1
|
Hidalgo I, Sorolla MA, Sorolla A, Salud A, Parisi E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. Int J Mol Sci 2024; 25:12408. [PMID: 39596471 PMCID: PMC11594849 DOI: 10.3390/ijms252212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties, being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has been well described; however, recent findings have shown that they could regulate different signaling pathways by acting directly as ligands. Arachidonic acid (AA) and its derivatives are produced by sPLA2 in collaboration with other molecules in the extracellular space, making important impacts on the cellular environment, being especially relevant in the contexts of immunity and cancer. For these reasons, this review focuses on sPLA2 functions in processes such as the promotion of EMT, angiogenesis, and immunomodulation in the context of tumor initiation and progression. Finally, we will also describe how this knowledge has been applied in the search for new sPLA2 inhibitory compounds that can be used for cancer treatment.
Collapse
Affiliation(s)
- Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
2
|
Murakami M. Extracellular vesicles as a hydrolytic platform of secreted phospholipase A 2. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159536. [PMID: 39032626 DOI: 10.1016/j.bbalip.2024.159536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Extracellular vesicles (EVs) represent small vesicles secreted from cells, including exosomes (40-150 nm in diameter), which are released via the multivesicular endosomal pathway, and microvesicles and ectosomes (100-1000 nm), which are produced by plasma membrane budding. Broadly, EVs also include vesicles generated from dying cells, such as apoptotic bodies (5-10 μm), as well as exomeres (< 50 nm), which are very small, non-membranous nanoparticles. EVs play important roles in cell-to-cell signaling in various aspects of cancer, immunity, metabolism, and so on by transferring proteins, microRNAs (miRNAs), and metabolites as cargos from donor cells to recipient cells. Although lipids are one of the major components of EVs, they have long been recognized as merely the "wall" that partitions the lumen of the vesicle from the outside. However, it has recently become obvious that lipid composition of EVs influences their properties and functions, that EVs act as a carrier of a variety of lipid mediators, and that lipid mediators are produced in EV membranes by the hydrolytic action of secreted phospholipase A2s (sPLA2s). In this article, we will make an overview of the roles of lipids in EVs, with a particular focus on sPLA2-driven mobilization of lipid mediators from EVs and its biological significance.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
3
|
Taketomi Y, Higashi T, Kano K, Miki Y, Mochizuki C, Toyoshima S, Okayama Y, Nishito Y, Nakae S, Tanaka S, Tokuoka SM, Oda Y, Shichino S, Ueha S, Matsushima K, Akahoshi N, Ishii S, Chun J, Aoki J, Murakami M. Lipid-orchestrated paracrine circuit coordinates mast cell maturation and anaphylaxis through functional interaction with fibroblasts. Immunity 2024; 57:1828-1847.e11. [PMID: 39002541 DOI: 10.1016/j.immuni.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chika Mochizuki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Allergy and Internal Medicine, Misato Kenwa Hospital, Saitama 341-8555, Japan; Department of Internal Medicine, Division of Respiratory Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan; Advanced Medical Science Research Center, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
4
|
Peng Y, Zhu M, Gong Y, Wang C. Identification and functional prediction of lncRNAs associated with intramuscular lipid deposition in Guangling donkeys. Front Vet Sci 2024; 11:1410109. [PMID: 39036793 PMCID: PMC11258529 DOI: 10.3389/fvets.2024.1410109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024] Open
Abstract
Many studies have shown that long non-coding RNAs (lncRNAs) play key regulatory roles in various biological processes. However, the importance and molecular regulatory mechanisms of lncRNAs in donkey intramuscular fat deposition remain to be further investigated. In this study, we used published transcriptomic data from the longissimus dorsi muscle of Guangling donkeys to identify lncRNAs and obtained 196 novel lncRNAs. Compared with the coding genes, the novel lncRNAs and the known lncRNAs exhibited some typical features, such as shorter transcript length and smaller exons. A total of 272 coding genes and 52 lncRNAs were differentially expressed between the longissimus dorsi muscles of the low-fat and high-fat groups. The differentially expressed genes were found to be involved in various biological processes related to lipid metabolism. The potential target genes of differentially expressed lncRNAs were predicted by cis and trans. Functional analysis of lncRNA targets showed that some lncRNAs may act on potential target genes involved in lipid metabolism processes and regulate lipid deposition in the longissimus dorsi muscle. This study provides valuable information for further investigation of the molecular mechanisms of lipid deposition traits in donkeys, which may improve meat traits and facilitate the selection process of donkeys in future breeding.
