1
|
Graham J, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. ACS Synth Biol 2024; 13:3413-3429. [PMID: 39375864 PMCID: PMC11494708 DOI: 10.1021/acssynbio.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Joshua
P. Graham
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yu Zhang
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lifang He
- Department
of Computer Science and Engineering, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| | | |
Collapse
|
2
|
Sise CV, Petersen CA, Ashford AK, Yun J, Zimmerman BK, Vukelic S, Hung CT, Ateshian GA. A major functional role of synovial fluid is to reduce the rate of cartilage fatigue failure under cyclical compressive loading. Osteoarthritis Cartilage 2024:S1063-4584(24)01362-1. [PMID: 39209247 DOI: 10.1016/j.joca.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Based on our recent study, which showed that cartilage fatigue failure in reciprocating sliding contact results from cyclical compressive forces, not from cyclical frictional forces, we hypothesize that a major functional role for synovial fluid (SF) is to reduce the rate of articular cartilage fatigue failure from cyclical compressive loading. DESIGN The rate of cartilage fatigue failure due to repetitive compressive loading was measured by sliding a glass lens against an immature bovine cartilage tibial plateau strip immersed in mature bovine SF, phosphate-buffered saline (PBS), or SF/PBS dilutions (50% SF and 25% SF; n = 8 for all four bath conditions). After 24 h of reciprocating sliding (5400 cycles), samples were visually assessed, and if damage was observed, the test was terminated; otherwise, testing was continued for 72 h (16,200 cycles), with solution refreshed daily. RESULTS All eight samples in the PBS group exhibited physical damage after 24 h, with an average final surface roughness of Rq= 0.210 ± 0.067 mm. The SF group showed no damage after 24 h; however, two of eight samples became damaged after 72 h, producing a significantly lower average surface roughness than the PBS group (Rq=0.059 ± 0.030 mm; p < 10-4). For the remaining groups, at 72 h, one of eight samples was damaged in the 50% SF group, and five of eight samples were damaged in the 25% SF group. CONCLUSIONS The results strongly support our hypothesis, showing that decreased amounts of SF in the testing bath produce increased rates of fatigue failure in cartilage that was subjected to reciprocating sliding contact.
Collapse
Affiliation(s)
- C V Sise
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - C A Petersen
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - A K Ashford
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - J Yun
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - B K Zimmerman
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - S Vukelic
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - C T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - G A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Mechanical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
3
|
Gadomski SJ, Mui BW, Gorodetsky R, Paravastu SS, Featherall J, Li L, Haffey A, Kim JC, Kuznetsov SA, Futrega K, Lazmi-Hailu A, Merling RK, Martin D, McCaskie AW, Robey PG. Time- and cell-specific activation of BMP signaling restrains chondrocyte hypertrophy. iScience 2024; 27:110537. [PMID: 39193188 PMCID: PMC11347861 DOI: 10.1016/j.isci.2024.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stem cell therapies for degenerative cartilage disease are limited by an incomplete understanding of hyaline cartilage formation and maintenance. Human bone marrow stromal cells/skeletal stem cells (hBMSCs/SSCs) produce stable hyaline cartilage when attached to hyaluronic acid-coated fibrin microbeads (HyA-FMBs), yet the mechanism remains unclear. In vitro, hBMSC/SSC/HyA-FMB organoids exhibited reduced BMP signaling early in chondrogenic differentiation, followed by restoration of BMP signaling in chondrogenic IGFBP5 + /MGP + cells. Subsequently, human-induced pluripotent stem cell (hiPSC)-derived sclerotome cells were established (BMP inhibition) and then treated with transforming growth factor β (TGF-β) -/+ BMP2 and growth differentiation factor 5 (GDF5) (BMP signaling activation). TGF-β alone elicited a weak chondrogenic response, but TGF-β/BMP2/GDF5 led to delamination of SOX9 + aggregates (chondrospheroids) with high expression of COL2A1, ACAN, and PRG4 and minimal expression of COL10A1 and ALP in vitro. While transplanted hBMSCs/SSCs/HyA-FMBs did not heal articular cartilage defects in immunocompromised rodents, chondrospheroid-derived cells/HyA-FMBs formed non-hypertrophic cartilage that persisted until at least 5 months in vivo.
Collapse
Affiliation(s)
- Stephen J. Gadomski
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Oxford-Cambridge Scholars Program in Partnership with Medical University of South Carolina, Charleston, SC 29425, USA
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Byron W.H. Mui
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- NIH Oxford-Cambridge Scholars Program in Partnership with Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raphael Gorodetsky
- Lab of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sriram S. Paravastu
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Featherall
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Li
- National Institute of Dental and Craniofacial Research Imaging Core, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abigail Haffey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- National Institute of Dental and Craniofacial Research Summer Internship Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae-Chun Kim
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- National Institute of Dental and Craniofacial Research Summer Dental Student Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergei A. Kuznetsov
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Kathryn Futrega
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Astar Lazmi-Hailu
- Lab of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Randall K. Merling
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - NIDCD/NIDCR Genomics and Computational Biology Core,
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Room 1F-103, Bethesda, MD 20892, USA
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Room 1F-103, Bethesda, MD 20892, USA
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew W. McCaskie
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Boushehri S, Holey H, Brosz M, Gumbsch P, Pastewka L, Aponte-Santamaría C, Gräter F. O-glycans Expand Lubricin and Attenuate Its Viscosity and Shear Thinning. Biomacromolecules 2024; 25:3893-3908. [PMID: 38815979 PMCID: PMC11238335 DOI: 10.1021/acs.biomac.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Lubricin, an intrinsically disordered glycoprotein, plays a pivotal role in facilitating smooth movement and ensuring the enduring functionality of synovial joints. The central domain of this protein serves as a source of this excellent lubrication and is characterized by its highly glycosylated, negatively charged, and disordered structure. However, the influence of O-glycans on the viscosity of lubricin remains unclear. In this study, we employ molecular dynamics simulations in the absence and presence of shear, along with continuum simulations, to elucidate the intricate interplay between O-glycans and lubricin and the impact of O-glycans on lubricin's conformational properties and viscosity. We found the presence of O-glycans to induce a more extended conformation in fragments of the disordered region of lubricin. These O-glycans contribute to a reduction in solution viscosity but at the same time weaken shear thinning at high shear rates, compared to nonglycosylated systems with the same density. This effect is attributed to the steric and electrostatic repulsion between the fragments, which prevents their conglomeration and structuring. Our computational study yields a mechanistic mechanism underlying previous experimental observations of lubricin and paves the way to a more rational understanding of its function in the synovial fluid.
Collapse
Affiliation(s)
- Saber Boushehri
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Hannes Holey
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Matthias Brosz
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| | - Peter Gumbsch
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Fraunhofer
IWM, Wöhlerstraße
11, Freiburg 79108, Germany
| | - Lars Pastewka
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
| | - Frauke Gräter
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
5
|
Graham JP, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601587. [PMID: 39005295 PMCID: PMC11244939 DOI: 10.1101/2024.07.01.601587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, achieving reliable therapeutic effects with improved safety and efficacy requires informed target gene selection. This depends on a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) that regulate cell phenotype and function. Machine learning models have been previously used for GRN reconstruction using RNA-seq data, but current techniques are limited to single cell types and focus mainly on transcription factors. This restriction overlooks many potential CRISPR target genes, such as those encoding extracellular matrix components, growth factors, and signaling molecules, thus limiting the applicability of these models for CRISPR strategies. To address these limitations, we have developed CRISPR-GEM, a multi-layer perceptron (MLP)-based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts towards a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Josh P Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| | - Lifang He
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
6
|
Colville MJ, Huang LT, Schmidt S, Chen K, Vishwanath K, Su J, Williams RM, Bonassar LJ, Reesink HL, Paszek MJ. Recombinant manufacturing of multispecies biolubricants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592580. [PMID: 38746339 PMCID: PMC11092771 DOI: 10.1101/2024.05.05.592580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lubricin, a lubricating glycoprotein abundant in synovial fluid, forms a low-friction brush polymer interface in tissues exposed to sliding motion including joints, tendon sheaths, and the surface of the eye. Despite its therapeutic potential in diseases such as osteoarthritis and dry eye disease, there are few sources available. Through rational design, we developed a series of recombinant lubricin analogs that utilize the species-specific tissue-binding domains at the N- and C-termini to increase biocompatibility while replacing the central mucin domain with an engineered variant that retains the lubricating properties of native lubricin. In this study, we demonstrate the tissue binding capacity of our engineered lubricin product and its retention in the joint space of rats. Next, we present a new bioprocess chain that utilizes a human-derived cell line to produce O-glycosylation consistent with that of native lubricin and a purification strategy that capitalizes on the positively charged, hydrophobic N- and C-terminal domains. The bioprocess chain is demonstrated at 10 L scale in industry-standard equipment utilizing commonly available ion exchange, hydrophobic interaction and size exclusion chromatography resins. Finally, we confirmed the purity and lubricating properties of the recombinant biolubricant. The biomolecular engineering and bioprocessing strategies presented here are an effective means of lubricin production and could have broad applications to the study of mucins in general.
