is associated with aberrant core fucosylation. Here, we summarize the roles and potential modulatory mechanisms of Fut8 in various immune processes of the gastrointestinal system.
Collapse
Affiliation(s)
- Nian-Zhu Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li-Fen Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Qian Zhang
- Department of Cell Therapy, Shanghai Tianze Yuntai Biomedical Co., Ltd., Shanghai 200100, China
| | - Hui Fang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-0005, Ibaraki, Japan
| | - Wan-Li Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Zhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
14
|
Wang Y, Chen H. Protein glycosylation alterations in hepatocellular carcinoma: function and clinical implications. Oncogene 2023:10.1038/s41388-023-02702-w. [PMID: 37193819 DOI: 10.1038/s41388-023-02702-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Understanding the cancer mechanisms provides novel diagnostic, prognostic, and therapeutic markers for the management of HCC disease. In addition to genomic and epigenomic regulation, post-translational modification exerts a profound influence on protein functions and plays a critical role in regulating various biological processes. Protein glycosylation is one of the most common and complex post-translational modifications of newly synthesized proteins and acts as an important regulatory mechanism that is implicated in fundamental molecular and cell biology processes. Recent studies in glycobiology suggest that aberrant protein glycosylation in hepatocytes contributes to the malignant transformation to HCC by modulating a wide range of pro-tumorigenic signaling pathways. The dysregulated protein glycosylation regulates cancer growth, metastasis, stemness, immune evasion, and therapy resistance, and is regarded as a hallmark of HCC. Changes in protein glycosylation could serve as potential diagnostic, prognostic, and therapeutic factors in HCC. In this review, we summarize the functional importance, molecular mechanism, and clinical application of protein glycosylation alterations in HCC.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Mao C, Li J, Feng L, Gao W. Beyond antibody fucosylation: α-(1,6)-fucosyltransferase (Fut8) as a potential new therapeutic target for cancer immunotherapy. Antib Ther 2023; 6:87-96. [PMID: 37077473 PMCID: PMC10108557 DOI: 10.1093/abt/tbad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Aberrant post-translational glycosylation is a well-established hallmark of cancer. Altered core fucosylation mediated by α-(1,6)-fucosyltransferase (Fut8) is one of the key changes in tumor glycan patterns that contributes to neoplastic transformation, tumor metastasis, and immune evasion. Increased Fut8 expression and activity are associated with many types of human cancers, including lung, breast, melanoma, liver, colorectal, ovarian, prostate, thyroid, and pancreatic cancer. In animal models, inhibition of Fut8 activity by gene knockout, RNA interference, and small analogue inhibitors led to reduced tumor growth/metastasis, downregulation of immune checkpoint molecules PD-1, PD-L1/2, and B7-H3, and reversal of the suppressive state of tumor microenvironment. Although the biologics field has long benefited tremendously from using FUT8 -/- Chinese hamster ovary cells to manufacture IgGs with greatly enhanced effector function of antibody-dependent cellular cytotoxicity for therapy, it is only in recent years that the roles of Fut8 itself in cancer biology have been studied. Here, we summarize the pro-oncogenic mechanisms involved in cancer development that are regulated by Fut8-mediated core fucosylation, and call for more research in this area where modifying the activity of this sole enzyme responsible for core fucosylation could potentially bring rewarding surprises in fighting cancer, infections, and other immune-related diseases.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lili Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, USA
| |
Collapse
|
16
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 PMCID: PMC10060418 DOI: 10.1038/s41419-023-05733-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
17
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 DOI: 10.1038/s41419-023-05733-z.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 10/14/2024]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
18
|
Antonarelli G, Pieri V, Porta FM, Fusco N, Finocchiaro G, Curigliano G, Criscitiello C. Targeting Post-Translational Modifications to Improve Combinatorial Therapies in Breast Cancer: The Role of Fucosylation. Cells 2023; 12:cells12060840. [PMID: 36980181 PMCID: PMC10047715 DOI: 10.3390/cells12060840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Various tumors rely on post-translational modifications (PTMs) to promote invasiveness and angiogenesis and to reprogram cellular energetics to abate anti-cancer immunity. Among PTMs, fucosylation is a particular type of glycosylation that has been linked to different aspects of immune and hormonal physiological functions as well as hijacked by many types of tumors. Multiple tumors, including breast cancer, have been linked to dismal prognoses and increased metastatic potential due to fucosylation of the glycan core, namely core-fucosylation. Pre-clinical studies have examined the molecular mechanisms regulating core-fucosylation in breast cancer models, its negative prognostic value across multiple disease stages, and the activity of in vivo pharmacological inhibition, instructing combinatorial therapies and translation into clinical practice. Throughout this review, we describe the role of fucosylation in solid tumors, with a particular focus on breast cancer, as well as physiologic conditions on the immune system and hormones, providing a view into its potential as a biomarker for predicating or predicting cancer outcomes, as well as a potential clinical actionability as a biomarker.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | | | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
19
|
ST6GAL1 inhibits metastasis of hepatocellular carcinoma via modulating sialylation of MCAM on cell surface. Oncogene 2023; 42:516-529. [PMID: 36528750 DOI: 10.1038/s41388-022-02571-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is mainly because of its high rate of metastasis. Thus, elucidation of the molecular mechanisms underlying HCC metastasis is of great significance. Glycosylation is an important post-translational modification that is closely associated with tumor progression. Altered glycosylation including the altered sialylation resulting from aberrant expression of β-galactoside α2,6 sialyltransferase 1 (ST6GAL1) has long been considered as an important feature of cancer cells. However, there is limited information on the roles of ST6GAL1 and α2,6 sialylation in HCC metastasis. Here, we found that ST6GAL1 and α2,6 sialylation were negatively correlated with the metastatic potentials of HCC cells. Moreover, ST6GAL1 overexpression inhibited migration and invasion of HCC cells in vitro and suppressed HCC metastasis in vivo. Using a metabolic labeling-based glycoproteomic strategy, we identified a list of sialylated proteins that may be regulated by ST6GAL1. In particular, an increase in α2,6 sialylation of melanoma cell adhesion molecule (MCAM) inhibited its interaction with galectin-3 and decreased its expression on cell surface. In vitro and in vivo analysis showed that ST6GAL1 exerted its function in HCC metastasis by regulating MCAM expression. Finally, we found the relative intensity of sialylated MCAM was negatively correlated with tumor malignancy in HCC patients. Taken together, these results demonstrate that ST6GAL1 may be an HCC metastasis suppressor by affecting sialylation of MCAM on cell surface, which provides a novel insight into the roles of ST6GAL1 in HCC progression and supports the functional complexity of ST6GAL1 in a cancer type- and tissue type-specific manner.
