1
|
Suhail H, Peng H, Matrougui K, Rhaleb NE. Ac-SDKP attenuates ER stress-stimulated collagen production in cardiac fibroblasts by inhibiting CHOP-mediated NF-κB expression. Front Pharmacol 2024; 15:1352222. [PMID: 38495093 PMCID: PMC10940518 DOI: 10.3389/fphar.2024.1352222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Inflammation and cardiac fibrosis are prevalent pathophysiologic conditions associated with hypertension, cardiac remodeling, and heart failure. Endoplasmic reticulum (ER) stress triggers the cells to activate unfolded protein responses (UPRs) and upregulate the ER stress chaperon, enzymes, and downstream transcription factors to restore normal ER function. The mechanisms that link ER stress-induced UPRs upregulation and NF-κB activation that results in cardiac inflammation and collagen production remain elusive. N-Acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a natural tetrapeptide that negatively regulates inflammation and fibrosis, has been reported. Whether it can inhibit ER stress-induced collagen production in cardiac fibroblasts remains unclear. Thus, we hypothesized that Ac-SDKP attenuates ER stress-stimulated collagen production in cardiac fibroblasts by inhibiting CHOP-mediated NF-κB expression. We aimed to study whether Ac-SDKP inhibits tunicamycin (TM)-induced ER stress signaling, NF-κB signaling, the release of inflammatory cytokine interleukin-6, and collagen production in human cardiac fibroblasts (HCFs). HCFs were pre-treated with Ac-SDKP (10 nM) and then stimulated with TM (0.25 μg/mL). We found that Ac-SDKP inhibits TM-induced collagen production by attenuating ER stress-induced UPRs upregulation and CHOP/NF-κB transcriptional signaling pathways. CHOP deletion by specific shRNA maintains the inhibitory effect of Ac-SDKP on NF-κB and type-1 collagen (Col-1) expression at both protein and mRNA levels. Attenuating ER stress-induced UPR sensor signaling by Ac-SDKP seems a promising therapeutic strategy to combat detrimental cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, United States
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, United States
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, United States
- Department of Physiology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Sun K, Yuan R, He J, Zhuo Y, Yang M, Hao E, Hou X, Yao C, Yang S, Gao H. Sugarcane leaf polysaccharide exerts a therapeutic effect on cardiovascular diseases through necroptosis. Heliyon 2023; 9:e21889. [PMID: 38027563 PMCID: PMC10658330 DOI: 10.1016/j.heliyon.2023.e21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Necroptosis, a novel form of programmed cell death wherein the necrotic morphology is characterized by swelling of the cells, rupture of the plasma membrane, and dysfunction of the organelle, has been always observed in cardiovascular diseases. Sugarcane leaf polysaccharide (SLP) are primary components present in sugarcane leaves that exert cardiovascular protective effects. However, the positive effect of SLP and underlying mechanisms in myocardial ischemia-reperfusion (MI/R) remain unexplored. Aim In this study, the protective effects of SLP on MI/R injury were investigated under in vitro and in vivo conditions. Methods The protective effects of SLP on MI/R injury were assessed using tertiary butyl hydrogen peroxide (TBHP)-stimulated-H9c2 cells in the in vitro assay and using Sprague Dawley rats in the in vivo assay. Results In vitro, SLP significantly reversed TBHP-induced H9c2 cell death by inhibiting necroptosis and oxidative stress. SLP exerted antioxidant activity through the Nrf2/HO-1 pathway. SLP suppressed necroptosis by decreasing phosphorylation of RIP1, RIP3, and MLKL in TBHP-stimulated H9c2 cells. In vivo, SLP attenuated MI/R injury by decreasing the myocardial infarct area; increasing myeloperoxidase and superoxide dismutase levels; and reducing malondialdehyde, interleukin-6, and tumor necrosis factor-α levels.