Collapse
Affiliation(s)
- Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Samuel Schmidt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Kevin Chen
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Martin-Alarcon L, Govedarica A, Ewoldt RH, Bryant SL, Jay GD, Schmidt TA, Trifkovic M. Scale-Dependent Rheology of Synovial Fluid Lubricating Macromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306207. [PMID: 38161247 DOI: 10.1002/smll.202306207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Synovial fluid (SF) is the complex biofluid that facilitates the exceptional lubrication of articular cartilage in joints. Its primary lubricating macromolecules, the linear polysaccharide hyaluronic acid (HA) and the mucin-like glycoprotein proteoglycan 4 (PRG4 or lubricin), interact synergistically to reduce boundary friction. However, the precise manner in which these molecules influence the rheological properties of SF remains unclear. This study aimed to elucidate this by employing confocal microscopy and multiscale rheometry to examine the microstructure and rheology of solutions containing recombinant human PRG4 (rhPRG4) and HA. Contrary to previous assumptions of an extensive HA-rhPRG4 network, it is discovered that rhPRG4 primarily forms stiff, gel-like aggregates. The properties of these aggregates, including their size and stiffness, are found to be influenced by the viscoelastic characteristics of the surrounding HA matrix. Consequently, the rheology of this system is not governed by a single length scale, but instead responds as a disordered, hierarchical network with solid-like rhPRG4 aggregates distributed throughout the continuous HA phase. These findings provide new insights into the biomechanical function of PRG4 in cartilage lubrication and may have implications in the development of HA-based therapies for joint diseases like osteoarthritis.
Collapse
Affiliation(s)
- Leonardo Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Aleksandra Govedarica
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gregory D Jay
- Department of Emergency Medicine - Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
8
|
Kraus VB, Sun S, Reed A, Soderblom EJ, Moseley MA, Zhou K, Jain V, Arden N, Li YJ. An osteoarthritis pathophysiological continuum revealed by molecular biomarkers. SCIENCE ADVANCES 2024; 10:eadj6814. [PMID: 38669329 PMCID: PMC11051665 DOI: 10.1126/sciadv.adj6814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
We aimed to identify serum biomarkers that predict knee osteoarthritis (OA) before the appearance of radiographic abnormalities in a cohort of 200 women. As few as six serum peptides, corresponding to six proteins, reached AUC 77% probability to distinguish those who developed OA from age-matched individuals who did not develop OA up to 8 years later. Prediction based on these blood biomarkers was superior to traditional prediction based on age and BMI (AUC 51%) or knee pain (AUC 57%). These results identify a prolonged molecular derangement of joint tissue before the onset of radiographic OA abnormalities consistent with an unresolved acute phase response. Among all 24 protein biomarkers predicting incident knee OA, the majority (58%) also predicted knee OA progression, revealing the existence of a pathophysiological "OA continuum" based on considerable similarity in the molecular pathophysiology of the progression to incident OA and the progression of established OA.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Shuming Sun
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Alexander Reed
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Kaile Zhou
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nigel Arden
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, UK
| | - Yi-Ju Li
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Vishwanath K, Secor EJ, Watkins A, Reesink HL, Bonassar LJ. Loss of effective lubricating viscosity is the primary mechanical marker of joint inflammation in equine synovitis. J Orthop Res 2024. [PMID: 38291343 DOI: 10.1002/jor.25793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 12/24/2023] [Indexed: 02/01/2024]
Abstract
Inflammation of the synovium, known as synovitis, plays an important role in the pathogenesis of osteoarthritis (OA). Synovitis involves the release of a wide variety of pro-inflammatory mediators in synovial fluid (SF) that damage the articular cartilage extracellular matrix and induce death and apoptosis in chondrocytes. The composition of synovial fluid is dramatically altered by inflammation in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. However, the relationship between key biochemical markers of joint inflammation and mechanical function of SF is not well understood. Here, we demonstrate the application of a novel analytical framework to measure the effective viscosity for SF lubrication of cartilage, which is distinct from conventional rheological viscosity. Notably, in a well-established equine model of synovitis, this effective lubricating viscosity decreased by up to 10,000-fold for synovitis SF compared to a ~4 fold change in conventional viscosity measurements. Further, the effective lubricating viscosity was strongly inversely correlated (r = -0.6 to -0.8) to multiple established biochemical markers of SF inflammation, including white blood cell count, prostaglandin E2 (PGE2 ), and chemokine ligand (CCLs) concentrations, while conventional measurements of viscosity were poorly correlated to these markers. These findings demonstrate the importance of experimental and analytical approaches to characterize functional lubricating properties of synovial fluid and their relationships to soluble biomarkers to better understand the progression of OA.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Erica J Secor
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Kwon SB, Chinta G, Kundimi S, Kim S, Cho YD, Kim SK, Ju JY, Sengupta K. A Blend of Tamarindus Indica and Curcuma Longa Extracts Alleviates Monosodium Iodoacetate (MIA)-Induced Osteoarthritic Pain and Joint Inflammation in Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:48-58. [PMID: 37224433 DOI: 10.1080/27697061.2023.2209880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND OBJECTIVE NXT15906F6 (TamaFlexTM) is a proprietary herbal composition containing Tamarindus indica seeds and Curcuma longa rhizome extracts. NXT15906F6 supplementation has been shown clinically effective in reducing knee joint pain and improving musculoskeletal functions in healthy and knee osteoarthritis (OA) subjects. The objective of the present study was to assess the possible molecular basis of the anti-OA efficacy of NXT15906F6 in a monosodium iodoacetate (MIA)-induced model of OA in rats. METHODS Healthy male Sprague Dawley rats (age: 8-9 wk body weight, B.W.: 225-308 g (n = 12) were randomly assigned to one of the six groups, (a) vehicle control, (b) MIA control, (c) Celecoxib (10 mg/kg B.W.), (d) TF-30 (30 mg/kg B.W.), (e) TF-60 (60 mg/kg B.W.), and (f) TF-100 (100 mg/kg B.W.). OA was induced by an intra-articular injection of 3 mg MIA into the right hind knee joint. The animals received either Celecoxib or TF through oral gavage over 28 days. The vehicle control animals received intra-articular sterile normal saline. RESULTS Post-treatment, NXT15906F6 groups showed significant (p < 0.05) dose-dependent pain relief as evidenced by improved body weight-bearing capacity on the right hind limb. NXT15906F6 treatment also significantly reduced the serum tumor necrosis factor-α (TNF-α, p < 0.05) and nitrite (p < 0.05) levels in a dose-dependent manner. mRNA expression analyses revealed the up-regulation of collagen type-II (COL2A1) and down-regulation of matrix metalloproteinases (MMP-3, MMP-9 and MMP-13) in the cartilage tissues of NXT15906F6-supplemented rats. Cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) protein expressions were down-regulated. Decreased immunolocalization of NF-κβ (p65) was observed in the joint tissues of NXT15906F6-supplemented rats. Furthermore, microscopic observations revealed that NXT15906F6 preserved MIA-induced rats' joint architecture and integrity. CONCLUSION NXT15906F6 reduces MIA-induced joint pain, inflammation, and cartilage degradation in rats.
Collapse
Affiliation(s)
- Sae-Bom Kwon
- Health Food Lab, Kolmar BNH Co., LTD, Seoul, Korea
| | - Gopichand Chinta
- Department of Pharmacology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Sreenath Kundimi
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Sangback Kim
- Health Food Lab, Kolmar BNH Co., LTD, Seoul, Korea
| | | | - Seul-Ki Kim
- Health Food Lab, Kolmar BNH Co., LTD, Seoul, Korea
| | - Jae-Yeong Ju
- Health Food Lab, Kolmar BNH Co., LTD, Seoul, Korea
| | - Krishanu Sengupta
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
11
|
Tarafder S, Ghataure J, Langford D, Brooke R, Kim R, Eyen SL, Bensadoun J, Felix JT, Cook JL, Lee CH. Advanced bioactive glue tethering Lubricin/PRG4 to promote integrated healing of avascular meniscus tears. Bioact Mater 2023; 28:61-73. [PMID: 37214259 PMCID: PMC10199165 DOI: 10.1016/j.bioactmat.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone, but no regenerative therapy exist. Previously, we showed that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) via fibrin-based bio-glue facilitate meniscus healing by inducing recruitment and stepwise differentiation of synovial mesenchymal stem/progenitor cells. Here, we first explored the potential of genipin, a natural crosslinker, to enhance fibrin-based glue's mechanical and degradation properties. In parallel, we identified the harmful effects of lubricin on meniscus healing and investigated the mechanism of lubricin deposition on the injured meniscus surface. We found that the pre-deposition of hyaluronic acid (HA) on the torn meniscus surface mediates lubricin deposition. Then we implemented chemical modifications with heparin conjugation and CD44 on our bioactive glue to achieve strong initial bonding and integration of lubricin pre-coated meniscal tissues. Our data suggested that heparin conjugation significantly enhances lubricin-coated meniscal tissues. Similarly, CD44, exhibiting a strong binding affinity to lubricin and hyaluronic acid (HA), further improved the integrated healing of HA/lubricin pre-coated meniscus injuries. These findings may represent an important foundation for developing a translational bio-active glue guiding the regenerative healing of meniscus injuries.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jaskirti Ghataure
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - David Langford
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Rachel Brooke
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Ryunhyung Kim
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Samantha Lewis Eyen
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Julian Bensadoun
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jeffrey T. Felix
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia, MO, 65212, USA
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
12
|
Plath AMS, Huber S, Alfarano SR, Abbott DF, Hu M, Mougel V, Isa L, Ferguson SJ. Co-Electrospun Poly(ε-Caprolactone)/Zein Articular Cartilage Scaffolds. Bioengineering (Basel) 2023; 10:771. [PMID: 37508797 PMCID: PMC10376865 DOI: 10.3390/bioengineering10070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis scaffold-based grafts fail because of poor integration with the surrounding soft tissue and inadequate tribological properties. To circumvent this, we propose electrospun poly(ε-caprolactone)/zein-based scaffolds owing to their biomimetic capabilities. The scaffold surfaces were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, static water contact angles, and profilometry. Scaffold biocompatibility properties were assessed by measuring protein adsorption (Bicinchoninic Acid Assay), cell spreading (stained F-actin), and metabolic activity (PrestoBlue™ Cell Viability Reagent) of primary bovine chondrocytes. The data show that zein surface segregation in the membranes not only completely changed the hydrophobic behavior of the materials, but also increased the cell yield and metabolic activity on the scaffolds. The surface segregation is verified by the infrared peak at 1658 cm-1, along with the presence and increase in N1 content in the survey XPS. This observation could explain the decrease in the water contact angles from 125° to approximately 60° in zein-comprised materials and the decrease in the protein adsorption of both bovine serum albumin and synovial fluid by half. Surface nano roughness in the PCL/zein samples additionally benefited the radial spreading of bovine chondrocytes. This study showed that co-electrospun PCL/zein scaffolds have promising surface and biocompatibility properties for use in articular-tissue-engineering applications.