Collapse
|
20
|
The Light-Controlled Release of 2-fluoro-l-fucose, an Inhibitor of the Root Cell Elongation, from a nitrobenzyl-caged Derivative. Int J Mol Sci 2023; 24:ijms24032533. [PMID: 36768855 PMCID: PMC9916816 DOI: 10.3390/ijms24032533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glycan metabolic engineering is a powerful tool for studying the glycosylation in living plant cells. The use of modified monosaccharides such as deoxy or fluorine-containing glycosides has been reported as a powerful pharmacological approach for studying the carbohydrate metabolism. 1,3,4-tri-O-acetyl-2-fluoro-l-fucose (2F-Fuc) is a potent inhibitor of the plant cell elongation. After feeding plant seedlings with 2F-Fuc, this monosaccharide derivative is deacetylated and converted by the endogenous metabolic machinery into the corresponding nucleotide-sugar, which then efficiently inhibits Golgi-localized fucosyltransferases. Among plant cell wall polymers, defects in the fucosylation of the pectic rhamnogalacturonan-II cause a decrease in RG-II dimerization, which in turn induce the arrest of the cell elongation. In order to perform the inhibition of the cell elongation process in a spatio-temporal manner, we synthesized a caged 3,4-di-O-acetyl-1-hydroxy-2-fluoro-l-fucose (1-OH-2F-Fuc) derivative carrying a photolabile ortho-nitrobenzyl alcohol function at the anomeric position: 3,4-di-O-acetyl-1-ortho-nitrobenzyl-2-fluoro-l-fucose (2F-Fuc-NB). The photorelease of the trapped 1-OH-2F-Fuc was performed under a 365 nm LED illumination. We demonstrated that the in planta elimination by photoexcitation of the photolabile group releases free 2F-Fuc in plant cells, which in turn inhibits in a dose-dependent manner and, reversibly, the root cell elongation.
Collapse
|
21
|
Pieri V, Gallotti AL, Drago D, Cominelli M, Pagano I, Conti V, Valtorta S, Coliva A, Lago S, Michelatti D, Massimino L, Ungaro F, Perani L, Spinelli A, Castellano A, Falini A, Zippo A, Poliani PL, Moresco RM, Andolfo A, Galli R. Aberrant L-Fucose Accumulation and Increased Core Fucosylation Are Metabolic Liabilities in Mesenchymal Glioblastoma. Cancer Res 2023; 83:195-218. [PMID: 36409826 DOI: 10.1158/0008-5472.can-22-0677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/28/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.
Collapse
Affiliation(s)
- Valentina Pieri
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Alberto L Gallotti
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Denise Drago
- ProMeFa, Center for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Manuela Cominelli
- Molecular and Translational Medicine Department, Pathology Unit, University of Brescia, Brescia, Italy
| | - Ilaria Pagano
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Valentina Conti
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvia Valtorta
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Daniela Michelatti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Luca Massimino
- Gastroenterology and Endoscopy Department, Experimental Gastroenterology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Endoscopy Department, Experimental Gastroenterology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Perani
- Experimental Imaging Center, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), Laboratory of Chromatin Biology & Epigenetics, University of Trento, Trento, Italy
| | - Pietro L Poliani
- Molecular and Translational Medicine Department, Pathology Unit, University of Brescia, Brescia, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Center, IRCCS San Raffaele Hospital, Milan, Italy.,Institute of Bioimaging and Molecular Physiology (IBFM), CNR, Segrate, Italy.,Department of Medicine and Surgery and Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - Annapaola Andolfo
- ProMeFa, Center for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Rossella Galli
- Division of Neuroscience, Neural Stem Cell Biology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
22
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
α-1,6-Fucosyltransferase Is Essential for Myogenesis in Zebrafish. Cells 2022; 12:cells12010144. [PMID: 36611938 PMCID: PMC9818595 DOI: 10.3390/cells12010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Glycosylation is an important mechanism regulating various biological processes, including intercellular signaling and adhesion. α-1,6-fucosyltransferase (Fut8) belongs to a family of enzymes that determine the terminal structure of glycans. Fut8 is widely conserved from Caenorhabditis elegans to humans, and its mutants have been reported in humans, mice, and zebrafish. Although mutants show various symptoms, such as spinal deformity and growth retardation, its effects on skeletal muscles are unknown. We aimed to elucidate the function of Fut8 in skeletal muscle using zebrafish and C2C12 cells for evaluation. We observed that most fut8a morphants died at 2 days post-fertilization (dpf) or in earlier developmental stages even at low concentrations of morpholino oligonucleotides (MOs). Mutant juveniles also had small body sizes, and abnormal myocepta and sarcomere structures, suggesting that Fut8a plays important roles in myogenesis. Moreover, treatment of C2C12 cells with 2-fluorofucose (2FF), a fucosylation inhibitor, during cell differentiation dramatically reduced the expression of myogenic genes, such as Myomaker and other myogenic fusion genes, and inhibited myotube formation. These results indicate that Fut8 is an important factor in myogenesis, and myofusion in particular.
