1
|
Dai Z, Yu Y, Chen R, Zhu H, Fong H, Kuang J, Jiang Y, Chen Y, Niu Y, Chen T, Shi L. Selenium promotes neural development through the regulation of GPX4 and SEPP1 in an iPSC-derived neuronal model. Biomaterials 2025; 316:123011. [PMID: 39708777 DOI: 10.1016/j.biomaterials.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model. Interestingly, our results showed that SeNPs@LNT could not only accelerate the proliferation of neural progenitor cells (NPCs) by upregulating glutathione peroxidase 4 (GPX4) during the NPC stage, but also can promote neuronal differentiation by increasing selenoprotein P (SEPP1) during the neuronal stage, resulting in efficient and rapid neural development. In addition, further mechanistic studies showed that SeNPs@LNT can regulate selenoproteins by activating the PI3K/Akt/Nrf2 signaling pathway, thereby affecting neuronal development. Notably, Further analysis of ASD patients in National Center for Biotechnology Information single-cell RNA-seq datasets also revealed significantly lower GPX4 expression within NRGN-expressing neurons in ASD patients, and GO enrichment analysis of genes in NRGN-expressing neurons from ASD patients showed that the downregulation of selenoproteins due to aberrant selenoprotein synthesis may be closely associated with decreased ATP synthesis resulting from abnormal mitochondrial and respiratory chain signaling pathways. Taken together, this study provides evidence that SeNPs@LNT exerts a beneficial effect on early neural development through the regulation of selenoproteins.
Collapse
Affiliation(s)
- Zhenzhu Dai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ruhai Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongyao Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou, 510632, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yunbo Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yalan Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yimei Niu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Lingling Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, China.
| |
Collapse
|
2
|
Ben Mahmoud M, Rátkai A, Bauer K, Bencsik N, Szücs A, Schlett K, Tárnok K. Multifactorial approach is needed to unravel the maturation phases of human neurons derived from induced pluripotent stem cells. Sci Rep 2025; 15:2627. [PMID: 39837910 PMCID: PMC11751176 DOI: 10.1038/s41598-024-81140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Neurons derived from induced pluripotent stem cells (h-iPSC-Ns) provide an invaluable model for studying the physiological aspects of human neuronal development under healthy and pathological conditions. However, multiple studies have demonstrated that h-iPSC-Ns exhibit a high degree of functional and epigenetic diversity. Due to the imprecise characterization and significant variation among the currently available maturation protocols, it is essential to establish a set of criteria to standardize models and accurately characterize and define the developmental properties of human neurons derived from iPSCs. In this study, we conducted comprehensive cellular and network level analysis of the functional development of human neurons, generated from iPSCs obtained from healthy young female peripheral blood mononuclear cells by BDNF and GDNF treatment. We provide a thorough description of the maturation process of h-iPSC-Ns over a 10-week in vitro period using conventional whole-cell patch clamp and dynamic clamp techniques, alongside with morphometry and immunocytochemistry. Additionally, we utilized calcium imaging to monitor the progression of synaptic activity and network communication. At the single cell level, human neurons exhibited gradually decreasing membrane resistance in parallel with improved excitability. By the fifth week of maturation, firing profiles were consistent with those of mature regular firing type of neurons. At the network level, fast glutamatergic and depolarizing GABAergic synaptic connections were abundant together with synchronized network activity from the sixth week of maturation. Alterations in the expression of GABAA receptor subunits were also observed during the process of maturation. The sequence of differentiation events was consistent, providing a robust temporal framework to execute experiments at defined stages of neuronal maturation as well as to use a specific set of experiments to assess a culture's maturation. The uncovered progression of differentiation events provides a powerful tool to aid the planning and designing of targeted experiments during defined stages of neuronal maturation.
Collapse
Affiliation(s)
- Maissa Ben Mahmoud
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Anikó Rátkai
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Krisztina Bauer
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Norbert Bencsik
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Attila Szücs
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
3
|
Romito E, Battistella I, Plakhova V, Paplekaj A, Forastieri C, Toffolo E, Musio C, Conti L, Battaglioli E, Rusconi F. A comprehensive protocol for efficient differentiation of human NPCs into electrically competent neurons. J Neurosci Methods 2024; 410:110225. [PMID: 39053772 DOI: 10.1016/j.jneumeth.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications. Neural progenitor cells (NPCs) derived from hiPSCs can be efficiently differentiated into functional neurons, providing a platform to study human neural physiology and pathology in vitro. However, challenges persist in achieving consistent and reproducible outcomes across experimental settings. COMPARISON WITH EXISTING METHODS Our aim is to provide a step-by-step methodological protocol, augmenting existing procedures with additional instructions and parameters, to guide researchers in achieving reproducible results. METHODS AND RESULTS We outline procedures for the differentiation of hiPSC-derived NPCs into electrically competent neurons, encompassing initial cell density, morphology, maintenance, and differentiation. We also describe the analysis of specific markers for assessing neuronal phenotype, along with electrophysiological analysis to evaluate biophysical properties of neuronal excitability. Additionally, we conduct a comparative analysis of three different chemical methods-KCl, N-methyl-D-aspartate (NMDA), and bicuculline-to induce neuronal depolarization and assess their effects on the induction of both fast and slow post-translational, transcriptional, and post-transcriptional responses. CONCLUSION Our protocol provides clear instructions for generating reliable human neuronal cultures with defined electrophysiological properties to investigate neuronal differentiation and model diseases in vitro.
Collapse
Affiliation(s)
- Elena Romito
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Ingrid Battistella
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Via Sommarive, 9, Trento 38123, Italy
| | - Vera Plakhova
- Institute of Biophysics (IBF), National Research Council (CNR), Trento Unit, & LabSSAH, Bruno Kessler Foundation (FBK), Via Sommarive, 18, Trento 38123, Italy
| | - Arteda Paplekaj
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Chiara Forastieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Emanuela Toffolo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), National Research Council (CNR), Trento Unit, & LabSSAH, Bruno Kessler Foundation (FBK), Via Sommarive, 18, Trento 38123, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Via Sommarive, 9, Trento 38123, Italy.
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy.
| |
Collapse
|
4
|
Zehra B, Mohamed N, Farhat A, Bru-Mercier G, Satsangi D, Tambi R, Kamarudheen R, Kumail M, Khalil R, Pessia M, D'Adamo MC, Berdiev BK, Uddin M. Integrative analysis of long isoform sequencing and functional data identifies distinct cortical layer neuronal subtypes derived from human iPSCs. J Neurophysiol 2024; 132:653-665. [PMID: 38988287 DOI: 10.1152/jn.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Generation of human induced pluripotent stem cells (iPSCs) through reprogramming was a transformational change in the field of regenerative medicine that led to new possibilities for drug discovery and cell replacement therapy. Several protocols have been established to differentiate hiPSCs into neuronal lineages. However, low differentiation efficiency is one of the major drawbacks of these approaches. Here, we compared the efficiency of two methods of neuronal differentiation from iPSCs cultured in two different culture media, StemFlex Medium (SFM) and Essential 8 Medium (E8M). The results indicated that iPSCs cultured in E8M efficiently generated different types of neurons in a shorter time and without the growth of undifferentiated nonneuronal cells in the culture as compared with those generated from iPSCs in SFM. Furthermore, these neurons were validated as functional units immunocytochemically by confirming the expression of mature neuronal markers (i.e., NeuN, β tubulin, and Synapsin I) and whole cell patch-clamp recordings. Long-read single-cell RNA sequencing confirms the presence of upper and deep layer cortical layer excitatory and inhibitory neuronal subtypes in addition to small populations of GABAergic neurons in day 30 neuronal cultures. Pathway analysis indicated that our protocol triggers the signaling transcriptional networks important for the process of neuronal differentiation in vivo.NEW & NOTEWORTHY Low differentiation efficiency is one of the major drawbacks of the existing protocols to differentiate iPSCs into neuronal lineages. Here, we present time-efficient and robust approach of neuronal differentiation leading to the generation of functional brain units, cortical layer neurons. We found iPSCs cultured in Essential 8 media (E8M) resulted in neuronal differentiation without the signs of growth of spontaneously differentiated cells in culture at any point in 35 days compared with Stemflex media (SFM).