Collapse
Affiliation(s)
| | - Stephanie Huber
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Serena R Alfarano
- Laboratory of Food and Soft Materials, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel F Abbott
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Minghan Hu
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Victor Mougel
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Stephen J Ferguson
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
13
|
Das N, de Almeida LGN, Derakhshani A, Young D, Mehdinejadiani K, Salo P, Rezansoff A, Jay GD, Sommerhoff CP, Schmidt TA, Krawetz R, Dufour A. Tryptase β regulation of joint lubrication and inflammation via proteoglycan-4 in osteoarthritis. Nat Commun 2023; 14:1910. [PMID: 37024468 PMCID: PMC10079686 DOI: 10.1038/s41467-023-37598-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
PRG4 is an extracellular matrix protein that maintains homeostasis through its boundary lubricating and anti-inflammatory properties. Altered expression and function of PRG4 have been associated with joint inflammatory diseases, including osteoarthritis. Here we show that mast cell tryptase β cleaves PRG4 in a dose- and time-dependent manner, which was confirmed by silver stain gel electrophoresis and mass spectrometry. Tryptase-treated PRG4 results in a reduction of lubrication. Compared to full-length, cleaved PRG4 further activates NF-κB expression in cells overexpressing TLR2, -4, and -5. In the destabilization of the medial meniscus model of osteoarthritis in rat, tryptase β and PRG4 colocalize at the site of injury in knee cartilage and is associated with disease severity. When human primary synovial fibroblasts from male osteoarthritis patients or male healthy subjects treated with tryptase β and/or PRG4 are subjected to a quantitative shotgun proteomics and proteome changes are characterized, it further supports the role of NF-κB activation. Here we show that tryptase β as a modulator of joint lubrication in osteoarthritis via the cleavage of PRG4.
Collapse
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G N de Almeida
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Afshin Derakhshani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel Young
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kobra Mehdinejadiani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Salo
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander Rezansoff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - Christian P Sommerhoff
- Institute of Medical Education and Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Tannin A Schmidt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Antoine Dufour
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Tee CA, Han J, Hui JHP, Lee EH, Yang Z. Perspective in Achieving Stratified Articular Cartilage Repair Using Zonal Chondrocytes. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36416231 DOI: 10.1089/ten.teb.2022.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Articular cartilage is composed of superficial, medial, and deep zones, which endow the tissue with biphasic mechanical properties to withstand shearing force and compressional loading. The tissue has very limited self-healing capacity once it is damaged due to its avascular nature. To prevent the early onset of osteoarthritis, surgical intervention is often needed to repair the injured cartilage. Current noncell-based and cell-based treatments focus on the regeneration of homogeneous cartilage to achieve bulk compressional properties without recapitulating the zonal matrix and mechanical properties, and often oversight in aiding cartilage integration between host and repair cartilage. It is hypothesized that achieving zonal architecture in articular cartilage tissue repair could improve the structural and mechanical integrity and thus the life span of the regenerated tissue. Engineering stratified cartilage constructs using zonal chondrocytes have been hypothesized to improve the functionality and life span of the regenerated tissues. However, stratified articular cartilage repair has yet to be realized to date due to the lack of an efficient zonal chondrocyte isolation method and an expansion platform that would allow both cell propagation and phenotype maintenance. Various attempts and challenges in achieving stratified articular cartilage repair in a clinical setting are evaluated. In this review, different perspectives on achieving stratified articular cartilage repair using zonal chondrocytes are described. The effectiveness of different zonal chondrocyte isolation and zonal chondrocyte phenotype maintenance methodologies during expansion are compared, with the focus on recent advancements in zonal chondrocyte isolation and expansion that could present a possible strategy to overcome the limitation of applying zonal chondrocytes to facilitate zonal architecture development in articular cartilage regeneration. Impact Statement The zonal properties of articular cartilage contribute to the biphasic mechanical properties of the tissues. Recapitulation of the zonal architecture in regenerated articular cartilage has been hypothesized to improve the mechanical integrity and life span of the regenerated tissue. This review provides a comprehensive discussion on the current state of research relevant to achieving stratified articular cartilage repair using zonal chondrocytes from different perspectives. This review further elaborates on a zonal chondrocyte production pipeline that can potentially overcome the current clinical challenges and future work needed to realize stratified zonal chondrocyte implantation in a clinical setting.
Collapse
Affiliation(s)
- Ching Ann Tee
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Electrical Engineering and Computer Science, Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Eng Hin Lee
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Abstract
Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.
Collapse
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
16
|
Baltzer AW, Casadonte R, Korff A, Baltzer LM, Kriegsmann K, Kriegsmann M, Kriegsmann J. Biological injection therapy with leukocyte-poor platelet-rich plasma induces cellular alterations, enhancement of lubricin, and inflammatory downregulation in vivo in human knees: A controlled, prospective human clinical trial based on mass spectrometry imaging analysis. Front Surg 2023; 10:1169112. [PMID: 37151865 PMCID: PMC10160617 DOI: 10.3389/fsurg.2023.1169112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Objective To investigate the in vivo biological effects of leukocyte-poor platelet-rich plasma (LpPRP) treatment in human synovial layer to establish the cellular basis for a prolonged clinical improvement. Methods Synovial tissues (n = 367) were prospectively collected from patients undergoing arthroscopic surgery. Autologous-conditioned plasma, LpPRP, was injected into the knees of 163 patients 1-7 days before surgery to reduce operative trauma and inflammation, and to induce the onset of regeneration. A total of 204 patients did not receive any injection. All samples were analyzed by mass spectrometry imaging. Data analysis was evaluated by clustering, classification, and investigation of predictive peptides. Peptide identification was done by tandem mass spectrometry and database matching. Results Data analysis revealed two major clusters belonging to LpPRP-treated (LpPRP-1) and untreated (LpPRP-0) patients. Classification analysis showed a discrimination accuracy of 82%-90%. We identified discriminating peptides for CD45 and CD29 receptors (receptor-type tyrosine-protein phosphatase C and integrin beta 1), indicating an enhancement of musculoskeletal stem cells, as well as an enhancement of lubricin, collagen alpha-1-(I) chain, and interleukin-receptor-17-E, dampening the inflammatory reaction in the LpPRP-1 group following LpPRP injection. Conclusions We could demonstrate for the first time that injection therapy using "autologic-conditioned biologics" may lead to cellular changes in the synovial membrane that might explain the reported prolonged beneficial clinical effects. Here, we show in vivo cellular changes, possibly based on muscular skeletal stem cell alterations, in the synovial layer. The gliding capacities of joints might be improved by enhancing of lubricin, anti-inflammation by activation of interleukin-17 receptor E, and reduction of the inflammatory process by blocking interleukin-17.
Collapse
Affiliation(s)
- Axel W. Baltzer
- Center for Molecular Orthopaedics, MVZ Ortho Koenigsallee, Düsseldorf, Germany
- Correspondence: Axel W. Baltzer
| | - Rita Casadonte
- Imaging Mass Spectrometry, Proteopath GmbH, Trier, Germany
| | - Alexei Korff
- Center for Molecular Orthopaedics, MVZ Ortho Koenigsallee, Düsseldorf, Germany
| | | | - Katharina Kriegsmann
- Department for Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Germany Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), Heidelberg, Germany
| | - Jörg Kriegsmann
- Imaging Mass Spectrometry, Proteopath GmbH, Trier, Germany
- MVZ-Zentrum für Histologie, Zytologie und Molekulare Diagnostik, Trier, Germany
- Department of Medicine, Faculty of Medicine/Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
17
|
Rapid induction and long-term self-renewal of neural crest-derived ectodermal chondrogenic cells from hPSCs. NPJ Regen Med 2022; 7:69. [PMID: 36477591 PMCID: PMC9729200 DOI: 10.1038/s41536-022-00265-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage is highly specific and has limited capacity for regeneration if damaged. Human pluripotent stem cells (hPSCs) have the potential to generate any cell type in the body. Here, we report the dual-phase induction of ectodermal chondrogenic cells (ECCs) from hPSCs through the neural crest (NC). ECCs were able to self-renew long-term (over numerous passages) in a cocktail of growth factors and small molecules. The cells stably expressed cranial neural crest-derived mandibular condylar cartilage markers, such as MSX1, FOXC1 and FOXC2. Compared with chondroprogenitors from iPSCs via the paraxial mesoderm, ECCs had single-cell transcriptome profiles similar to condylar chondrocytes. After the removal of the cocktail sustaining self-renewal, the cells stopped proliferating and differentiated into a homogenous chondrocyte population. Remarkably, after transplantation, this cell lineage was able to form cartilage-like structures resembling mandibular condylar cartilage in vivo. This finding provides a framework to generate self-renewing cranial chondrogenic progenitors, which could be useful for developing cell-based therapy for cranial cartilage injury.