Collapse
|
24
|
Zhou Y, Cai X, Wu L, Lin N. Comparative glycoproteomics study on the surface of SKOV3 versus IOSE80 cell lines. Front Chem 2022; 10:1010642. [DOI: 10.3389/fchem.2022.1010642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: Site- and structure-specific quantitative N-glycoproteomics study of differential cell-surface N-glycosylation of ovarian cancer SKOV3 cells with the non-cancerous ovarian epithelial IOSE80 cells as the control.Methods: C18-RPLC-MS/MS (HCD with stepped normalized collision energies) was used to analyze the 1: 1 mixture of labeled intact N-glycopeptides from SKOV3 and IOSE80 cells, and the site- and structure-specific intact N-glycopeptide search engine GPSeeker was used to conduct qualitative and quantitative search on the obtained raw datasets.Results: With the control of the spectrum-level false discovery rate ≤1%, 13,822 glycopeptide spectral matches coming from 2,918 N-glycoproteins with comprehensive N-glycosite and N-glycan structure information were identified; 3,733 N-glycosites and 3,754 N-glycan sequence structures were confirmed by site-determining and structure-diagnostic fragment ions, respectively. With the control of no less than two observations among the three technical replicates, fold change ≥1.5, and p-value ≤ 0.05, 746 DEPGs in SKOV3 cells relative to IOSE80 cells were quantified, where 421 were upregulated and 325 downregulated.Conclusion: Differential cell-surface N-glycosylation of ovarian cancer SKOV3 cells were quantitatively analyzed by isotopic labeling and site- and structure-specific N-glycoproteomics. This discovery study provides putative N-glycoprotein biomarker candidates for future validation study using multiple reaction monitoring and biochemical methods.
Collapse
|
25
|
Rossing E, Pijnenborg JFA, Boltje TJ. Chemical tools to track and perturb the expression of sialic acid and fucose monosaccharides. Chem Commun (Camb) 2022; 58:12139-12150. [PMID: 36222364 PMCID: PMC9623448 DOI: 10.1039/d2cc04275d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
The biosynthesis of glycans is a highly conserved biological process and found in all domains of life. The expression of cell surface glycans is increasingly recognized as a target for therapeutic intervention given the role of glycans in major pathologies such as cancer and microbial infection. Herein, we summarize our contributions to the development of unnatural monosaccharide derivatives to infiltrate and alter the expression of both mammalian and bacterial glycans and their therapeutic application.
Collapse
Affiliation(s)
- Emiel Rossing
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Johan F A Pijnenborg
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
N-Glycosylation on Asn50 of SND1 Is Required for Glioma U87 Cell Proliferation and Metastasis. J Immunol Res 2022; 2022:5239006. [PMID: 36213325 PMCID: PMC9537018 DOI: 10.1155/2022/5239006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Staphylococcal nuclease domain-containing protein 1 (SND1) is an evolutionarily conserved multidomain protein, which has gained attention recently due to its positive regulation in several cancer progression and metastatic spread. However, the specific contribution of SND1 glycosylation in glioma remains uncertain. In the current study, we confirmed that SND1 was highly expressed in human glioma. Using site-directed mutagenesis, we created four predicted N-glycosylation site mutants for SND1 and provided the first evidence that SND1 undergoes N-glycosylation on its Asn50, Asn168, Asn283, and Asn416 residues in human glioma U87 cells. In addition, we found that removing the N-glycans on the Asn50 site destabilized SND1 and led to its endoplasmic reticulum-associated degradation. Furthermore, destabilized SND1 inhibits the glioma cell proliferation and metastasis. Collectively, our results reveal that N-glycosylation at Asn50 is essential for SND1 folding and trafficking, thus essential for the glioma process, providing new insights for SND1 as a potential disease biomarker for glioma.
Collapse
|
27
|
Metabolic utilization and remodeling of glycan biosynthesis using fucose analogs. Biochim Biophys Acta Gen Subj 2022; 1866:130243. [PMID: 36087787 DOI: 10.1016/j.bbagen.2022.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Fucose (Fuc), a monosaccharide present at the core or the termini of glycans, critically regulates various biological phenomena and is associated with various diseases. Specifically detecting Fuc residues or inhibiting the fucosylation pathway is pivotal in understanding the mechanisms of how fucosylated glycans are related to biological processes and diseases and in developing novel therapeutic agents. SCOPE OF REVIEW This review focuses on chemical biology approaches using Fuc analogs developed for metabolically labeling fucosylated glycans or inhibiting the biosynthesis of fucosylated glycans. MAJOR CONCLUSIONS Developed Fuc analogs have different potency, specificity and effects on protein and cellular functions. Developing highly enzyme-specific probes and inhibitors is desirable for future investigations. GENERAL SIGNIFICANCE Chemical glycobiology approaches using sugar analogs are useful for revealing novel mechanisms of inter-relationships among sugar metabolism pathways and manipulating glycan expression to develop new glycan-targeted therapies.
Collapse
|
28
|
Sheng Y, Vinjamuri A, Alvarez MRS, Xie Y, McGrath M, Chen S, Barboza M, Frieman M, Lebrilla CB. Host Cell Glycocalyx Remodeling Reveals SARS-CoV-2 Spike Protein Glycomic Binding Sites. Front Mol Biosci 2022; 9:799703. [PMID: 35372520 PMCID: PMC8964299 DOI: 10.3389/fmolb.2022.799703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Glycans on the host cell membrane and viral proteins play critical roles in pathogenesis. Highly glycosylated epithelial cells represent the primary boundary separating embedded host tissues from pathogens within the respiratory and intestinal tracts. SARS-CoV-2, the causative agent for the COVID-19 pandemic, reaches into the respiratory tract. We found purified human milk oligosaccharides (HMOs) inhibited the viral binding on cells. Spike (S) protein receptor binding domain (RBD) binding to host cells were partly blocked by co-incubation with exogenous HMOs, most by 2-6-sialyl-lactose (6'SL), supporting the notion that HMOs can function as decoys in defense against SARS-Cov2. To investigate the effect of host cell glycocalyx on viral adherence, we metabolically modified and confirmed with glycomic methods the cell surface glycome to enrich specific N-glycan types including those containing sialic acids, fucose, mannose, and terminal galactose. Additionally, Immunofluorescence studies demonstrated that the S protein preferentially binds to terminal sialic acids with α-(2,6)-linkages. Furthermore, site-specific glycosylation of S protein RBD and its human receptor ACE2 were characterized using LC-MS/MS. We then performed molecular dynamics calculations on the interaction complex to further explore the interactive complex between ACE2 and the S protein. The results showed that hydrogen bonds mediated the interactions between ACE2 glycans and S protein with desialylated glycans forming significantly fewer hydrogen bonds. These results supported a mechanism where the virus binds initially to glycans on host cells preferring α-(2,6)-sialic acids and finds ACE2 and with the proper orientation infects the cell.
