1
|
Yu C, Liu J, Sakurai R, Wang Y, Afrose L, Gour A, Sharma A, Chandan G, Rehan VK. Perinatal nicotine vaping exposure induces pro-myofibroblastic phenotype in rat bone marrow-derived mesenchymal stem cells. Reprod Toxicol 2024; 129:108673. [PMID: 39059775 PMCID: PMC11377149 DOI: 10.1016/j.reprotox.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Perinatal nicotine exposure via tobacco smoking results in increased proclivity to chronic lung disease (CLD); however, the underlying molecular mechanisms remain incompletely understood. We previously demonstrated that in addition to nicotine's direct effects on the developing lung, there are also adverse molecular alterations in bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to lung injury repair. Whether perinatal nicotine exposure via electronic-cigarette (e-cig) vaping also adversely affects BMSCs is unknown. This is highly relevant due to marked increase in e-cig vaping including by pregnant women. Hypothesizing that perinatal nicotine exposure via e-cig vaping predisposes BMSCs to a pro-myofibroblastic phenotype, pregnant rat dams were exposed to fresh air (control), vehicle (e-cig without nicotine), or e-cig (e-cig with nicotine) daily during pregnancy and lactation. At postnatal day 21, offspring BMSCs were isolated and studied for cell proliferation, migration, wound healing response, and expression of key Wnt and PPARγ signaling intermediates (β-catenin, LEF-1, PPARγ, ADRP and C/EBPα) and myogenic markers (fibronectin, αSMA, calponin) proteins using immunoblotting. Compared to controls, perinatal e-cig exposure resulted in significant decrease in BMSC proliferation, migration, and wound healing response. The expression of key Wnt signaling intermediates (β-catenin, LEF-1) and myogenic markers (fibronectin, αSMA, calponin) increased significantly, while PPARγ signaling intermediates (PPARγ, ADRP, and C/EBPα) decreased significantly. Based on these data, we conclude that perinatally e-cig exposed BMSCs demonstrate pro-myofibroblastic phenotype and impaired injury-repair potential, indicating a potentially similar susceptibility to CLD following perinatal nicotine exposure via vaping as seen following parenteral perinatal nicotine exposure.
Collapse
Affiliation(s)
- Celia Yu
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Jie Liu
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Reiko Sakurai
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Ying Wang
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Leela Afrose
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Abhishek Gour
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Gourav Chandan
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA.
| |
Collapse
|
2
|
Dabdoub S, Greenlee A, Abboud G, Brengartner L, Zuiker E, Gorr MW, Wold LE, Kumar PS, Cray J. Acute exposure to electronic cigarette components alters mRNA expression of pre-osteoblasts. FASEB J 2024; 38:e70017. [PMID: 39213037 PMCID: PMC11371384 DOI: 10.1096/fj.202302014rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The use of traditional nicotine delivery products such as tobacco has long been linked to detrimental health effects. However, little work to date has focused on the emerging market of aerosolized nicotine delivery known as electronic nicotine delivery systems (ENDS) or electronic cigarettes, and their potential for new effects on human health. Challenges studying these devices include heterogeneity in the formulation of the common components of most available ENDS, including nicotine and a carrier (commonly composed of propylene glycol and vegetable glycerin, or PG/VG). In the present study, we report on experiments interrogating the effects of major identified components in e-cigarettes. Specifically, the potential concomitant effects of nicotine and common carrier ingredients in commercial "vape" products are explored in vitro to inform the potential health effects on the craniofacial skeleton through novel vectors as compared to traditional tobacco products. MC3T3-E1 murine pre-osteoblast cells were cultured in vitro with clinically relevant liquid concentrations of nicotine, propylene glycol (PG), vegetable glycerin (VG), Nicotine+PG/VG, and the vape liquid of a commercial product (Juul). Cells were treated acutely for 24 h and RNA-Seq was utilized to determine segregating alteration in mRNA signaling. Influential gene targets identified with sparse partial least squares discriminant analysis (sPLS-DA) implemented in mixOmics were assessed using the PANTHER Classification system for molecular functions, biological processes, cellular components, and pathways of effect. Additional endpoint functional analyses were used to confirm cell cycle changes. The initial excitatory concentration (EC50) studied defined a target concentration of carrier PG/VG liquid that altered the cell cycle of the calvarial cells. Initial sPLS-DA analysis demonstrated the segregation of nicotine and non-nicotine exposures utilized in our in vitro modeling. Pathway analysis suggests a strong influence of nicotine exposures on cellular processes including metabolic processes and response to stimuli including autophagic flux. Further interrogation of the individual treatment conditions demonstrated segregation by treatment modality (Control, Nicotine, Carrier (PG+VG), Nicotine+PG/VG) along three dimensions best characterized by: latent variable 1 (PLSDA-1) showing strong segregation based on nicotine influence on cellular processes associated with cellular adhesion to collagen, osteoblast differentiation, and calcium binding and metabolism; latent variable 2 (PLSDA-2) showing strong segregation of influence based on PG+VG and Control influence on cell migration, survival, and cycle regulation; and latent variable 3 (PLSDA-3) showing strong segregation based on Nicotine and Control exposure influence on cell activity and growth and developmental processes. Further, gene co-expression network analysis implicates targets of the major pathway genes associated with bone growth and development, particularly craniofacial (FGF, Notch, TGFβ, WNT) and analysis of active subnetwork pathways found these additionally overrepresented in the Juul exposure relative to Nicotine+PG/VG. Finally, experimentation confirmed alterations in cell count, and increased evidence of cell stress (markers of autophagy), but no alteration in apoptosis. These data suggest concomitant treatment with Nicotine+PG/VG drives alterations in pre-osteoblast cell cycle signaling, specifically transcriptomic targets related to cell cycle and potentially cell stress. Although we suspected cell stress and well as cytotoxic effects of Nicotine+PG/VG, no great influence on apoptotic factors was observed. Further RNA-Seq analysis allowed for the direct interrogation of molecular targets of major pathways involved in bone and craniofacial development, each demonstrating segregation (altered signaling) due to e-cigarette-type exposure. These data have implications directed toward ENDS formulation as synergistic effects of Nicotine+PG/VG are evidenced here. Thus, future research will continue to interrogate how varied formulation of Nicotine+PG/VG affects overall cell functions in multiple vital systems.