Collapse
|
18
|
Recombinant lubricin improves anti-adhesive, wear protection, and lubrication of collagen II surface. Colloids Surf B Biointerfaces 2022; 220:112906. [DOI: 10.1016/j.colsurfb.2022.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
19
|
Szarek P, Pierce DM. A specialized protocol for mechanical testing of isolated networks of type II collagen. J Mech Behav Biomed Mater 2022; 136:105466. [PMID: 36183667 DOI: 10.1016/j.jmbbm.2022.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
The mechanical responses of most soft biological tissues rely heavily on networks of collagen fibers, thus quantifying the mechanics of both individual collagen fibers and networks of these fibers advances understanding of biological tissues in health and disease. The mechanics of type I collagen are well-studied and quantified. Yet no data exist on the tensile mechanical responses of individual type II collagen fibers nor of isolated networks comprised of type II collagen. We aimed to establish methods to facilitate studies of networked and individual type II collagen fibers within the native networked structure, specifically to establish best practices for isolating and mechanically testing type II collagen networks in tension. We systematically investigated mechanical tests of networks of type II collagen undergoing uniaxial extension, and quantified ranges for each of the important variables to help ensure that the experiment itself does not affect the measured mechanical parameters. Specifically we determined both the specimen (establishing networks of isolated collagen, the footprint and thickness of the specimen) and the mechanical test (both the device and the strain rate) to establish a repeatable and practical protocol. Mechanical testing of isolated networks of type II collagen fibers leveraging this protocol will lead to better understanding of the mechanics both of these networks and of the individual fibers. Such understanding may aid in developing and testing therapeutics, understanding inter-constituent interactions (and their roles in bulk-tissue biomechanics), investigating mechanical/biochemical modifications to networked type II collagen, and proposing, calibrating, and validating constitutive models for finite element analyses.
Collapse
Affiliation(s)
- Phoebe Szarek
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
20
|
Lee YR, Briggs MT, Young C, Condina MR, Kuliwaba JS, Anderson PH, Hoffmann P. Mass spectrometry imaging spatially identifies complex-type N-glycans as putative cartilage degradation markers in human knee osteoarthritis tissue. Anal Bioanal Chem 2022; 414:7597-7607. [PMID: 36125541 PMCID: PMC9587078 DOI: 10.1007/s00216-022-04289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
N-Glycan alterations contribute to the pathophysiology and progression of various diseases. However, the involvement of N-glycans in knee osteoarthritis (KOA) progression at the tissue level, especially within articular cartilage, is still poorly understood. Thus, the aim of this study was to spatially map and identify KOA-specific N-glycans from formalin-fixed paraffin-embedded (FFPE) osteochondral tissue of the tibial plateau relative to cadaveric control (CTL) tissues. Human FFPE osteochondral tissues from end-stage KOA patients (n=3) and CTL individuals (n=3), aged >55 years old, were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Overall, it was revealed that 22 N-glycans were found in the cartilage region of KOA and CTL tissue. Of those, 15 N-glycans were more prominent in KOA cartilage than CTL cartilage. We then compared sub-regions of KOA and CTL tissues based on the Osteoarthritis Research Society International (OARSI) histopathological grade (1 to 6), where 1 is an intact cartilage surface and 6 is cartilage surface deformation. Interestingly, three specific complex-type N-glycans, (Hex)4(HexNAc)3, (Hex)4(HexNAc)4, and (Hex)5(HexNAc)4, were found to be localized to the superficial fibrillated zone of degraded cartilage (KOA OARSI 2.5-4), compared to adjacent cartilage with less degradation (KOA OARSI 1-2) or relatively healthy cartilage (CTL OARSI 1-2). Our results demonstrate that N-glycans specific to degraded cartilage in KOA patients have been identified at the tissue level for the first time. The presence of these N-glycans could further be evaluated as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
- Discipline of Orthopedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia Australia
| | - Matthew T. Briggs
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| | - Mark R. Condina
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| | - Julia S. Kuliwaba
- Discipline of Orthopedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia Australia
| | - Paul H. Anderson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia Australia
| | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| |
Collapse
|
21
|
Ibelli AMG, Peixoto JDO, Zanella R, Gouveia JJDS, Cantão ME, Coutinho LL, Marchesi JAP, Pizzol MSD, Marcelino DEP, Ledur MC. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Front Physiol 2022; 13:941134. [PMID: 36003650 PMCID: PMC9393217 DOI: 10.3389/fphys.2022.941134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Femoral head separation (FHS) is characterized by the detachment of growth plate (GP) and articular cartilage, occurring in tibia and femur. However, the molecular mechanisms involved with this condition are not completely understood. Therefore, genes and biological processes (BP) involved with FHS were identified in 21-day-old broilers through RNA sequencing of the femoral GP. 13,487 genes were expressed in the chicken femoral head transcriptome of normal and FHS-affected broilers. From those, 34 were differentially expressed (DE; FDR ≤0.05) between groups, where all of them were downregulated in FHS-affected broilers. The main BP were enriched in receptor signaling pathways, ossification, bone mineralization and formation, skeletal morphogenesis, and vascularization. RNA-Seq datasets comparison of normal and FHS-affected broilers with 21, 35 and 42 days of age has shown three shared DE genes (FBN2, C1QTNF8, and XYLT1) in GP among ages. Twelve genes were exclusively DE at 21 days, where 10 have already been characterized (SHISA3, FNDC1, ANGPTL7, LEPR, ENSGALG00000049529, OXTR, ENSGALG00000045154, COL16A1, RASD2, BOC, GDF10, and THSD7B). Twelve SNPs were associated with FHS (p < 0.0001). Out of those, 5 were novel and 7 were existing variants located in 7 genes (RARS, TFPI2, TTI1, MAP4K3, LINK54, and AREL1). We have shown that genes related to chondrogenesis and bone differentiation were downregulated in the GP of FHS-affected young broilers. Therefore, these findings evince that candidate genes pointed out in our study are probably related to the onset of FHS in broilers.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de SP, Piracicaba, Brazil
| | | | | | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Brazil
- Programa de Pós-Graduação Em Zootecnia, Universidade do Estado de SC, UDESC-Oeste, Chapecó, Brazil
- *Correspondence: Mônica Corrêa Ledur,
| |
Collapse
|
22
|
Evenbratt H, Andreasson L, Bicknell V, Brittberg M, Mobini R, Simonsson S. Insights into the present and future of cartilage regeneration and joint repair. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:3. [PMID: 35106664 PMCID: PMC8807792 DOI: 10.1186/s13619-021-00104-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022]
Abstract
Knee osteoarthritis is the most common joint disease. It causes pain and suffering for affected patients and is the source of major economic costs for healthcare systems. Despite ongoing research, there is a lack of knowledge regarding disease mechanisms, biomarkers, and possible cures. Current treatments do not fulfill patients' long-term needs, and it often requires invasive surgical procedures with subsequent long periods of rehabilitation. Researchers and companies worldwide are working to find a suitable cell source to engineer or regenerate a functional and healthy articular cartilage tissue to implant in the damaged area. Potential cell sources to accomplish this goal include embryonic stem cells, mesenchymal stem cells, or induced pluripotent stem cells. The differentiation of stem cells into different tissue types is complex, and a suitable concentration range of specific growth factors is vital. The cellular microenvironment during early embryonic development provides crucial information regarding concentrations of signaling molecules and morphogen gradients as these are essential inducers for tissue development. Thus, morphogen gradients implemented in developmental protocols aimed to engineer functional cartilage tissue can potentially generate cells comparable to those within native cartilage. In this review, we have summarized the problems with current treatments, potential cell sources for cell therapy, reviewed the progress of new treatments within the regenerative cartilage field, and highlighted the importance of cell quality, characterization assays, and chemically defined protocols.
Collapse
Affiliation(s)
| | - L. Andreasson
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - V. Bicknell
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
| | - M. Brittberg
- Cartilage Research Unit, University of Gothenburg, Region Halland Orthopaedics, Kungsbacka Hospital, S-434 80 Kungsbacka, Sweden
| | - R. Mobini
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
| | - S. Simonsson
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
23
|
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Int J Mol Sci 2021; 22:ijms222413595. [PMID: 34948394 PMCID: PMC8707858 DOI: 10.3390/ijms222413595] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.