Collapse
Affiliation(s)
- Ying Sheng
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- The Biochemistry, Molecular, Cellular and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, Davis, CA, United States
| | - Anita Vinjamuri
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | | | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Marisa McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Siyu Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- The Biochemistry, Molecular, Cellular and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Tu M, Fan X, Shi J, Jing S, Xu X, Wang Y. 2-Fluorofucose Attenuates Hydrogen Peroxide-Induced Oxidative Stress in HepG2 Cells via Nrf2/keap1 and NF-κB Signaling Pathways. Life (Basel) 2022; 12:life12030406. [PMID: 35330157 PMCID: PMC8950221 DOI: 10.3390/life12030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Fucosylation is one of the most important glycan terminal modifications that affects multiple biological activities of proteins. 2-Fluorofucose (2FF), its specific inhibitor, has recently been reported to reveal numerous biological effects by blocking fucosylation both in vitro and in vivo. The current study aimed to evaluate the effect of 2FF on hydrogen peroxide (H2O2)-induced oxidative damage in vitro. In our study, treatment with H2O2 increased the level of fucosylation, and 2FF improved the cell viability in H2O2-treated HepG2 cells. Our study also showed that 2FF significantly decreased the overproduction of reactive oxygen species (ROS) induced by H2O2 and the activities of catalase, glutathione and Mn-superoxide dismutase were remarkably increased by 2FF pretreatment. Furthermore, 2FF attenuated H2O2-induced early mitochondria dysfunction. The second part of the study revealed that 2FF enhanced antioxidant capacity by affecting Nrf2/keap1 and NF-κB signaling pathways in HepG2 cells. Being pretreated with 2FF significantly increased the nuclear translocation of Nrf2 and simultaneously promoted the expression of downstream proteins, such as HO-1 and NQO1. Moreover, 2FF remarkably suppressed the expression of inflammation-associated proteins. Taken together, these data suggest that 2FF might have a potential therapeutic effect for oxidative stress.
Collapse
Affiliation(s)
- Mengjue Tu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (M.T.); (X.F.); (J.S.); (S.J.)
| | - Xingshuo Fan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (M.T.); (X.F.); (J.S.); (S.J.)
| | - Jianan Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (M.T.); (X.F.); (J.S.); (S.J.)
| | - Shengnan Jing
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (M.T.); (X.F.); (J.S.); (S.J.)
| | - Xiaole Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (M.T.); (X.F.); (J.S.); (S.J.)
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
- Correspondence: (X.X.); (Y.W.)
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (M.T.); (X.F.); (J.S.); (S.J.)
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
- Correspondence: (X.X.); (Y.W.)
| |
Collapse
|
30
|
Adhikari E, Liu Q, Burton C, Mockabee-Macias A, Lester DK, Lau E. l-fucose, a sugary regulator of antitumor immunity and immunotherapies. Mol Carcinog 2022; 61:439-453. [PMID: 35107186 DOI: 10.1002/mc.23394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
l-fucose is a dietary sugar that is used by cells in a process called fucosylation to posttranslationally modify and regulate protein behavior and function. As fucosylation plays essential cellular functions in normal organ and immune developmental and homeostasis, it is perhaps not surprising that it has been found to be perturbed in a number of pathophysiological contexts, including cancer. Increasing studies over the years have highlighted key roles that altered fucosylation can play in cancer cell-intrinsic as well as paracrine signaling and interactions. In particular, studies have demonstrated that fucosylation impact tumor:immunological interactions and significantly enhance or attenuate antitumor immunity. Importantly, fucosylation appears to be a posttranslational modification that can be therapeutically targeted, as manipulating the molecular underpinnings of fucosylation has been shown to be sufficient to impair or block tumor progression and to modulate antitumor immunity. Moreover, the fucosylation of anticancer agents, such as therapeutic antibodies, has been shown to critically impact their efficacy. In this review, we summarize the underappreciated roles that fucosylation plays in cancer and immune cells, as well as the fucosylation of therapeutic antibodies or the manipulation of fucosylation and their implications as new therapeutic modalities for cancer.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Chase Burton
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Andrea Mockabee-Macias
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Daniel K Lester
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
31
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
32
|
Fucosylation in Urological Cancers. Int J Mol Sci 2021; 22:ijms222413333. [PMID: 34948129 PMCID: PMC8708646 DOI: 10.3390/ijms222413333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Fucosylation is an oligosaccharide modification that plays an important role in immune response and malignancy, and specific fucosyltransferases (FUTs) catalyze the three types of fucosylations: core-type, Lewis type, and H type. FUTs regulate cancer proliferation, invasiveness, and resistance to chemotherapy by modifying the glycosylation of signaling receptors. Oligosaccharides on PD-1/PD-L1 proteins are specifically fucosylated, leading to functional modifications. Expression of FUTs is upregulated in renal cell carcinoma, bladder cancer, and prostate cancer. Aberrant fucosylation in prostate-specific antigen (PSA) could be used as a novel biomarker for prostate cancer. Furthermore, elucidation of the biological function of fucosylation could result in the development of novel therapeutic targets. Further studies are needed in the field of fucosylation glycobiology in urological malignancies.
Collapse
|
33
|
Abstract
The sugar fucose is expressed on mammalian cell membranes as part of glycoconjugates and mediates essential physiological processes. The aberrant expression of fucosylated glycans has been linked to pathologies such as cancer, inflammation, infection, and genetic disorders. Tools to modulate fucose expression on living cells are needed to elucidate the biological role of fucose sugars and the development of potential therapeutics. Herein, we report a class of fucosylation inhibitors directly targeting de novo GDP-fucose biosynthesis via competitive GMDS inhibition. We demonstrate that cell permeable fluorinated rhamnose 1-phosphate derivatives (Fucotrim I & II) are metabolic prodrugs that are metabolized to their respective GDP-mannose derivatives and efficiently inhibit cellular fucosylation.
