1
|
Moccia F, Totaro A, Guerra G, Testa G. Ca 2+ Signaling in Cardiac Fibroblasts: An Emerging Signaling Pathway Driving Fibrotic Remodeling in Cardiac Disorders. Biomedicines 2025; 13:734. [PMID: 40149710 PMCID: PMC11940070 DOI: 10.3390/biomedicines13030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiac fibrosis is a scarring event that occurs in the myocardium in response to multiple cardiovascular disorders, such as acute myocardial infarction (AMI), ischemic cardiomyopathy, dilated cardiomyopathy, hypertensive heart disease, inflammatory heart disease, diabetic cardiomyopathy, and aortic stenosis. Fibrotic remodeling is mainly sustained by the differentiation of fibroblasts into myofibroblasts, which synthesize and secrete most of the extracellular matrix (ECM) proteins. An increase in the intracellular Ca2+ concentration ([Ca2+]i) in cardiac fibroblasts is emerging as a critical mediator of the fibrogenic signaling cascade. Herein, we review the mechanisms that may shape intracellular Ca2+ signals involved in fibroblast transdifferentiation into myofibroblasts. We focus our attention on the functional interplay between inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) and store-operated Ca2+ entry (SOCE). In accordance with this, InsP3Rs and SOCE drive the Ca2+ response elicited by Gq-protein coupled receptors (GqPCRs) that promote fibrotic remodeling. Then, we describe the additional mechanisms that sustain extracellular Ca2+ entry, including receptor-operated Ca2+ entry (ROCE), P2X receptors, Transient Receptor Potential (TRP) channels, and Piezo1 channels. In parallel, we discuss the pharmacological manipulation of the Ca2+ handling machinery as a promising approach to mitigate or reverse fibrotic remodeling in cardiac disorders.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.T.); (G.G.); (G.T.)
| | | | | | | |
Collapse
|
2
|
Scorza S, Brunetti V, Scarpellino G, Certini M, Gerbino A, Moccia F. Targeting the Ca 2+ signaling toolkit as an alternative strategy to mitigate SARS-CoV-2-induced cardiovascular adverse events. Vascul Pharmacol 2025; 158:107458. [PMID: 39701403 DOI: 10.1016/j.vph.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ signaling events are essential for maintaining cardiovascular health, regulating critical functions in both endothelial and cardiac cells. SARS-CoV-2 infection impinges this delicate balance, leading to severe cardiovascular complications. SARS-CoV-2 binds to the ACE2 receptor on endothelial and cardiomyocyte surfaces, triggering abnormal increases in intracellular Ca2+ levels that promote endothelial dysfunction, inflammation, and hypercoagulation. In endothelial cells, this dysregulation activates a pro-inflammatory state and compromises vascular integrity. In cardiomyocytes, SARS-CoV-2-induced Ca2+ imbalances contribute to arrhythmias and heart failure by promoting abnormal Ca2+ cycling and energy metabolism disruptions. Additionally, the cytokine storm associated with COVID-19 amplifies these effects by further altering Ca2+ handling, enhancing inflammatory responses, and promoting thrombosis. Targeting Ca2+ channels, particularly endolysosomal two-pore channels, represents a promising therapeutic approach to counteract SARS-CoV-2's effects on Ca2+ dynamics. Several FDA-approved drugs that modulate Ca2+ signaling could be repurposed to prevent viral entry and mitigate cardiovascular damage. Understanding these Ca2+-related mechanisms offers valuable insights for developing treatments to reduce cardiovascular risk in COVID-19 and potentially future viral infections impacting the cardiovascular system.
Collapse
Affiliation(s)
- Simona Scorza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maira Certini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| |
Collapse
|
3
|
Zhao Y, Chen C, Xiao X, Fang L, Cheng X, Chang Y, Peng F, Wang J, Shen S, Wu S, Huang Y, Cai W, Zhou L, Qiu W. Teriflunomide Promotes Blood-Brain Barrier Integrity by Upregulating Claudin-1 via the Wnt/β-catenin Signaling Pathway in Multiple Sclerosis. Mol Neurobiol 2024; 61:1936-1952. [PMID: 37819429 DOI: 10.1007/s12035-023-03655-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The blood-brain barrier (BBB) and tight junction (TJ) proteins maintain the homeostasis of the central nervous system (CNS). The dysfunction of BBB allows peripheral T cells infiltration into CNS and contributes to the pathophysiology of multiple sclerosis (MS). Teriflunomide is an approved drug for the treatment of MS by suppressing lymphocytes proliferation. However, whether teriflunomide has a protective effect on BBB in MS is not understood. We found that teriflunomide restored the injured BBB in the EAE model. Furthermore, teriflunomide treatment over 6 months improved BBB permeability and reduced peripheral leakage of CNS proteins in MS patients. Teriflunomide increased human brain microvascular endothelial cell (HBMEC) viability and promoted BBB integrity in an in vitro cell model. The TJ protein claudin-1 was upregulated by teriflunomide and responsible for the protective effect on BBB. Furthermore, RNA sequencing revealed that the Wnt signaling pathway was affected by teriflunomide. The activation of Wnt signaling pathway increased claudin-1 expression and reduced BBB damage in cell model and EAE rats. Our study demonstrated that teriflunomide upregulated the expression of the tight junction protein claudin-1 in endothelial cells and promoted the integrity of BBB through Wnt signaling pathway.
Collapse
Affiliation(s)
- Yipeng Zhao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiuqing Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Ling Fang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shishi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shilin Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yiying Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Linli Zhou
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
5
|
Norman K, Hemmings KE, Shawer H, Appleby HL, Burnett AJ, Hamzah N, Gosain R, Woodhouse EM, Beech DJ, Foster R, Bailey MA. Side-by-side comparison of published small molecule inhibitors against thapsigargin-induced store-operated Ca2+ entry in HEK293 cells. PLoS One 2024; 19:e0296065. [PMID: 38261554 PMCID: PMC10805320 DOI: 10.1371/journal.pone.0296065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Calcium (Ca2+) is a key second messenger in eukaryotes, with store-operated Ca2+ entry (SOCE) being the main source of Ca2+ influx into non-excitable cells. ORAI1 is a highly Ca2+-selective plasma membrane channel that encodes SOCE. It is ubiquitously expressed in mammals and has been implicated in numerous diseases, including cardiovascular disease and cancer. A number of small molecules have been identified as inhibitors of SOCE with a variety of potential therapeutic uses proposed and validated in vitro and in vivo. These encompass both nonselective Ca2+ channel inhibitors and targeted selective inhibitors of SOCE. Inhibition of SOCE can be quantified both directly and indirectly with a variety of assay setups, making an accurate comparison of the activity of different SOCE inhibitors challenging. We have used a fluorescence based Ca2+ addback assay in native HEK293 cells to generate dose-response data for many published SOCE inhibitors. We were able to directly compare potency. Most compounds were validated with only minor and expected variations in potency, but some were not. This could be due to differences in assay setup relating to the mechanism of action of the inhibitors and highlights the value of a singular approach to compare these compounds, as well as the general need for biorthogonal validation of novel bioactive compounds. The compounds observed to be the most potent against SOCE in our study were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5), GSK5503A (8), CM4620 (14) and RO2959 (7). These represent the most promising candidates for future development of SOCE inhibitors for therapeutic use.