Collapse
|
24
|
Szin N, Silva SM, Moulton SE, Kapsa RMI, Quigley AF, Greene GW. Cellular Interactions with Lubricin and Hyaluronic Acid-Lubricin Composite Coatings on Gold Electrodes in Passive and Electrically Stimulated Environments. ACS Biomater Sci Eng 2021; 7:3696-3708. [PMID: 34283570 DOI: 10.1021/acsbiomaterials.1c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the field of bionics, the long-term effectiveness of implantable bionic interfaces depends upon maintaining a "clean" and unfouled electrical interface with biological tissues. Lubricin (LUB) is an innately biocompatible glycoprotein with impressive antifouling properties. Unlike traditional antiadhesive coatings, LUB coatings do not passivate electrode surfaces, giving LUB coatings great potential for controlling surface fouling of implantable electrode interfaces. This study characterizes the antifouling properties of bovine native LUB (N-LUB), recombinant human LUB (R-LUB), hyaluronic acid (HA), and composite coatings of HA and R-LUB (HA/R-LUB) on gold electrodes against human primary fibroblasts and chondrocytes in passive and electrically stimulated environments for up to 96 h. R-LUB coatings demonstrated highly effective antifouling properties, preventing nearly all adhesion and proliferation of fibroblasts and chondrocytes even under biphasic electrical stimulation. N-LUB coatings, while showing efficacy in the short term, failed to produce sustained antifouling properties against fibroblasts or chondrocytes over longer periods of time. HA/R-LUB composite films also demonstrated highly effective antifouling performance equal to the R-LUB coatings in both passive and electrically stimulated environments. The high electrochemical stability and long-lasting antifouling properties of R-LUB and HA/R-LUB coatings in electrically stimulating environments reveal the potential of these coatings for controlling unwanted cell adhesion in implantable bionic applications.
Collapse
Affiliation(s)
- Natalie Szin
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, VIC 3216, Australia
| | - Saimon M Silva
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Simon E Moulton
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Robert M I Kapsa
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,School of Electrical and Biomedical Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Anita F Quigley
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,School of Electrical and Biomedical Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, VIC 3216, Australia
| |
Collapse
|
25
|
Proteomic Analysis Reveals Commonly Secreted Proteins of Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Synovial Membrane to Show Potential for Cartilage Regeneration in Knee Osteoarthritis. Stem Cells Int 2021; 2021:6694299. [PMID: 34306096 PMCID: PMC8264516 DOI: 10.1155/2021/6694299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Paracrine factors secreted by mesenchymal stem cells (MSCs) reportedly modulate inflammation and reparative processes in damaged tissues and have been explored for knee osteoarthritis (OA) therapy. Although various studies have reported the effects of paracrine factors in knee OA, it is not yet clear which paracrine factors directly affect the regeneration of damaged cartilage and which are secreted under various knee OA conditions. In this study, we cultured MSCs derived from three types of tissues and treated each type with IL-1β and TNF-α or not to obtain conditioned medium. Each conditioned medium was used to analyse the paracrine factors related to cartilage regeneration using liquid chromatography-tandem mass spectrometry. Bone marrow-, adipose tissue-, and synovial membrane-MSCs (all-MSCs) exhibited expression of 93 proteins under normal conditions and 105 proteins under inflammatory conditions. It was confirmed that the types of secreted proteins differed depending on the environmental conditions, and the proteins were validated using ELISA. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using a list of proteins secreted by all-MSCs under each condition confirmed that the secreted proteins were closely related to cartilage repair under inflammatory conditions. Protein-protein interaction networks were confirmed to change depending on environmental differences and were found to enhance the secretion of paracrine factors related to cartilage regeneration under inflammatory conditions. In conclusion, our results demonstrated that compared with knee OA conditions, the differential expression proteins may contribute to the regeneration of damaged cartilage. In addition, the detailed information on commonly secreted proteins by all-MSCs provides a comprehensive basis for understanding the potential of paracrine factors to influence tissue repair and regeneration in knee OA.
Collapse
|
26
|
Lin W, Klein J. Recent Progress in Cartilage Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005513. [PMID: 33759245 DOI: 10.1002/adma.202005513] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well-being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and bio-inspired lubricants is reviewed.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
27
|
Slovacek H, Khanna R, Poredos P, Poredos P, Jezovnik M, Hoppensteadt D, Fareed J, Hopkinson W. Interrelationship of MMP-9, Proteoglycan-4, and Inflammation in Osteoarthritis Patients Undergoing Total Hip Arthroplasty. Clin Appl Thromb Hemost 2021; 27:1076029621995569. [PMID: 33754883 PMCID: PMC7995300 DOI: 10.1177/1076029621995569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a chronic condition marked by joint pain, inflammation and loss of articular cartilage, that can be treated with total joint arthroplasty (TJA) at end stages. TJA is marked by post-operative inflammation, which directly effects levels of cartilage degradation biomarkers, proteoglycan-4 (PRG4) and matrix metalloproteinase-9 (MMP-9). PRG4 is a protective glycoprotein that is decreased in individuals with OA. MMP-9 is a matrix metalloproteinase that contributes to articular cartilage loss and is elevated in OA patients. It is upregulated by pro-inflammatory markers, such as IL-1, IL-6 and CRP. This study aims to elucidate the immediate post-operative changes in levels of PRG4, MMP-9, IL-6, CRP, and WBC in patients undergoing TJA to clarify the role of inflammation in recovery after surgery and in the overall pathogenesis of OA. Blood was collected at 3 time points (day 0, day 1 post-operatively, and days 5-7 post-operatively), from 63 patients undergoing TJA due to OA, and levels of these biomarkers were quantified. IL-6, CRP, WBC and MMP-9 were lowest at day 0, highest at day 1, and stabilized at an intermediate level at days 5-7. Meanwhile, PRG4 followed the opposite trend. These studies suggest that IL-6, CRP and WBC showed predictable fluctuations, with pro-inflammatory biomarkers upregulating MMP-9 and downregulating PRG4. Measuring these biomarkers may help expose the role of inflammation in the post-surgical recovery of TJA patients and in long-term pathogenesis of OA. These levels may help risk stratify patients pre-operatively and help develop individualized post-surgical plans.
Collapse
Affiliation(s)
- Hannah Slovacek
- Department of Pathology and Laboratory Medicine, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Rajan Khanna
- Department of Pathology and Laboratory Medicine, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Pavel Poredos
- Medical Clinic Division of Vascular Medicine, University Medical Centre Ljubljana, Slovenia
| | - Peter Poredos
- Department of Anesthesiology and Perioperative Intensive Care, University Medical Centre Ljubljana, Slovenia
| | - Mateja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, 12340University of Texas Health Science Center at Houston, TX, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, 2456Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, 2456Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - William Hopkinson
- Orthopaedic Surgery and Rehabilitation Department, 2456Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
28
|
Matheson AR, Sheehy EJ, Jay GD, Scott WM, O'Brien FJ, Schmidt TA. The role of synovial fluid constituents in the lubrication of collagen-glycosaminoglycan scaffolds for cartilage repair. J Mech Behav Biomed Mater 2021; 118:104445. [PMID: 33740688 DOI: 10.1016/j.jmbbm.2021.104445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Extracellular matrix (ECM)-derived scaffolds have shown promise as tissue-engineered grafts for promoting cartilage repair. However, there has been a lack of focus on fine-tuning the frictional properties of scaffolds for cartilage tissue engineering as well as understanding their interactions with synovial fluid constituents. Proteoglycan-4 (PRG4) and hyaluronan (HA) are macromolecules within synovial fluid that play key roles as boundary mode lubricants during cartilage surface interactions. The overall objective of this study was to characterize the role PRG4 and HA play in the lubricating function of collagen-glycosaminoglycan (GAG) scaffolds for cartilage repair. As a first step towards this goal, we aimed to develop a suitable in vitro friction test to establish the boundary mode lubrication parameters for collagen-GAG scaffolds articulated against glass in a phosphate buffered saline (PBS) bath. Subsequently, we sought to leverage this system to determine the effect of physiological synovial fluid lubricants, PRG4 and HA, on the frictional properties of collagen-GAG scaffolds, with scaffolds hydrated in PBS and bovine synovial fluid (bSF) serving as negative and positive controls, respectively. At all compressive strains examined (ε = 0.1-0.5), fluid depressurization within hydrated collagen-GAG scaffolds was >99% complete at ½ minute. The coefficient of friction was stable at all compressive strains (ranging from a low 0.103 ± 0.010 at ε = 0.3 up to 0.121 ± 0.015 at ε = 0.4) and indicative of boundary-mode conditions. Immunohistochemistry demonstrated that PRG4 from recombinant human (rh) and bovine sources adsorbed to collagen-GAG scaffolds and the coefficient of friction for scaffolds immersed in rhPRG4 (0.067 ± 0.027) and normal bSF (0.056 ± 0.020) solution decreased compared to PBS (0.118 ± 0.21, both p < 0.05, at ε = 0.2). The ability of the adsorbed rhPRG4 to reduce friction on the scaffolds indicates that its incorporation within collagen-GAG biomaterials may enhance their lubricating ability as potential tissue-engineered cartilage replacements. To conclude, this study reports the development of an in vitro friction test capable of characterizing the coefficient of friction of ECM-derived scaffolds tested in a range of synovial fluid lubricants and demonstrates frictional properties as a potential design parameter for implants and materials for soft tissue replacement.