Collapse
|
34
|
Zhou Q, Xie Y, Lam M, Lebrilla CB. N-Glycomic Analysis of the Cell Shows Specific Effects of Glycosyl Transferase Inhibitors. Cells 2021; 10:cells10092318. [PMID: 34571967 PMCID: PMC8465854 DOI: 10.3390/cells10092318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glycomic profiling methods were used to determine the effect of metabolic inhibitors on glycan production. These inhibitors are commonly used to alter the cell surface glycosylation. However, structural analysis of the released glycans has been limited. In this research, the cell membranes were enriched and the glycans were released to obtain the N-glycans of the glycocalyx. Glycomic analysis using liquid chromatography–mass spectrometry (LC–MS) with a PGC chip column was used to profile the structures in the cell membrane. Glycans of untreated cells were compared to glycans of cells treated with inhibitors, including kifunensine, which inhibits the formation of complex- and hybrid-type structures, 2,4,7,8,9-Penta-O-acetyl-N-acetyl-3-fluoro-b-d-neuraminic acid methyl ester for sialylated glycans, 2-deoxy-2-fluorofucose, and 6-alkynyl fucose for fucosylated glycans. Kifunensine was the most effective, converting nearly 95% of glycans to high mannose types. The compound 6-alkynyl fucose inhibited some fucosylation but also incorporated into the glycan structure. Proteomic analysis of the enriched membrane for the four inhibitors showed only small changes in the proteome accompanied by large changes in the N-glycome for Caco-2. Future works may use these inhibitors to study the cellular behavior associated with the alteration of glycosylation in various biological systems, e.g., viral and bacterial infection, drug binding, and cell–cell interactions.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Matthew Lam
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
- Department of Biochemistry, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
35
|
Comparative studies on the substrate specificity and defucosylation activity of three α-l-fucosidases using synthetic fucosylated glycopeptides and glycoproteins as substrates. Bioorg Med Chem 2021; 42:116243. [PMID: 34126284 DOI: 10.1016/j.bmc.2021.116243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Core fucosylation is the attachment of an α-1,6-fucose moiety to the innermost N-acetyl glucosamine (GlcNAc) in N-glycans in mammalian systems. It plays a pivotal role in modulating the structural and biological functions of glycoproteins including therapeutic antibodies. Yet, few α-l-fucosidases appear to be capable of removing core fucose from intact glycoproteins. This paper describes a comparative study of the substrate specificity and relative activity of the human α-l-fucosidase (FucA1) and two bacterial α-l-fucosidases, the AlfC from Lactobacillus casei and the BfFuc from Bacteroides fragilis. This study was enabled by the synthesis of an array of structurally well-defined core-fucosylated substrates, including core-fucosylated N-glycopeptides and a few antibody glycoforms. It was found that AlfC and BfFuc could not remove core fucose from intact full-length N-glycopeptides or N-glycoproteins but could hydrolyze only the truncated Fucα1,6GlcNAc-peptide substrates. In contrast, the human α-l-fucosidase (FucA1) showed low activity on truncated Fucα1,6GlcNAc substrates but was able to remove core fucose from intact and full-length core-fucosylated N-glycopeptides and N-glycoproteins. In addition, it was found that FucA1 was the only α-l-fucosidase that showed low but apparent activity to remove core fucose from intact IgG antibodies. The ability of FucA1 to defucosylate intact monoclonal antibodies reveals an opportunity to evolve the human α-l-fucosidase for direct enzymatic defucosylation of therapeutic antibodies to improve their antibody-dependent cellular cytotoxicity.
Collapse
|
36
|
Ma M, Guo D, Tan Z, Du J, Guan F, Li X. Fucosyltransferase 8 regulation and breast cancer suppression by transcription factor activator protein 2γ. Cancer Sci 2021; 112:3190-3204. [PMID: 34036684 PMCID: PMC8353918 DOI: 10.1111/cas.14987] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Alterations of glycosyltransferase expression are often associated with tumor occurrence and progression. Among the many glycosyltransferases, increased expression of fucosyltransferase 8 (FUT8) has been frequently observed to be involved in progression and metastasis of various types of cancer. The regulatory mechanisms of FUT8 expression remain unclear. FUT8 expression was shown, in this study, to be elevated in breast cancer. Systematic analysis revealed that transcription factor activator protein 2γ (AP-2γ) is the target gene of microRNA-10b (miR-10b), which we previously identified as a positive regulator of FUT8. Overexpression of AP-2γ inhibited FUT8 expression, with associated reduction of cell invasiveness and migration ability. AP-2γ was capable of binding to transcription factor STAT3, and phosphorylation of STAT3 induced transcription of the FUT8 gene. On the basis of our findings, we propose that binding of AP-2γ to STAT3 results in formation of the AP-2γ/STAT3 complex and consequent inhibition of STAT3 phosphorylation, thereby preventing entry of p-STAT3 into the nucleus to initiate FUT8 transcription. This study clarifies the molecular mechanisms whereby transcription factor AP-2γ regulates FUT8 expression in breast cancer.
Collapse
Affiliation(s)
- Minxing Ma
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Dong Guo
- Department of Central Lab, Cheeloo College of Medicine, Weihai Municipal Hospital, Shandong University, Weihai, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Jun Du
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
37
|
Liao C, An J, Yi S, Tan Z, Wang H, Li H, Guan X, Liu J, Wang Q. FUT8 and Protein Core Fucosylation in Tumours: From Diagnosis to Treatment. J Cancer 2021; 12:4109-4120. [PMID: 34093814 PMCID: PMC8176256 DOI: 10.7150/jca.58268] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosylation changes are key molecular events in tumorigenesis, progression and glycosyltransferases play a vital role in the this process. FUT8 belongs to the fucosyltransferase family and is the key enzyme involved in N-glycan core fucosylation. FUT8 and/or core fucosylated proteins are frequently upregulated in liver, lung, colorectal, pancreas, prostate,breast, oral cavity, oesophagus, and thyroid tumours, diffuse large B-cell lymphoma, ependymoma, medulloblastoma and glioblastoma multiforme and downregulated in gastric cancer. They can be used as markers of cancer diagnosis, occurrence, progression and prognosis. Core fucosylated EGFR, TGFBR, E-cadherin, PD1/PD-L1 and α3β1 integrin are potential targets for tumour therapy. In addition, IGg1 antibody defucosylation can improve antibody affinity, which is another aspect of FUT8 that could be applied to tumour therapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Suqin Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Li
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Jianguo Liu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
38
|
Ohkawa Y, Harada Y, Taniguchi N. Keratan sulfate-based glycomimetics using Langerin as a target for COPD: lessons from studies on Fut8 and core fucose. Biochem Soc Trans 2021; 49:441-453. [PMID: 33616615 PMCID: PMC7924997 DOI: 10.1042/bst20200780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Biomimetic Materials/chemistry
- Biomimetic Materials/therapeutic use
- Fucose/metabolism
- Fucosyltransferases/physiology
- Glycosylation
- Humans
- Keratan Sulfate/chemistry
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Mannose-Binding Lectins/antagonists & inhibitors
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
39
|
Pijnenborg JFA, Visser EA, Noga M, Rossing E, Veizaj R, Lefeber DJ, Büll C, Boltje TJ. Cellular Fucosylation Inhibitors Based on Fluorinated Fucose-1-phosphates*. Chemistry 2021; 27:4022-4027. [PMID: 33336886 PMCID: PMC7986151 DOI: 10.1002/chem.202005359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Fucosylation of glycans impacts a myriad of physiological and pathological processes. Inhibition of fucose expression emerges as a potential therapeutic avenue for example in cancer, inflammation, and infection. In this study, we found that protected 2-fluorofucose 1-phosphate efficiently inhibits cellular fucosylation with a four to seven times higher potency than known inhibitor 2FF, independently of the anomeric stereochemistry. Nucleotide sugar analysis revealed that both the α- and β-GDP-2FF anomers are formed inside the cell. In conclusion, we developed A2FF1P and B2FF1P as potent new tools for studying the role of fucosylation in health and disease and they are potential therapeutic candidates.