Collapse
Affiliation(s)
- Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Zhou PY, Zhu DX, Chen YJ, Feng QY, Mao YH, Zhuang AB, Xu JM. High patatin like phospholipase domain containing 8 expression as a biomarker for poor prognosis of colorectal cancer. World J Gastrointest Oncol 2024; 16:787-797. [PMID: 38577466 PMCID: PMC10989391 DOI: 10.4251/wjgo.v16.i3.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Patatin like phospholipase domain containing 8 (PNPLA8) has been shown to play a significant role in various cancer entities. Previous studies have focused on its roles as an antioxidant and in lipid peroxidation. However, the role of PNPLA8 in colorectal cancer (CRC) progression is unclear. AIM To explore the prognostic effects of PNPLA8 expression in CRC. METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled. PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores. CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off values, which were calculated by X-tile software. The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis. The overall survival (OS) rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test. RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort (P = 0.048). CRC patients with high PNPLA8 expression indicated poor OS (median OS = 35.3, P = 0.005). CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS. For patients with left-sided colon and rectal cancer, the survival curves of two PNPLA8-expression groups showed statistically significant differences. Multivariate analysis also confirmed that high PNPLA8 expression was an independent prognostic factor for overall survival (hazard ratio HR = 1.328, 95%CI: 1.016-1.734, P = 0.038). CONCLUSION PNPLA8 is a novel independent prognostic factor for CRC. These findings suggest that PNPLA8 is a potential target in clinical CRC management.
Collapse
Affiliation(s)
- Peng-Yang Zhou
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - De-Xiang Zhu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yi-Jiao Chen
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Qing-Yang Feng
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yi-Hao Mao
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ao-Bo Zhuang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jian-Min Xu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Sussman JH, Oldridge DA, Yu W, Chen CH, Zellmer AM, Rong J, Parvaresh-Rizi A, Thadi A, Xu J, Bandyopadhyay S, Sun Y, Wu D, Emerson Hunter C, Brosius S, Ahn KJ, Baxter AE, Koptyra MP, Vanguri RS, McGrory S, Resnick AC, Storm PB, Amankulor NM, Santi M, Viaene AN, Zhang N, Raedt TD, Cole K, Tan K. A longitudinal single-cell and spatial multiomic atlas of pediatric high-grade glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583588. [PMID: 38496580 PMCID: PMC10942465 DOI: 10.1101/2024.03.06.583588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome sequencing, and CODEX spatial proteomics to capture the evolution of the tumor microenvironment during progression following treatment. We found that the canonical neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor cell states in a pediatric cohort and observed differential tumor-myeloid interactions between malignant cell states. We identified key transcriptional regulators of pHGG cell states and did not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We showed that essential neuromodulators and the interferon response are upregulated post-therapy along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of longitudinal pHGG captures the key features of therapy response that support distinction from its adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.
Collapse
Affiliation(s)
- Jonathan H. Sussman
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek A. Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Wenbao Yu
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Abigail M. Zellmer
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jiazhen Rong
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | | | - Anusha Thadi
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Cellular and Molecular Biology Graduate Group, Perelman School of
Medicine, University of Pennsylvania, PA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, Perelman School of Medicine,
University of Pennsylvania, PA
| | - David Wu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - C. Emerson Hunter
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie Brosius
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Amy E. Baxter
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mateusz P. Koptyra
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Rami S. Vanguri
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie McGrory
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Adam C. Resnick
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Nduka M. Amankulor
- Department of Neurosurgery, Perelman School of Medicine,
Philadelphia, PA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nancy Zhang
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | - Thomas De Raedt
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Kristina Cole
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
- Center for Single Cell Biology, Children’s Hospital of
Philadelphia, Philadelphia, PA
| |
Collapse
|
7
|
Hamu-Tanoue A, Takagi K, Taketomi Y, Miki Y, Nishito Y, Kano K, Aoki J, Matsuyama T, Kondo K, Dotake Y, Matsuyama H, Machida K, Murakami M, Inoue H. Group III secreted phospholipase A 2 -driven lysophospholipid pathway protects against allergic asthma. FASEB J 2024; 38:e23428. [PMID: 38236184 DOI: 10.1096/fj.202301976r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Asako Hamu-Tanoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyotaka Kondo
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Haller AM, Wolfkiel PR, Jaeschke A, Hui DY. Inactivation of Group 1B Phospholipase A 2 Enhances Disease Recovery and Reduces Experimental Colitis in Mice. Int J Mol Sci 2023; 24:16155. [PMID: 38003345 PMCID: PMC10671771 DOI: 10.3390/ijms242216155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Phospholipase A2 (PLA2) enzymes influence inflammatory bowel disease in both positive and negative manners depending on the type of PLA2 that is expressed. This study explored the influence of the abundantly expressed Group 1B PLA2 (PLA2G1B) on ulcerative colitis. Wild-type C57BL/6J mice and Pla2g1b-/- mice were treated with dextran sulfate sodium (DSS) for 5 days to induce epithelial injury, followed by another 5 days without DSS for recovery. The Pla2g1b-/- mice displayed significantly less body weight loss, colitis pathology, and disease activity indexes compared to the wild-type mice. The differences in colitis were not due to differences in the colonic lysophospholipid levels, but higher numbers of stem and progenitor cells were found in the intestines of Pla2g1b-/- mice compared to the wild-type mice. The DSS-treated Pla2g1b-/- mice also showed higher expressions of genes that are responsible for epithelial repair and lower expressions of proinflammatory cytokine genes in the colon, as well as reduced inflammatory cytokine levels in the plasma. In vitro experiments revealed the PLA2G1B stimulation of inflammatory cytokine expression by myeloid cells. PLA2G1B inactivation protects against DSS-induced colitis in mice by increasing the intestinal stem cell reservoir for epithelial repair and reducing myeloid cell inflammation in the diseased colon. Thus, PLA2G1B may be a target for colitis management.