Collapse
Affiliation(s)
- Austyn R Matheson
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Eamon J Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - W Michael Scott
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
29
|
|
30
|
Wang Y, Gludish DW, Hayashi K, Todhunter RJ, Krotscheck U, Johnson PJ, Cummings BP, Su J, Reesink HL. Synovial fluid lubricin increases in spontaneous canine cruciate ligament rupture. Sci Rep 2020; 10:16725. [PMID: 33028842 PMCID: PMC7542452 DOI: 10.1038/s41598-020-73270-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Lubricin is an important boundary lubricant and chondroprotective glycoprotein in synovial fluid. Both increased and decreased synovial fluid lubricin concentrations have been reported in experimental post-traumatic osteoarthritis (PTOA) animal models and in naturally occurring joint injuries in humans and animals, with no consensus about how lubricin is altered in different species or injury types. Increased synovial fluid lubricin has been observed following intra-articular fracture in humans and horses and in human late-stage osteoarthritis; however, it is unknown how synovial lubricin is affected by knee-destabilizing injuries in large animals. Spontaneous rupture of cranial cruciate ligament (RCCL), the anterior cruciate ligament equivalent in quadrupeds, is a common injury in dogs often accompanied by OA. Here, clinical records, radiographs, and synovial fluid samples from 30 dogs that sustained RCCL and 9 clinically healthy dogs were analyzed. Synovial fluid lubricin concentrations were nearly 16-fold greater in RCCL joints as compared to control joints, while IL-2, IL-6, IL-8, and TNF-α concentrations did not differ between groups. Synovial fluid lubricin concentrations were correlated with the presence of radiographic OA and were elevated in three animals sustaining RCCL injury prior to the radiographic manifestation of OA, indicating that lubricin may be a potential biomarker for early joint injury.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David W Gludish
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kei Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Rory J Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Ursula Krotscheck
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Philippa J Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Link JM, Salinas EY, Hu JC, Athanasiou KA. The tribology of cartilage: Mechanisms, experimental techniques, and relevance to translational tissue engineering. Clin Biomech (Bristol, Avon) 2020; 79:104880. [PMID: 31676140 PMCID: PMC7176516 DOI: 10.1016/j.clinbiomech.2019.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Diarthrodial joints, found at the ends of long bones, function to dissipate load and allow for effortless articulation. Essential to these functions are cartilages, soft hydrated tissues such as hyaline articular cartilage and the knee meniscus, as well as lubricating synovial fluid. Maintaining adequate lubrication protects cartilages from wear, but a decrease in this function leads to tissue degeneration and pathologies such as osteoarthritis. To study cartilage physiology, articular cartilage researchers have employed tribology, the study of lubrication and wear between two opposing surfaces, to characterize both native and engineered tissues. The biochemical components of synovial fluid allow it to function as an effective lubricant that exhibits shear-thinning behavior. Although tribological properties are recognized to be essential to native tissue function and a critical characteristic for translational tissue engineering, tribology is vastly understudied when compared to other mechanical properties such as compressive moduli. Further, tribometer configurations and testing modalities vary greatly across laboratories. This review aims to define commonly examined tribological characteristics and discuss the structure-function relationships of biochemical constituents known to contribute to tribological properties in native tissue, address the variations in experimental set-ups by suggesting a move toward standard testing practices, and describe how tissue-engineered cartilages may be augmented to improve their tribological properties.
Collapse
Affiliation(s)
- Jarrett M. Link
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Evelia Y. Salinas
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Jerry C. Hu
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Kyriacos A. Athanasiou
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| |
Collapse
|
32
|
Watkins AR, Reesink HL. Lubricin in experimental and naturally occurring osteoarthritis: a systematic review. Osteoarthritis Cartilage 2020; 28:1303-1315. [PMID: 32504786 PMCID: PMC8043104 DOI: 10.1016/j.joca.2020.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Lubricin is increasingly being evaluated as an outcome measure in studies investigating post-traumatic and naturally occurring osteoarthritis. However, there are discrepancies in results, making it unclear as to whether lubricin is increased, decreased or unchanged in osteoarthritis. The purpose of this study was to review all papers that measured lubricin in joint injury or osteoarthritis in order to draw conclusions about lubricin regulation in joint disease. DESIGN A systematic search of the Pubmed, Web of Knowledge, and EBSCOhost databases for papers was performed. Inclusion criteria were in vivo studies that measured lubricin in humans or animals with joint injury, that investigated lubricin supplementation in osteoarthritic joints, or that described the phenotype of a lubricin knock-out model. A methodological assessment was performed. RESULTS Sixty-two studies were included, of which thirty-eight measured endogenous lubricin in joint injury or osteoarthritis. Nineteen papers found an increase or no change in lubricin and nineteen reported a decrease. Papers that reported a decrease in lubricin were cited four times more often than those that reported an increase. Fifteen papers described lubricin supplementation, and all reported a beneficial effect. Eleven papers described lubricin knock-out models. CONCLUSIONS The human literature reveals similar distributions of papers reporting increased lubricin as compared to decreased lubricin in osteoarthritis. The animal literature is dominated by reports of decreased lubricin in the rat anterior cruciate ligament transection model, whereas studies in large animal models report increased lubricin. Intra-articular lubricin supplementation may be beneficial regardless of whether lubricin increases or decreases in OA.
Collapse
Affiliation(s)
- A R Watkins
- Department of Clinical Sciences, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, PA, USA
| | - H L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
33
|
Flowers SA, Thomsson KA, Ali L, Huang S, Mthembu Y, Regmi SC, Holgersson J, Schmidt TA, Rolfson O, Björkman LI, Sundqvist M, Karlsson-Bengtsson A, Jay GD, Eisler T, Krawetz R, Karlsson NG. Decrease of core 2 O-glycans on synovial lubricin in osteoarthritis reduces galectin-3 mediated crosslinking. J Biol Chem 2020; 295:16023-16036. [PMID: 32928962 DOI: 10.1074/jbc.ra120.012882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin's ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin-galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liaqat Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shan Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yolanda Mthembu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suresh C Regmi
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Chalmers University of Technology, Gothenburg, Sweden
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Thomas Eisler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
34
|
Murata D, Fujimoto R, Nakayama K. Osteochondral Regeneration Using Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21103589. [PMID: 32438742 PMCID: PMC7279226 DOI: 10.3390/ijms21103589] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a major joint disease that promotes locomotor deficiency during the middle- to old-age, with the associated disability potentially decreasing quality of life. Recently, surgical strategies to reconstruct both articular cartilage and subchondral bone for OA have been diligently investigated for restoring joint structure and function. Adipose tissue-derived mesenchymal stem cells (AT-MSCs), which maintain pluripotency and self-proliferation ability, have recently received attention as a useful tool to regenerate osteocartilage for OA. In this review, several studies were described related to AT-MSC spheroids, with scaffold and scaffold-free three-dimensional (3D) constructs produced using “mold” or “Kenzan” methods for osteochondral regeneration. First, several examples of articular cartilage regeneration using AT-MSCs were introduced. Second, studies of osteochondral regeneration (not only cartilage but also subchondral bone) using AT-MSCs were described. Third, examples were presented wherein spheroids were produced using AT-MSCs for cartilage regeneration. Fourth, osteochondral regeneration following autologous implantation of AT-MSC scaffold-free 3D constructs, fabricated using the “mold” or “Kenzan” method, was considered. Finally, prospects of osteochondral regeneration by scaffold-free 3D constructs using AT-MSC spheroids were discussed.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Correspondence: ; Tel.: +81-952-28-8480
| | - Ryota Fujimoto
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
| |
Collapse
|
35
|
Wang L, Kikuchi S, Schmidt TA, Hoofnagle M, Wight TN, Azuma N, Tang GL, Sobel M, Velamoor GR, Mokadam NA, Kenagy RD. Inhibitory Effects of PRG4 on Migration and Proliferation of Human Venous Cells. J Surg Res 2020; 253:53-62. [PMID: 32320897 DOI: 10.1016/j.jss.2020.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/22/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Proteoglycan 4 (PRG4; lubricin) is a member of two gene co-expression network modules associated with human vein graft failure. However, little is known about PRG4 and the vascular system. Therefore, we have investigated the effects of recombinant human PRG4 (rhPRG4) on cell migration and proliferation in human veins. METHODS Effects of rhPRG4 on cell migration, proliferation, and neointima formation were determined in human venous tissue and cultured venous smooth muscle cells (SMCs), adventitial cells, and endothelial cells. Expression of PRG4 by cultured human saphenous veins, failed vein grafts, and varicose veins was determined by immunostaining or Western blotting. RESULTS Limited expression of PRG4 in fresh saphenous veins was dramatically increased around medial SMCs after culture ex vivo. rhPRG4 inhibited the migration of cultured SMCs, adventitial cells, and endothelial cells, as well as the proliferation of endothelial cells. rhPRG4 also inhibited the migration of SMCs and adventitial cells from tissue explants, but there was no effect on cell proliferation or neointima formation in ex vivo whole veins. Finally, PRG4 was largely absent in two examples of venous pathology, that is, failed human vein grafts and varicose veins. CONCLUSIONS Although rhPRG4 can inhibit the migration of venous SMCs, endothelial cells, and adventitial cells, and the proliferation of endothelial cells, PRG4 was only increased around medial SMCs in veins after ex vivo culture. PRG4 was not observed around medial SMCs in failed human vein grafts and varicose veins, suggesting the possibility that a failure of PRG4 upregulation may promote these pathologies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | | | - Max Hoofnagle
- Department of Surgery, University of Washington, Seattle, Washington
| | - Thomas N Wight
- USA Matrix Biology Program, Benaroya Research Institute, Seattle, Washington
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Gale L Tang
- Department of Surgery, University of Washington, Seattle, Washington; Center for Cardiovascular Biology and Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Michael Sobel
- Department of Surgery, University of Washington, Seattle, Washington
| | - Gautum R Velamoor
- Department of Surgery, Virginia Mason Medical Center, Seattle, Washington
| | - Nahush A Mokadam
- Department of Surgery, University of Washington, Seattle, Washington
| | - Richard D Kenagy
- Department of Surgery, University of Washington, Seattle, Washington; Center for Cardiovascular Biology and Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
36
|
Cathepsin g Degrades Both Glycosylated and Unglycosylated Regions of Lubricin, a Synovial Mucin. Sci Rep 2020; 10:4215. [PMID: 32144329 PMCID: PMC7060204 DOI: 10.1038/s41598-020-61161-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Lubricin (PRG4) is a mucin type protein that plays an important role in maintaining normal joint function by providing lubrication and chondroprotection. Improper lubricin modification and degradation has been observed in idiopathic osteoarthritis (OA), while the detailed mechanism still remains unknown. We hypothesized that the protease cathepsin G (CG) may participate in degrading lubricin in synovial fluid (SF). The presence of endogenous CG in SF was confirmed in 16 patients with knee OA. Recombinant human lubricin (rhPRG4) and native lubricin purified from the SF of patients were incubated with exogenous CG and lubricin degradation was monitored using western blot, staining by Coomassie or Periodic Acid-Schiff base in gels, and with proteomics. Full length lubricin (∼300 kDa), was efficiently digested with CG generating a 25-kDa protein fragment, originating from the densely glycosylated mucin domain (∼250 kDa). The 25-kDa fragment was present in the SF from OA patients, and the amount was increased after incubation with CG. A CG digest of rhPRG4 revealed 135 peptides and 72 glycopeptides, and confirmed that the protease could cleave in all domains of lubricin, including the mucin domain. Our results suggest that synovial CG may take part in the degradation of lubricin, which could affect the pathological decrease of the lubrication in degenerative joint disease.