Collapse
Affiliation(s)
- Johan F. A. Pijnenborg
- Department of Synthetic Organic ChemistryInstitute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Eline A. Visser
- Department of Synthetic Organic ChemistryInstitute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Marek Noga
- Department of Laboratory MedicineTranslational Metabolic LaboratoryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 106525GANijmegenThe Netherlands
| | - Emiel Rossing
- Department of Synthetic Organic ChemistryInstitute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Raisa Veizaj
- Department of NeurologyDonders Institute for Brain, Cognition, and BehaviorRadboud University Medical CenterGeert Grooteplein Zuid 106525GANijmegenThe Netherlands
| | - Dirk J. Lefeber
- Department of Laboratory MedicineTranslational Metabolic LaboratoryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 106525GANijmegenThe Netherlands
- Department of NeurologyDonders Institute for Brain, Cognition, and BehaviorRadboud University Medical CenterGeert Grooteplein Zuid 106525GANijmegenThe Netherlands
| | - Christian Büll
- Hubrecht InstituteUppsalalaan 83584 CTUtrechtThe Netherlands
| | - Thomas J. Boltje
- Department of Synthetic Organic ChemistryInstitute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
40
|
Zimmermann M, Nguyen M, Schultheiss CM, Kolmar H, Zimmer A. Use of 5-Thio-L-Fucose to modulate binding affinity of therapeutic proteins. Biotechnol Bioeng 2021; 118:1818-1831. [PMID: 33501689 PMCID: PMC8248388 DOI: 10.1002/bit.27695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The reduction of antibody core-fucosylation is known to enhance antibody-dependent cellular cytotoxicity (ADCC). In this study, 5-Thio-l-Fucose (ThioFuc) was investigated as a media and feed supplement for modulating the fucosylation profile of therapeutic proteins and, thereby, improving the resulting effector functions. Glycan analysis of five different therapeutic proteins produced by a diverse set of Chinese hamster ovary cell lines demonstrated a clone dependent impact of ThioFuc treatment. Using rituximab as a model, an efficient dose- and time-dependent reduction of core-fucosylation up to a minimum of 5% were obtained by ThioFuc. Besides a concomitant increase in the afucosylation level up to 48%, data also revealed up to 47% incorporation of ThioFuc in place of core-fucosylation. In accordance with the glycan data, antibodies produced in the presence of ThioFuc revealed an enhanced FcγRIIIa binding up to 7.7-fold. Furthermore, modified antibodies subjected to a cell-based ADCC reporter bioassay proved to exert both a 1.5-fold enhanced ADCC efficacy and 2.6-fold enhancement in potency in comparison to their native counterparts-both of which contribute to an improvement in the ADCC activity. In conclusion, ThioFuc is a potent fucose derivative with potential applications in drug development processes.
Collapse
Affiliation(s)
- Martina Zimmermann
- Life Science, Upstream R&D, Merck KGaA, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Melanie Nguyen
- Life Science, Upstream R&D, Merck KGaA, Darmstadt, Germany
| | | | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aline Zimmer
- Life Science, Upstream R&D, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
41
|
Liang C, Fukuda T, Isaji T, Duan C, Song W, Wang Y, Gu J. α1,6-Fucosyltransferase contributes to cell migration and proliferation as well as to cancer stemness features in pancreatic carcinoma. Biochim Biophys Acta Gen Subj 2021; 1865:129870. [PMID: 33571582 DOI: 10.1016/j.bbagen.2021.129870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic carcinoma is one of the deadliest malignant diseases, in which the increased expression of α1,6-fucosyltransferase (FUT8), a sole enzyme responsible for catalyzing core fucosylation, has been reported. However, its pathological roles and regulatory mechanisms remain largely unknown. Here, we use two pancreatic adenocarcinoma cell lines, MIA PaCa-2 and PANC-1 cells, as cell models, to explore the relationship of FUT8 with the malignant transformation of PDAC. METHODS FUT8 knockout (FUT8-KO) cells were established by the CRISPR/Cas9 system. Cell migration was analyzed by transwell and wound-healing assays. Cell proliferation was examined by MTT and colony-formation assays. Cancer stemness markers and spheroid formations were used to analyzed cancer stemness features. RESULTS Deficiency of FUT8 inhibited cell migration and proliferation in both MIA PaCa-2 and PANC-1 cells compared with wild-type cells. Moreover, the expression levels of cancer stemness markers such as EpCAM, CXCR4, c-Met, and CD133 were decreased in the FUT8-KO cells compared with wild-type cells. Also, the spheroid formations in the KO cells were loose and unstable, which could be reversed by restoration with FUT8 gene in the KO cells. Additionally, FUT8-KO increased the chemosensitivity to gemcitabine, which is the first-line therapy for advanced pancreatic cancer. CONCLUSIONS FUT8-KO reduced the cell proliferation and migration. Our results are the first to suggest that the expression of FUT8 is involved in regulating the stemness features of pancreatic cancer cells. GENERAL SIGNIFICANCE FUT8 could provide novel insights for the treatment of pancreatic carcinoma.