Collapse
Affiliation(s)
- Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nesrin Mohamed
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Gilles Bru-Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dharana Satsangi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Richa Tambi
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rihana Kamarudheen
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Muhammad Kumail
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Bakhrom K Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ku J, Asuri P. Stem cell-based approaches for developmental neurotoxicity testing. FRONTIERS IN TOXICOLOGY 2024; 6:1402630. [PMID: 39238878 PMCID: PMC11374538 DOI: 10.3389/ftox.2024.1402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Neurotoxicants are substances that can lead to adverse structural or functional effects on the nervous system. These can be chemical, biological, or physical agents that can cross the blood brain barrier to damage neurons or interfere with complex interactions between the nervous system and other organs. With concerns regarding social policy, public health, and medicine, there is a need to ensure rigorous testing for neurotoxicity. While the most common neurotoxicity tests involve using animal models, a shift towards stem cell-based platforms can potentially provide a more biologically accurate alternative in both clinical and pharmaceutical research. With this in mind, the objective of this article is to review both current technologies and recent advancements in evaluating neurotoxicants using stem cell-based approaches, with an emphasis on developmental neurotoxicants (DNTs) as these have the most potential to lead to irreversible critical damage on brain function. In the next section, attempts to develop novel predictive model approaches for the study of both neural cell fate and developmental neurotoxicity are discussed. Finally, this article concludes with a discussion of the future use of in silico methods within developmental neurotoxicity testing, and the role of regulatory bodies in promoting advancements within the space.
Collapse
Affiliation(s)
- Joy Ku
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
6
|
Burrack N, Yitzhaky A, Mizrahi L, Wang M, Stern S, Hertzberg L. Altered Expression of PDE4 Genes in Schizophrenia: Insights from a Brain and Blood Sample Meta-Analysis and iPSC-Derived Neurons. Genes (Basel) 2024; 15:609. [PMID: 38790238 PMCID: PMC11121586 DOI: 10.3390/genes15050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Schizophrenia symptomatology includes negative symptoms and cognitive impairment. Several studies have linked schizophrenia with the PDE4 family of enzymes due to their genetic association and function in cognitive processes such as long-term potentiation. We conducted a systematic gene expression meta-analysis of four PDE4 genes (PDE4A-D) in 10 brain sample datasets (437 samples) and three blood sample datasets (300 samples). Subsequently, we measured mRNA levels in iPSC-derived hippocampal dentate gyrus neurons generated from fibroblasts of three groups: healthy controls, healthy monozygotic twins (MZ), and their MZ siblings with schizophrenia. We found downregulation of PDE4B in brain tissues, further validated by independent data of the CommonMind consortium (515 samples). Interestingly, the downregulation signal was present in a subgroup of the patients, while the others showed no differential expression or even upregulation. Notably, PDE4A, PDE4B, and PDE4D exhibited upregulation in iPSC-derived neurons compared to healthy controls, whereas in blood samples, PDE4B was found to be upregulated while PDE4A was downregulated. While the precise mechanism and direction of altered PDE4 expression necessitate further investigation, the observed multilevel differential expression across the brain, blood, and iPSC-derived neurons compellingly suggests the involvement of PDE4 genes in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Nitzan Burrack
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- Shalvata Mental Health Center, Affiliated with the Faculty of Medicine, Tel-Aviv University, 13 Aliat Hanoar St., Hod Hasharon 45100, Israel
| |
Collapse
|
7
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
8
|
Choudhary P, Gupta A, Gupta SK, Dwivedi S, Singh S. Comparative evaluation of divergent concoction of NGF, BDNF, EGF, and FGF growth factor's role in enhancing neuronal differentiation of adipose-derived mesenchymal stem cells. Int J Biol Macromol 2024; 260:129561. [PMID: 38246449 DOI: 10.1016/j.ijbiomac.2024.129561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
MSCs (Mesenchymal Stem Cells) can differentiate into various lineages, including neurons and glial cells. In the past few decades, MSCs have been well explored in the context of neuronal differentiation and have been reported to have the immense potential to form distinct kinds of neurons. The distinguishing features of MSCs make them among the most desired cell sources for stem cell therapy. This study involved the trans-differentiation of Adipose-derived human Mesenchymal Stem Cells (ADMSCs) into neurons. The protocol employs a cocktail of chemical inducers in different combinations, including Brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), and Nerve growth factor (NGF) Fibroblastic growth factor (FGF), in induction media. Both types have been successfully differentiated into neurons, confirmed by morphological aspects and the presence of neural-specific markers through RT-PCR (Reverse transcription polymerase chain reaction) studies and immunocytochemistry assay. They have shown excellent morphology with long neurites, synaptic connections, and essential neural markers to validate their identity. The results may significantly contribute to cell replacement therapy for neurological disorders.
Collapse
Affiliation(s)
- Princy Choudhary
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Ayushi Gupta
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Saurabh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Shrey Dwivedi
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Sangeeta Singh
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India.
| |
Collapse
|
9
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
10
|
Ma Y, Bendl J, Hartley BJ, Fullard JF, Abdelaal R, Ho SM, Kosoy R, Gochman P, Rapoport J, Hoffman GE, Brennand KJ, Roussos P. Activity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders. Biol Psychiatry 2024; 95:187-198. [PMID: 37454787 PMCID: PMC10787819 DOI: 10.1016/j.biopsych.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Converging evidence from large-scale genetic and postmortem studies highlights the role of aberrant neurotransmission and genetic regulation in brain-related disorders. However, identifying neuronal activity-regulated transcriptional programs in the human brain and understanding how changes contribute to disease remain challenging. METHODS To better understand how the activity-dependent regulome contributes to risk for brain-related disorders, we profiled the transcriptomic and epigenomic changes following neuronal depolarization in human induced pluripotent stem cell-derived glutamatergic neurons (NGN2) from 6 patients with schizophrenia and 5 control participants. RESULTS Multiomic data integration associated global patterns of chromatin accessibility with gene expression and identified enhancer-promoter interactions in glutamatergic neurons. Within 1 hour of potassium chloride-induced depolarization, independent of diagnosis, glutamatergic neurons displayed substantial activity-dependent changes in the expression of genes regulating synaptic function. Depolarization-induced changes in the regulome revealed significant heritability enrichment for schizophrenia and Parkinson's disease, adding to mounting evidence that sequence variation within activation-dependent regulatory elements contributes to the genetic risk for brain-related disorders. Gene coexpression network analysis elucidated interactions among activity-dependent and disease-associated genes and pointed to a key driver (NAV3) that interacted with multiple genes involved in axon guidance. CONCLUSIONS Overall, we demonstrated that deciphering the activity-dependent regulome in glutamatergic neurons reveals novel targets for advanced diagnosis and therapy.
Collapse
Affiliation(s)
- Yixuan Ma
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brigham J Hartley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rawan Abdelaal
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York
| | - Seok-Man Ho
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York
| | - Roman Kosoy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter Gochman
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Judith Rapoport
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristen J Brennand
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, New York, New York.
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
11
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
12
|
Lo EKW, Velazquez JJ, Peng D, Kwon C, Ebrahimkhani MR, Cahan P. Platform-agnostic CellNet enables cross-study analysis of cell fate engineering protocols. Stem Cell Reports 2023; 18:1721-1742. [PMID: 37478860 PMCID: PMC10444577 DOI: 10.1016/j.stemcr.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts, based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner. Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols relative to our database of reference engineered samples, and as open-source, extensible code.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Alawad AO, Alagrafi FS, Alfahad AJ, Alamari HA, Alghamdi FO, Fallatah HM, Aodah AH, Alyousef SS, Bakhrebah MA, Alanazi IO, Fallatah MM. Effects of Rhazya Stricta plant organic extracts on human induced pluripotent stem cells derived neural stem cells. PLoS One 2023; 18:e0288032. [PMID: 37478090 PMCID: PMC10361509 DOI: 10.1371/journal.pone.0288032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/18/2023] [Indexed: 07/23/2023] Open
Abstract
Rhazya Stricta (R. stricta) has been employed as a natural remedy for several diseases for centuries. Numerous studies revealed that R. stricta extracts contain alkaloids, tannins, and flavonoids that possess antimicrobial, anticancer, antihypertensive, and antioxidant activities. In this study, we examined the effects of organic extracts from different parts of R. stricta plant on human pluripotent stem cells (hiPSCs)-derived neural stem cells (NSCs) for medical purposes. NSCs were incubated with different concentrations of organic extracts from the leaves, stem, and fruits, and we assessed the growth and viability of the cells by using MTS assay and the chemical composition of the potential plant extract by using gas chromatography-mass spectrometry (GC/MS). Our results revealed that the methanolic extract from the stem increased NSCs growth significantly, particularly at a concentration of 25 μg/ml. GC/MS analysis was utilized to identify the potential compounds of the methanolic extract. In conclusion, our results demonstrated for the first time that methanolic stem extract of R. stricta contains compounds that can positively impact NSCs growth. These compounds can be further investigated to determine the potential bioactive compounds that can be used for research and medical purposes.