Collapse
|
37
|
Ravalli S, Szychlinska MA, Lauretta G, Di Rosa M, Musumeci G. Investigating lubricin and known cartilage-based biomarkers of osteoarthritis. Expert Rev Mol Diagn 2020; 20:443-452. [PMID: 32085680 DOI: 10.1080/14737159.2020.1733978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Osteoarthritis (OA) is a degenerative disease which primarily affects hyaline cartilage, leading to pain, stiffness and loss of mobility of the entire articulation. Diagnosis is commonly based on symptoms and radiographs, but there is a growing interest in detecting novel biomarkers, in serum, urine and synovial fluid, which can be predictors of disease onset and progression.Areas covered: This review provides an overview of the main biomarkers currently used in OA clinical practice, with a focus on lubricin, a surface glycoprotein secreted in the synovial fluid that lubricates the cartilage and reduces the coefficient of friction within the joint. Key findings of the last years are presented throughout the article.Expert opinion: Analysis of biomarkers might suggest personalized protocols of treatment, guide the classification of OA phenotypes, contribute to precision medicine, avoid further unnecessary exams, facilitate drug discovery or refine treatment guidelines. For all these reasons, the investigation of novel cartilage-based biomarker of osteoarthritis needs to be promoted and improved.
Collapse
Affiliation(s)
- Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Via Santa Sofia, Italy.,Research Center on Motor Activities (CRAM), University of Catania, Catania, Via Santa Sofia, Italy.,Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Han M, Silva SM, Lei W, Quigley A, Kapsa RMI, Moulton SE, Greene GW. Adhesion and Self-Assembly of Lubricin (PRG4) Brush Layers on Different Substrate Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15834-15848. [PMID: 31355643 DOI: 10.1021/acs.langmuir.9b01809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lubricin (LUB, aka PRG4), a mucin-like glycoprotein, is best known for the significant role it plays in the boundary lubrication, wear protection, and adhesion control systems in human joints. However, LUB exhibits a number of diverse and useful properties, including a remarkable ability to self-assemble into a telechelic brush structure onto virtually any substrate. This self-assembly behavior has spawned the emergence of numerous nontraditional applications of LUB coatings in numerous areas such as microfluidics, electrochemical sensors, contact lenses, antifouling surfaces, and bionic neural interfaces. Although LUB will readily self-assemble on most substrates, it has become apparent that the substrate has a significant influence on the LUB layer's demonstrated lubrication, antiadhesion, electrokinetic, and size-selective transport properties; however, investigations into LUB-substrate interactions and how they influence the self-assembled LUB layer structure remain a neglected aspect of LUB research. This study utilizes AFM force spectroscopy to directly assess the adhesion energy of LUB molecules adsorbed to a wide variety of different substrates which include inorganic, polymeric, and metallic materials. An analysis of the steric repulsive forces measured on approach provides a qualitative assessment of the LUB layer's mechanical modulus, related to the chain packing density, across substrates. These modulus measurements, combined with characteristic features and the dwell time dependence of the LUB adhesion forces provide insight into the organization and uniformity of the LUB brush structure. The results of these measurements indicate that LUB interactions with different substrates are highly variable and substrate-specific, resulting in a surprisingly broad spectrum of adhesion energies and layer properties (i.e., chain density, uniformity, etc.) which are not, themselves, correlated or easily predicted by substrate properties. In addition, this study finds exceptionally poor LUB adhesion to both mica and poly(methyl methacrylate) surfaces that remain widely used substrates for constructing model surfaces in fundamental tribology studies which may have significant implications for the findings of a number of foundational studies into LUB tribology and molecular synergies.
Collapse
Affiliation(s)
- Mingyu Han
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science , Deakin University , Melbourne , Victoria 3216 , Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology , Swinburne University of Technology , Hawthorn , Victoria 3122 , Australia
- BioFab3D@ACMD , St. Vincent's Hospital Melbourne , Fitzroy , Victoria 3065 , Australia
| | - Weiwei Lei
- Institute for Frontier Materials , Deakin University , Geelong , Victoria , Australia
| | - Anita Quigley
- BioFab3D@ACMD , St. Vincent's Hospital Melbourne , Fitzroy , Victoria 3065 , Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute , University of Wollongong , Wollongong , NSW 2522 Australia
| | - Robert M I Kapsa
- BioFab3D@ACMD , St. Vincent's Hospital Melbourne , Fitzroy , Victoria 3065 , Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute , University of Wollongong , Wollongong , NSW 2522 Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology , Swinburne University of Technology , Hawthorn , Victoria 3122 , Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science , Deakin University , Melbourne , Victoria 3216 , Australia
| |
Collapse
|
39
|
Cook SG, Guan Y, Pacifici NJ, Brown CN, Czako E, Samak MS, Bonassar LJ, Gourdon D. Dynamics of Synovial Fluid Aggregation under Shear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15887-15896. [PMID: 31608639 DOI: 10.1021/acs.langmuir.9b02028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The synovial fluid (SF) that lubricates articular joints exhibits complex rheological and tribological properties due to the interactions and behaviors of its various molecular components. Under shear, SF films abruptly thicken by more than 300% and large, dense aggregates form within the fluid. In this study, we used the Surface Force Apparatus to elucidate which SF components are involved in this shear-induced transformation by (i) determining which (if any) of all major SF components replicate the behavior of SF under shear and (ii) observing the effect of removing implicated components from SF by enzymatic digestion. While most previous studies of SF have focused on the tribological roles of lubricin or hyaluronic acid, our results indicate that albumin is a key contributor to the formation of aggregates in SF under shear. Our results also suggest that SF aggregation is associated with efficient surface protection against wear. As our findings are based on experiments involving rigid, nonporous surfaces, they may be used to investigate shear-mediated aggregation mechanisms occurring during the lubrication of artificial joints, ultimately advancing our current vision of implant design.