Collapse
Affiliation(s)
- Katherine Norman
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Karen E. Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Heba Shawer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Hollie L. Appleby
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Alan J. Burnett
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nurasyikin Hamzah
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Rajendra Gosain
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Emily M. Woodhouse
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David J. Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Marc A. Bailey
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
6
|
Novikova IV, Grekhnev DA, Oshkolova A, Nomerovskaya MA, Kolesnikov DO, Krisanova AV, Yuskovets VN, Chernov NM, Yakovlev IP, Kaznacheyeva EV, Vigont VA. 1,2,3,4-dithiadiazole derivatives as a novel class of calcium signaling modulators. Biochem Biophys Res Commun 2024; 691:149333. [PMID: 38043197 DOI: 10.1016/j.bbrc.2023.149333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Aberrant calcium signaling is associated with a diverse range of pathologies, including cardiovascular and neurodegenerative diseases, diabetes, cancer, etc… So, therapeutic strategies based on the correction of pathological calcium signaling are becoming extremely in demand. Thus, the development of novel calcium signaling modulators remains highly actual. Previously we found that 1,2,3,4-dithiadiazole derivative 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide can strongly reduce calcium uptake through store-operated calcium (SOC) channels. Here we tested several structurally related compounds and found that most of them can effectively affect SOC channels and attenuate calcium content in the endoplasmic reticulum, thus, establishing 1,2,3,4-dithiadiazoles as a novel class of SOC channel inhibitors. Comparing different 1,2,3,4-dithiadiazole derivatives we showed that previously published 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide and newly tested 3-(3,5-difluorophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole 2-oxide demonstrated the highest efficacy of SOC entry reduction, supposing the important role of electron-withdrawing substituents to realize the inhibitory activity of 1,2,3,4-dithiadiazoles.
Collapse
Affiliation(s)
- Iuliia V Novikova
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Dmitriy A Grekhnev
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Arina Oshkolova
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Maria A Nomerovskaya
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Dmitrii O Kolesnikov
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Alena V Krisanova
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Valeriy N Yuskovets
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st. 14, Saint-Petersburg, 197376, Russian Federation
| | - Nikita M Chernov
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st. 14, Saint-Petersburg, 197376, Russian Federation
| | - Igor P Yakovlev
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st. 14, Saint-Petersburg, 197376, Russian Federation
| | - Elena V Kaznacheyeva
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Vladimir A Vigont
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation.
| |
Collapse
|
7
|
Mignen O, Vannier JP, Schneider P, Renaudineau Y, Abdoul-Azize S. Orai1 Ca 2+ channel modulators as therapeutic tools for treating cancer: Emerging evidence! Biochem Pharmacol 2024; 219:115955. [PMID: 38040093 DOI: 10.1016/j.bcp.2023.115955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In non-excitable cells, Orai proteins represent the main channel for Store-Operated Calcium Entry (SOCE), and also mediate various store-independent Calcium Entry (SICE) pathways. Deregulation of these pathways contribute to increased tumor cell proliferation, migration, metastasis, and angiogenesis. Among Orais, Orai1 is an attractive therapeutic target explaining the development of specific modulators. Therapeutic trials using Orai1 channel inhibitors have been evaluated for treating diverse diseases such as psoriasis and acute pancreatitis, and emerging data suggest that Orai1 channel modulators may be beneficial for cancer treatment. This review discusses herein the importance of Orai1 channel modulators as potential therapeutic tools and the added value of these modulators for treating cancer.
Collapse
Affiliation(s)
| | | | | | - Yves Renaudineau
- Laboratory of Immunology, CHU Purpan Toulouse, INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Souleymane Abdoul-Azize
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France; Normandie Univ., UNIROUEN, INSERM, U1234, Rouen 76000, France.
| |
Collapse
|
8
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Shen M, Sirois CL, Guo Y, Li M, Dong Q, Méndez-Albelo NM, Gao Y, Khullar S, Kissel L, Sandoval SO, Wolkoff NE, Huang SX, Xu Z, Bryan JE, Contractor AM, Korabelnikov T, Glass IA, Doherty D, Levine JE, Sousa AMM, Chang Q, Bhattacharyya A, Wang D, Werling DM, Zhao X. Species-specific FMRP regulation of RACK1 is critical for prenatal cortical development. Neuron 2023; 111:3988-4005.e11. [PMID: 37820724 PMCID: PMC10841112 DOI: 10.1016/j.neuron.2023.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.
Collapse
Affiliation(s)
- Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lee Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sabrina X Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jonathan E Bryan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya M Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ian A Glass
- Birth Defects Research Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Dan Doherty
- Birth Defects Research Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Jon E Levine
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Donna M Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
11
|
Baranes K, Hastings N, Rahman S, Poulin N, Tavares JM, Kuan W, Syed N, Kunz M, Blighe K, Belgard TG, Kotter MRN. Transcription factor combinations that define human astrocyte identity encode significant variation of maturity and function. Glia 2023; 71:1870-1889. [PMID: 37029764 PMCID: PMC10952910 DOI: 10.1002/glia.24372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Increasing evidence indicates that cellular identity can be reduced to the distinct gene regulatory networks controlled by transcription factors (TFs). However, redundancy exists in these states as different combinations of TFs can induce broadly similar cell types. We previously demonstrated that by overcoming gene silencing, it is possible to deterministically reprogram human pluripotent stem cells directly into cell types of various lineages. In the present study we leverage the consistency and precision of our approach to explore four different TF combinations encoding astrocyte identity, based on previously published reports. Analysis of the resulting induced astrocytes (iAs) demonstrated that all four cassettes generate cells with the typical morphology of in vitro astrocytes, which expressed astrocyte-specific markers. The transcriptional profiles of all four iAs clustered tightly together and displayed similarities with mature human astrocytes, although maturity levels differed between cells. Importantly, we found that the TF cassettes induced iAs with distinct differences with regards to their cytokine response and calcium signaling. In vivo transplantation of selected iAs into immunocompromised rat brains demonstrated long term stability and integration. In conclusion, all four TF combinations were able to induce stable astrocyte-like cells that were morphologically similar but showed subtle differences with respect to their transcriptome. These subtle differences translated into distinct differences with regards to cell function, that could be related to maturation state and/or regional identity of the resulting cells. This insight opens an opportunity to precision-engineer cells to meet functional requirements, for example, in the context of therapeutic cell transplantation.