Collapse
Affiliation(s)
- Abdullah Othman Alawad
- Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Faisal Sultan Alagrafi
- Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ahmed Jaman Alfahad
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Abdulrahman Alamari
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fatimah Othman Alghamdi
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hussam Mokhtar Fallatah
- Waste Management and Recycling Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Alhassan Hamood Aodah
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sultan Suleiman Alyousef
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Muhammed Adnan Bakhrebah
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ibrahim Oqla Alanazi
- Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohannad Mokhtar Fallatah
- Advanced Diagnostics and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Popova D, Gameiro-Ros I, Youssef MM, Zalamea P, Morris AD, Prytkova I, Jadali A, Kwan KY, Kamarajan C, Salvatore JE, Xuei X, Chorlian DB, Porjesz B, Kuperman S, Dick DM, Goate A, Edenberg HJ, Tischfield JA, Pang ZP, Slesinger PA, Hart RP. Alcohol reverses the effects of KCNJ6 (GIRK2) noncoding variants on excitability of human glutamatergic neurons. Mol Psychiatry 2023; 28:746-758. [PMID: 36207584 PMCID: PMC9542475 DOI: 10.1038/s41380-022-01818-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/19/2023]
Abstract
Synonymous and noncoding single nucleotide polymorphisms (SNPs) in the KCNJ6 gene, encoding G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2), have been linked with increased electroencephalographic frontal theta event-related oscillations (ERO) in subjects diagnosed with alcohol use disorder (AUD). To identify molecular and cellular mechanisms while retaining the appropriate genetic background, we generated induced excitatory glutamatergic neurons (iN) from iPSCs derived from four AUD-diagnosed subjects with KCNJ6 variants ("Affected: AF") and four control subjects without variants ("Unaffected: UN"). Neurons were analyzed for changes in gene expression, morphology, excitability and physiological properties. Single-cell RNA sequencing suggests that KCNJ6 AF variant neurons have altered patterns of synaptic transmission and cell projection morphogenesis. Results confirm that AF neurons express lower levels of GIRK2, have greater neurite area, and elevated excitability. Interestingly, exposure to intoxicating concentrations of ethanol induces GIRK2 expression and reverses functional effects in AF neurons. Ectopic overexpression of GIRK2 alone mimics the effect of ethanol to normalize induced excitability. We conclude that KCNJ6 variants decrease GIRK2 expression and increase excitability and that this effect can be minimized or reduced with ethanol.
Collapse
Affiliation(s)
- Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark M Youssef
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Petronio Zalamea
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Ayeshia D Morris
- Joint Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Iya Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azadeh Jadali
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Kelvin Y Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Chella Kamarajan
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jessica E Salvatore
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David B Chorlian
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Bernice Porjesz
- Dept. of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Samuel Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Danielle M Dick
- Rutgers Addiction Research Center, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Alison Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana Univ School of Medicine, Indianapolis, IN, USA
| | - Jay A Tischfield
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
| | - Zhiping P Pang
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA
- Child Health Institute, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ, USA.
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
15
|
Chari D, Basit R, Wiseman J, Chowdhury F. Simulating traumatic brain injury in vitro: developing high throughput models to test biomaterial based therapies. Neural Regen Res 2023; 18:289-292. [PMID: 35900405 PMCID: PMC9396524 DOI: 10.4103/1673-5374.346465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traumatic brain injuries are serious clinical incidents associated with some of the poorest outcomes in neurological practice. Coupled with the limited regenerative capacity of the brain, this has significant implications for patients, carers, and healthcare systems, and the requirement for life-long care in some cases. Clinical treatment currently focuses on limiting the initial neural damage with long-term care/support from multidisciplinary teams. Therapies targeting neuroprotection and neural regeneration are not currently available but are the focus of intensive research. Biomaterial-based interventions are gaining popularity for a range of applications including biomolecule and drug delivery, and to function as cellular scaffolds. Experimental investigations into the development of such novel therapeutics for traumatic brain injury will be critically underpinned by the availability of appropriate high throughput, facile, ethically viable, and pathomimetic biological model systems. This represents a significant challenge for researchers given the pathological complexity of traumatic brain injury. Specifically, there is a concerted post-injury response mounted by multiple neural cell types which includes microglial activation and astroglial scarring with the expression of a range of growth inhibitory molecules and cytokines in the lesion environment. Here, we review common models used for the study of traumatic brain injury (ranging from live animal models to in vitro systems), focusing on penetrating traumatic brain injury models. We discuss their relative advantages and drawbacks for the developmental testing of biomaterial-based therapies.
Collapse
|
16
|
Liao AS, Cui W, Zhang YJ, Webster-Wood VA. Semi-Automated Quantitative Evaluation of Neuron Developmental Morphology In Vitro Using the Change-Point Test. Neuroinformatics 2023; 21:163-176. [PMID: 36070028 DOI: 10.1007/s12021-022-09600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Neuron morphology gives rise to distinct axons and dendrites and plays an essential role in neuronal functionality and circuit dynamics. In rat hippocampal neurons, morphological development occurs over roughly one week in vitro. This development has been qualitatively described as occurring in 5 stages. Still, there is a need to quantify cell growth to monitor cell culture health, understand cell responses to sensory cues, and compare experimental results and computational growth model predictions. To address this need, embryonic rat hippocampal neurons were observed in vitro over six days, and their processes were quantified using both standard morphometrics (degree, number of neurites, total length, and tortuosity) and new metrics (distance between change points, relative turning angle, and the number of change points) based on the Change-Point Test to track changes in path trajectories. Of the standard morphometrics, the total length of neurites per cell and the number of endpoints were significantly different between 0.5, 1.5, and 4 days in vitro, which are typically associated with Stages 2-4. Using the Change-Point Test, the number of change points and the average distance between change points per cell were also significantly different between those key time points. This work highlights key quantitative characteristics, both among common and novel morphometrics, that can describe neuron development in vitro and provides a foundation for analyzing directional changes in neurite growth for future studies.
Collapse
Affiliation(s)
- Ashlee S Liao
- Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States of America
| | - Wenxin Cui
- Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States of America.,Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States of America
| | - Yongjie Jessica Zhang
- Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States of America.,Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States of America
| | - Victoria A Webster-Wood
- Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States of America. .,Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States of America. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, 15260, Pennsylvania, United States of America.
| |
Collapse
|
17
|
Aly KA, Moutaoufik MT, Zilocchi M, Phanse S, Babu M. Insights into SACS pathological attributes in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS)☆. Curr Opin Chem Biol 2022; 71:102211. [PMID: 36126381 DOI: 10.1016/j.cbpa.2022.102211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare early-onset neurodegenerative disease caused by mutations in the SACS gene, encoding Sacsin. Initial functional annotation of Sacsin was based on sequence homology, with subsequent experiments revealing the Sacsin requirement for regulating mitochondrial dynamics, along with its domains involved in promoting neurofilament assembly or resolving their bundling accumulations. ARSACS phenotypes associated with SACS loss-of-function are discussed, and how advancements in ARSACS disease models and quantitative omics approaches can improve our understanding of ARSACS pathological attributes. Lastly in the perspectives section, we address gene correction strategies for monogenic disorders such as ARSACS, along with their common delivery methods, representing a hopeful area for ARSACS therapeutics development.
Collapse
Affiliation(s)
- Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
18
|
Reprogramming cultured human fungiform (HBO) taste cells into neuron-like cells through in vitro induction. In Vitro Cell Dev Biol Anim 2022; 58:817-829. [DOI: 10.1007/s11626-022-00724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
19
|
Abdullah NAH, Sainik NQAV, Esa E, Muhamad Hendri NA, Ahmad Rusmili MR, Hodgson WC, Shaikh MF, Othman I. Neuroprotective effect of phospholipase A 2 from Malaysian Naja sumatrana venom against H 2O 2-induced cell damage and apoptosis. Front Pharmacol 2022; 13:935418. [PMID: 36313292 PMCID: PMC9614335 DOI: 10.3389/fphar.2022.935418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/22/2022] [Indexed: 10/23/2023] Open
Abstract
Oxidative stress is one of the factors involved in the pathogenesis of several neurodegenerative diseases. It has been reported that a secretory phospholipase A2 known as A2-EPTX-NSm1a has lower cytotoxicity in neuronal cells compared to its crude Naja sumatrana venom. In this study, A2-EPTX-NSm1a was tested for its neuroprotective activity on human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons against oxidative stress induced by hydrogen peroxide (H2O2). H2O2 treatment alone increased the caspase-3 and caspase-8 activities, whereas pre-treatment with A2-EPTX-NSm1a reduced the activity of these apoptosis-associated proteins. Moreover, A2-EPTX-NSm1a protects the morphology and ultrastructure of differentiated SH-SY5Y cells in the presence of H2O2. Oxidative stress increased the number of small mitochondria. Further evaluation showed the size of mitochondria with a length below 0.25 µm in oxidative stress conditions is higher than the control group, suggesting mitochondria fragmentation. Pre-treatment with A2-EPTX-NSm1a attenuated the number of mitochondria in cells with H2O2 Furthermore, A2-EPTX-NSm1a altered the expression of several neuroprotein biomarkers of GDNF, IL-8, MCP-1, TIMP-1, and TNF-R1 in cells under oxidative stress induced by H2O2. These findings indicate that anti-apoptosis with mitochondria-related protection, anti-inflammatory effect, and promote expression of important markers for cell survival may underlie the neuroprotective effect of A2-EPTX-NSm1a in cholinergic rich human cells under oxidative stress, a vital role in the neuronal disorder.