Collapse
Affiliation(s)
- Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Chengwei Duan
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Yuqin Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
42
|
Bastian K, Scott E, Elliott DJ, Munkley J. FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer. Int J Mol Sci 2021; 22:E455. [PMID: 33466384 PMCID: PMC7795606 DOI: 10.3390/ijms22010455] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-β, EGF, α3β1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.
Collapse
Affiliation(s)
- Kayla Bastian
- Institute of Biosciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK; (E.S.); (D.J.E.); (J.M.)
| | | | | | | |
Collapse
|
43
|
Doud EH, Shetty T, Abt M, Mosley AL, Corson TW, Mehta A, Yeh ES. NF-κB Signaling Is Regulated by Fucosylation in Metastatic Breast Cancer Cells. Biomedicines 2020; 8:biomedicines8120600. [PMID: 33322811 PMCID: PMC7763959 DOI: 10.3390/biomedicines8120600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence indicates that the levels of fucosylation correlate with breast cancer progression and contribute to metastatic disease. However, very little is known about the signaling and functional outcomes that are driven by fucosylation. We performed a global proteomic analysis of 4T1 metastatic mammary tumor cells in the presence and absence of a fucosylation inhibitor, 2-fluorofucose (2FF). Of significant interest, pathway analysis based on our results revealed a reduction in the NF-κB and TNF signaling pathways, which regulate the inflammatory response. NF-κB is a transcription factor that is pro-tumorigenic and a prime target in human cancer. We validated our results, confirming that treatment of 4T1 cells with 2FF led to a decrease in NF-κB activity through increased IκBα. Based on these observations, we conclude that fucosylation is an important post-translational modification that governs breast cancer cell signaling.
Collapse
Affiliation(s)
- Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
| | - Trupti Shetty
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Elizabeth S. Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
44
|
A streamlined pipeline for multiplexed quantitative site-specific N-glycoproteomics. Nat Commun 2020; 11:5268. [PMID: 33077710 PMCID: PMC7572468 DOI: 10.1038/s41467-020-19052-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of protein N-glycosylation is essential in human cells. However, large-scale, accurate, and site-specific quantification of glycosylation is still technically challenging. We here introduce SugarQuant, an integrated mass spectrometry-based pipeline comprising protein aggregation capture (PAC)-based sample preparation, multi-notch MS3 acquisition (Glyco-SPS-MS3) and a data-processing tool (GlycoBinder) that enables confident identification and quantification of intact glycopeptides in complex biological samples. PAC significantly reduces sample-handling time without compromising sensitivity. Glyco-SPS-MS3 combines high-resolution MS2 and MS3 scans, resulting in enhanced reporter signals of isobaric mass tags, improved detection of N-glycopeptide fragments, and lowered interference in multiplexed quantification. GlycoBinder enables streamlined processing of Glyco-SPS-MS3 data, followed by a two-step database search, which increases the identification rates of glycopeptides by 22% compared with conventional strategies. We apply SugarQuant to identify and quantify more than 5,000 unique glycoforms in Burkitt’s lymphoma cells, and determine site-specific glycosylation changes that occurred upon inhibition of fucosylation at high confidence. Comprehensive quantitative profiling of intact glycopeptides remains technically challenging. To address this, the authors here develop an integrated quantitative glycoproteomic workflow, including optimized sample preparation, multiplexed quantification and a dedicated data processing tool.
Collapse
|
45
|
Dai Y, Hartke R, Li C, Yang Q, Liu JO, Wang LX. Synthetic Fluorinated l-Fucose Analogs Inhibit Proliferation of Cancer Cells and Primary Endothelial Cells. ACS Chem Biol 2020; 15:2662-2672. [PMID: 32930566 PMCID: PMC10901565 DOI: 10.1021/acschembio.0c00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fucosylation is one of the most prevalent modifications on N- and O-glycans of glycoproteins, and it plays an important role in various cellular processes and diseases. Small molecule inhibitors of fucosylation have shown promise as therapeutic agents for sickle cell disease, arthritis, and cancer. We describe here the design and synthesis of a panel of fluorinated l-fucose analogs bearing fluorine atoms at the C2 and/or C6 positions of l-fucose as metabolic fucosylation inhibitors. Preliminary study of their effects on cell proliferation revealed that the 6,6-difluoro-l-fucose (3) and 6,6,6-trifluoro-l-fucose (6) showed significant inhibitory activity against proliferation of human colon cancer cells and human umbilical vein endothelial cells. In contrast, the previously reported 2-deoxy-2-fluoro-l-fucose (1) had no apparent effects on proliferations of all the cell lines tested. To understand the mechanism of cell proliferation inhibition by the fluorinated l-fucose analogs, we performed chemoenzymatic synthesis of the corresponding GDP-fluorinated l-fucose analogs and tested their inhibitory activities against the mammalian α1,6-fucosyltransferase (FUT8). Interestingly, the corresponding GDP derivatives of 6,6-difluoro-l-fucose (3) and 6,6,6-trifluoro-l-fucose (6), which are the stronger proliferation inhibitors, showed much weaker inhibitory activity against FUT8 than that of the 2-deoxy-2-fluoro-l-fucose (1). These results suggest that FUT8 is not the major target of the 6-fluorinated fucose analogs (3 and 6). Instead, other factors, such as the key enzymes involved in the de novo GDP-fucose biosynthetic pathway and/or other fucosyltransferases involved in the biosynthesis of tumor-associated glyco-epitopes are most likely the targets of the fluorinated l-fucose analogs to achieve cell proliferation inhibition. To our knowledge, this is the first comparative study of various fluorinated l-fucose analogs for suppressing the proliferation of human cancer and primary endothelial cells required for angiogenesis.