Collapse
Affiliation(s)
- Koby Baranes
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Nataly Hastings
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Saifur Rahman
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Noah Poulin
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Joana M. Tavares
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Wei‐Li Kuan
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - Najeeb Syed
- The Bioinformatics CROSanfordFlorida32771USA
| | - Meik Kunz
- The Bioinformatics CROSanfordFlorida32771USA
| | | | | | - Mark R. N. Kotter
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| |
Collapse
|
12
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
13
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
14
|
The STIM1/2-Regulated Calcium Homeostasis Is Impaired in Hippocampal Neurons of the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314810. [PMID: 36499137 PMCID: PMC9738900 DOI: 10.3390/ijms232314810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of age-related dementia. Neuronal calcium homeostasis impairment may contribute to AD. Here we demonstrated that voltage-gated calcium (VGC) entry and store-operated calcium (SOC) entry regulated by calcium sensors of intracellular calcium stores STIM proteins are affected in hippocampal neurons of the 5xFAD transgenic mouse model. We observed excessive SOC entry in 5xFAD mouse neurons, mediated by STIM1 and STIM2 proteins with increased STIM1 contribution. There were no significant changes in cytoplasmic calcium level, endoplasmic reticulum (ER) bulk calcium levels, or expression levels of STIM1 or STIM2 proteins. The potent inhibitor BTP-2 and the FDA-approved drug leflunomide reduced SOC entry in 5xFAD neurons. In turn, excessive voltage-gated calcium entry was sensitive to the inhibitor of L-type calcium channels nifedipine but not to the T-type channels inhibitor ML218. Interestingly, the depolarization-induced calcium entry mediated by VGC channels in 5xFAD neurons was dependent on STIM2 but not STIM1 protein in cells with replete Ca2+ stores. The result gives new evidence on the VGC channel modulation by STIM2. Overall, the data demonstrate the changes in calcium signaling of hippocampal neurons of the AD mouse model, which precede amyloid plaque accumulation or other signs of pathology manifestation.
Collapse
|
15
|
Droubi A, Wallis C, Anderson KE, Rahman S, de Sa A, Rahman T, Stephens LR, Hawkins PT, Lowe M. The inositol 5-phosphatase INPP5B regulates B cell receptor clustering and signaling. J Cell Biol 2022; 221:e202112018. [PMID: 35878408 PMCID: PMC9351708 DOI: 10.1083/jcb.202112018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.
Collapse
Affiliation(s)
- Alaa Droubi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Connor Wallis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Saifur Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Aloka de Sa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Dithiadiazole derivative 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide – Novel modulator of store-operated calcium entry. Biochem Biophys Res Commun 2022; 626:38-43. [PMID: 35981420 DOI: 10.1016/j.bbrc.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
17
|
Nehme A, Ghahramanpouri M, Ahmed I, Golsorkhi M, Thomas N, Munoz K, Abdipour A, Tang X, Wilson SM, Wasnik S, Baylink DJ. Combination therapy of insulin-like growth factor I and BTP-2 markedly improves lipopolysaccharide-induced liver injury in mice. FASEB J 2022; 36:e22444. [PMID: 35839071 DOI: 10.1096/fj.202200227rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023]
Abstract
Acute liver injury is a common disease without effective therapy in humans. We sought to evaluate a combination therapy of insulin-like growth factor 1 (IGF-I) and BTP-2 in a mouse liver injury model induced by lipopolysaccharide (LPS). We chose this model because LPS is known to increase the expression of the transcription factors related to systemic inflammation (i.e., NFκB, CREB, AP1, IRF 3, and NFAT), which depends on calcium signaling. Notably, these transcription factors all have pleiotropic effects and account for the other observed changes in tissue damage parameters. Additionally, LPS is also known to increase the genes associated with a tissue injury (e.g., NGAL, SOD, caspase 3, and type 1 collagen) and systemic expression of pro-inflammatory cytokines. Finally, LPS compromises vascular integrity. Accordingly, IGF-I was selected because its serum levels were shown to decrease during systemic inflammation. BTP-2 was chosen because it was known to decrease cytosolic calcium, which is increased by LPS. This current study showed that IGF-I, BTP-2, or a combination therapy significantly altered and normalized all of the aforementioned LPS-induced gene changes. Additionally, our therapies reduced the vascular leakage caused by LPS, as evidenced by the Evans blue dye technique. Furthermore, histopathologic studies showed that IGF-I decreased the proportion of hepatocytes with ballooning degeneration. Finally, IGF-I also increased the expression of the hepatic growth factor (HGF) and the receptor for the epidermal growth factor (EGFR), markers of liver regeneration. Collectively, our data suggest that a combination of IGF-I and BTP-2 is a promising therapy for acute liver injury.
Collapse
Affiliation(s)
- Antoine Nehme
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Mahdis Ghahramanpouri
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Iqbal Ahmed
- Pathology and Laboratory Medicine, Loma Linda University, Loma Linda, California, USA
| | - Mohadese Golsorkhi
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | | | - Kevin Munoz
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Amir Abdipour
- Division of Nephrology, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Xiaolei Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Sean M Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
18
|
Eustace AJ, Lee MJ, Colley G, Roban J, Downing T, Buchanan PJ. Aberrant calcium signalling downstream of mutations in TP53 and the PI3K/AKT pathway genes promotes disease progression and therapy resistance in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:560-576. [PMID: 36176752 PMCID: PMC9511797 DOI: 10.20517/cdr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Alex J. Eustace
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Grace Colley
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Jack Roban
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Tim Downing
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Paul J. Buchanan
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin D9, Ireland
| |
Collapse
|
19
|
Hegde M, Daimary UD, Jose S, Sajeev A, Chinnathambi A, Alharbi SA, Shakibaei M, Kunnumakkara AB. Differential Expression of Genes Regulating Store-operated Calcium Entry in Conjunction With Mitochondrial Dynamics as Potential Biomarkers for Cancer: A Single-Cell RNA Analysis. Front Genet 2022; 13:866473. [PMID: 35711942 PMCID: PMC9197647 DOI: 10.3389/fgene.2022.866473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular concentration of calcium levels is crucial for cell signaling, homeostasis, and in the pathology of diseases including cancer. Agonist-induced entry of calcium ions into the non-excitable cells is mediated by store-operated calcium channels (SOCs). This pathway is activated by the release of calcium ions from the endoplasmic reticulum and further regulated by the calcium uptake through mitochondria leading to calcium-dependent inactivation of calcium-release activated calcium channels (CARC). SOCs including stromal interaction molecules (STIM) and ORAI proteins have been implicated in tumor growth, progression, and metastasis. In the present study, we analyzed the mRNA and protein expression of genes mediating SOCs-STIM1, STIM2, ORAI1, ORAI2, ORAI3, TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPM1, and TRPM7 in head and neck squamous cell cancer (HNSC) patients using TCGA and CPTAC analysis. Further, our in silico analysis showed a significant correlation between the expression of SOCs and genes involved in the mitochondrial dynamics (MDGs) both at mRNA and protein levels. Protein-protein docking results showed lower binding energy for SOCs with MDGs. Subsequently, we validated these results using gene expression and single-cell RNA sequencing datasets retrieved from Gene Expression Omnibus (GEO). Single-cell gene expression analysis of HNSC tumor tissues revealed that SOCs expression is remarkably associated with the MDGs expression in both cancer and fibroblast cells.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandra Jose
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
20
|
CIC-39Na reverses the thrombocytopenia that characterizes tubular aggregate myopathy. Blood Adv 2022; 6:4471-4484. [PMID: 35696753 DOI: 10.1182/bloodadvances.2021006378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/05/2022] [Indexed: 11/20/2022] Open
Abstract
Store-Operated Ca2+-Entry is a cellular mechanism that governs the replenishment of intracellular stores of Ca2+ upon depletion caused by the opening of intracellular Ca2+-channels. Gain-of-function mutations of the two key proteins of Store-Operated Ca2+-Entry, STIM1 and ORAI1, are associated with several ultra-rare diseases clustered as tubular aggregate myopathies. Our group has previously demonstrated that a mouse model bearing the STIM1 p.I115F mutation recapitulates the main features of the STIM1 gain-of-function disorders: muscle weakness and thrombocytopenia. Similar findings have been found in other mice bearing different mutations on STIM1. At present, no valid treatment is available for these patients. In the present contribution, we report that CIC-39Na, a Store-Operated Ca2+-Entry inhibitor, restores platelet number and counteracts the abnormal bleeding that characterizes these mice. Subtle differences in thrombopoiesis were observed in STIM1 p.I115F mice, but the main difference between wild-type and STIM1 p.I115F mice was in platelet clearance and in the levels of platelet cytosolic basal Ca2+. Both were restored upon treatment of animals with CIC-39Na. This finding paves the way to a pharmacological treatment strategy for thrombocytopenia in tubular aggregate myopathy patients.