Collapse
Affiliation(s)
- Nur Atiqah Haizum Abdullah
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Medicine, Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Qisya Afifah Veronica Sainik
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | - Nur Afrina Muhamad Hendri
- Department of Electron Microscopy, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | | | - Wayne C. Hodgson
- Department of Pharmacology, Monash Venom Group, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
20
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
21
|
Sarkar AK, Nakamura S, Nakai K, Sato T, Shiga T, Abe Y, Hoashi Y, Inoue T, Akamatsu W, Baba K. Increased excitability of human iPSC-derived neurons in HTR2A variant-related sleep bruxism. Stem Cell Res 2022; 59:102658. [PMID: 34999422 DOI: 10.1016/j.scr.2022.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022] Open
Abstract
Sleep bruxism (SB) is a sleep-related movement disorder characterized by grinding and clenching of the teeth during sleep. We previously found a significant association between SB and a single nucleotide polymorphism (SNP), rs6313, in the neuronal serotonin 2A receptor gene (HTR2A), and established human induced pluripotent stem cell (iPSC)-derived neurons from SB patients with a genetic variant. To elucidate the electrophysiological characteristics of SB iPSC-derived neural cells bearing an SB-related genetic variant, we generated ventral hindbrain neurons from SB patients and unaffected controls, and explored the intrinsic membrane properties of these neurons using the patch-clamp technique. We found that the electrophysiological properties of iPSC-derived neurons mature in a time-dependent manner in long-term control cultures. SB neurons exhibited higher action potential firing frequency, higher gain, and shorter action potential half duration. This is the first in vitro modeling of SB using patient-specific iPSCs. The revealed electrophysiological characteristics may serve as a benchmark for further investigation of pathogenic mechanisms underlying SB. Moreover, our results on long-term cultures provide a strategy to define the functional maturity of human neurons in vitro, which can be implemented for stem cell research of neurogenesis, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Avijite Kumer Sarkar
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Kento Nakai
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Taro Sato
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yuka Abe
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Yurie Hoashi
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Kazuyoshi Baba
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| |
Collapse
|
22
|
Hsu CC, George JH, Waller S, Besnard C, Nagel DA, Hill EJ, Coleman MD, Korsunsky AM, Cui Z, Ye H. Increased connectivity of hiPSC-derived neural networks in multiphase granular hydrogel scaffolds. Bioact Mater 2022; 9:358-372. [PMID: 34820576 PMCID: PMC8586009 DOI: 10.1016/j.bioactmat.2021.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
To reflect human development, it is critical to create a substrate that can support long-term cell survival, differentiation, and maturation. Hydrogels are promising materials for 3D cultures. However, a bulk structure consisting of dense polymer networks often leads to suboptimal microenvironments that impedes nutrient exchange and cell-to-cell interaction. Herein, granular hydrogel-based scaffolds were used to support 3D human induced pluripotent stem cell (hiPSC)-derived neural networks. A custom designed 3D printed toolset was developed to extrude hyaluronic acid hydrogel through a porous nylon fabric to generate hydrogel granules. Cells and hydrogel granules were combined using a weaker secondary gelation step, forming self-supporting cell laden scaffolds. At three and seven days, granular scaffolds supported higher cell viability compared to bulk hydrogels, whereas granular scaffolds supported more neurite bearing cells and longer neurite extensions (65.52 ± 11.59 μm) after seven days compared to bulk hydrogels (22.90 ± 4.70 μm). Long-term (three-month) cultures of clinically relevant hiPSC-derived neural cells in granular hydrogels supported well established neuronal and astrocytic colonies and a high level of neurite extension both inside and beyond the scaffold. This approach is significant as it provides a simple, rapid and efficient way to achieve a tissue-relevant granular structure within hydrogel cultures.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Julian H. George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Sharlayne Waller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - David A Nagel
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- Translational Medicine Research Group, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Eric J Hill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Michael D. Coleman
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| |
Collapse
|
23
|
Urrutia-Cabrera D, Hsiang-Chi Liou R, Lin J, Shi Y, Liu K, Hung SSC, Hewitt AW, Wang PY, Ching-Bong Wong R. Combinatorial Approach of Binary Colloidal Crystals and CRISPR Activation to Improve Induced Pluripotent Stem Cell Differentiation into Neurons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8669-8679. [PMID: 35166105 DOI: 10.1021/acsami.1c17975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conventional methods of neuronal differentiation in human induced pluripotent stem cells (iPSCs) are tedious and complicated, involving multistage protocols with complex cocktails of growth factors and small molecules. Artificial extracellular matrices with a defined surface topography and chemistry represent a promising venue to improve neuronal differentiation in vitro. In the present study, we test the impact of a type of colloidal self-assembled patterns (cSAPs) called binary colloidal crystals (BCCs) on neuronal differentiation. We developed a CRISPR activation (CRISPRa) iPSC platform that constitutively expresses the dCas9-VPR system, which allows robust activation of the proneural transcription factor NEUROD1 to rapidly induce neuronal differentiation within 7 days. We show that the combinatorial use of BCCs can further improve this neuronal differentiation system. In particular, our results indicate that fine tuning of silica (Si) and polystyrene (PS) particle size is critical to generate specific topographies to improve neuronal differentiation and branching. BCCs with 5 μm silica and 100 nm carboxylated PS (PSC) have the most prominent effect on increasing neurite outgrowth and more complex ramification, while BCCs with 2 μm Si and 65 nm PSC particles are better at promoting neuronal enrichment. These results indicate that biophysical cues can support rapid differentiation and improve neuronal maturation. In summary, our combinatorial approach of CRISPRa and BCCs provides a robust and rapid pipeline for the in vitro production of human neurons. Specific BCCs can be adapted to the late stages of neuronal differentiation protocols to improve neuronal maturation, which has important implications in tissue engineering, in vitro biological studies, and disease modeling.
Collapse
Affiliation(s)
- Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325016, China
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
- Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen 510810, China
| |
Collapse
|
24
|
Retroviral infection of human neurospheres and use of stem Cell EVs to repair cellular damage. Sci Rep 2022; 12:2019. [PMID: 35132117 PMCID: PMC8821538 DOI: 10.1038/s41598-022-05848-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
HIV-1 remains an incurable infection that is associated with substantial economic and epidemiologic impacts. HIV-associated neurocognitive disorders (HAND) are commonly linked with HIV-1 infection; despite the development of combination antiretroviral therapy (cART), HAND is still reported to affect at least 50% of HIV-1 infected individuals. It is believed that the over-amplification of inflammatory pathways, along with release of toxic viral proteins from infected cells, are primarily responsible for the neurological damage that is observed in HAND; however, the underlying mechanisms are not well-defined. Therefore, there is an unmet need to develop more physiologically relevant and reliable platforms for studying these pathologies. In recent years, neurospheres derived from induced pluripotent stem cells (iPSCs) have been utilized to model the effects of different neurotropic viruses. Here, we report the generation of neurospheres from iPSC-derived neural progenitor cells (NPCs) and we show that these cultures are permissive to retroviral (e.g. HIV-1, HTLV-1) replication. In addition, we also examine the potential effects of stem cell derived extracellular vesicles (EVs) on HIV-1 damaged cells as there is abundant literature supporting the reparative and regenerative properties of stem cell EVs in the context of various CNS pathologies. Consistent with the literature, our data suggests that stem cell EVs may modulate neuroprotective and anti-inflammatory properties in damaged cells. Collectively, this study demonstrates the feasibility of NPC-derived neurospheres for modeling HIV-1 infection and, subsequently, highlights the potential of stem cell EVs for rescuing cellular damage induced by HIV-1 infection.