Collapse
Affiliation(s)
- Shareef Dabdoub
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ashley Greenlee
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - George Abboud
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lexie Brengartner
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Eryn Zuiker
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Matthew W. Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Purnima S. Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- Divisions of Biosciences and Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
3
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
4
|
Heikkinen J, Tanner T, Bergmann U, Palosaari S, Lehenkari P. Cigarette smoke and nicotine effect on human mesenchymal stromal cell wound healing and osteogenic differentiation capacity. Tob Induc Dis 2024; 22:TID-22-54. [PMID: 38496254 PMCID: PMC10943629 DOI: 10.18332/tid/185281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) play a crucial role in promoting tissue regeneration and healing, particularly in bone tissue. Both smoking and nicotine use are known to delay and inhibit the healing process in patients. This study aims at delineating these cellular effects by comparing the impact of nicotine alone to cigarette smoke with equivalent nicotine content, and shedding light on potential differences in the healing process. METHODS We examined how cigarette smoke and nicotine affect the migration, proliferation, and osteogenic differentiation of human patient-derived MSCs in vitro, as well as the secretion of cytokines IL-6 and IL-8. We measured nicotine concentration of the cigarette smoke extract (CSE) to clarify the role of the nicotine in the effect of the cigarette smoke. RESULTS MSCs exposed to nicotine-concentration-standardized CSE exhibited impaired wound healing capability, and at high concentrations, increased cell death. At lower concentrations, CSE dose-dependently impaired migration, proliferation, and osteogenic differentiation, and increased IL-8 secretion. Nicotine impaired proliferation and decreased PINP secretion. While there was a trend for elevated IL-6 levels by nicotine in undifferentiated MSCs, these changes were not statistically significant. Exposure of MSCs to equivalent concentrations of nicotine consistently elicited stronger responses by CSE and had a more pronounced effect on all studied parameters. Our results suggest that the direct effect of cigarette smoke on MSCs contributes to impaired MSC function, that adds to the nicotine effects. CONCLUSIONS Cigarette smoke extract reduced the migration, proliferation, and osteogenic differentiation in MSCs in vitro, while nicotine alone reduced proliferation. Cigarette smoke impairs the osteogenic and regenerative ability of MSCs in a direct cytotoxic manner. Cytotoxic effect of nicotine alone impairs regenerative ability of MSCs, but it only partly explains cytotoxic effects of cigarette smoke. Direct effect of cigarette smoke, and partly nicotine, on MSCs could contribute to the smoking-related negative impact on long-term bone health, especially in bone healing.
Collapse
Affiliation(s)
- Janne Heikkinen
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tarja Tanner
- Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
- Dental Training Clinic, Oulu, Finland
| | - Ulrich Bergmann
- Proteomics and Protein Analysis, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sanna Palosaari
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Division of Orthopedic Surgery, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
5
|
Ali N, Xavier J, Engur M, Pv M, Bernardino de la Serna J. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131828. [PMID: 37320902 DOI: 10.1016/j.jhazmat.2023.131828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Joseph Xavier
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | - Melih Engur
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | | |
Collapse
|
6
|
Ashour O, Al-Huneidy L, Noordeen H. The implications of vaping on surgical wound healing: A systematic review. Surgery 2023; 173:1452-1462. [PMID: 36997424 DOI: 10.1016/j.surg.2023.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND E-cigarette use is rapidly growing, and little is known about the postoperative complications. Cigarette smoking has been well-established to be associated with delayed wound healing and increased complications in surgical patients. Due to the intricate and harmonious nature of the wound-healing process, vaping may impair tissue regeneration, posing a risk for patients undergoing surgery. This systematic review aimed to review the evidence on the implications of vaping on wound healing. METHODS A systematic search of PubMed and Scopus databases was conducted on October 2022 per Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The following keywords were used to conduct the search: vaping, vape, e-cigarettes, electronic cigarettes, wound healing, tissue regeneration, postoperative complications, wound infection, and blood flow. RESULTS Of 5,265 screened articles, only 37 were eligible for qualitative synthesis. A total of 18 articles studied the effect of e-cigarettes on human volunteers, 14 investigated e-cigarette extract on human cell lines, and 5 used animal rat models. CONCLUSION Despite limited objective data, the recommendation is that e-cigarettes be treated as tobacco cigarettes; hence, vaping should be stopped in the perioperative period to decrease the incidence of wound healing complications. Clinical trials are required to understand the health hazards of e-cigarettes further and maximize patient safety and clinical outcomes.