Collapse
Affiliation(s)
- April M. Haller
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (A.M.H.); (A.J.)
| | - Patrick R. Wolfkiel
- Molecular Genetics, Biochemistry and Microbiology Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Anja Jaeschke
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (A.M.H.); (A.J.)
| | - David Y. Hui
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (A.M.H.); (A.J.)
| |
Collapse
|
9
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
11
|
Li W, Li H, Yan C, Chen S, Zhao X. The transcriptome pattern of liver, spleen and hypothalamus provides insights into genetic and biological changes in roosters in response to castration. Front Genet 2022; 13:1030886. [DOI: 10.3389/fgene.2022.1030886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Chicken is widely accepted by consumers because of its delicate taste and abundant animal protein. The rooster after castration (capon) is believed to show better flavor, however, the molecular changes of the underpinned metabolism after castration is not yet understood. In this study, we aimed to figure out the alternation of meat quality and underpinned molecular mechanism via transcriptomic profiling of liver, spleen and hypothalamus as targeted organs in response to the castration. We identified differential expressed genes and their enriched functions and pathways in these organs between capon and rooster samples through RNA-seq analysis. In the liver, the lipid metabolism with targeted FABP1gene was found significantly enriched, which may be as one of the factors contributing to increased fat deposition and thus better meat flavor in capons than roosters, as predicted by the significantly lower shear force in capons than in roosters in meat quality experiments. However, the ability to xenobiotic detoxification and excretion, vitamin metabolism, and antioxidative effect of hemoglobin evidenced of the capon may be compromised by the alternation of SULT, AOX1, CYP3A5, HBA1, HBBA, and HBAD. Besides, in both the spleen and hypothalamus, PTAFR, HPX, CTLA4, LAG3, ANPEP, CD24, ITGA2B, ITGB3, CD2, CD7, and BLB2 may play an important role in the immune system including function of platelet and T cell, development of monocyte/macrophage and B cell in capons as compared to roosters. In conclusion, our study sheds lights into the possible molecular mechanism of better meat flavor, fatty deposit, oxidative detoxification and immune response difference between capons and roosters.
Collapse
|
12
|
Hyppönen E, Vimaleswaran KS, Zhou A. Genetic Determinants of 25-Hydroxyvitamin D Concentrations and Their Relevance to Public Health. Nutrients 2022; 14:4408. [PMID: 36297091 PMCID: PMC9606877 DOI: 10.3390/nu14204408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Twin studies suggest a considerable genetic contribution to the variability in 25-hydroxyvitamin D (25(OH)D) concentrations, reporting heritability estimates up to 80% in some studies. While genome-wide association studies (GWAS) suggest notably lower rates (13−16%), they have identified many independent variants that associate with serum 25(OH)D concentrations. These discoveries have provided some novel insight into the metabolic pathway, and in this review we outline findings from GWAS studies to date with a particular focus on 35 variants which have provided replicating evidence for an association with 25(OH)D across independent large-scale analyses. Some of the 25(OH)D associating variants are linked directly to the vitamin D metabolic pathway, while others may reflect differences in storage capacity, lipid metabolism, and pathways reflecting skin properties. By constructing a genetic score including these 25(OH)D associated variants we show that genetic differences in 25(OH)D concentrations persist across the seasons, and the odds of having low concentrations (<50 nmol/L) are about halved for individuals in the highest 20% of vitamin D genetic score compared to the lowest quintile, an impact which may have notable influences on retaining adequate levels. We also discuss recent studies on personalized approaches to vitamin D supplementation and show how Mendelian randomization studies can help inform public health strategies to reduce adverse health impacts of vitamin D deficiency.
Collapse
Affiliation(s)
- Elina Hyppönen
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK
- The Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6DZ, UK
| | - Ang Zhou
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
13
|
Relationships of Ferroptosis and Pyroptosis-Related Genes with Clinical Prognosis and Tumor Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3713929. [PMID: 36246400 PMCID: PMC9557253 DOI: 10.1155/2022/3713929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis and pyroptosis are two new programmed cell death (PCD) modes discovered in recent years. However, the potential value of ferroptosis and pyroptosis-related genes (FPRGs) in prognosis prediction and the tumor immune microenvironment of head and neck squamous cell carcinoma (HNSCC) is still unclear. We obtained 21 significant FPRGs based on the training dataset (TCGA- HNSC) using the univariate Cox and differential expression analysis. The TCGA- HNSC (n = 502) dataset was clustered into two group (clusters A and B) based on the 21 significant FPRGs. 1467 differentially expressed genes (DEGs) between cluster A and B were put into univariate Cox and Least absolute shrinkage and selection operator (LASSO) analysis to build a risk model. The predictive capability of the risk model was successfully confirmed by internal validation, external validation, and clinical sample validation. To improve the clinical applicability, a nomogram model combined risk score and clinical information were constructed. Moreover, the patients with lower risk score were characterized by increased immune response and tumor mutation burden (TMB), while the patients with higher risk score were characterized by increased TP53 mutation rate. In conclusion, our comprehensive analysis of the FPRGs revealed their significant role in prognosis prediction and the tumor immune microenvironment. The risk model containing 9 FPRGs could be a potential prognostic markers and effective immunotherapy targets for HNSCC.