Collapse
|
25
|
Buttermore ED, Anderson NC, Chen PF, Makhortova NR, Kim KH, Wafa SMA, Dwyer S, Micozzi JM, Winden KD, Zhang B, Han MJ, Kleiman RJ, Brownstein CA, Sahin M, Gonzalez-Heydrich J. 16p13.11 deletion variants associated with neuropsychiatric disorders cause morphological and synaptic changes in induced pluripotent stem cell-derived neurons. Front Psychiatry 2022; 13:924956. [PMID: 36405918 PMCID: PMC9669751 DOI: 10.3389/fpsyt.2022.924956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
16p13.11 copy number variants (CNVs) have been associated with autism, schizophrenia, psychosis, intellectual disability, and epilepsy. The majority of 16p13.11 deletions or duplications occur within three well-defined intervals, and despite growing knowledge of the functions of individual genes within these intervals, the molecular mechanisms that underlie commonly observed clinical phenotypes remain largely unknown. Patient-derived, induced pluripotent stem cells (iPSCs) provide a platform for investigating the morphological, electrophysiological, and gene-expression changes that result from 16p13.11 CNVs in human-derived neurons. Patient derived iPSCs with varying sizes of 16p13.11 deletions and familial controls were differentiated into cortical neurons for phenotypic analysis. High-content imaging and morphological analysis of patient-derived neurons demonstrated an increase in neurite branching in patients compared with controls. Whole-transcriptome sequencing revealed expression level changes in neuron development and synaptic-related gene families, suggesting a defect in synapse formation. Subsequent quantification of synapse number demonstrated increased numbers of synapses on neurons derived from early-onset patients compared to controls. The identification of common phenotypes among neurons derived from patients with overlapping 16p13.11 deletions will further assist in ascertaining common pathways and targets that could be utilized for screening drug candidates. These studies can help to improve future treatment options and clinical outcomes for 16p13.11 deletion patients.
Collapse
Affiliation(s)
- Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Nickesha C Anderson
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Pin-Fang Chen
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Kristina H Kim
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Syed M A Wafa
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Sean Dwyer
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - John M Micozzi
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Min-Joon Han
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Robin J Kleiman
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Catherine A Brownstein
- The Manton Center of Orphan Disease Research, Boston Children's Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
27
|
Santos SIP, de Oliveira VC, Pieri NCG, Bressan FF, Ambrósio CE, Feitosa MLT. Isolation and characterization of neural stem cells from fetal canine spinal cord. Neurosci Lett 2021; 765:136293. [PMID: 34662661 DOI: 10.1016/j.neulet.2021.136293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Neurogenesis in adult mammals occurs mainly in the subventricular and subgranular areas of the brain, but there are also reports of its occurrence in the spinal cord. In a study on rats, neural stem cells and neuroprogenitor cells could be obtained through primary spinal cord culture, but there are no studies on these cells in canine species, to date. Dogs represent an appropriate animal model for studies on neurogenesis and neurological disorders. In addition, they are animals of great affective value, and the therapeutic use of neural stem cells can represent a breakthrough in regenerative veterinary medicine. Therefore, this study aimed to determine a protocol for the isolation, culture, and characterization of neural and neuroprogenitor stem cells derived from the spinal cord of canine fetuses. The cells were isolated from spinal cord fragments and cultured in serum-free culture medium supplemented with EGF and FGF-2 growth factors. These cells were observed daily by optical microscopy to analyze their morphological characteristics. From the third day in vitro, it was possible to observe translucent cell groupings, similar to the neurospheres, which approximately ranged from 50 µm to 200 µm at seven days in vitro. Throughout the culture period, the neurospheres developed ribbons in their periphery that migrated and communicated with other neurospheres. RT-PCR revealed that the cells expressed the characteristic genes SOX2, NESTIN, and GFAP. In addition to gene expression, the cells were phenotypically marked in the immunofluorescence assay for the proteins Nestin, GFAP, and β-tubulin III, characterizing them as neurospheres. Our results suggest that the spinal cord may be a source of neural stem cells and neural progenitor cells in canine fetuses. These cells may be an interesting option for neurogenesis and neuroregenerative therapy studies.
Collapse
Affiliation(s)
- Sarah Ingrid Pinto Santos
- Department of Veterinary Clinics, State University of Maranhão, Maranhão, Brazil; Faculty of Animal Science and Food Engineering, Sao Paulo University, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Electrophysiological- and Neuropharmacological-Based Benchmarking of Human Induced Pluripotent Stem Cell-Derived and Primary Rodent Neurons. Stem Cell Rev Rep 2021; 18:259-277. [PMID: 34687385 DOI: 10.1007/s12015-021-10263-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-derived neurons are of interest for studying neurological disease mechanisms, developing potential therapies and deepening our understanding of the human nervous system. However, compared to an extensive history of practice with primary rodent neuron cultures, human iPSC-neurons still require more robust characterization of expression of neuronal receptors and ion channels and functional and predictive pharmacological responses. In this study, we differentiated human amniotic fluid-derived iPSCs into a mixed population of neurons (AF-iNs). Functional assessments were performed by evaluating electrophysiological (patch-clamp) properties and the effect of a panel of neuropharmacological agents on spontaneous activity (multi-electrode arrays; MEAs). These electrophysiological data were benchmarked relative to commercially sourced human iPSC-derived neurons (CNS.4U from Ncardia), primary human neurons (ScienCell™) and primary rodent cortical/hippocampal neurons. Patch-clamp whole-cell recordings showed that mature AF-iNs generated repetitive firing of action potentials in response to depolarizations, similar to that of primary rodent cortical/hippocampal neurons, with nearly half of the neurons displaying spontaneous post-synaptic currents. Immunochemical and MEA-based analyses indicated that AF-iNs were composed of functional glutamatergic excitatory and inhibitory GABAergic neurons. Principal component analysis of MEA data indicated that human AF-iN and rat neurons exhibited distinct pharmacological and electrophysiological properties. Collectively, this study establishes a necessary prerequisite for AF-iNs as a human neuron culture model suitable for pharmacological studies.
Collapse
|
29
|
van Husen LS, Katsori AM, Meineke B, Tjernberg LO, Schedin-Weiss S, Elsässer SJ. Engineered Human Induced Pluripotent Cells Enable Genetic Code Expansion in Brain Organoids. Chembiochem 2021; 22:3208-3213. [PMID: 34431592 PMCID: PMC9290828 DOI: 10.1002/cbic.202100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Indexed: 11/07/2022]
Abstract
Human induced pluripotent stem cell (hiPSC) technology has revolutionized studies on human biology. A wide range of cell types and tissue models can be derived from hiPSCs to study complex human diseases. Here, we use PiggyBac-mediated transgenesis to engineer hiPSCs with an expanded genetic code. We demonstrate that genomic integration of expression cassettes for a pyrrolysyl-tRNA synthetase (PylRS), pyrrolysyl-tRNA (PylT) and the target protein of interest enables site-specific incorporation of a non-canonical amino acid (ncAA) in response to an amber stop codon. Neural stem cells, neurons and brain organoids derived from the engineered hiPSCs continue to express the amber suppression machinery and produce ncAA-bearing reporter. The incorporated ncAA can serve as a minimal bioorthogonal handle for further modifications by labeling with fluorescent dyes. Site-directed ncAA mutagenesis will open a wide range of applications to probe and manipulate proteins in brain organoids and other hiPSC-derived cell types and complex tissue models.
Collapse
Affiliation(s)
- Lea S van Husen
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden.,Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Anna-Maria Katsori
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Birthe Meineke
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Lars O Tjernberg
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Sophia Schedin-Weiss
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| |
Collapse
|
30
|
Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021; 22:8769. [PMID: 34445475 PMCID: PMC8395727 DOI: 10.3390/ijms22168769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Collapse
Affiliation(s)
- Anaïs Vignon
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Lucie Salvador-Prince
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, CHU Montpellier, 34095 Montpellier, France;
| | - Véronique Perrier
- INM, University of Montpellier, INSERM, CNRS, 34095 Montpellier, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| |
Collapse
|
31
|
Elghajiji A, Wang X, Weston SD, Zeck G, Hengerer B, Tosh D, Rocha PRF. Electrochemical Impedance Spectroscopy as a Tool for Monitoring Cell Differentiation from Floor Plate Progenitors to Midbrain Neurons in Real Time. Adv Biol (Weinh) 2021; 5:e2100330. [PMID: 33825335 DOI: 10.1002/adbi.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 11/10/2022]
Abstract
Here shows that electrical impedance spectroscopy can be used as a non-invasive and real time tool to probe cell adhesion and differentiation from midbrain floor plate progenitors into midbrain neurons on Au electrodes coated with human laminin. The electrical data and equivalent circuit modeling are consistent with standard microscopy analysis and reveal that within the first 6 hours progenitor cells sediment and attach to the electrode within 40 hours. Between 40 and 120 hours, midbrain progenitor cells differentiate into midbrain neurons, followed by an electrochemically stable maturation phase. The ability to sense and characterize non-invasively and in real time cell differentiation opens up unprecedented avenues for implantable therapies and differentiation strategies.