Collapse
|
7
|
Georgiev-Hristov T, García-Arranz M, Trébol-López J, Barba-Recreo P, García-Olmo D. Searching for the Optimal Donor for Allogenic Adipose-Derived Stem Cells: A Comprehensive Review. Pharmaceutics 2022; 14:2338. [PMID: 36365156 PMCID: PMC9696054 DOI: 10.3390/pharmaceutics14112338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
Adipose-derived stem cells comprise several clinically beneficial qualities that have been explored in basic research and have motivated several clinical studies with promising results. After being approved in the European Union, UK, Switzerland, Israel, and Japan, allogeneic adipose-derived stem cells (darvadstrocel) have been recently granted a regenerative medicine advanced therapy (RMAT) designation by US FDA for complex perianal fistulas in adults with Crohn's disease. This huge scientific step is likely to impact the future spread of the indications of allogeneic adipose-derived stem cell applications. The current knowledge on adipose stem cell harvest describes quantitative and qualitative differences that could be influenced by different donor conditions and donor sites. In this comprehensive review, we summarize the current knowledge on the topic and propose donor profiles that could provide the optimal initial quality of this living drug, as a starting point for further applications and studies in different pathological conditions.
Collapse
Affiliation(s)
- Tihomir Georgiev-Hristov
- Servicio de Cirugía General y del Aparato Digestivo, Hospital General Universitario de Villalba, 28400 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
| | - Mariano García-Arranz
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jacobo Trébol-López
- Servicio de Cirugía General y del Aparato Digestivo, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Paula Barba-Recreo
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
- Servicio de Cirugía Maxilofacial, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Damián García-Olmo
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
8
|
Nicholson T, Davis L, Davis ET, Newton Ede M, Scott A, Jones SW. e-Cigarette Vapour Condensate Reduces Viability and Impairs Function of Human Osteoblasts, in Part, via a Nicotine Dependent Mechanism. TOXICS 2022; 10:506. [PMID: 36136470 PMCID: PMC9504563 DOI: 10.3390/toxics10090506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Cigarette consumption negatively impacts bone quality and is a risk-factor for the development of multiple bone associated disorders, due to the highly vascularised structure of bone being exposed to systemic factors. However, the impact on bone to electronic cigarette (e-cigarette) use, which contains high doses of nicotine and other compounds including flavouring chemicals, metal particulates and carbonyls, is poorly understood. Here, we present the first evidence demonstrating the impact of e-cigarette vapour condensate (replicating changes in e-cigarette liquid chemical structure that occur upon device usage), on human primary osteoblast viability and function. 24 h exposure of osteoblasts to e-cigarette vapour condensate, generated from either second or third generation devices, significantly reduced osteoblast viability in a dose dependent manner, with condensate generated from the more powerful third generation device having greater toxicity. This effect was mediated in-part by nicotine, since exposure to nicotine-free condensate of an equal concentration had a less toxic effect. The detrimental effect of e-cigarette vapour condensate on osteoblast viability was rescued by co-treatment with the antioxidant N-Acetyl-L-cysteine (NAC), indicating toxicity may also be driven by reactive species generated upon device usage. Finally, non-toxic doses of either second or third generation condensate significantly blunted osteoblast osteoprotegerin secretion after 24 h, which was sustained for up to 7 days. In summary we demonstrate that e-cigarette vapour condensate, generated from commonly used second and third generation devices, can significantly reduce osteoblast viability and impair osteoblast function, at physiologically relevant doses. These data highlight the need for further investigation to inform users of the potential risks of e-cigarette use on bone health, including, accelerating bone associated disease progression, impacting skeletal development in younger users and to advise patients following orthopaedic surgery, dental surgery, or injury to maximise bone healing.
Collapse
Affiliation(s)
- Thomas Nicholson
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Lauren Davis
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Edward T. Davis
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham B15 2TT, UK
| | | | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Simon W. Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Trifunovic S, Smiljanić K, Sickmann A, Solari FA, Kolarevic S, Divac Rankov A, Ljujic M. Electronic cigarette liquids impair metabolic cooperation and alter proteomic profiles in V79 cells. Respir Res 2022; 23:191. [PMID: 35840976 PMCID: PMC9285873 DOI: 10.1186/s12931-022-02102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although still considered a safer alternative to classical cigarettes, growing body of work points to harmful effects of electronic cigarettes (e-cigarettes) affecting a range of cellular processes. The biological effect of e-cigarettes needs to be investigated in more detail considering their widespread use. Methods In this study, we treated V79 lung fibroblasts with sub-cytotoxic concentration of e-cigarette liquids, with and without nicotine. Mutagenicity was evaluated by HPRT assay, genotoxicity by comet assay and the effect on cellular communication by metabolic cooperation assay. Additionally, comprehensive proteome analysis was performed via high resolution, parallel accumulation serial fragmentation-PASEF mass spectrometry. Results E-cigarette liquid concentration used in this study showed no mutagenic or genotoxic effect, however it negatively impacted metabolic cooperation between V79 cells. Both e-cigarette liquids induced significant depletion in total number of proteins and impairment of mitochondrial function in treated cells. The focal adhesion proteins were upregulated, which is in accordance with the results of metabolic cooperation assay. Increased presence of posttranslational modifications (PTMs), including carbonylation and direct oxidative modifications, was observed. Data are available via ProteomeXchange with identifier PXD032071. Conclusions Our study revealed impairment of metabolic cooperation as well as significant proteome and PTMs alterations in V79 cells treated with e-cigarette liquid warranting future studies on e-cigarettes health impact. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02102-w.