Collapse
|
21
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
22
|
Faris P, Casali C, Negri S, Iengo L, Biggiogera M, Maione AS, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells. Front Cell Dev Biol 2022; 10:874043. [PMID: 35392169 PMCID: PMC8980055 DOI: 10.3389/fcell.2022.874043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced lysosomal Ca2+ release may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release (CICR) mechanism. NAADP-induced intracellular Ca2+ signals were shown to modulate a growing number of functions in the cardiovascular system, but their occurrence and role in cardiac mesenchymal stromal cells (C-MSCs) is still unknown. Herein, we found that exogenous delivery of NAADP-AM induced a robust Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store with Gly-Phe β-naphthylamide, nigericin, and bafilomycin A1, and blocking TPC1 and TPC2, that are both expressed at protein level in C-MSCs. Furthermore, NAADP-induced EL Ca2+ release resulted in the Ca2+-dependent recruitment of ER-embedded InsP3Rs and SOCE activation. Transmission electron microscopy revealed clearly visible membrane contact sites between lysosome and ER membranes, which are predicted to provide the sub-cellular framework for lysosomal Ca2+ to recruit ER-embedded InsP3Rs through CICR. NAADP-induced EL Ca2+ mobilization via EL TPC was found to trigger the intracellular Ca2+ signals whereby Fetal Bovine Serum (FBS) induces C-MSC proliferation. Furthermore, NAADP-evoked Ca2+ release was required to mediate FBS-induced extracellular signal-regulated kinase (ERK), but not Akt, phosphorylation in C-MSCs. These finding support the notion that NAADP-induced TPC activation could be targeted to boost proliferation in C-MSCs and pave the way for future studies assessing whether aberrant NAADP signaling in C-MSCs could be involved in cardiac disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lara Iengo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| |
Collapse
|
23
|
Kabiraj P, Grund EM, Clarkson BDS, Johnson RK, LaFrance-Corey RG, Lucchinetti CF, Howe CL. Teriflunomide shifts the astrocytic bioenergetic profile from oxidative metabolism to glycolysis and attenuates TNFα-induced inflammatory responses. Sci Rep 2022; 12:3049. [PMID: 35197552 PMCID: PMC8866412 DOI: 10.1038/s41598-022-07024-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 μM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.
Collapse
Affiliation(s)
- Parijat Kabiraj
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ethan M Grund
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Graduate School Neuroscience PhD Program and Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Benjamin D S Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Renee K Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Reghann G LaFrance-Corey
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Translational Neuroimmunology Lab, Mayo Clinic, Guggenheim 1542C, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Experimental Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
24
|
Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022; 10:biomedicines10010108. [PMID: 35052788 PMCID: PMC8773075 DOI: 10.3390/biomedicines10010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatitis and alcoholic pancreatitis are serious health concerns with an urgent need for effective treatment strategies. Alcohol is a known etiological factor for pancreatitis, including acute pancreatitis (AP) and chronic pancreatitis (CP). Excessive alcohol consumption induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) stress and adaptive unfolded protein response (UPR). ER stress results from the accumulation of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic pancreatitis. Here, we summarize the possible mechanisms by which ER stress contributes to alcoholic pancreatitis. We also discuss potential approaches targeting ER stress and UPR in developing novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Wen Wen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Jia Luo
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Correspondence: ; Tel.: +1-319-335-2256
| |
Collapse
|
25
|
Conte E, Imbrici P, Mantuano P, Coppola MA, Camerino GM, De Luca A, Liantonio A. Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells 2021; 10:2722. [PMID: 34685702 PMCID: PMC8534495 DOI: 10.3390/cells10102722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short- and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| | | | | | | | | | | | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| |
Collapse
|
26
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
27
|
Kamiya C, Odagiri K, Hakamata A, Sakurada R, Inui N, Watanabe H. Omeprazole suppresses endothelial calcium response and eNOS Ser1177 phosphorylation in porcine aortic endothelial cells. Mol Biol Rep 2021; 48:5503-5511. [PMID: 34291395 DOI: 10.1007/s11033-021-06561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although high doses of proton pump inhibitors can elicit an anticancer effect, this strategy may impair vascular biology. In particular, their effects on endothelial Ca2+ signaling and production of endothelium-derived relaxing factor (EDRF) are unknown. To this end, we investigated the effects of high dosages of omeprazole on endothelial Ca2+ responses and EDRF production in primary cultured porcine aortic endothelial cells. METHODS AND RESULTS Omeprazole (10-1000 μM) suppressed both bradykinin (BK)- and thapsigargin-induced endothelial Ca2+ response in a dose-dependent manner. Furthermore, omeprazole slightly attenuated Ca2+ mobilization from the endoplasmic reticulum, whereas no inhibitory effects on endoplasmic reticulum Ca2+-ATPase were observed. Omeprazole decreased BK-induced phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and tended to decrease BK-induced nitric oxide production. Production of prostaglandin I2 metabolites, especially 6-keto-prostaglandin 1α, also tended to be reduced by omeprazole. CONCLUSION Our results are the first to indicate that high doses of omeprazole may suppress both store-operated Ca2+ channels and partially the G protein-coupled receptor/phospholipase C/inositol 1,4,5-triphosphate pathway, and decreased BK-induced, Ca2+-dependent phosphorylation of eNOS(Ser1177). Thus, high dosages of omeprazole impaired EDRF production by attenuating intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Chiaki Kamiya
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Keiichi Odagiri
- Center for Clinical Research, Hamamatsu University Hospital, 1-20-1 Handayama, Hamamatsu, Japan.