Collapse
Affiliation(s)
- Aya Elghajiji
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.,Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Xin Wang
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Stephen D Weston
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Guenther Zeck
- Biomedical Electronics and Systems, Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Wien, A-1040, Austria
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Paulo R F Rocha
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.,Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal
| |
Collapse
|
32
|
de Souza Santos R, Gross AR, Sareen D. Hypothalamus and neuroendocrine diseases: The use of human-induced pluripotent stem cells for disease modeling. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:337-350. [PMID: 34238469 DOI: 10.1016/b978-0-12-820683-6.00025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamus, which is part of the brain of all vertebrate animals, is considered the link between the central nervous system (CNS) and (i) the endocrine system via the pituitary gland and (ii) with our organs via the autonomic nervous system. It synthesizes and releases neurohormones, which in turn stimulate or inhibit the secretion of other hormones within the CNS, and sends and receives signals to and from the peripheral nervous and endocrine systems. As the brain region responsible for energy homeostasis, the hypothalamus is the key regulator of thermoregulation, hunger and satiety, circadian rhythms, sleep and fatigue, memory and learning, arousal and reproductive cycling, blood pressure, and heart rate and thus orchestrates complex physiological responses in order to maintain metabolic homeostasis. These critical roles implicate the hypothalamus in neuroendocrine disorders such as obesity, diabetes, anorexia nervosa, bulimia, and others. In this chapter, we focus on the use of human-induced pluripotent stem cells (hiPSCs) and their differentiation into hypothalamic neurons in order to model neuroendocrine disorders such as extreme obesity in a dish. To do so, we discuss important steps of human hypothalamus development, neuroendocrine diseases related to the hypothalamus, multiple protocols to differentiate hiPSCs into hypothalamic neurons, and severe obesity modeling in vitro using hiPSCs-derived hypothalamic neurons.
Collapse
Affiliation(s)
- Roberta de Souza Santos
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States
| | - Andrew R Gross
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States
| | - Dhruv Sareen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States; iPSC Core, David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
33
|
Choi WY, Hwang JH, Cho AN, Lee AJ, Jung I, Cho SW, Kim LK, Kim YJ. NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells. Mol Cells 2020; 43:1011-1022. [PMID: 33293480 PMCID: PMC7772509 DOI: 10.14348/molcells.2020.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATACseq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.
Collapse
Affiliation(s)
- Won-Young Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Ji-Hyun Hwang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Ann-Na Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Andrew J. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
34
|
Xie J, Wettschurack K, Yuan C. Review: In vitro Cell Platform for Understanding Developmental Toxicity. Front Genet 2020; 11:623117. [PMID: 33424939 PMCID: PMC7785584 DOI: 10.3389/fgene.2020.623117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Developmental toxicity and its affiliation to long-term health, particularly neurodegenerative disease (ND) has attracted significant attentions in recent years. There is, however, a significant gap in current models to track longitudinal changes arising from developmental toxicity. The advent of induced pluripotent stem cell (iPSC) derived neuronal culture has allowed for more complex and functionally active in vitro neuronal models. Coupled with recent progress in the detection of ND biomarkers, we are equipped with promising new tools to understand neurotoxicity arising from developmental exposure. This review provides a brief overview of current progress in neuronal culture derived from iPSC and in ND markers.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kyle Wettschurack
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
35
|
Chen ST, Lai WJ, Zhang WJ, Chen QP, Zhou LB, So KF, Shi LL. Insulin-like growth factor 1 partially rescues early developmental defects caused by SHANK2 knockdown in human neurons. Neural Regen Res 2020; 15:2335-2343. [PMID: 32594058 PMCID: PMC7749486 DOI: 10.4103/1673-5374.285002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
SHANK2 is a scaffold protein that serves as a protein anchor at the postsynaptic density in neurons. Genetic variants of SHANK2 are strongly associated with synaptic dysfunction and the pathophysiology of autism spectrum disorder. Recent studies indicate that early neuronal developmental defects play a role in the pathogenesis of autism spectrum disorder, and that insulin-like growth factor 1 has a positive effect on neurite development. To investigate the effects of SHANK2 knockdown on early neuronal development, we generated a sparse culture system using human induced pluripotent stem cells, which then differentiated into neural progenitor cells after 3-14 days in culture, and which were dissociated into single neurons. Neurons in the experimental group were infected with shSHANK2 lentivirus carrying a red fluorescent protein reporter (shSHANK2 group). Control neurons were infected with scrambled shControl lentivirus carrying a red fluorescent protein reporter (shControl group). Neuronal somata and neurites were reconstructed based on the lentiviral red fluorescent protein signal. Developmental dendritic and motility changes in VGLUT1+ glutamatergic neurons and TH+ dopaminergic neurons were then evaluated in both groups. Compared with shControl VGLUT1+ neurons, the dendritic length and arborizations of shSHANK2 VGLUT1+ neurons were shorter and fewer, while cell soma speed was higher. Furthermore, dendritic length and arborization were significantly increased after insulin-like growth factor 1 treatment of shSHANK2 neurons, while cell soma speed remained unaffected. These results suggest that insulin-like growth factor 1 can rescue morphological defects, but not the change in neuronal motility. Collectively, our findings demonstrate that SHANK2 deficiency perturbs early neuronal development, and that IGF1 can partially rescue the neuronal defects caused by SHANK2 knockdown. All experimental procedures and protocols were approved by the Laboratory Animal Ethics Committee of Jinan University, China (approval No. 20170228010) on February 28, 2017.
Collapse
Affiliation(s)
- Shu-Ting Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Wan-Jing Lai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Clinical Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Jia Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Qing-Pei Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Bing Zhou
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Ling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
36
|
Harberts J, Fendler C, Teuber J, Siegmund M, Silva A, Rieck N, Wolpert M, Zierold R, Blick RH. Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS NANO 2020; 14:13091-13102. [PMID: 33058673 DOI: 10.1021/acsnano.0c04640] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jeremy Teuber
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Malte Siegmund
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Aaron Silva
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Niklas Rieck
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Merle Wolpert
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robert H Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Martínez-Larrosa J, Matute-Blanch C, Montalban X, Comabella M. Modelling multiple sclerosis using induced pluripotent stem cells. J Neuroimmunol 2020; 349:577425. [PMID: 33130461 DOI: 10.1016/j.jneuroim.2020.577425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
Multiple Sclerosis (MS) is one of the leading causes of non-traumatic neurological disability among young adults. Due to its complex pathology and the lack of reliable disease models, there are no effective therapies for MS to prevent neurodegeneration or promote neuroprotection, and hence stop disease progression. The emergence of induced pluripotent stem cells (iPSC) has allowed the generation of patient-specific neural cell types for disease modelling, drug screening, and cell therapy. In this review, the challenges related with the use of iPSC-derived cells in MS are discussed, with a special focus on the functional studies performed, limitations and future perspectives.
Collapse
Affiliation(s)
- Júlia Martínez-Larrosa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Matute-Blanch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
38
|
Choi WY, Hwang JH, Lee JY, Cho AN, Lee AJ, Jung I, Cho SW, Kim LK, Kim YJ. Chromatin Interaction Changes during the iPSC-NPC Model to Facilitate the Study of Biologically Significant Genes Involved in Differentiation. Genes (Basel) 2020; 11:E1176. [PMID: 33050006 PMCID: PMC7600115 DOI: 10.3390/genes11101176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Given the difficulties of obtaining diseased cells, differentiation of neurons from patient-specific human induced pluripotent stem cells (iPSCs) with neural progenitor cells (NPCs) as intermediate precursors is of great interest. While cellular and transcriptomic changes during the differentiation process have been tracked, little attention has been given to examining spatial re-organization, which has been revealed to control gene regulation in various cells. To address the regulatory mechanism by 3D chromatin structure during neuronal differentiation, we examined the changes that take place during differentiation process using two cell types that are highly valued in the study of neurodegenerative disease - iPSCs and NPCs. In our study, we used Hi-C, a derivative of chromosome conformation capture that enables unbiased, genome-wide analysis of interaction frequencies in chromatin. We showed that while topologically associated domains remained mostly the same during differentiation, the presence of differential interacting regions in both cell types suggested that spatial organization affects gene regulation of both pluripotency maintenance and neuroectodermal differentiation. Moreover, closer analysis of promoter-promoter pairs suggested that cell fate specification is under the control of cis-regulatory elements. Our results are thus a resourceful addition in benchmarking differentiation protocols and also provide a greater appreciation of NPCs, the common precursors from which required neurons for applications in neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, schizophrenia and spinal cord injuries are utilized.