Collapse
Affiliation(s)
- Sara Trifunovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia.
| | - Katarina Smiljanić
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-14, 11000, Belgrade, Serbia
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, 44801, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, AB243FX, Scotland, UK
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany
| | - Stoimir Kolarevic
- Department of Hydroecology and Water Protection, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mila Ljujic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
11
|
D’Ambrosio F, Pisano M, Amato A, Iandolo A, Caggiano M, Martina S. Periodontal and Peri-Implant Health Status in Traditional vs. Heat-Not-Burn Tobacco and Electronic Cigarettes Smokers: A Systematic Review. Dent J (Basel) 2022; 10:103. [PMID: 35735645 PMCID: PMC9222105 DOI: 10.3390/dj10060103] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022] Open
Abstract
The aim of the present systematic review was to evaluate and possibly differentiate the effects of traditional cigarettes, heat-not-burn tobacco, and electronic cigarettes on periodontal and peri-implant health status. Electronic cigarettes and heat-not-burn tobacco have become very popular in recent years and have been proposed to consumers as a safer alternative to conventional tobacco smoke, although their effect on periodontal and peri-implant health remains unclear. The study protocol was developed according to PRISMA guidelines, and the focus question was formulated according to the PICO strategy. A literature search was conducted across PubMed/MEDLINE and the COCHRANE library from 2003 to April 2022. From the 1935 titles initially identified, 18 articles were finally included in the study and extracted data were qualitatively synthesized. It may be carefully concluded that e-cigarettes may cause attenuated clinical inflammatory signs of periodontitis and, hypothetically, of peri-implantitis when compared to conventional tobacco smoke. Both alternative smoking products, containing nicotine, may likewise exert negative effects on periodontal and peri-implant health, as demonstrated by in vitro studies. Further investigations are needed to assess the impact of electronic cigarettes and heat-not-burn tobacco products on periodontal and peri-implant health status.
Collapse
Affiliation(s)
- Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.P.); (A.A.); (A.I.); (M.C.); (S.M.)
| | | | | | | | | | | |
Collapse
|
12
|
Vaping-Associated Lung Injury: A Review. Medicina (B Aires) 2022; 58:medicina58030412. [PMID: 35334588 PMCID: PMC8949983 DOI: 10.3390/medicina58030412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Since commercial development in 2003, the usage of modern electronic cigarette (e-cigarette) continues to increase amongst people who have never smoked, ex-smokers who have switched to e-cigarettes, and dual-users of both conventional cigarettes and e-cigarettes. With such an increase in use, knowledge of the irritative, toxic and potential carcinogenic effects on the lungs is increasing. This review article will discuss the background of e-cigarettes, vaping devices and explore their popularity. We will further summarise the available literature describing the mechanism of lung injury caused by e-cigarette or vaping use.
Collapse
|
13
|
Abaricia JO, Whitehead AJ, Kandalam S, Shah AH, Hotchkiss KM, Morandini L, Olivares-Navarrete R. E-cigarette Aerosol Mixtures Inhibit Biomaterial-Induced Osseointegrative Cell Phenotypes. MATERIALIA 2021; 20:101241. [PMID: 34778733 PMCID: PMC8589285 DOI: 10.1016/j.mtla.2021.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | - Suraj Kandalam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Arth H. Shah
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lais Morandini
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
14
|
El-Mouelhy ATM, Nasry SA, Abou El-Dahab O, Sabry D, Fawzy El-Sayed K. In vitro evaluation of the effect of the electronic cigarette aerosol, Cannabis smoke, and conventional cigarette smoke on the properties of gingival fibroblasts/gingival mesenchymal stem cells. J Periodontal Res 2021; 57:104-114. [PMID: 34748642 DOI: 10.1111/jre.12943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The current study aimed to evaluate the effect of electronic cigarette (EC) aerosol, Cannabis, and conventional cigarettes smoke on gingival fibroblast/gingival mesenchymal stem cells' (GF/G-MSCs) of never smokers. MATERIAL AND METHODS Human GF/G-MSCs (n = 32) were isolated and characterized using light microscopy, flow cytometry, and multilineage differentiation ability. Following the application of aerosol/smoke extracts, GF/G-MSCs were evaluated for cellular proliferation; colony-forming units (CFU-F) ability; cellular viability (using the MTT assay); mitochondrial depolarization using JC-1 dye; and genes' expression of ATM, p21, Oct4, and Nanog. RESULTS Colony-forming units and viability (OD 450 nm) were significantly reduced upon exposure to Cannabis (mean ± SD; 5.5 ± 1.5; p < .00001, 0.47 ± 0.21; p < .05) and cigarettes smoke (2.3 ± 1.2 p < .00001, 0.59 ± 0.13, p < .05), while EC aerosol showed no significant reduction (10.8 ± 2.5; p = .05, 1.27 ± 0.47; p > .05) compared to the control group (14.3 ± 3, 1.33 ± 0.12). Significantly upregulated expression of ATM, Oct4, and Nanog (gene copies/GADPH) was noticed with Cannabis (1.5 ± 0.42, 0.82 ± 0.44, and 1.54 ± 0.52, respectively) and cigarettes smoke (1.52 ± 0.75, 0.7 ± 0.14, and 1.48 ± 0.79, respectively; p < .05), whereas EC aerosol caused no statistically significant upregulation of these genes compared to the control group (0.63 ± 0.1, 0.31 ± 0.12, and 0.64 ± 0.46, respectively; p > .05). The p21 gene was not significantly downregulated in EC aerosol (1.22 ± 0.46), Cannabis (0.71 ± 0.24), and cigarettes smokes (0.83 ± 0.54) compared to the control group (p = .053, analysis of variance). CONCLUSION Cannabis and cigarettes smoke induce DNA damage and cellular dedifferentiation and negatively affect the cellular proliferation and viability of GF/G-MSCs of never smokers, whereas EC aerosol showed a significantly lower impact on these properties.