Collapse
Affiliation(s)
- Yuanwei Dai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ruth Hartke
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
46
|
Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020; 111S:154320. [PMID: 32712221 PMCID: PMC7377759 DOI: 10.1016/j.metabol.2020.154320] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | - Konstantinos Stefanakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
47
|
Zhang L, Gao Y, Zhang X, Guo M, Yang J, Cui H, Kong P, Niu X, Bi Y, Xu J, Yan T, Ma Y, Yang J, Qian Y, Wang F, Li H, Liu F, Cheng X, Cui Y. TSTA3 facilitates esophageal squamous cell carcinoma progression through regulating fucosylation of LAMP2 and ERBB2. Theranostics 2020; 10:11339-11358. [PMID: 33042286 PMCID: PMC7532669 DOI: 10.7150/thno.48225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/29/2022] Open
Abstract
Background: TSTA3 gene encodes an enzyme responsible for synthesis of GDP-L-fucose as the only donor in fucosylation. This study was designed to explore clinical value, function and underlying mechanism of TSTA3 in the development of esophageal squamous cell carcinoma (ESCC). Methods: Whole genomic sequencing data from 663 ESCC patients and RNA sequencing data from 155 ESCC patients were used to analyze the copy number variation and mRNA expression of TSTA3 respectively. Immunohistochemistry based or not based on the tissue microarrays was used to detect its protein expression. Transwell assay and in vivo metastasis assay were used to study the effect of TSTA3 on invasion and metastasis of ESCC. Immunofluorescence was used to analyze fucosylation level. N-glycoproteomics and proteomics analysis, Lens Culinaris Agglutinin (LCA) and Ulex Europaeus Agglutinin I (UEA-I) affinity chromatography, immunoprecipitation, glycosyltransferase activity kit and rescue assay were used to explore the mechanism of TSTA3. Results: TSTA3 was frequently amplified and overexpressed in ESCC. TSTA3 amplification and protein overexpression were significantly associated with malignant progression and poor prognosis of ESCC patients. TSTA3 knockdown significantly suppressed ESCC cells invasion and tumor dissemination by decreasing fucosylation level. Conversely, exogenous overexpression of TSTA3 led to increased invasion and tumor metastasis in vitro and in vivo by increasing fucosylation level. Moreover, core fucosylated LAMP2 and terminal fucosylated ERBB2 might be mediators of TSTA3-induced pro-invasion in ESCC and had a synergistic effect on the process. Peracetylated 2-F-Fuc, a fucosyltransferase activity inhibitor, reduced TSTA3 expression and fucosylation modification of LAMP2 and ERBB2, thereby inhibiting ESCC cell invasion. Conclusion: Our results indicate that TSTA3 may be a driver of ESCC metastasis through regulating fucosylation of LAMP2 and ERBB2. Fucosylation inhibitor may have prospect to suppress ESCC metastasis by blocking aberrant fucosylation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Oncology (Radiation Oncology), Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, P. R. China
| | - Yingzhen Gao
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaojuan Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Min Guo
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jie Yang
- Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Heyang Cui
- Department of Oncology (Radiation Oncology), Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, P. R. China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xia Niu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanghui Bi
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jing Xu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Yan
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanchun Ma
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Yang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yu Qian
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hongyi Li
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Liu
- Department of Forensic, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaolong Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongping Cui
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Oncology (Radiation Oncology), Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, P. R. China
| |
Collapse
|
48
|
Zhang C, Wu Q, Huang H, Chen X, Huang T, Li W, Zhang J, Liu Y. Caveolin-1 upregulates Fut8 expression by activating the Wnt/β-catenin pathway to enhance HCC cell proliferative and invasive ability. Cell Biol Int 2020; 44:2202-2212. [PMID: 32710651 DOI: 10.1002/cbin.11426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023]
Abstract
Caveolin-1 (Cav-1), a critical structural protein of caveolae, plays an oncogenic role by participating in abnormal protein glycosylation in hepatocellular carcinoma (HCC). However, the mechanism by which Cav-1 regulates glycosylation and glycosyltransferase expression has yet to be fully defined. Here, we show that Cav-1 promotes the expression of α-1,6-fucosyltransferase (Fut8), which catalyzes the transfer of GDP-fucose to the core structure of the N-sugar chain. In this study, we show that the mouse HCC cell line, Hepa1-6, which has low Fut8 transcriptional and protein levels, also lacks Cav-1 expression, whereas the mouse HCC cell line, Hca-F, has strong Fut8 expression and high transcriptional and protein levels of Cav-1. Subsequently, Cav-1 overexpression in Hepa1-6 was found to activate Wnt/β-catenin signaling, which leads to downstream binding of the T cell factor/lymphoid enhancer factor to the Fut8 promoter region for activation of its transcription. In contrast, knockdown of Cav-1 expression in Hca-F caused the Wnt/β-catenin pathway to be significantly inhibited, which attenuates the expression of Fut8. We further show that Cav-1-induced upregulation of Fut8 expression enhanced proliferation and invasion by mouse HCC cells in vitro. Our current findings provide molecular evidence that Cav-1 plays an important role in regulating glycosyltransferase expression and may participate in abnormal glycosylation, which mediates the proliferation and invasion of HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Qiong Wu
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Huang Huang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Xixi Chen
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Tianmiao Huang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China.,School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Yubo Liu
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| |
Collapse
|
49
|
Fernandes E, Sores J, Cotton S, Peixoto A, Ferreira D, Freitas R, Reis CA, Santos LL, Ferreira JA. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Am J Cancer Res 2020; 10:4903-4928. [PMID: 32308758 PMCID: PMC7163443 DOI: 10.7150/thno.42480] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.
Collapse
|
50
|
Duan C, Fukuda T, Isaji T, Qi F, Yang J, Wang Y, Takahashi S, Gu J. Deficiency of core fucosylation activates cellular signaling dependent on FLT3 expression in a Ba/F3 cell system. FASEB J 2020; 34:3239-3252. [DOI: 10.1096/fj.201902313rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Chengwei Duan
- Division of Regulatory Glycobiology Institute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Sendai Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology Institute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Sendai Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology Institute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Sendai Japan
| | - Feng Qi
- Division of Regulatory Glycobiology Institute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Sendai Japan
| | - Jie Yang
- Division of Regulatory Glycobiology Institute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Sendai Japan
| | - Yuqin Wang
- Department of Pharmacology Pharmacy College Nantong University Nantong China
| | - Shinichiro Takahashi
- Division of Laboratory Medicine Faculty of Medicine Tohoku Medical and Pharmaceutical University Sendai Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology Institute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Sendai Japan
| |
Collapse
|