Collapse
Affiliation(s)
- Sierra G Cook
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , United States
| | - Ya Guan
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , United States
| | - Noah J Pacifici
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , United States
| | - Cory N Brown
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , United States
| | - Evan Czako
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , United States
| | - Mihir S Samak
- Department of Physics , University of Ottawa , Ottawa , ON K1N 6N5 , Canada
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering , Cornell University , Ithaca , NY 14853 , United States
- Sibley School of Mechanical and Aerospace Engineering , Cornell University , Ithaca , NY 14853 , United States
| | - Delphine Gourdon
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , United States
- Department of Physics , University of Ottawa , Ottawa , ON K1N 6N5 , Canada
| |
Collapse
|
40
|
Abubacker S, Premnath P, Shonak A, Leonard C, Shah S, Zhu Y, Jay GD, Schmidt TA, Boyd S, Krawetz R. Absence of Proteoglycan 4 (Prg4) Leads to Increased Subchondral Bone Porosity Which Can Be Mitigated Through Intra-Articular Injection of PRG4. J Orthop Res 2019; 37:2077-2088. [PMID: 31119776 DOI: 10.1002/jor.24378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Proteoglycan 4 (PRG4) is a mucin-like glycoprotein important for joint health. Mice lacking Prg4 demonstrate degeneration of the cartilage and altered skeletal morphology. The purpose of this study was to examine if Prg4 deficiency leads to subchondral bone defects and if these defects could be mitigated through intra-articular injection of recombinant human PRG4 (rhPRG4). Mice deficient in Prg4 expression demonstrated increased cartilage thickness and increased subchondral bone porosity compared with C57BL/6 controls. While the porosity of the subchondral bone of Prg4-/- mice decreased over time with maturation, intra-articular injection of rhPRG4 was able to forestall the increase in porosity. In contrast, neither hyaluronan (HA) nor methylprednisolone injections had beneficial effects on the subchondral bone porosity in the Prg4 knockout mice. Bone marrow progenitor cells from Prg4-/- mice demonstrated reduced osteogenic differentiation capacity at 4 weeks of age, but not at 16 weeks of age. While most studies on PRG4/lubricin focus on the health of the cartilage, this study demonstrates that PRG4 plays a role in the maturation of the subchondral bone. Furthermore, increasing joint lubrication/viscosupplementation through injection of HA or controlling joint inflammation through injection of methylprednisolone may help maintain the cartilage surface, but had no positive effect on the subchondral bone in animals lacking Prg4. Therefore, alterations in the subchondral bone in models with absent or diminished Prg4 expression should not be overlooked when investigating changes within the articular cartilage regarding the pathogenesis of osteoarthritis/arthrosis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2077-2088, 2019.
Collapse
Affiliation(s)
- Saleem Abubacker
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Priyatha Premnath
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Anchita Shonak
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Leonard
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Ying Zhu
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Brown University, Providence, Rhode Island
| | - Tannin A Schmidt
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Steven Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Departments of Surgery, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Departments of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
42
|
Thorson C, Galicia K, Burleson A, Bouchard O, Hoppensteadt D, Fareed J, Hopkinson W. Matrix Metalloproteinases and Their Inhibitors and Proteoglycan 4 in Patients Undergoing Total Joint Arthroplasty. Clin Appl Thromb Hemost 2019; 25:1076029619828113. [PMID: 30754994 PMCID: PMC6714937 DOI: 10.1177/1076029619828113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis, a degenerative disease of the joints, is the most common form of arthritis in the knee. Total joint arthoplasty is a commonly used treatment for joint degeneration and osteoarthritis, and due to these factors, TJA for hip and knee joints is projected to grow by 137% and 601% between 2005 and 2030. Matrix metalloproteases are enzymes found in the extracellular matrix that cleave matrix components. Normally MMPs are downregulated in tissues by Tissue Inhibitors of Metalloproteases, or TIMPs. The relative concentration of TIMPs also may denote some of the activity of the MMPs found in serum. Lubricin (proteoglycan 4) is a molecule found in the synovial fluid that protects joints by dissipating strain energy during locomotion. Lubricin synovial fluid concentration is also diminished in many patients with osteoarthritis, but not all. Given the importance of these three sets of molecules, our lab investigated the correlation between circulating lubricin, MMP levels and TIMPs levels. Blood plasma samples were obtained from de-identified subjects undergoing total joint arthroplasty at Loyola University Medical Center and the University of Utah. Normal blood plasma from pooled healthy individuals served as a control. We analyzed biomarker levels in plasma using ELISA. Our data show that MMP-1 and 9 were increased in TJA patients compared to normal controls, while MMP-2 and 13 were decreased. We also found decreased lubricin and tissue factor in surgical patients relative to controls. These data support the idea that lubricin is vital in protecting the synovial joint and that MMPs play a complex role in the destruction of the joint.
Collapse
Affiliation(s)
- Chase Thorson
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin Galicia
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Andrew Burleson
- 2 Department of Orthopedics, Loyola University Medical Center, Maywood, IL, USA
| | - Olivia Bouchard
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - William Hopkinson
- 2 Department of Orthopedics, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
43
|
Smith SM, Melrose J. A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of the Articulatory Surface. Int J Mol Sci 2019; 20:ijms20030497. [PMID: 30678366 PMCID: PMC6387120 DOI: 10.3390/ijms20030497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: The aim of this study was to assess if the ovine articular cartilage serine proteinase inhibitors (SPIs) were related to the Kunitz inter-α-trypsin inhibitor (ITI) family. Methods: Ovine articular cartilage was finely diced and extracted in 6 M urea and SPIs isolated by sequential anion exchange, HA affinity and Sephadex G100 gel permeation chromatography. Selected samples were also subjected to chymotrypsin and concanavalin-A affinity chromatography. Eluant fractions from these isolation steps were monitored for protein and trypsin inhibitory activity. Inhibitory fractions were assessed by affinity blotting using biotinylated trypsin to detect SPIs and by Western blotting using antibodies to α1-microglobulin, bikunin, TSG-6 and 2-B-6 (+) CS epitope generated by chondroitinase-ABC digestion. Results: 2-B-6 (+) positive 250, 220,120, 58 and 36 kDa SPIs were detected. The 58 kDa SPI contained α1-microglobulin, bikunin and chondroitin-4-sulfate stub epitope consistent with an identity of α1-microglobulin-bikunin (AMBP) precursor and was also isolated by concanavalin-A lectin affinity chromatography indicating it had N-glycosylation. Kunitz protease inhibitor (KPI) species of 36, 26, 12 and 6 kDa were autolytically generated by prolonged storage of the 120 and 58 kDa SPIs; chymotrypsin affinity chromatography generated the 6 kDa SPI. KPI domain 1 and 2 SPIs were separated by concanavalin lectin affinity chromatography, domain 1 displayed affinity for this lectin indicating it had N-glycosylation. KPI 1 and 2 displayed potent inhibitory activity against trypsin, chymotrypsin, kallikrein, leucocyte elastase and cathepsin G. Localisation of versican, lubricin and hyaluronan (HA) in the surface regions of articular cartilage represented probable binding sites for the ITI serine proteinase inhibitors (SPIs) which may preserve articulatory properties and joint function. Discussion/Conclusions: The Kunitz SPI proteins synthesised by articular chondrocytes are members of the ITI superfamily. By analogy with other tissues in which these proteins occur we deduce that the cartilage Kunitz SPIs may be multifunctional proteins. Binding of the cartilage Kunitz SPIs to HA may protect this polymer from depolymerisation by free radical damage and may also protect other components in the cartilage surface from proteolytic degradation preserving joint function.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
44
|
Decellularized Adipose Tissue: Biochemical Composition, in vivo Analysis and Potential Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:57-70. [PMID: 30989589 DOI: 10.1007/5584_2019_371] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decellularized tissues are gaining popularity as scaffolds for tissue engineering; they allow cell attachment, proliferation, differentiation, and are non-immunogenic. Adipose tissue is an abundant resource that can be decellularized and converted in to a bio-scaffold. Several methods have been developed for adipose tissue decellularization, typically starting with freeze thaw cycles, followed by washes with hypotonic/hypertonic sodium chloride solution, isopropanol, detergent (SDS, SDC and Triton X-100) and trypsin digestion. After decellularization, decellularized adipose tissue (DAT) can be converted into a powder, solution, foam, or sheet to allow for convenient subcutaneous implantation or to repair external injuries. Additionally, DAT bio-ink can be used to 3D print structures that closely resemble physiological tissues and organs. Proteomic analysis of DAT reveals that it is composed of collagens (I, III, IV, VI and VII), glycosaminoglycans, laminin, elastin, and fibronectin. It has also been found to retain growth factors like VEGF and bFGF after decellularization. DAT inherently promotes adipogenesis when seeded with adipose stem cells in vitro, and when DAT is implanted subcutaneously it is capable of recruiting host stem cells and forming adipose tissue in rodents. Furthermore, DAT has promoted healing in rat models of full-thickness skin wounds and peripheral nerve injury. These findings suggest that DAT is a promising candidate for repair of soft tissue defects, and is suitable for breast reconstruction post-mastectomy, wound healing, and adipose tissue regeneration. Moreover, since DAT's form and stiffness can be altered by physicochemical manipulation, it may prove suitable for engineering of additional soft and hard tissues.
Collapse
|
45
|
Das N, Schmidt TA, Krawetz RJ, Dufour A. Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation. Bioessays 2018; 41:e1800166. [DOI: 10.1002/bies.201800166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology; University of Calgary; Calgary Alberta T2N4N1 Canada
| | - Tannin A. Schmidt
- Biomedical Engineering Department; School of Dental Medicine; University of Connecticut Health Center; Farmington CT 06030 USA
| | - Roman J. Krawetz
- Cell Biology and Anatomy; Cumming School of Medicine; University of Calgary; 3330 Hospital Drive NW Calgary Alberta T2N4N1 Canada
- McCaig institute for Bone and Joint Health; University of Calgary; Calgary Alberta T2N4N1 Canada
| | - Antoine Dufour
- McCaig institute for Bone and Joint Health; University of Calgary; Calgary Alberta T2N4N1 Canada
- Physiology & Pharmacology; Cumming School of Medicine; University of Calgary; Calgary Alberta T2N4N1 Canada
| |
Collapse
|
46
|
Isomeric Separation and Characterisation of Glycoconjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:77-99. [DOI: 10.1007/978-981-13-2158-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|