Collapse
Affiliation(s)
- Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jia He
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Ming Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues/Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Chun Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| |
Collapse
|
3
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
4
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater Today Bio 2022; 14:100249. [PMID: 35434594 PMCID: PMC9006854 DOI: 10.1016/j.mtbio.2022.100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Despite extensive efforts to provide early diagnosis and adequate treatment regimens, detection of MI still faces major limitations and pathological MI complications continue to threaten the recovery of survivors. Polymeric nanoparticles (NPs) represent novel noninvasive drug delivery systems for the diagnosis and treatment of MI and subsequent prevention of fatal heart failure. In this review, we cover the recent advances in polymeric NP-based diagnostic and therapeutic approaches for MI and their application as multifunctional theranostic tools. We also discuss the in vivo behavior and toxicity profile of polymeric NPs, their application in noninvasive imaging, passive, and active drug delivery, and use in cardiac regenerative therapy. We conclude with the challenges faced with polymeric nanosystems and suggest future efforts needed for clinical translation.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Duaa Fahs
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Batoul Maatouk
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Brouna Safi
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| |
Collapse
|
6
|
Wu Z, Cheng S, Wang S, Li W, Liu J. C-MYC ameliorates ventricular remodeling of myocardial infarction rats via binding to the promoter of microRNA-29a-3p to facilitate TET2 expression. Int J Cardiol 2022; 357:105-112. [PMID: 35016888 DOI: 10.1016/j.ijcard.2022.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND There is increasing evidence identifying the role of c-MYC in myocardial infarction (MI). Thus, our aim was to discuss the impact of c-MYC/microRNA (miR)-29a-3p/ten-eleven translocation-2 (TET2) axis on MI. METHODS Sprague-Dawley rats received injections of recombinant adenoviruses at myocardial sites that interfered with c-MYC or miR-29a-3p expression. At 3 days after adenoviral injection, the rats were subjected to myocardial ischemia and reperfusion. Cardiac function, infarct size, cellular death, inflammatory response, oxidative stress, collagen deposition, c-MYC, TET2 and miR-29a-3p expression were analyzed. The interaction between c-MYC and miR-29a-3p as well as that between TET2 and miR-29a-3p was verified. RESULTS miR-29a-3p expression was enhanced while c-MYC and TET2 expression was decreased in the myocardial tissue of MI rats. Up-regulating c-MYC or down-regulating miR-29a-3p in MI rat hearts improved cardiac function and reduced infarct size and myocardial apoptotic death, restrained oxidative stress, inflammatory response, attenuated collagen deposition. c-Myc bound to the promoter of miR-29a-3p and repressed miR-29a-3p expression. TET2 was a target of miR-29a-3p. CONCLUSION Our study provides evidence that c-MYC binding to the promoter of miR-29a-3p to facilitate TET2 expression has therapeutic effect on ventricular remodeling of MI rats.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
7
|
Protective effects of bisoprolol against cadmium-induced myocardial toxicity through inhibition of oxidative stress and NF-κΒ signalling in rats. J Vet Res 2021; 65:505-511. [PMID: 35112006 PMCID: PMC8775740 DOI: 10.2478/jvetres-2021-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Abstract
Introduction
The aim of the study was to investigate the mitigative effects of bisoprolol (BIS) in cadmium-induced myocardial toxicity on oxidative stress and its inhibitive effect on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signalling in rats.
Material and Methods
Male albino Wistar rats were assigned to control, Cd, BIS 2 (2 mg/kg b.w.) and BIS 8 (8 mg/kg b.w.) groups with nine rats in each. Over four weeks, the control group was administered 1% gum acacia, all other groups received 3mg/kg b.w. CdCl2 dissolved in distilled water, and the BIS groups were additionally given bisoprolol in gum acacia. Blood samples were collected for biochemical estimations. Blood pressure and serum biomarker (lactate dehydrogenase, aspirate transaminase, alanine transferase and creatine kinase-MB, enzyme (superoxide dismutase, lipid hydroxy peroxidase, catalase and malondialdehyde), and tumour necrosis factor alpha (TNF-α) concentrations were measured. Western blot analysis was conducted for NF-κB and glutathione S-transferase (GST). After sacrificing the rats, cardiac tissue samples were examined histopathologically.
Results
Our findings pointed to a significant decrease (P < 0.05) in the studied serum biomarkers and levels of the relevant enzymes in the BIS 8 group compared to the Cd group. A significant decrease (P < 0.05) in NF-kB p65 expression and TNF-α levels was noted in the BIS 8 group relative to the BIS 2 and Cd groups, indicating a reduction at a higher dose. In microscopy, histopathological changes in the cardiac muscles of the BIS 8 group were evident compared to those of the Cd group.
Conclusion
BIS seemed to have protective effects against cardiac injury induced by cadmium and could be considered a novel therapeutic drug and prognostic biomarker in the pathology of the many cardiovascular diseases caused by heavy metal intake.