| | - Akio Hakamata
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Ryugo Sakurada
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| |
Collapse
|
28
|
Munoz K, Wasnik S, Abdipour A, Bi H, Wilson SM, Tang X, Ghahramanpouri M, Baylink DJ. The Effects of Insulin-Like Growth Factor I and BTP-2 on Acute Lung Injury. Int J Mol Sci 2021; 22:ijms22105244. [PMID: 34063554 PMCID: PMC8170877 DOI: 10.3390/ijms22105244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). This study aimed to develop a therapy to normalize the excess production of inflammatory cytokines and promote tissue repair in the lipopolysaccharide (LPS)-induced ALI. Based on our previous studies, we tested the insulin-like growth factor I (IGF-I) and BTP-2 therapies. IGF-I was selected, because we and others have shown that elevated inflammatory cytokines suppress the expression of growth hormone receptors in the liver, leading to a decrease in the circulating IGF-I. IGF-I is a growth factor that increases vascular protection, enhances tissue repair, and decreases pro-inflammatory cytokines. It is also required to produce anti-inflammatory 1,25-dihydroxyvitamin D. BTP-2, an inhibitor of cytosolic calcium, was used to suppress the LPS-induced increase in cytosolic calcium, which otherwise leads to an increase in proinflammatory cytokines. We showed that LPS increased the expression of the primary inflammatory mediators such as toll like receptor-4 (TLR-4), IL-1β, interleukin-17 (IL-17), TNF-α, and interferon-γ (IFN-γ), which were normalized by the IGF-I + BTP-2 dual therapy in the lungs, along with improved vascular gene expression markers. The histologic lung injury score was markedly elevated by LPS and reduced to normal by the combination therapy. In conclusion, the LPS-induced increases in inflammatory cytokines, vascular injuries, and lung injuries were all improved by IGF-I + BTP-2 combination therapy.
Collapse
Affiliation(s)
- Kevin Munoz
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
| | - Amir Abdipour
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
- Division of Nephrology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Hongzheng Bi
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China;
| | - Sean M. Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA;
| | - Xiaolei Tang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Mahdis Ghahramanpouri
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
| | - David J. Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.M.); (S.W.); (A.A.); (X.T.); (M.G.)
- Correspondence: ; Tel.: +909-558-4000-49796; Fax: +(909)-558-0428
| |
Collapse
|
29
|
Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L. Int J Mol Sci 2021; 22:ijms22084175. [PMID: 33920681 PMCID: PMC8073005 DOI: 10.3390/ijms22084175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/16/2022] Open
Abstract
Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target of punicalagin was identified here for the first time. The antifungal activity of pomegranate phenolics was evaluated by means of Agar Disk Diffusion Assay and minimum inhibitory concentration (MIC) evaluation. A chemoinformatic analysis predicted for the first time topoisomerases I and II as potential biological targets of punicalagin, and this prediction was confirmed by in vitro inhibition assays. Concerning phytopathogens, all the tested compounds were effective, often similarly to the fungicide imazalil at the label dose. Particularly, punicalagin showed the lowest MIC for Alternaria alternata and Botrytis cinerea, whereas punicalin was the most active compound in terms of growth control extent. As for human pathogens, punicalagin was the most active compound among the tested ones against Candida albicans reference strains, as well as against the clinically isolates. UHPLC coupled with HRMS indicated that C. albicans, similarly to the phytopathogen Coniella granati, is able to hydrolyze both punicalagin and punicalin as a response to the fungal attack. Punicalagin showed a strong inhibitory activity, with IC50 values of 9.0 and 4.6 µM against C. albicans topoisomerases I and II, respectively. Altogether, the results provide evidence that punicalagin is a valuable candidate to be further exploited as an antifungal agent in particular against human fungal infections.
Collapse
|
30
|
Aprile S, Riva B, Bhela IP, Cordero-Sanchez C, Avino G, Genazzani AA, Serafini M, Pirali T. 1,2,4-Oxadiazole-Bearing Pyrazoles as Metabolically Stable Modulators of Store-Operated Calcium Entry. ACS Med Chem Lett 2021; 12:640-646. [PMID: 33854704 PMCID: PMC8040252 DOI: 10.1021/acsmedchemlett.1c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
![]()
Store-operated calcium
entry (SOCE) is a pivotal mechanism in calcium
homeostasis, and, despite still being under investigation, its dysregulation
is known to be associated with severe human disorders. SOCE modulators
are therefore needed both as chemical probes and as therapeutic agents.
While many small molecules have been described so far, their poor
properties in terms of drug-likeness have limited their translation
into the clinical practice. In this work, we describe the bioisosteric
replacement of the ester moiety in pyrazole derivatives with a 1,2,4-oxadiazole
ring as a means to afford a class of modulators with high metabolic
stability. Moreover, among our derivatives, a compound able to increase
the calcium entry was identified, further enriching the library of
available SOCE activators.
Collapse
Affiliation(s)
- Silvio Aprile
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
- ChemICare S.r.l., Enne3, Corso Trieste 15/A, 28100 Novara, Italy
| | - Irene Preet Bhela
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Celia Cordero-Sanchez
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Giulia Avino
- Department of Pharmaceutical Sciences, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
- ChemICare S.r.l., Enne3, Corso Trieste 15/A, 28100 Novara, Italy
| |
Collapse
|
31
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
32
|
Serafini M, Cordero-Sanchez C, Di Paola R, Bhela IP, Aprile S, Purghè B, Fusco R, Cuzzocrea S, Genazzani AA, Riva B, Pirali T. Store-Operated Calcium Entry as a Therapeutic Target in Acute Pancreatitis: Discovery and Development of Drug-Like SOCE Inhibitors. J Med Chem 2020; 63:14761-14779. [PMID: 33253576 PMCID: PMC7735735 DOI: 10.1021/acs.jmedchem.0c01305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Store-operated calcium entry (SOCE) is important in the maintenance of calcium homeostasis and alterations in this mechanism are responsible for several pathological conditions, including acute pancreatitis. Since the discovery of SOCE, many inhibitors have been identified and extensively used as chemical probes to better elucidate the role played by this cellular mechanism. Nevertheless, only a few have demonstrated drug-like properties so far. Here, we report a class of biphenyl triazoles among which stands out a lead compound, 34, that is endowed with an inhibitory activity at nanomolar concentrations, suitable pharmacokinetic properties, and in vivo efficacy in a mouse model of acute pancreatitis.