Collapse
Affiliation(s)
- Won-Young Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea; (W.-Y.C.); (J.-H.H.)
| | - Ji-Hyun Hwang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea; (W.-Y.C.); (J.-H.H.)
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Ann-Na Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (A.-N.C.); (S.-W.C.)
| | - Andrew J Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea; (A.J.L.); (I.J.)
| | - Inkyung Jung
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea; (A.J.L.); (I.J.)
| | - Seung-Woo Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (A.-N.C.); (S.-W.C.)
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea; (W.-Y.C.); (J.-H.H.)
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| |
Collapse
|
39
|
Mateos-Aparicio P, Bello SA, Rodríguez-Moreno A. Challenges in Physiological Phenotyping of hiPSC-Derived Neurons: From 2D Cultures to 3D Brain Organoids. Front Cell Dev Biol 2020; 8:797. [PMID: 32984317 PMCID: PMC7479826 DOI: 10.3389/fcell.2020.00797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neurons derived from human induced pluripotent stem cells (hiPSC-derived neurons) offer novel opportunities for the development of preclinical models of human neurodegenerative diseases (NDDs). Recent advances in the past few years have increased substantially the potential of these techniques and have uncovered new challenges that the field is facing. Here, we outline and discuss challenges related to the functional characterization of hiPSC-derived neurons and propose ways to overcome current difficulties. In particular, the enormous variability among studies in the electrical properties of hiPSC-derived neurons and broad differences in cell maturation are factors that impair reproducibility. Furthermore, we discuss how the use of 3D brain organoids are of help in resolving some difficulties posed by 2D cultures. Finally, we elaborate on recent and future advances that may help to overcome the discussed challenges and speed-up progress in the field.
Collapse
Affiliation(s)
| | | | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
40
|
Arbini A, Gilmore J, King MD, Gorman KM, Krawczyk J, McInerney V, O'Brien T, Shen S, Allen NM. Generation of three induced pluripotent stem cell (iPSC) lines from a patient with developmental epileptic encephalopathy due to the pathogenic KCNA2 variant c.869T>G; p.Leu290Arg (NUIGi052-A, NUIGi052-B, NUIGi052-C). Stem Cell Res 2020; 46:101853. [PMID: 32540721 DOI: 10.1016/j.scr.2020.101853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022] Open
Abstract
De novo pathogenic variants in KCNA2 are implicated in causing a spectrum of human neurological disorders, in particular developmental and epileptic encephalopathies. KCNA2 encodes the voltage-gated delayed rectifier potassium channel Kv1.2, which is vital in regulating neuronal membrane potential and repolarization. In this study, we generated three iPSC lines with non-integrating Sendai viral vectors from dermal fibroblasts of an 11-year old female patient harboring the KCNA2 c.869T>G (p.Leu290Arg) pathogenic variant. The iPSC lines were validated with standardized procedures including the targeted mutation, free of transgene integration, SNP karyotyping, pluripotent gene expression, and differentiation capacity into three embryonic germ layers.
Collapse
Affiliation(s)
- Alessia Arbini
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Ireland
| | - James Gilmore
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Ireland
| | - Mary D King
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple St. Children's University Hospital, Dublin 1, Ireland; School of Medicine and Medical Sciences, University College Dublin, Ireland
| | - Kathleen M Gorman
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple St. Children's University Hospital, Dublin 1, Ireland; School of Medicine and Medical Sciences, University College Dublin, Ireland
| | - Janusz Krawczyk
- Department of Haematology, Galway University Hospital, Ireland
| | - Veronica McInerney
- HRB Clinical Research Facility, National University of Ireland Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Ireland; FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin D02, Ireland.
| | - Nicholas M Allen
- Department of Paediatrics, School of Medicine, National University of Ireland Galway, Ireland; Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Ireland.
| |
Collapse
|
41
|
Cherkashova EA, Leonov GE, Namestnikova DD, Solov'eva AA, Gubskii IL, Bukharova TB, Gubskii LV, Goldstein DV, Yarygin KN. Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases. Bull Exp Biol Med 2020; 168:566-573. [PMID: 32157511 DOI: 10.1007/s10517-020-04754-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The use of induced pluripotent stem cells (IPSC) is a promising approach to the therapy of CNS diseases. The undeniable advantage of IPSC technology is the possibility of obtaining practically all types of somatic cells for autologous transplantation bypassing bioethical problems. The review presents integrative and non-integrative methods for obtaining IPSC and the ways of their in vitro and in vivo application for the study and treatment of neurological diseases.
Collapse
Affiliation(s)
- E A Cherkashova
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - G E Leonov
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia.
| | - D D Namestnikova
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - A A Solov'eva
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - I L Gubskii
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - T B Bukharova
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - L V Gubskii
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia.,N. I. Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - D V Goldstein
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.,Russian Medical Academy for Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
42
|
Perera TH, Lu X, Smith Callahan LA. Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on hiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension. J Funct Biomater 2020; 11:E15. [PMID: 32155839 PMCID: PMC7151619 DOI: 10.3390/jfb11010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
Low neural tissue extracellular matrix (ECM) content has led to the understudy of its effects on neural cells and tissue. Hyaluronic acid (HA) and laminin are major neural ECM components, but direct comparisons of their cellular effects could not be located in the literature. The current study uses human-induced pluripotent stem-cell-derived neural stem cells to assess the effects of HA, laminin, and HA with laminin-derived peptides IKVAV and LRE on cellular morphology, attachment, neurite extension and ECM remodeling. Increased attachment was observed on HA with and without IKVAV and LRE compared to laminin. Cellular morphology and neurite extension were similar on all surfaces. Using a direct binding inhibitor of Cav2.2 voltage gated calcium channel activity, a known binding partner of LRE, reduced attachment on HA with and without IKVAV and LRE and altered cellular morphology on surfaces with laminin or IKVAV and LRE. HA with IKVAV and LRE reduced the fluorescent intensity of fibronectin staining, but did not alter the localization of ECM remodeling enzymes matrix metalloprotease 2 and 9 staining compared to HA. Overall, the data indicate HA, IKVAV and LRE have complementary effects on human-induced pluripotent stem-cell-derived neural stem cell behavior.
Collapse
Affiliation(s)
- T. Hiran Perera
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xi Lu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UTHealth, Houston, TX 77030, USA
| |
Collapse
|
43
|
Zilocchi M, Moutaoufik MT, Jessulat M, Phanse S, Aly KA, Babu M. Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Rev Proteomics 2020; 17:119-136. [PMID: 31986926 DOI: 10.1080/14789450.2020.1723419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Mitochondria (mt) are protein-protein interaction (PPI) hubs in the cell where mt-localized and associated proteins interact in a fashion critical for cell fitness. Altered mtPPIs are linked to neurodegenerative disorders (NDs) and drivers of pathological associations to mediate ND progression. Mapping altered mtPPIs will reveal how mt dysfunction is linked to NDs.Areas covered: This review discusses how database sources reflect on the number of mt protein or interaction predictions, and serves as an update on mtPPIs in mt dynamics and homeostasis. Emphasis is given to mRNA expression profiles for mt proteins in human tissues, cellular models relevant to NDs, and altered mtPPIs in NDs such as Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD).Expert opinion: We highlight the scarcity of biomarkers to improve diagnostic accuracy and tracking of ND progression, obstacles in recapitulating NDs using human cellular models to underpin the pathophysiological mechanisms of disease, and the shortage of mt protein interactome reference database(s) of neuronal cells. These bottlenecks are addressed by improvements in induced pluripotent stem cell creation and culturing, patient-derived 3D brain organoids to recapitulate structural arrangements of the brain, and cell sorting to elucidate mt proteome disparities between cell types.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
44
|
Traxler L, Edenhofer F, Mertens J. Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett 2019; 593:3316-3337. [PMID: 31715002 PMCID: PMC6907729 DOI: 10.1002/1873-3468.13678] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Within just over a decade, human reprogramming-based disease modeling has developed from a rather outlandish idea into an essential part of disease research. While iPSCs are a valuable tool for modeling developmental and monogenetic disorders, their rejuvenated identity poses limitations for modeling age-associated diseases. Direct cell-type conversion of fibroblasts into induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of cellular aging. iNs are thus advantageous for modeling diseases that possess strong age-related and epigenetic contributions and can complement iPSC-based strategies for disease modeling. In this review, we provide an overview of the state of the art of direct iN conversion and describe the key epigenetic, transcriptomic, and metabolic changes that occur in converting fibroblasts. Furthermore, we summarize new insights into this fascinating process, particularly focusing on the rapidly changing criteria used to define and characterize in vitro-born human neurons. Finally, we discuss the unique features that distinguish iNs from other reprogramming-based neuronal cell models and how iNs are relevant to disease modeling.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Frank Edenhofer
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Jerome Mertens
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|
45
|
Ojeda J, Ávila A. Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Front Synaptic Neurosci 2019; 11:33. [PMID: 31824293 PMCID: PMC6881277 DOI: 10.3389/fnsyn.2019.00033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The development of the brain is shaped by a myriad of factors among which neurotransmitters play remarkable roles before and during the formation and maturation of synaptic circuits. Cellular processes such as neurogenesis, morphological development, synaptogenesis and maturation of synapses are temporary and spatially regulated by the local or distal influence of neurotransmitters in the developing cortex. Thus, research on this area has contributed to the understanding of fundamental mechanisms of brain development and to shed light on the etiology of various human neurodevelopmental disorders such as autism and Rett syndrome (RTT), among others. Recently, the field of neuroscience has been shaken by an explosive advance of experimental approaches linked to the use of induced pluripotent stem cells and reprogrammed neurons. This new technology has allowed researchers for the first time to model in the lab the unique events that take place during early human brain development and to explore the mechanisms that cause synaptopathies. In this context, the role of neurotransmitters during early stages of cortex development is beginning to be re-evaluated and a revision of the state of the art has become necessary in a time when new protocols are being worked out to differentiate stem cells into functional neurons. New perspectives on reconsidering the function of neurotransmitters include opportunities for methodological advances, a better understanding of the origin of mental disorders and the potential for development of new treatments.