Collapse
|
8
|
Cao T, Peng B, Zhou X, Cai J, Tang Y, Luo J, Xie H, Zhang J, Liu S. Integrated signaling system under endoplasmic reticulum stress in eukaryotic microorganisms. Appl Microbiol Biotechnol 2021; 105:4805-4818. [PMID: 34106312 DOI: 10.1007/s00253-021-11380-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle, which is crucial for correct folding and assembly of secretory and transmembrane proteins. Perturbations of ER function can cause ER stress. ER stress can activate the unfolded protein response (UPR) to cope with the accumulation of misfolded proteins and protein toxicity. UPR is a coordination system that regulates transcription and translation, leading to the recovery of ER homeostasis or cell death. However, cells have an integrated signaling system to cope with ER stress, which helps cells to restore and balance their ER function. The main components of this system are ER-associated degradation (ERAD), autophagy, hypoxia signaling, and mitochondrial biogenesis. If the balance cannot be restored, the imbalance will lead to cell death or apoptosis, or even to a series of diseases. In this review, a series of activities to restore the homeostasis of cells during ER stress are discussed. KEY POINTS: • Endoplasmic reticulum (ER) plays a key role in the biological process of cells. • Perturbations of ER function can cause ER stress, including the ER overload response (EOR), sterol-regulated cascade reaction, and the UPR. • Cells have an integrated signaling system (ERAD, autophagy, hypoxia signaling, and mitochondrial biogenesis) to cope with the adverse impact caused by ER stress.
Collapse
Affiliation(s)
- Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Binfeng Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Jialun Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Jie Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Haitao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, 421000, Hunan, China.
| |
Collapse
|
9
|
Pluijmert NJ, Atsma DE, Quax PHA. Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Front Cardiovasc Med 2021; 8:647785. [PMID: 33996944 PMCID: PMC8113407 DOI: 10.3389/fcvm.2021.647785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following acute occlusion of a coronary artery causing myocardial ischemia and implementing first-line treatment involving rapid reperfusion, a dynamic and balanced inflammatory response is initiated to repair and remove damaged cells. Paradoxically, restoration of myocardial blood flow exacerbates cell damage as a result of myocardial ischemia-reperfusion (MI-R) injury, which eventually provokes accelerated apoptosis. In the end, the infarct size still corresponds to the subsequent risk of developing heart failure. Therefore, true understanding of the mechanisms regarding MI-R injury, and its contribution to cell damage and cell death, are of the utmost importance in the search for successful therapeutic interventions to finally prevent the onset of heart failure. This review focuses on the role of innate immunity, chemokines, cytokines, and inflammatory cells in all three overlapping phases following experimental, mainly murine, MI-R injury known as the inflammatory, reparative, and maturation phase. It provides a complete state-of-the-art overview including most current research of all post-ischemic processes and phases and additionally summarizes the use of immunomodulatory therapies translated into clinical practice.
Collapse
Affiliation(s)
- Niek J Pluijmert
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, Wada Y, Ahmad MH, Ahmad WANW, Rasool AHG, Mokhtar SS. Potential Roles of Endoplasmic Reticulum Stress and Cellular Proteins Implicated in Diabesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8830880. [PMID: 33995826 PMCID: PMC8099518 DOI: 10.1155/2021/8830880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang, Malaysia
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Ismaeel Yunusa
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, College of Pharmacy, Columbia, SC, USA
| | - Aishatu Shehu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna, Nigeria
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
- School of Pharmacy Technician, Aminu Dabo College of Health Sciences and Technology, Kano, Nigeria
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
11
|
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 2020; 25:18. [PMID: 32190062 PMCID: PMC7071609 DOI: 10.1186/s11658-020-00212-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
12
|
Amen OM, Sarker SD, Ghildyal R, Arya A. Endoplasmic Reticulum Stress Activates Unfolded Protein Response Signaling and Mediates Inflammation, Obesity, and Cardiac Dysfunction: Therapeutic and Molecular Approach. Front Pharmacol 2019; 10:977. [PMID: 31551782 PMCID: PMC6747043 DOI: 10.3389/fphar.2019.00977] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Obesity has been implicated as a risk factor for insulin resistance and cardiovascular diseases (CVDs). Although the association between obesity and CVD is a well-established phenomenon, the precise mechanisms remain incompletely understood. This has led to a relative paucity of therapeutic measures for the prevention and treatment of CVD and associated metabolic disorders. Recent studies have shed light on the pivotal role of prolonged endoplasmic reticulum stress (ERS)-initiated activation of the unfolded protein response (UPR), the ensuing chronic low-grade inflammation, and altered insulin signaling in promoting obesity-compromised cardiovascular system (CVS). In this aspect, potential ways of attenuating ERS-initiated UPR signaling seem a promising avenue for therapeutic interventions. We review intersecting role of obesity-induced ERS, chronic inflammation, insulin resistance, and oxidative stress in the discovery of targeted therapy. Moreover, this review highlights the current progress and strategies on therapeutics being explored in preclinical and clinical research to modulate ERS and UPR signaling.