Collapse
|
14
|
Xu K, Li H, Zhang B, Le M, Huang Q, Fu R, Croppi G, Qian G, Zhang J, Zhang G, Lu Y. Integrated transcriptomics and metabolomics analysis of the hippocampus reveals altered neuroinflammation, downregulated metabolism and synapse in sepsis-associated encephalopathy. Front Pharmacol 2022; 13:1004745. [PMID: 36147346 PMCID: PMC9486403 DOI: 10.3389/fphar.2022.1004745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an intricated complication of sepsis that brings abnormal emotional and memory dysfunction and increases patients’ mortality. Patients’ alterations and abnormal function seen in SAE occur in the hippocampus, the primary brain region responsible for memory and emotional control, but the underlying pathophysiological mechanisms remain unclear. In the current study, we employed an integrative analysis combining the RNA-seq-based transcriptomics and liquid chromatography/mass spectrometry (LC-MS)-based metabolomics to comprehensively obtain the enriched genes and metabolites and their core network pathways in the endotoxin (LPS)-injected SAE mice model. As a result, SAE mice exhibited behavioral changes, and their hippocampus showed upregulated inflammatory cytokines and morphological alterations. The omics analysis identified 81 differentially expressed metabolites (variable importance in projection [VIP] > 1 and p < 0.05) and 1747 differentially expressed genes (Foldchange >2 and p < 0.05) were detected in SAE-grouped hippocampus. Moreover, 31 compounds and 100 potential target genes were employed for the Kyoto Encyclopedia of Genes and Genomes (KEGG) Markup Language (KGML) network analysis to explore the core signaling pathways for the progression of SAE. The integrative pathway analysis showed that various dysregulated metabolism pathways, including lipids metabolism, amino acids, glucose and nucleotides, inflammation-related pathways, and deregulated synapses, were tightly associated with hippocampus dysfunction at early SAE. These findings provide a landscape for understanding the pathophysiological mechanisms of the hippocampus in the progression of SAE and pave the way to identify therapeutic targets in future studies.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Meini Le
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Gang Qian
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guangming Zhang, ; Yinzhong Lu,
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guangming Zhang, ; Yinzhong Lu,
| |
Collapse
|
15
|
Goodla L, Xue X. The Role of Inflammatory Mediators in Colorectal Cancer Hepatic Metastasis. Cells 2022; 11:2313. [PMID: 35954156 PMCID: PMC9367504 DOI: 10.3390/cells11152313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of death in cancer patients in the USA, whereas the major cause of CRC deaths is hepatic metastases. The liver is the most common site of metastasis in patients with CRC due to hepatic portal veins receiving blood from the digestive tract. Understanding the cellular and molecular mechanisms of hepatic metastases is of dire need for the development of potent targeted therapeutics. Immuno-signaling molecules including cytokines and chemokines play a pivotal role in hepatic metastases from CRC. This brief review discusses the involvement of three representative cytokines (TNF-α, IL-6 and IL-1β), a lipid molecule PGE2 and two chemokines (CXCL1 and CXCL2) in the process of CRC liver metastases.
Collapse
Affiliation(s)
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| |
Collapse
|
16
|
Old but New: Group IIA Phospholipase A 2 as a Modulator of Gut Microbiota. Metabolites 2022; 12:metabo12040352. [PMID: 35448539 PMCID: PMC9029192 DOI: 10.3390/metabo12040352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Among the phospholipase A2 (PLA2) superfamily, the secreted PLA2 (sPLA2) family contains 11 mammalian isoforms that exhibit unique tissue or cellular distributions and enzymatic properties. Current studies using sPLA2-deficient or -overexpressed mouse strains, along with mass spectrometric lipidomics to determine sPLA2-driven lipid pathways, have revealed the diverse pathophysiological roles of sPLA2s in various biological events. In general, individual sPLA2s exert their specific functions within tissue microenvironments, where they are intrinsically expressed through hydrolysis of extracellular phospholipids. Recent studies have uncovered a new aspect of group IIA sPLA2 (sPLA2-IIA), a prototypic sPLA2 with the oldest research history among the mammalian PLA2s, as a modulator of the gut microbiota. In the intestine, Paneth cell-derived sPLA2-IIA acts as an antimicrobial protein to shape the gut microbiota, thereby secondarily affecting inflammation, allergy, and cancer in proximal and distal tissues. Knockout of intestinal sPLA2-IIA in BALB/c mice leads to alterations in skin cancer, psoriasis, and anaphylaxis, while overexpression of sPLA2-IIA in Pla2g2a-null C57BL/6 mice induces systemic inflammation and exacerbates arthritis. These phenotypes are associated with notable changes in gut microbiota and fecal metabolites, are variable in different animal facilities, and are abrogated after antibiotic treatment, co-housing, or fecal transfer. These studies open a new mechanistic action of this old sPLA2 and add the sPLA2 family to the growing list of endogenous factors capable of affecting the microbe–host interaction and thereby systemic homeostasis and diseases.