Collapse
Affiliation(s)
- Abir Tarek Mansour El-Mouelhy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Department of Surgery and Oral Medicine, National Research Centre, Cairo, Egypt
| | - Sherine Adel Nasry
- Department of Surgery and Oral Medicine, National Research Centre, Cairo, Egypt
| | - Omnia Abou El-Dahab
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt.,Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University, Cairo, Egypt
| | - Karim Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Stem Cell and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany
| |
Collapse
|
15
|
Bhattacharya B, Narain V, Bondesson M. E-cigarette vaping liquids and the flavoring chemical cinnamaldehyde perturb bone, cartilage and vascular development in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105995. [PMID: 34673467 DOI: 10.1016/j.aquatox.2021.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 09/18/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
As electronic cigarettes (e-cigarettes) become increasingly popular smoking devices, there is an increased risk for unintended exposure to e-cigarette liquids through improper disposal resulting in leaching into the environment, third hand vapor exposure through air, or embryonic exposure through maternal vaping. Thus, the safety of e-cigarettes for wildlife and developing embryos need to be thoroughly investigated. We examined perturbations in zebrafish embryonic development after exposures to two cinnamon flavored vaping liquids (with 12 mg/ml nicotine and without nicotine) for e-cigarettes from two different vendors, as well as the flavoring chemical cinnamaldehyde. We focused on the effects of the vaping liquids on hatching success and bone, cartilage and blood vessel development in 3-4 days old transgenic zebrafish larvae. We found that exposures to both of the vaping liquids perturbed the development of the cleithrum and craniofacial cartilage. Exposure to the liquids further caused non-overlapping and partially or completely missing intersegmental vessels. Hatching success was also reduced. Exposure to pure cinnamaldehyde replicated the effects of the vaping liquids with a 50% effect concentration (EC50) of 34-41 µM. Quantification of the amount of cinnamaldehyde in the vaping liquids by mass spectrometry revealed EC50s around 10-40 times lower than for pure cinnamaldehyde, suggesting that additional compounds or metabolites present in the vaping liquids mediate toxicity. Presence of nicotine in one of the vaping liquids decreased its EC50s about two fold compared to the liquid without nicotine. Exposure to the humectants propylene glycol and vegetable glycerin did not affect the vascular, cartilage or bone development in zebrafish embryos. In conclusion, our study shows that exposure to cinnamaldehyde containing vaping liquids causes severe tissue-specific defects in developing embryos.
Collapse
Affiliation(s)
- Beas Bhattacharya
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, United States
| | - Vedang Narain
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
16
|
Nicholson T, Scott A, Newton Ede M, Jones SW. The impact of E-cigarette vaping and vapour constituents on bone health. J Inflamm (Lond) 2021; 18:16. [PMID: 33952248 PMCID: PMC8097983 DOI: 10.1186/s12950-021-00283-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/25/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND In contrast to cigarettes, electronic cigarette use (E-cigarettes) has grown substantially over the last decade. This is due to their promotion as both a safer alternative to cigarettes and as an aide to stop smoking. Critically, upon E-cigarette use, the user may be exposed to high doses of nicotine in addition to other compounds including flavouring chemicals, metal particulates and carbonyl compounds, particularly in highly vascularised tissues such as bone. However, there has been limited investigation into the impact of E-cigarette usage on bone physiology, particularly over extended time periods and there are no clinical recommendations regarding E-cigarette usage in relation to orthopaedic surgery. This literature review draws together data from studies that have investigated the impact of E-cigarette vapour and its major constituents on bone, detailing the models utilised and the relevant mechanistic and functional results. MAIN BODY Currently there is a lack of studies both in vivo and in vitro that have utilised E-cigarette vapour, necessary to account for changes in chemical composition of E-cigarette liquids upon vaping. There is however evidence that human bone and bone cells express nicotine receptors and exposure of both osteoblasts and osteoclasts to nicotine, in high concentrations may reduce their viability and impair function. Similarly, it appears that aldehydes and flavouring chemicals may also negatively impact osteoblast viability and their ability to form bone. However, such functional findings are predominantly the result of studies utilising bone cell lines such as MG-63 or Saos-2 cells, with limited use of human osteoblasts or osteoclasts. Additionally, there is limited consideration for a possible impact on mesenchymal stem cells, which can also play an import role in bone repair. CONCLUSION Understanding the function and mechanism of action of the various components of E-cigarette vapour in mediating human bone cell function, in addition to long term studies to determine the potential harm of chronic E-cigarette use on human bone will be important to inform users of potential risks, particularly regarding bone healing following orthopaedic surgery and injury.
Collapse
Affiliation(s)
- Thomas Nicholson
- grid.6572.60000 0004 1936 7486Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Aaron Scott
- grid.6572.60000 0004 1936 7486Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Matthew Newton Ede
- grid.416189.30000 0004 0425 5852The Royal Orthopaedic Hospital, Birmingham, B31 2AP UK
| | - Simon W. Jones
- grid.6572.60000 0004 1936 7486Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
17
|
Morris TM, Marlborough FJ, Montgomery RJ, Allison KP, Eardley WGP. Smoking and the patient with a complex lower limb injury. Injury 2021; 52:814-824. [PMID: 33495022 DOI: 10.1016/j.injury.2020.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Smoking is known to increase the risk of peri-operative complications in Orthoplastic surgery by impairing bone and wound healing. The effects of nicotine replacement therapies (NRTs) and electronic cigarettes (e-cigarettes) has been less well established. Previous reviews have examined the relationship between smoking and bone and wound healing separately. This review provides surgeons with a comprehensive and contemporaneous account of how smoking in all forms interacts with all aspects of complex lower limb trauma. We provide a guide for surgeons to refer to during the consent process to enable them to tailor information towards smokers in such a way that the patient may understand the risks involved with their surgical treatment. We update the literature with recently discovered methods of monitoring and treating the troublesome complications that occur more commonly in smokers effected by trauma.