Collapse
Affiliation(s)
- Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Celia Cordero-Sanchez
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Enviromental Sciences, Università di Messina, Messina 98166, Italy
| | - Irene P Bhela
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Beatrice Purghè
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Enviromental Sciences, Università di Messina, Messina 98166, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Enviromental Sciences, Università di Messina, Messina 98166, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy.,ChemICare S.r.l., Enne3, Novara 28100, Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy.,ChemICare S.r.l., Enne3, Novara 28100, Italy
| |
Collapse
|
33
|
Sharma A, Elble RC. From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis. Biomedicines 2020; 8:biomedicines8060169. [PMID: 32575848 PMCID: PMC7345168 DOI: 10.3390/biomedicines8060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
The common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes. Intracellular calcium acts chiefly through intermediates such as calmodulin that regulates growth factor receptors such as epidermal growth factor receptor (EGFR), actin polymerization, and adherens junction assembly and maintenance. Here we review this machinery and its role in differentiation, then consider how cancer cells subvert it to license proliferation, resist anoikis, and enable metastasis, either by modulating the level of intracellular calcium or its downstream targets or effectors such as EGFR, E-cadherin, IQGAP1, TMEM16A, CLCA2, and TRPA1. Implications are considered for the roles of E-cadherin and growth factor receptors in circulating tumor cells and metastasis. The discovery of novel, cell type-specific modulators and effectors of calcium signaling offers new possibilities for cancer chemotherapy.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Randolph C. Elble
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence: ; Tel.: +217-545-7381
| |
Collapse
|
34
|
IGF-1 Deficiency Rescue and Intracellular Calcium Blockade Improves Survival and Corresponding Mechanisms in a Mouse Model of Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21114095. [PMID: 32521790 PMCID: PMC7312627 DOI: 10.3390/ijms21114095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
This study was undertaken to test two therapies for acute kidney injury (AKI) prevention, IGF-1, which is renal protective, and BTP-2, which is a calcium entry (SOCE) inhibitor. We utilized lipopolysaccharide (LPS) IP, as a systemic model of AKI and studied in five groups of animals. Three experiments showed that at 7 days: (1) LPS significantly reduced serum IGF-1 and intramuscular IGF-I in vivo gene therapy rescued this deficiency. (2) Next, at the 7-day time point, our combination therapy, compared to the untreated group, caused a significant increase in survival, which was noteworthy because all of the untreated animals died in 72 h. (3) The four pathways associated with inflammation, including (A) increase in cytosolic calcium, (B) elaboration of proinflammatory cytokines, (C) impairment of vascular integrity, and (D) cell injury, were adversely affected in renal tissue by LPS, using a sublethal dose of LPS. The expression of several genes was measured in each of the above pathways. The combined therapy of IGF-1 and BTP-2 caused a favorable gene expression response in all four pathways. Our current study was an AKI study, but these pathways are also involved in other types of severe inflammation, including sepsis, acute respiratory distress syndrome, and probably severe coronavirus infection.
Collapse
|
35
|
Benitah JP, Beech DJ, Sabourin J. Response by Benitah et al to Letter Regarding Article, "Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca 2+ Handling After Pressure Overload". Circulation 2020; 141:e839-e840. [PMID: 32479202 DOI: 10.1161/circulationaha.120.047268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (J.P.B., J.S.)
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (D.J.B.)
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (J.P.B., J.S.)
| |
Collapse
|
36
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
37
|
Mothes R, Ulbricht C, Leben R, Günther R, Hauser AE, Radbruch H, Niesner R. Teriflunomide Does Not Change Dynamics of Nadph Oxidase Activation and Neuronal Dysfunction During Neuroinflammation. Front Mol Biosci 2020; 7:62. [PMID: 32426367 PMCID: PMC7203781 DOI: 10.3389/fmolb.2020.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
The multiple sclerosis therapeutic teriflunomide is known to block the de novo synthesis of pyrimidine in mitochondria by inhibiting the enzyme dihydroorotate-dehydrogenase (DHODH). The metabolic processes of oxidative phosphorylation and glycolysis are further possible downstream targets. In healthy adult mice, high levels of dihydroorotate-dehydrogenase (DHODH) activity are measured in the central nervous system (CNS), and DHODH inhibition may cause indirect effects on reactive oxygen species production and NADPH oxidase (NOX) mediated oxidative stress, known to be key aspects of the inflammatory response of the CNS. However, little is known about the effect of teriflunomide on the dynamics of NOX activation in CNS cells and subsequent alterations of neuronal function in vivo. In this study, we employed fluorescence lifetime imaging (FLIM) and phasor analysis of the endogeneous fluorescence of NAD(P)H (nicotinamide adenine dinucleotide phosphate) in the brain stem of mice to visualize the effect of teriflunomide on cellular metabolism. Furthermore, we simultaneously studied neuronal Ca2+ signals in transgenic mice with a FRET-based Troponin C Ca2+ sensor based (CerTN L15) quantified using FRET-FLIM. Hence, we directly correlated neuronal (dys-)function indicated by steadily elevated calcium levels with metabolic activity in neurons and surrounding CNS tissue. Employing our intravital co-registered imaging approach, we could not detect any significant alteration of NOX activation after incubation of the tissue with teriflunomide. Furthermore, we could not detect any changes of the inflammatory induced neuronal dysfunction due to local treatment with teriflunomide. Concerning drug safety, we can confirm that teriflunomide has no metabolic effects on neuronal function in the CNS tissue during neuroinflammation at concentrations expected in orally treated patients. The combined endogenous FLIM and calcium imaging approach developed by us and employed here uniquely meets the need to monitor cellular metabolism as a basic mechanism of tissue functions in vivo.
Collapse
Affiliation(s)
- Ronja Mothes
- Institute for Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany
| | - Carolin Ulbricht
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany.,Immunodyanmics and Intravital Microscopy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Leben
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany
| | - Robert Günther
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany
| | - Anja E Hauser
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany.,Immunodyanmics and Intravital Microscopy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Institute for Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Raluca Niesner
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany.,Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
38
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
39
|
Apogossypol-mediated reorganisation of the endoplasmic reticulum antagonises mitochondrial fission and apoptosis. Cell Death Dis 2019; 10:521. [PMID: 31285422 PMCID: PMC6614446 DOI: 10.1038/s41419-019-1759-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) with its elaborate network of highly curved tubules and flat sheets interacts with several other organelles, including mitochondria, peroxisomes and endosomes, to play vital roles in their membrane dynamics and functions. Previously, we identified structurally diverse chemicals from different pharmacological classes, which induce a reversible reorganisation of ER membranes. Using apogossypol as a prototypic tool compound, we now show that ER membrane reorganisation occurs at the level of ER tubules but does not involve ER sheets. Reorganisation of ER membranes prevents DRP-1-mediated mitochondrial fission, thereby antagonising the functions of several mitochondrial fission-inducing agents. Previous reports have suggested that ER membranes mark the constriction sites of mitochondria by localising DRP-1, as well as BAX on mitochondrial membranes to facilitate both mitochondrial fission and outer membrane permeabilisation. Following ER membrane reorganisation and subsequent exposure to an apoptotic stimulus (BH3 mimetics), DRP-1 still colocalises with the reorganised ER membranes but BAX translocation and activation, cytochrome c release and phosphatidylserine externalisation are all inhibited, thereby diminishing the ability of BH3 mimetics to induce the intrinsic apoptotic pathway. Strikingly, both ER membrane reorganisation and its resulting inhibition of apoptosis could be reversed by inhibitors of dihydroorotate dehydrogenase (DHODH), namely teriflunomide and its active metabolite, leflunomide. However, neither genetic inhibition of DHODH using RNA interference nor metabolic supplementation with orotate or uridine to circumvent the consequences of a loss of DHODH activity rescued the effects of DHODH inhibitors, suggesting that the effects of these inhibitors in preventing ER membrane reorganisation is most likely independent of their ability to antagonise DHODH activity. Our results strengthen the hypothesis that ER is fundamental for key mitochondrial functions, such as fusion-fission dynamics and apoptosis.