Collapse
|
17
|
Kudo K, Miki Y, Carreras J, Nakayama S, Nakamoto Y, Ito M, Nagashima E, Yamamoto K, Higuchi H, Morita SY, Inoue A, Aoki J, Ando K, Nakamura N, Murakami M, Kotani A. Secreted phospholipase A 2 modifies extracellular vesicles and accelerates B cell lymphoma. Cell Metab 2022; 34:615-633.e8. [PMID: 35294862 DOI: 10.1016/j.cmet.2022.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) including exosomes act as intercellular communicators by transferring protein and microRNA cargoes, yet the role of EV lipids remains unclear. Here, we show that the pro-tumorigenic action of lymphoma-derived EVs is augmented via secreted phospholipase A2 (sPLA2)-driven lipid metabolism. Hydrolysis of EV phospholipids by group X sPLA2, which was induced in macrophages of Epstein-Barr virus (EBV) lymphoma, increased the production of fatty acids, lysophospholipids, and their metabolites. sPLA2-treated EVs were smaller and self-aggregated, showed better uptake, and increased cytokine expression and lipid mediator signaling in tumor-associated macrophages. Pharmacological inhibition of endogenous sPLA2 suppressed lymphoma growth in EBV-infected humanized mice, while treatment with sPLA2-modified EVs reversed this phenotype. Furthermore, sPLA2 expression in human large B cell lymphomas inversely correlated with patient survival. Overall, the sPLA2-mediated EV modification promotes tumor development, highlighting a non-canonical mechanistic action of EVs as an extracellular hydrolytic platform of sPLA2.
Collapse
Affiliation(s)
- Kai Kudo
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental Metabolic Health Sciences Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Shunya Nakayama
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan; Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Yasushi Nakamoto
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Etsuko Nagashima
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Kei Yamamoto
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Higuchi
- Center for Cancer Immunology, Cutaneous Biology Research Center, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Ai Kotani
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
18
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
19
|
Miki Y, Taketomi Y, Kidoguchi Y, Yamamoto K, Muramatsu K, Nishito Y, Park J, Hosomi K, Mizuguchi K, Kunisawa J, Soga T, Boilard E, B. Gowda SG, Ikeda K, Arita M, Murakami M. Group IIA secreted phospholipase A2 controls skin carcinogenesis and psoriasis by shaping the gut microbiota. JCI Insight 2022; 7:152611. [PMID: 35076024 PMCID: PMC8855835 DOI: 10.1172/jci.insight.152611] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Besides promoting inflammation by mobilizing lipid mediators, group IIA secreted phospholipase A2 (sPLA2-IIA) prevents bacterial infection by degrading bacterial membranes. Here, we show that, despite the restricted intestinal expression of sPLA2-IIA in BALB/c mice, its genetic deletion leads to amelioration of cancer and exacerbation of psoriasis in distal skin. Intestinal expression of sPLA2-IIA is reduced after treatment with antibiotics or under germ-free conditions, suggesting its upregulation by gut microbiota. Metagenome, transcriptome, and metabolome analyses have revealed that sPLA2-IIA deficiency alters the gut microbiota, accompanied by notable changes in the intestinal expression of genes related to immunity and metabolism, as well as in the levels of various blood metabolites and fecal bacterial lipids, suggesting that sPLA2-IIA contributes to shaping of the gut microbiota. The skin phenotypes in Pla2g2a–/– mice are lost (a) when they are cohoused with littermate WT mice, resulting in the mixing of the microbiota between the genotypes, or (b) when they are housed in a more stringent pathogen-free facility, where Pla2g2a expression in WT mice is low and the gut microbial compositions in both genotypes are nearly identical. Thus, our results highlight a potentially new aspect of sPLA2-IIA as a modulator of gut microbiota, perturbation of which affects distal skin responses.
Collapse
Affiliation(s)
- Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
| | - Yuh Kidoguchi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
- School of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
- Division of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Kazuaki Muramatsu
- School of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | | | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research and
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research and
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Centre de Recherche Arthrite de l’Université Laval, Department of Microbiology and Immunology, Québec, Canada
| | | | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science (TMIMS), Tokyo, Japan
| |
Collapse
|
20
|
Wu W, Li WX, Huang CH. Phospholipase A 2, a nonnegligible enzyme superfamily in gastrointestinal diseases. Biochimie 2021; 194:79-95. [PMID: 34974145 DOI: 10.1016/j.biochi.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal tract is important for digestion, absorption, detoxification and immunity. Gastrointestinal diseases are mainly caused by the imbalance of protective and attacking factors in gastrointestinal mucosa, which can seriously harm human health. Phospholipase A2 (PLA2) is a large family closely involved in lipid metabolism and is found in almost all human cells. A growing number of studies have revealed that its metabolites are deeply implicated in various inflammatory pathways and also regulates the maintenance of numerous biological events such as dietary digestion, membrane remodeling, barrier action, and host immunity. In addition to their phospholipase activity, some members of the superfamily also have other catalytic activities. Based on the in-depth effects of phospholipase A2 on bioactive lipid metabolism and inflammatory cytokines, PLA2 and its metabolites are likely to be involved in the pathogenesis, development or prevention of gastrointestinal diseases. Therefore, this review will focus on the physiological and pathogenic roles of several important PLA2 enzymes in the gastrointestinal tract, and reveals the potential of PLA2 as a therapeutic target for gastrointestinal diseases.