Collapse
Affiliation(s)
- Timothy M Morris
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW.
| | - Fergal J Marlborough
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Richard J Montgomery
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Keith P Allison
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - William G P Eardley
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| |
Collapse
|
18
|
Nicholson T, Scott A, Newton Ede M, Jones SW. Do E-cigarettes and vaping have a lower risk of osteoporosis, nonunion, and infection than tobacco smoking? Bone Joint Res 2021; 10:188-191. [PMID: 33709767 PMCID: PMC7998067 DOI: 10.1302/2046-3758.103.bjr-2020-0327.r1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Thomas Nicholson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham, UK
| | | | - Simon W. Jones
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK,Simon W. Jones. E-mail:
| |
Collapse
|
19
|
Sheng B, Li X, Nussler AK, Zhu S. The relationship between healthy lifestyles and bone health: A narrative review. Medicine (Baltimore) 2021; 100:e24684. [PMID: 33663079 PMCID: PMC7909112 DOI: 10.1097/md.0000000000024684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bone health, especially osteoporosis among ageing populations, has become an important topic for both clinical and basic researchers. The relationship between bone health and healthy lifestyles has been frequently discussed. The present study focuses on the relationship between bone health and healthy lifestyles among older adults, based on a global comparison. METHODS This narrative review was performed by collecting clinical trials, basic research and reviews on lifestyle and bone health in PubMed database. RESULTS Positive effects of physical activity and negative effects of malnutrition, alcohol abuse, and cigarette smoking on bone health were revealed. The relationship between bone health and drinking coffee and tea is still inconclusive. Moreover, the diversity of each region should be aware when considering healthy lifestyles to improve bone health. CONCLUSION Healthy lifestyles are highly related to bone health, and different lifestyles may have different influences on regions with a high risk of bone diseases. It is practical to acknowledge the diversity of economic, religious, environmental and geological conditions in each region when providing suitable and effective recommendations for healthy lifestyles that can improve overall bone health.
Collapse
Affiliation(s)
- Bin Sheng
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, PR China
| | - Xin Li
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, PR China
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Tuebingen, Germany
| | - Sheng Zhu
- Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Tuebingen, Germany
| |
Collapse
|
20
|
Nguyen B, Alpagot T, Oh H, Ojcius D, Xiao N. Comparison of the effect of cigarette smoke on mesenchymal stem cells and dental stem cells. Am J Physiol Cell Physiol 2021; 320:C175-C181. [PMID: 33175571 DOI: 10.1152/ajpcell.00217.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The persistent prevalence of cigarette smoking continues to contribute to preventable disease and death in the United States. Although much is known about the deleterious systemic effects of cigarette smoke and nicotine, some clinically relevant areas, such as the impact of cigarette smoke and nicotine on stem cells and the subsequent implications in regenerative medicine, still remain unclear. This review focuses on recent studies on the effect of cigarette smoke and one of its deleterious components, nicotine, on mesenchymal stem cells, with an emphasis on dental stem cells.
Collapse
Affiliation(s)
- Brandon Nguyen
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Tamer Alpagot
- Department of Periodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Heesoo Oh
- Department of Orthodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - David Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| |
Collapse
|
21
|
Singh DP, Begum R, Kaur G, Bagam P, Kambiranda D, Singh R, Batra S. E-cig vapor condensate alters proteome and lipid profiles of membrane rafts: impact on inflammatory responses in A549 cells. Cell Biol Toxicol 2021; 37:773-793. [PMID: 33469865 DOI: 10.1007/s10565-020-09573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/12/2020] [Indexed: 01/14/2023]
Abstract
Electronic cigarettes (e-cigs) are battery-operated heating devices that aerosolize e-liquid, typically containing nicotine and several other chemicals, which is then inhaled by a user. Over the past decade, e-cigs have gained immense popularity among both smokers and non-smokers. One reason for this is that they are advertised as a safe alternative to conventional cigarettes. However, the recent reports of e-cig use associated lung injury have ignited a considerable debate about the relative harm and benefits of e-cigs. The number of reports about e-cig-induced inflammation and pulmonary health is increasing as researchers seek to better understand the effects of vaping on human health. In line with this, we investigated the molecular events responsible for the e-cig vapor condensate (ECVC)-mediated inflammation in human lung adenocarcinoma type II epithelial cells (A549). In an attempt to limit the variables caused by longer ingredient lists of flavored e-cigs, tobacco-flavored ECVC (TF-ECVC±nicotine) was employed for this study. Interestingly, we observed significant upregulation of cytokines and chemokines (IL-6, IL-8, and MCP-1) in A549 cells following a 48 h TF-ECVC challenge. Furthermore, there was a significant increase in the expression of pattern recognition receptors TLR-4 and NOD-1, lipid raft-associated protein caveolin-1, and transcription factor NF-кB in TF-ECVC with and/or without nicotine-challenged lung epithelial cells. Our results further demonstrate the harboring of TLR-4 and NOD-1 in the caveolae of TF-ECVC-challenged A549 cells. Proteomic and lipidomic analyses of lipid raft fractions from control and challenged cells revealed a distinct protein and lipid profile in TF-ECVC (w/wo nicotine)-exposed A549 cells. Interestingly, the inflammatory effects of TF-ECVC (w/wo nicotine) were inhibited following the caveolin-1 knockdown, thus demonstrating a critical role of caveolae raft-mediated signaling in eliciting inflammatory responses upon TF-ECVC challenge. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Dhirendra Pratap Singh
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Devaiah Kambiranda
- Southern University Agriculture Research and Extension Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rakesh Singh
- Translational Science Laboratory, FSU College of Medicine, Tallahassee, FL, 32309, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
22
|
Figueredo CA, Abdelhay N, Figueredo CM, Catunda R, Gibson MP. The impact of vaping on periodontitis: A systematic review. Clin Exp Dent Res 2020; 7:376-384. [PMID: 33274850 PMCID: PMC8204026 DOI: 10.1002/cre2.360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022] Open