Collapse
Affiliation(s)
- Omar Mohammed Amen
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Bukit Gambir, Malaysia
| |
Collapse
|
13
|
Wu T, Jiang N, Ji Z, Shi G. The IRE1 signaling pathway is involved in the protective effect of low-dose LPS on myocardial ischemia-reperfusion injury. Life Sci 2019; 231:116569. [DOI: 10.1016/j.lfs.2019.116569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/01/2019] [Accepted: 06/12/2019] [Indexed: 01/31/2023]
|
14
|
So EC, Foo NP, Ko SY, Wu SN. Bisoprolol, Known to Be a Selective β₁-Receptor Antagonist, Differentially but Directly Suppresses I K(M) and I K(erg) in Pituitary Cells and Hippocampal Neurons. Int J Mol Sci 2019; 20:E657. [PMID: 30717422 PMCID: PMC6386942 DOI: 10.3390/ijms20030657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022] Open
Abstract
Bisoprolol (BIS) is a selective antagonist of β₁ adrenergic receptors. We examined the effects of BIS on M-type K⁺ currents (IK(M)) or erg-mediated K⁺ currents (IK(erg)) in pituitary GH3, R1220 cells, and hippocampal mHippoE-14 cells. As GH₃ cells were exposed to BIS, amplitude of IK(M) was suppressed with an IC50 value of 1.21 μM. The BIS-induced suppression of IK(M) amplitude was not affected by addition of isoproterenol or ractopamine, but attenuated by flupirtine or ivabradine. In cell-attached current, BIS decreased the open probability of M-type K⁺ (KM) channels, along with decreased mean opening time of the channel. BIS decreased IK(erg) amplitude with an IC50 value of 6.42 μM. Further addition of PD-118057 attenuated BIS-mediated inhibition of IK(erg). Under current-clamp conditions, BIS depolarization increased the firing of spontaneous action potentials in GH₃ cells; addition of flupirtine, but not ractopamine, reversed BIS-induced firing rate. In R1220 cells, BIS suppressed IK(M); subsequent application of ML-213(Kv7.2 channel activator) reversed BIS-induced suppression of the current. In hippocampal mHippoE-14 neurons, BIS inhibited IK(M) to a greater extent compared to its depressant effect on IK(erg). This demonstrated that in pituitary cells and hippocampal neurons the presence of BIS is capable of directly and differentially suppressing IK(M) and IK(erg), despite its antagonism of β₁-adrenergic receptors.
Collapse
Affiliation(s)
- Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan.
- Department of Anesthesia, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| | - Ning-Ping Foo
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan.
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
- Department of Emergency Medicine, An Nan Hospital, China Medical University, Tainan 70965, Taiwan.
| | - Shun Yao Ko
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan.
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan.
| |
Collapse
|
15
|
Zhang Y, Qiao B, Gao F, Wang H, Miao S, Zhao H. Melatonin protects H9c2 cells against ischemia/reperfusion‑induced apoptosis and oxidative stress via activation of the Nrf2 signaling pathway. Mol Med Rep 2018; 18:3497-3505. [PMID: 30066862 DOI: 10.3892/mmr.2018.9315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/29/2018] [Indexed: 11/05/2022] Open
Abstract
Melatonin can protect against cardiac ischemia/reperfusion (I/R) injury in models in vitro and in vivo by regulating oxidative stress and apoptosis; however, the precise molecular mechanisms involved remain unclear. Nuclear factor erythroid 2‑related factor 2 (Nrf2) is a transcription factor, which has been associated with the regulation of oxidative stress by translocating to the nucleus. Therefore, the present study investigated whether activation of the Nrf2 signaling pathway may be responsible for the protective effects of melatonin on I/R‑injured cardiomyocytes. In the present study, H9c2 cells were subjected to simulated I/R (SIR) injury and pretreated with melatonin and/or Nrf2 small interfering RNA (siRNA). Cell viability was detected via Cell Counting kit‑8 assay, apoptosis was examined by caspase‑3 cleavage and activity analysis; oxidative stress levels were determined by specific activity analysis assays. In the present study, it was observed that SIR induced significant increases in apoptosis and oxidative stress, and enhanced Nrf2 expression within H9c2 cells. Pretreatment with melatonin partially reversed these alterations and promoted Nrf2 nuclear translocation. Transfection with Nrf2 siRNA inhibited the protective effects of melatonin on SIR‑induced H9c2 cells. These results indicated that melatonin may protect H9c2 cells against I/R injury by reducing apoptosis and oxidative stress; this effect may be mediated via activation of the Nrf2 signaling pathway. Collectively, the results of the present study may suggest melatonin as a potential therapeutic agent against cardiac I/R injury.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| | - Baoguang Qiao
- Department of Anesthesiology, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| | - Fei Gao
- Department of Anesthesiology, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| | - Haifeng Wang
- Department of Anesthesiology, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| | - Shaohua Miao
- Department of Anesthesiology, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| | - Huan Zhao
- Department of Anesthesiology, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| |
Collapse
|