Collapse
|
40
|
Store-Operated Ca 2+ Entry in Tumor Progression: From Molecular Mechanisms to Clinical Implications. Cancers (Basel) 2019; 11:cancers11070899. [PMID: 31252656 PMCID: PMC6678533 DOI: 10.3390/cancers11070899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.
Collapse
|
41
|
Lu TL, Chang WT, Chan CH, Wu SN. Evidence for Effective Multiple K +-Current Inhibitions by Tolvaptan, a Non-peptide Antagonist of Vasopressin V 2 Receptor. Front Pharmacol 2019; 10:76. [PMID: 30873020 PMCID: PMC6401633 DOI: 10.3389/fphar.2019.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022] Open
Abstract
Tolvaptan (TLV), an oral non-peptide antagonist of vasopressin V2 receptor, has been increasingly used for managements in patients with hyponatremia and/or syndrome of inappropriate antidiuretic hormone secretion. However, none of the studies have thus far been investigated with regard to its possible perturbations on membrane ion currents in endocrine or neuroendocrine cells. In our electrophysiological study, the whole-cell current recordings showed that the presence of TLV effectively and differentially suppressed the amplitude of delayed rectifier K+ (IK(DR)) and M-type K+ current (IK(M)) in pituitary GH3 cells with an IC50 value of 6.42 and 1.91 μM, respectively. This compound was also capable of shifting the steady-state activation curve of IK(M) to less depolarized potential without any appreciable change in the gating charge of this current. TLV at a concentration greater than 10 μM also suppressed the amplitude of erg-mediated K+ current or the activity of large-conductance Ca2+-activated K+ channels; however, this compound failed to alter the amplitude of hyperpolarization-activated cation current in GH3 cells. In vasopressin-preincubated GH3 cells, TLV-mediated suppression of IK(M) remained little altered. Under current-clamp condition, we also observed that addition of TLV increased the firing of spontaneous action potentials in GH3 cells and further addition of flupirtine could reverse TLV-mediated elevation of the firing. In Madin-Darby canine kidney (MDCK) cells, the K+ current elicited by long ramp pulse was also effectively subject to inhibition by this compound. Findings from the present study were thus stated as saying that the suppression by TLV of multiple type K+ currents could be direct and independent of its antagonism of vasopressin V2 receptors. Our study also reveals an important aspect that should be considered when assessing aquaretic effect of TLV or its structurally similar compounds.
Collapse
Affiliation(s)
- Te-Ling Lu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chee-Hong Chan
- Department of Nephrology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| |
Collapse
|
42
|
Riva B, Griglio A, Serafini M, Cordero-Sanchez C, Aprile S, Di Paola R, Gugliandolo E, Alansary D, Biocotino I, Lim D, Grosa G, Galli U, Niemeyer B, Sorba G, Canonico PL, Cuzzocrea S, Genazzani AA, Pirali T. Pyrtriazoles, a Novel Class of Store-Operated Calcium Entry Modulators: Discovery, Biological Profiling, and in Vivo Proof-of-Concept Efficacy in Acute Pancreatitis. J Med Chem 2018; 61:9756-9783. [PMID: 30347159 DOI: 10.1021/acs.jmedchem.8b01512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, channels that mediate store-operated calcium entry (SOCE, i.e., the ability of cells to sense a decrease in endoplasmic reticulum luminal calcium and induce calcium entry across the plasma membrane) have been associated with a number of disorders, spanning from immune disorders to acute pancreatitis and have been suggested to be druggable targets. In the present contribution, we exploited the click chemistry approach to synthesize a class of SOCE modulators where the arylamide substructure that characterizes most inhibitors so far described is substituted by a 1,4-disubstituted 1,2,3-triazole ring. Within this series, inhibitors of SOCE were identified and the best compound proved effective in an animal model of acute pancreatitis, a disease characterized by a hyperactivation of SOCE. Strikingly, two enhancers of the process were discovered, affording invaluable research tools to further explore the (patho)physiological role of capacitative calcium entry.
Collapse
Affiliation(s)
- Beatrice Riva
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy.,ChemICare Srl , Enne3 , Novara 28100 , Italy
| | - Alessia Griglio
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Marta Serafini
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Celia Cordero-Sanchez
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Enviromental Sciences , Università di Messina , Messina 98166 , Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical, and Enviromental Sciences , Università di Messina , Messina 98166 , Italy
| | - Dalia Alansary
- Department of Molecular Biophysics , Saarland University CIPMM , Homburg 66421 , Germany
| | - Isabella Biocotino
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Giorgio Grosa
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Ubaldina Galli
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Barbara Niemeyer
- Department of Molecular Biophysics , Saarland University CIPMM , Homburg 66421 , Germany
| | - Giovanni Sorba
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Enviromental Sciences , Università di Messina , Messina 98166 , Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy.,ChemICare Srl , Enne3 , Novara 28100 , Italy
| |
Collapse
|
43
|
CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147-159. [PMID: 30075400 DOI: 10.1016/j.ceca.2018.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Calcium release-activated calcium (CRAC) channels have been the target of drug discovery for many years. The identification of STIM and Orai proteins as key components of CRAC channels greatly facilitated this process because their co-expression in cell lines produced electrophysiological currents (ICRAC) much larger than those in native cells, making it easier to confirm and characterize the effects of modulatory compounds. A driving force in the quest for CRAC channel drugs has been the immunocompromised phenotype displayed by humans and mice with null or loss-of-function mutations in STIM1 or Orai1, suggesting that CRAC channel inhibitors could be useful therapeutics for autoimmune or inflammatory conditions. Emerging data also suggests that other therapeutic conditions may benefit from CRAC channel inhibition. However, only recently have CRAC channel inhibitors reached clinical trials. This review discusses the challenges associated with drug discovery and development on CRAC channels and the approaches employed to date, as well as the results, starting from initial high-throughput screens for CRAC channel modulators and progressing through target selection and justification, descriptions of pharmacological, safety and toxicological profiles of compounds, and finally the entry of CRAC channel inhibitors into clinical trials.