Collapse
Affiliation(s)
- Wei Wu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Xuan Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Chun-Hong Huang
- School of Basic Medical Sciences, 330006, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
21
|
Song H, Ruan C, Xu Y, Xu T, Fan R, Jiang T, Cao M, Song J. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Exp Biol Med (Maywood) 2021; 247:898-909. [PMID: 34904882 DOI: 10.1177/15353702211065010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prognosis stratification in colorectal cancer helps to address cancer heterogeneity and contributes to the improvement of tailored treatments for colorectal cancer patients. In this study, an autoencoder-based model was implemented to predict the prognosis of colorectal cancer via the integration of multi-omics data. DNA methylation, RNA-seq, and miRNA-seq data from The Cancer Genome Atlas (TCGA) database were integrated as input for the autoencoder, and 175 transformed features were produced. The survival-related features were used to cluster the samples using k-means clustering. The autoencoder-based strategy was compared to the principal component analysis (PCA)-, t-distributed random neighbor embedded (t-SNE)-, non-negative matrix factorization (NMF)-, or individual Cox proportional hazards (Cox-PH)-based strategies. Using the 175 transformed features, tumor samples were clustered into two groups (G1 and G2) with significantly different survival rates. The autoencoder-based strategy performed better at identifying survival-related features than the other transformation strategies. Further, the two survival groups were robustly validated using "hold-out" validation and five validation cohorts. Gene expression profiles, miRNA profiles, DNA methylation, and signaling pathway profiles varied from the poor prognosis group (G2) to the good prognosis group (G1). miRNA-mRNA networks were constructed using six differentially expressed miRNAs (let-7c, mir-34c, mir-133b, let-7e, mir-144, and mir-106a) and 19 predicted target genes. The autoencoder-based computational framework could distinguish good prognosis samples from bad prognosis samples and facilitate a better understanding of the molecular biology of colorectal cancer.
Collapse
Affiliation(s)
- Hu Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Chengwei Ruan
- Department of Anorectal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yixin Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Teng Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ruizhi Fan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Tao Jiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Meng Cao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jun Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| |
Collapse
|
22
|
Tanaka K, Dozono N, Neyama H, Nagai J, Tsukahara R, Nagayasu K, Kaneko S, Ueda H. Secreted PLA 2-III is a possible therapeutic target to treat neuropathic pain. Biochem Biophys Res Commun 2021; 568:167-173. [PMID: 34237486 DOI: 10.1016/j.bbrc.2021.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidic acid (LPA) plays a critical role in developing and maintaining chronic pain in various animal models. Previous studies have reported that cytosolic and calcium-independent phospholipase A2 (PLA2) is involved in the LPA receptor-mediated amplification of LPA production in the spinal dorsal horn (SDH) after nerve injury, while the involvement of secreted PLA2 (sPLA2) remains unclear. The present study revealed that only sPLA2 -III among 11 species of PLA2 showed a significant upregulation of gene expression in the SDH. Intraspinal injection of adeno-associated virus-miRNA targeting sPLA2-III prevented hyperalgesia and unique hypoalgesia in mice treated with partial sciatic nerve ligation. In addition, intrathecal treatment with antisense oligodeoxynucleotide or siRNA targeting sPLA2-III significantly reversed the established thermal hyperalgesia. In the high-throughput screening of sPLA2-III inhibitors from the chemical library, we identified two hit compounds. Through in vitro characterization of PLA2 inhibitor profiles and in vivo assessment of the anti-hyperalgesic effects of known PLA2 inhibitors as well as hit compounds, sPLA2-III was found to be a novel therapeutic target molecule for the treatment of Neuropathic pain.
Collapse
Affiliation(s)
- Keigo Tanaka
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan
| | - Naoki Dozono
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan
| | - Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun Nagai
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan
| | - Ryoko Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan
| | - Hiroshi Ueda
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan; Laboratory for the Study of Pain, Research Institute for Production Development, Kyoto, 606-0805, Japan.
| |
Collapse
|
23
|
Zhai L, Huang T, Xiao HT, Wu PG, Lin CY, Ning ZW, Zhao L, Kwan HYA, Hu XJ, Wong HLX, Li XQ, Bian ZX. Berberine Suppresses Colonic Inflammation in Dextran Sulfate Sodium-Induced Murine Colitis Through Inhibition of Cytosolic Phospholipase A2 Activity. Front Pharmacol 2021; 11:576496. [PMID: 33658925 PMCID: PMC7919193 DOI: 10.3389/fphar.2020.576496] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ulcerative colitis (UC) causes chronic inflammation and damage to the colonic mucosal layer. Recent studies have reported significant changes in phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in UC patients and oral administration of PC has considerable therapeutic effects against UC, suggesting the metabolism of phosphatidylcholine may be involved in the UC development. Our previous work has demonstrated that berberine effectively suppresses inflammation and protects colonic mucosa injury in DSS-induced colitic mice. However, whether the therapeutic effects of berberine are attributed to its action on the PC metabolism remains unknown. In the present study, we have shown that berberine significantly reduces the lysophosphatidylcholine (LPC) levels in the sera of DSS-induced experimental colitis mice and LPS-stimulated macrophage RAW 264.7 cells. The cytosolic phospholipase A2a (PLA2G4A), an enzyme for hydrolyzing PC to LPC, was found to be up-regulated in the colon tissue of experimental colitis mice and inflamed macrophage RAW 264.7 cells. We then demonstrated berberine inhibits the phosphorylation of cytosolic phospholipase A2a (PLA2G4A) in the colon tissue of experimental colitis mice and inflamed macrophage RAW 264.7 cells. Subsequently, we revealed berberine suppressed the expression of pro-inflammatory factors including TNF-alpha and IL-6 through regulating PLA2G4A dysfunction in macrophage RAW 264.7 cells. Mechanistically, we found that berberine directly binds to PLA2G4A and inhibits MAPK/JNK signaling pathway to inhibit PLA2G4A activity in inflammatory status. Therefore, we concluded that berberine inhibits colonic PLA2G4A activity to ameliorate colonic inflammation in experimental colitic mice, suggesting modulation of the PC metabolism via PLA2G4A might be beneficial for establishing new therapies strategy for UC.