Collapse
Affiliation(s)
- Jorge Ojeda
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
46
|
Taga A, Dastgheyb R, Habela C, Joseph J, Richard JP, Gross SK, Lauria G, Lee G, Haughey N, Maragakis NJ. Role of Human-Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System. Stem Cells Transl Med 2019; 8:1272-1285. [PMID: 31631575 PMCID: PMC6877769 DOI: 10.1002/sctm.19-0147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
The ability to generate human‐induced pluripotent stem cell (hiPSC)‐derived neural cells displaying region‐specific phenotypes is of particular interest for modeling central nervous system biology in vitro. We describe a unique method by which spinal cord hiPSC‐derived astrocytes (hiPSC‐A) are cultured with spinal cord hiPSC‐derived motor neurons (hiPSC‐MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC‐A enhance hiPSC‐MN electrophysiological maturation in a time‐dependent fashion. The sequence of plating, density, and age in which hiPSC‐A are cocultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to coculture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron crosstalk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity, which confirm hiPSC‐MN maturation. These findings are supported by immunocytochemistry and real‐time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and coculture with neurons influences astrocyte maturation as well. Taken together, these data indicate that in a human in vitro spinal cord culture system, astrocytes support hiPSC‐MN maturation in a time‐dependent and species‐specific manner and suggest a closer approximation of in vivo conditions. stem cells translational medicine2019;8:1272&1285 We describe a fully human, spinal cord‐specific, coculture platform with human‐induced pluripotent stem cell‐derived motor neurons and astrocytes for multielectrode array recording. We show that human‐induced pluripotent stem cell‐derived motor neurons/human‐induced pluripotent stem cell‐derived astrocytes bidirectional morphological and molecular maturation is reflected by electrophysiological recordings with multielectrode array recording.![]()
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christa Habela
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Joseph
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sarah K Gross
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giuseppe Lauria
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
47
|
Poulin H, Martineau L, Racine V, Puymirat J, Chahine M. Differentiation of lymphoblastoid-derived iPSCs into functional cardiomyocytes, neurons and myoblasts. Biochem Biophys Res Commun 2019; 516:222-228. [DOI: 10.1016/j.bbrc.2019.05.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
|
48
|
Yu C, Xia K, Gong Z, Ying L, Shu J, Zhang F, Chen Q, Li F, Liang C. The Application of Neural Stem/Progenitor Cells for Regenerative Therapy of Spinal Cord Injury. Curr Stem Cell Res Ther 2019; 14:495-503. [PMID: 30924422 DOI: 10.2174/1574888x14666190329095638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) is a devastating event, and there are still no effective therapies currently
available. Neural stem cells (NSCs) have gained increasing attention as promising regenerative
therapy of SCI. NSCs based therapies of various neural diseases in animal models and clinical trials
have been widely investigated. In this review we aim to summarize the development and recent progress
in the application of NSCs in cell transplantation therapy for SCI. After brief introduction on
sequential genetic steps regulating spinal cord development in vivo, we describe current experimental
approaches for neural induction of NSCs in vitro. In particular, we focus on NSCs induced from pluripotent
stem cells (PSCs). Finally, we highlight recent progress on the NSCs, which show great promise
in the application to regeneration therapy for SCI.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Liwei Ying
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Jiawei Shu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Feng Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
49
|
Sharlow ER, Koseoglu MM, Bloom GS, Lazo JS. The Promise and Perils of Compound Discovery Screening with Inducible Pluripotent Cell-Derived Neurons. Assay Drug Dev Technol 2019; 18:97-103. [PMID: 31095406 DOI: 10.1089/adt.2019.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurological diseases comprise more than a thousand ailments that adversely affect the brain and nervous system. When grouped together, these neurological conditions impact an estimated 100 million individuals in the United States and up to a billion people worldwide, making drug discovery efforts imperative. However, recent research and development efforts for these neurological diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, have been exceedingly disappointing and typify the challenges associated with translating in vitro and cell-based discoveries to successful preclinical models and subsequent human clinical trials. Our viewpoint is that neuronal progenitor cells and neurons derived from inducible pluripotent stem cells afford an innovative translational bridge, with higher pathological relevancy than previous cellular models. We outline some of the opportunities and challenges associated with their evolving usage in drug discovery and development.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia.,Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, Virginia
| | - Mehmet Murat Koseoglu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia.,Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, Virginia
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, Virginia.,Department of Cell Biology, University of Virginia, Charlottesville, Virginia.,Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia.,Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, Virginia.,Department of Chemistry, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
50
|
Huang G, Chen S, Chen X, Zheng J, Xu Z, Doostparast Torshizi A, Gong S, Chen Q, Ma X, Yu J, Zhou L, Qiu S, Wang K, Shi L. Uncovering the Functional Link Between SHANK3 Deletions and Deficiency in Neurodevelopment Using iPSC-Derived Human Neurons. Front Neuroanat 2019; 13:23. [PMID: 30918484 PMCID: PMC6424902 DOI: 10.3389/fnana.2019.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/07/2019] [Indexed: 11/13/2022] Open
Abstract
SHANK3 mutations, including de novo deletions, have been associated with autism spectrum disorders (ASD). However, the effects of SHANK3 loss of function on neurodevelopment remain poorly understood. Here we generated human induced pluripotent stem cells (iPSC) in vitro, followed by neuro-differentiation and lentivirus-mediated shRNA expression to evaluate how SHANK3 knockdown affects the in vitro neurodevelopmental process at multiple time points (up to 4 weeks). We found that SHANK3 knockdown impaired both early stage of neuronal development and mature neuronal function, as demonstrated by a reduction in neuronal soma size, growth cone area, neurite length and branch numbers. Notably, electrophysiology analyses showed defects in excitatory and inhibitory synaptic transmission. Furthermore, transcriptome analyses revealed that multiple biological pathways related to neuron projection, motility and regulation of neurogenesis were disrupted in cells with SHANK3 knockdown. In conclusion, utilizing a human iPSC-based neural induction model, this study presented combined morphological, electrophysiological and transcription evidence that support that SHANK3 as an intrinsic, cell autonomous factor that controls cellular function development in human neurons.
Collapse
Affiliation(s)
- Guanqun Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Department of Basic Medical Sciences, College of Medicine - Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Shuting Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Xiaoxia Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Jiajun Zheng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Zhuoran Xu
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| | - Abolfazl Doostparast Torshizi
- Department of Biomedical Informatics, Columbia University, New York, NY, United States.,Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Siyi Gong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Qingpei Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Xiaokuang Ma
- Department of Basic Medical Sciences, College of Medicine - Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Jiandong Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, College of Medicine - Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Kai Wang
- Department of Biomedical Informatics, Columbia University, New York, NY, United States.,Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lingling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|