Collapse
|
44
|
Cui C, Chang Y, Zhang X, Choi S, Tran H, Penmetsa KV, Viswanadha S, Fu L, Pan Z. Targeting Orai1-mediated store-operated calcium entry by RP4010 for anti-tumor activity in esophagus squamous cell carcinoma. Cancer Lett 2018; 432:169-179. [PMID: 29908962 DOI: 10.1016/j.canlet.2018.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Esophageal cancer (EC) is the 6th leading cause of cancer mortality worldwide with poor prognosis, hence more effective chemotherapeutic drugs for this deadly disease are urgently needed. We previously reported that high expression of Orai1, a store-operated Ca2+entry (SOCE) channel, was associated with poor survival rate in EC patients and Orai1-mediated intracellular Ca2+ oscillations regulated cancer cell proliferation. Previous studies suggested that Orai1-mediated SOCE is a promising target for EC chemotherapy. Here, we evaluated the anti-cancer effect of a novel SOCE inhibitor, RP4010, in cultured EC cells and xenograft models. Compared to other previously reported SOCE channel inhibitors, RP4010 is more potent in blocking SOCE and inhibiting cell proliferation in EC and other cancer cells. Treatment with RP4010 resulted in reduction of intracellular Ca2+ oscillations, caused cell cycle arrest at G0/G1 phase in vitro, decreased nuclear translocation of nuclear factor kappa B (NF-κB) in vivo and in vitro, and inhibited tumor growth in vivo. Taken together, data demonstrated the therapeutic potential of RP4010 in EC patients via inhibition of SOCE-mediated intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Chaochu Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Chang
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Xiaoli Zhang
- Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA
| | - Sangyong Choi
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Henry Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
45
|
Dago CD, Maux PL, Roisnel T, Brigaudeau C, Bekro YA, Mignen O, Bazureau JP. Preliminary Structure-Activity Relationship (SAR) of a Novel Series of Pyrazole SKF-96365 Analogues as Potential Store-Operated Calcium Entry (SOCE) Inhibitors. Int J Mol Sci 2018. [PMID: 29538341 PMCID: PMC5877717 DOI: 10.3390/ijms19030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
From a series of (1R, 1S)-1[β-(phenylalkoxy)-(phenetyl)]-1H-pyrazolium hydrochloride as new analogues of SKF-96365, one has an interesting effect for endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) (IC50 25 μM) on the PLP-B lymphocyte cell line. A successful resolution of (±) 1-phenyl-2-(1H-pyrazol-1-yl)ethan-1-ol has been developed by using the method of “half-concentration” in the presence of (+)-(1S)- or (−)-(1R)-CSA.
Collapse
Affiliation(s)
- Camille D Dago
- Institut des Sciences Chimiques de Rennes (ISCR), UMR CNRS 6226, Groupe CORINT, Université de Rennes 1 (UR1), Campus de Beaulieu, Bât. 10A, 263 Avesnue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, France.
- Laboratoire de Chimie Bio Organique et de Substances Naturelles (LCBOSN), Université Nangui Abrogoua (UNA), Abidjan BP 802, Côte d'Ivoire.
| | - Paul Le Maux
- Institut des Sciences Chimiques de Rennes (ISCR), UMR CNRS 6226, Groupe CORINT, Université de Rennes 1 (UR1), Campus de Beaulieu, Bât. 10A, 263 Avesnue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, France.
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes (ISCR), UMR CNRS 6226, Centre de Diffractométrie X (cdifx), Université de Rennes 1 (UR1), Campus de Beaulieu, Bât. 10B, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, France.
| | - Christophe Brigaudeau
- Laboratoire Canalopathies & Signalisation Calcique, Inserm U1227, Université de Bretagne Occidentale (UBO), 22 Avenue Camille Desmoulins, 29200 Brest CEDEX, France.
- CalciScreen Platform, Université de Bretagne Occidentale (UBO), 22 Avenue Camille Desmoulins, 29200 Brest CEDEX, France.
| | - Yves-Alain Bekro
- Laboratoire de Chimie Bio Organique et de Substances Naturelles (LCBOSN), Université Nangui Abrogoua (UNA), Abidjan BP 802, Côte d'Ivoire.
| | - Olivier Mignen
- Laboratoire Canalopathies & Signalisation Calcique, Inserm U1227, Université de Bretagne Occidentale (UBO), 22 Avenue Camille Desmoulins, 29200 Brest CEDEX, France.
- CalciScreen Platform, Université de Bretagne Occidentale (UBO), 22 Avenue Camille Desmoulins, 29200 Brest CEDEX, France.
| | - Jean-Pierre Bazureau
- Institut des Sciences Chimiques de Rennes (ISCR), UMR CNRS 6226, Groupe CORINT, Université de Rennes 1 (UR1), Campus de Beaulieu, Bât. 10A, 263 Avesnue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, France.
- S2Wave Platform, ScanMAT UMS 2001 CNRS, Université de Rennes 1 (UR1), Campus de Beaulieu, Bât. 10A, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, France.
| |
Collapse
|
46
|
Göttle P, Manousi A, Kremer D, Reiche L, Hartung HP, Küry P. Teriflunomide promotes oligodendroglial differentiation and myelination. J Neuroinflammation 2018; 15:76. [PMID: 29534752 PMCID: PMC5851312 DOI: 10.1186/s12974-018-1110-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/28/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease of the central nervous system (CNS) which in most cases initially presents with episodes of transient functional deficits (relapsing-remitting MS; RRMS) and eventually develops into a secondary progressive form (SPMS). Aside from neuroimmunological activities, MS is also characterized by neurodegenerative and regenerative processes. The latter involve the restoration of myelin sheaths-electrically insulating structures which are the primary targets of autoimmune attacks. Spontaneous endogenous remyelination takes place even in the adult CNS and is primarily mediated by activation, recruitment, and differentiation of resident oligodendroglial precursor cells (OPCs). However, the overall efficiency of remyelination is limited and further declines with disease duration and progression. From a therapeutic standpoint, it is therefore key to understand how oligodendroglial maturation can be modulated pharmacologically. Teriflunomide has been approved as a first-line treatment for RRMS in the USA and the European Union. As the active metabolite of leflunomide, an established disease-modifying anti-rheumatic drug, it mainly acts via an inhibition of de novo pyrimidine synthesis exerting a cytostatic effect on proliferating B and T cells. METHODS We investigated teriflunomide-dependent effects on primary rat oligodendroglial homeostasis, proliferation, and differentiation related to cellular processes important for myelin repair hence CNS regeneration in vitro. To this end, several cellular parameters, including specific oligodendroglial maturation markers, in vitro myelination, and p53 family member signaling, were examined by means of gene/protein expression analyses. The rate of myelination was determined using neuron-oligodendrocyte co-cultures. RESULTS Low teriflunomide concentrations resulted in cell cycle exit while higher doses led to decreased cell survival. Short-term teriflunomide pulses can efficiently promote oligodendroglial cell differentiation suggesting that young, immature cells could benefit from such stimulation. In vitro myelination can be boosted by means of an early stimulation window with teriflunomide. p73 signaling is functionally involved in promoting OPC differentiation and myelination. CONCLUSION Our findings indicate a critical window of opportunity during which regenerative oligodendroglial activities including myelination of CNS axons can be stimulated by teriflunomide.
Collapse
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
47
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|