Collapse
Affiliation(s)
- Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hai-Tao Xiao
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Pei-Gen Wu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Cheng-Yuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zi-Wan Ning
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ling Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hiu Yee Anna Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Xian-Jing Hu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | - Xian-Qian Li
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
24
|
Lei L, Yang J, Zhang J, Zhang G. The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis. Redox Biol 2021; 42:101880. [PMID: 33541845 PMCID: PMC8113040 DOI: 10.1016/j.redox.2021.101880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is emerging as an important contributor to the pathogenesis of colorectal cancer (CRC), however, the molecular mechanisms by which the disturbed redox balance regulates CRC development remain undefined. Using a liquid chromatography–tandem mass spectrometry-based lipidomics, we found that epoxyketooctadecenoic acid (EKODE), which is a lipid peroxidation product, was among the most dramatically increased lipid molecules in the colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. This is, at least in part, due to increased oxidative stress in colon tumors, as assessed by analyzing gene expression of oxidative markers in AOM/DSS-induced CRC mice and human CRC patients in the Cancer Genome Atlas (TCGA) database. Systemic, short-time treatment with low-dose EKODE increased the severity of DSS-induced colitis, caused intestinal barrier dysfunction and enhanced lipopolysaccharide (LPS)/bacterial translocation, and exacerbates the development of AOM/DSS-induced CRC in mice. Furthermore, treatment with EKODE, at nM doses, induced inflammatory responses via JNK-dependent mechanisms in both colon cancer cells and macrophage cells. Overall, these results demonstrate that the lipid peroxidation product EKODE is an important mediator of colonic inflammation and colon tumorigenesis, providing a novel mechanistic linkage between oxidative stress and CRC development.
Collapse
Affiliation(s)
- Lei Lei
- School of Medicine, Northwest University, Xi'an, China; Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
25
|
Murakami M, Sato H, Taketomi Y. Updating Phospholipase A 2 Biology. Biomolecules 2020; 10:E1457. [PMID: 33086624 PMCID: PMC7603386 DOI: 10.3390/biom10101457] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.S.); (Y.T.)
| | | | | |
Collapse
|
26
|
Watanabe K, Taketomi Y, Miki Y, Kugiyama K, Murakami M. Group V secreted phospholipase A 2 plays a protective role against aortic dissection. J Biol Chem 2020; 295:10092-10111. [PMID: 32482892 DOI: 10.1074/jbc.ra120.013753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aortic dissection is a life-threatening aortopathy involving separation of the aortic wall, whose underlying mechanisms are still incompletely understood. Epidemiological evidence suggests that unsaturated fatty acids improve cardiovascular health. Here, using quantitative RT-PCR, histological analyses, magnetic cell sorting and flow cytometry assays, and MS-based lipidomics, we show that the activity of a lipid-metabolizing enzyme, secreted phospholipase A2 group V (sPLA2-V), protects against aortic dissection by endogenously mobilizing vasoprotective lipids. Global and endothelial cell-specific sPLA2-V-deficient mice frequently developed aortic dissection shortly after infusion of angiotensin II (AT-II). We observed that in the AT-II-treated aorta, endothelial sPLA2-V mobilized oleic and linoleic acids, which attenuated endoplasmic reticulum stress, increased the expression of lysyl oxidase, and thereby stabilized the extracellular matrix in the aorta. Of note, dietary supplementation with oleic or linoleic acid reversed the increased susceptibility of sPLA2-V-deficient mice to aortic dissection. These findings reveal an unexplored functional link between sPLA2-driven phospholipid metabolism and aortic stability, possibly contributing to the development of improved diagnostic and/or therapeutic strategies for preventing aortic dissection.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan.,Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan .,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,FORCE, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
27
|
Sano Y, Toyoshima S, Miki Y, Taketomi Y, Ito M, Lee H, Saito S, Murakami M, Okayama Y. Activation of inflammation and resolution pathways of lipid mediators in synovial fluid from patients with severe rheumatoid arthritis compared with severe osteoarthritis. Asia Pac Allergy 2020; 10:e21. [PMID: 32411586 PMCID: PMC7203435 DOI: 10.5415/apallergy.2020.10.e21] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/23/2020] [Indexed: 12/29/2022] Open
Abstract