Abstract
Background and objective While tobacco cigarette smoking has been proven to be a risk factor for periodontitis, limited information is available regarding vaping, a new alternative to smoking that has been branded as less harmful. Several important in vitro studies have shown that vaping has a similarly damaging effect as cigarette smoking on the health of the periodontium. However, a comprehensive review is lacking in this field. Therefore, we aimed to systematically review the literature about the impact of vaping on periodontitis. Methods The research question was created using the PICOs format. A systematic search of the following electronic databases was performed up to March 2020: Medline, Embase, PubMed, Cochrane, and grey literature. Human studies that assessed periodontal status (plaque index, bleeding on probing, clinical attachment loss, marginal bone loss, and probing depth) in e‐cigarette users compared to non‐smokers (control group) were assessed based on an estimate of fixed effects. The weights of the studies were calculated based on their risks of bias. Results After duplicates were removed, 1,659 studies were screened and 8 case–control studies that investigated the relationship between vaping and periodontal parameters in humans were selected after their risk of bias assessment. Estimated effects of vaping after weighting results based on their standard deviation showed increased plaque, marginal bone loss, clinical attachment loss, pocket depth, and reduced bleeding on probing. Conclusion This study concluded that there is not enough evidence to fully characterize the impacts of vaping on periodontitis. However, within the limitations of our review and the selected included studies, the available results point to increased destruction of the periodontium leading to the development of the disease.
Collapse
Affiliation(s)
| | - Nancy Abdelhay
- Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
- Faculty of DentistryAlexandria UniversityEgypt
| | | | - Raisa Catunda
- Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| | | |
Collapse
|
23
|
Vermehren MF, Wiesmann N, Deschner J, Brieger J, Al-Nawas B, Kämmerer PW. Comparative analysis of the impact of e-cigarette vapor and cigarette smoke on human gingival fibroblasts. Toxicol In Vitro 2020; 69:105005. [PMID: 32956835 DOI: 10.1016/j.tiv.2020.105005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022]
Abstract
Human gingival fibroblasts (HGF) play a vital role in wound healing, oral cancer, and are among the first cells being exposed to e-cigarette vapor (eCV) or cigarette smoke (CS) during inhalation. Although the cell-damaging effect of CS has been well studied, the effects of eCV on gingival cells are still unclear. The aim of this in vitro study was to compare the effects of eCV and CS on HGF in terms of proliferation, metabolic activity, cell death, and formation of reactive oxygen species (ROS). After 24 h cell numbers in CS-exposed cells in contrast to eCV-exposed cells were significantly decreased compared to the control. At later points in time, such differences could no longer be observed. Compared to the control, HGF stimulated with eCV showed a significantly higher metabolic activity 1 h, 24 h, and 48 h after exposure. 24 h after exposure, the metabolic activity was increased in both test groups. No caspase 3/7 activation nor significant differences in the amount of apoptosis/necrosis among the groups were seen. Only in CS-exposed cells ROS formation was increased at 1 h, 3 h, and 6 h after exposition. In conclusion, when compared to conventional CS, a less harmful effect of eCV on HGF can be assumed.
Collapse
Affiliation(s)
- M F Vermehren
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - N Wiesmann
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131 Mainz, Germany; Department of Otorhinolaryngology, University Medical Centre Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - J Deschner
- Department of Periodontology and Operative Dentistry, University Medical Centre Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - J Brieger
- Department of Otorhinolaryngology, University Medical Centre Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - B Al-Nawas
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - P W Kämmerer
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131 Mainz, Germany
| |
Collapse
|
24
|
Smart DJ, Phillips G. Collecting e-cigarette aerosols for in vitro applications: A survey of the biomedical literature and opportunities to increase the value of submerged cell culture-based assessments. J Appl Toxicol 2020; 41:161-174. [PMID: 33015847 PMCID: PMC7756347 DOI: 10.1002/jat.4064] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Electronic nicotine delivery systems (ENDS) are being developed as potentially reduced‐risk alternatives to the continued use of combustible tobacco products. Because of the widespread uptake of ENDS—in particular, e‐cigarettes—the biological effects, including the toxic potential, of their aerosols are under investigation. Preclinically, collection of such aerosols is a prerequisite for testing in submerged cell culture‐based in vitro assays; however, despite the growth in this research area, there is no apparent standardized collection method for this application. To this end, through an Institute for in vitro Sciences, Inc. workshop initiative, we surveyed the biomedical literature catalogued in PubMed® to map the types of methods hitherto used and reported publicly. From the 47 relevant publications retrieved, we identified seven distinct collection methods. Bubble‐through (with aqueous solvents) and Cambridge filter pad (CFP) (with polar solvents) collection were the most frequently cited methods (57% and 18%, respectively), while the five others (CFP + bubble‐through; condensation; cotton filters; settle‐upon; settle‐upon + dry) were cited less often (2–10%). Critically, the collected aerosol fractions were generally found to be only minimally characterized chemically, if at all. Furthermore, there was large heterogeneity among other experimental parameters (e.g., vaping regimen). Consequently, we recommend that more comprehensive research be conducted to identify the method(s) that produce the fraction(s) most representative of the native aerosol. We also endorse standardization of the aerosol generation process. These should be regarded as opportunities for increasing the value of in vitro assessments in relation to predicting effects on human health. Collection of e‐cigarette aerosols is a prerequisite to enable testing in submerged culture‐based in vitro assays; however, there is no standardized method for this. Thus, we surveyed the biomedical literature to map the types of published methods. Bubble‐through and Cambridge filter pad methods were most common, although there was heterogeneity among other parameters, and moreover, the resulting fractions were only minimally characterized. Comprehensive research is required to identify the method(s) that produce the fraction(s) most representative of the native aerosol.