Background The upregulation of the cyclooxygenase and lipoxygenase pathways of arachidonic acid is thought to be involved in the development of rheumatoid arthritis. Recently, the presence of specialized pro-resolving lipid mediators in synovial tissues from patients with osteoarthritis has been reported. Objective To clarify the quantitative and qualitative changes in lipid mediators in the synovium of severe rheumatoid arthritis patients, we compared the profiles of lipid mediators in synovial fluid obtained from patients with severe rheumatoid arthritis and from those with severe osteoarthritis. Methods We enrolled 18 patients with rheumatoid arthritis and 26 patients with osteoarthritis. All the patients had undergone total knee replacement surgery. Synovial fluid samples had been obtained during the surgery. Lipid profiling in the synovial fluid from these patients was performed using liquid chromatography-tandem mass spectrometry/mass spectrometry. Results Among the 150 oxidized fatty acids examined so far, 119 were substantially detected in synovial fluid from the patients. Not only the concentrations of pro-inflammatory lipid mediators such as prostaglandins and leukotrienes, but also those of specialized pro-resolving lipid mediators such as lipoxins, resolvins, and protectin D1 were significantly higher in synovial fluid obtained from rheumatoid arthritis patients than from synovial fluid obtained from osteoarthritis patients. Conclusion The activation of both inflammation and resolution pathways of lipid mediators might be a fatty acid signature in the synovial fluid of patients with severe rheumatoid arthritis. Inflammatory, anti-inflammatory and pro-resolving mediators in synovial fluid could be good biomarkers for differentiating between severe rheumatoid arthritis and severe osteoarthritis.
Collapse
Affiliation(s)
- Yutaka Sano
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan.,Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan.,Center for Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cellular Signaling, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mana Ito
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan.,Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hyunho Lee
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Saito
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cellular Signaling, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan.,Center for Allergy, Nihon University Itabashi Hospital, Tokyo, Japan.,Center for Medical Education, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Thomas S, Hoxha K, Alexander W, Gilligan J, Dilbarova R, Whittaker K, Kossenkov A, Prendergast GC, Mullin JM. Intestinal barrier tightening by a cell-penetrating antibody to Bin1, a candidate target for immunotherapy of ulcerative colitis. J Cell Biochem 2018; 120:4225-4237. [PMID: 30269357 DOI: 10.1002/jcb.27716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Patients afflicted with ulcerative colitis (UC) are at increased risk of colorectal cancer. While its causes are not fully understood, UC is associated with defects in colonic epithelial barriers that sustain inflammation of the colon mucosa caused by recruitment of lymphocytes and neutrophils into the lamina propria. Based on genetic evidence that attenuation of the bridging integrator 1 (Bin1) gene can limit UC pathogenicity in animals, we have explored Bin1 targeting as a therapeutic option. Early feasibility studies in the dextran sodium sulfate mouse model of experimental colitis showed that administration of a cell-penetrating Bin1 monoclonal antibody (Bin1 mAb 99D) could prevent lesion formation in the colon mucosa in part by preventing rupture of lymphoid follicles. In vivo administration of Bin1 mAb altered tight junction protein expression and cecal barrier function. Strikingly, electrophysiology studies in organ cultures showed that Bin1 mAb could elevate resistance and lower 14 C-mannitol leakage across the cecal mucosa, consistent with a direct strengthening of colonic barrier function. Transcriptomic analyses of colitis tissues highlighted altered expression of genes involved in circadian rhythm, lipid metabolism, and inflammation, with a correction of the alterations by Bin1 mAb treatment to patterns characteristic of normal tissues. Overall, our results suggest that Bin1 mAb protects against UC by directly improving colonic epithelial barrier function to limit gene expression and cytokine programs associated with colonic inflammation.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Kevther Hoxha
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Walker Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - John Gilligan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Rima Dilbarova
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | | | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, Pennsylvania.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Division of Gastroenterology, Lankenau Medical Center, Wynnewood, Pennsylvania
| |
Collapse
|
29
|
Murakami M, Miki Y, Sato H, Murase R, Taketomi Y, Yamamoto K. Group IID, IIE, IIF and III secreted phospholipase A 2s. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:803-818. [PMID: 30905347 PMCID: PMC7106514 DOI: 10.1016/j.bbalip.2018.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 12/02/2022]
Abstract
Among the 11 members of the secreted phospholipase A2 (sPLA2) family, group IID, IIE, IIF and III sPLA2s (sPLA2-IID, -IIE, -IIF and -III, respectively) are “new” isoforms in the history of sPLA2 research. Relative to the better characterized sPLA2s (sPLA2-IB, -IIA, -V and -X), the enzymatic properties, distributions, and functions of these “new” sPLA2s have remained obscure until recently. Our current studies using knockout and transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed unique and distinct roles of these “new” sPLA2s in specific biological events. Thus, sPLA2-IID is involved in immune suppression, sPLA2-IIE in metabolic regulation and hair follicle homeostasis, sPLA2-IIF in epidermal hyperplasia, and sPLA2-III in male reproduction, anaphylaxis, colonic diseases, and possibly atherosclerosis. In this article, we overview current understanding of the properties and functions of these sPLA2s and their underlying lipid pathways in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Remi Murase
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Yamamoto
- PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|