Collapse
Affiliation(s)
- Daniel J Smart
- PMI R&D, Philip Morris Products SA, Neuchâtel, Switzerland
| | | |
Collapse
|
25
|
Lechasseur A, Morissette MC. The fog, the attractive and the addictive: pulmonary effects of vaping with a focus on the contribution of each major vaping liquid constituent. Eur Respir Rev 2020; 29:29/157/200268. [PMID: 33060167 DOI: 10.1183/16000617.0268-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/25/2020] [Indexed: 11/05/2022] Open
Abstract
Vaping has become increasingly popular over the past decade. This pragmatic review presents the published biological effects of electronic cigarette vapour inhalation with a focus on the pulmonary effects. Special attention has been devoted to providing the documented effects specific to each major ingredient, namely propylene glycol/glycerol, nicotine and flavouring agents. For each ingredient, findings are divided according to the methodology used, being in vitro studies, animal studies and clinical studies. Finally, we provide thoughts and insights on the current state of understanding of the pulmonary effects of vaping, as well as novel research avenues and methodologies.
Collapse
Affiliation(s)
- Ariane Lechasseur
- Quebec Heart and Lung Institute, Université Laval, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute, Université Laval, Quebec, Canada.,Dept of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Tobacco smoking is the most significant modifiable risk factor in the development of cardiovascular disease (CVD). Exposure to mainstream cigarette smoke (MCS) is associated with CVD through the development of endothelial dysfunction, a condition characterized by an imbalance of vasoactive factors in the vasculature. This dysfunction is thought to be induced in part by aldehydes generated at high levels in MCS. RECENT FINDINGS Electronic cigarettes (e-cigs) may also pose CVD risk. Although the health effects of e-cigs are still largely unknown, the presence of aldehydes in e-cig aerosol suggests that e-cigs may induce adverse cardiovascular outcomes similar to those seen with MCS exposure. Herein, we review studies of traditional and emerging tobacco product use, shared harmful and potentially harmful constituents, and measures of biomarkers of harm (endothelial dysfunction) to examine a potential and distinct role of aldehydes in cardiovascular harm associated with cigarette and e-cig use.
Collapse
Affiliation(s)
- Jordan Lynch
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA.
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA.
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA.
| | - Lexiao Jin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andre Richardson
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
- Diabetes & Obesity Center, University of Louisville, Louisville, KY, 40292, USA
- University of Louisville American Heart Association - Tobacco Regulation and Addiction Center, Louisville, KY, 40202, USA
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
27
|
E-vapor aerosols do not compromise bone integrity relative to cigarette smoke after 6-month inhalation in an ApoE -/- mouse model. Arch Toxicol 2020; 94:2163-2177. [PMID: 32409933 PMCID: PMC7303066 DOI: 10.1007/s00204-020-02769-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Cigarette smoke (CS) exposure is one of the leading risk factors for human health. Nicotine-containing inhalable products, such as e-cigarettes, can effectively support tobacco harm reduction approaches. However, there are limited comparative data on the effects of the aerosols generated from electronic vapor products (e-vapor) and CS on bone. Here, we report the effects of e-vapor aerosols and CS on bone morphology, structure, and strength in a 6-month inhalation study. Eight-week-old ApoE-/- mice were exposed to aerosols from three different e-vapor formulations-CARRIER (propylene glycol and vegetable glycerol), BASE (CARRIER and nicotine), TEST (BASE and flavor)-to CS from 3R4F reference cigarettes at matched nicotine concentrations (35 µg/L) or to fresh air (Sham) (N = 10 per group). Tibiae were analyzed for bone morphology by µCT imaging, biomechanics by three-point bending, and by histological analysis. CS inhalation caused a significant decrease in cortical and total bone volume fraction and bone density relative to e-vapor aerosols. Additionally, CS exposure caused a decrease in ultimate load and stiffness. In contrast, bone structural and biomechanical parameters were not significantly affected by e-vapor aerosol or Sham exposure. At the dissection time point, there was no significant difference in body weight or tibia bone weight or length among the groups. Histological findings revealed microcracks in cortical bone areas among all exposed groups compared to Sham control. In conclusion, because of the bone-preserving effect of e-vapor aerosols relative to CS exposure, e-vapor products could potentially constitute less harmful alternatives to cigarettes in situations in which bone health is of importance.
Collapse
|
28
|
Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol 2020; 138:111245. [PMID: 32145355 PMCID: PMC7089837 DOI: 10.1016/j.fct.2020.111245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Filipe Marques Gonçalves
- Biochemistry Graduate Program, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, United States
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Manhattan, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
29
|
Zagoriti Z, El Mubarak MA, Farsalinos K, Topouzis S. Effects of Exposure to Tobacco Cigarette, Electronic Cigarette and Heated Tobacco Product on Adipocyte Survival and Differentiation In Vitro. TOXICS 2020; 8:E9. [PMID: 32033401 PMCID: PMC7151757 DOI: 10.3390/toxics8010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/30/2023]
Abstract
Cigarette smoking (CS) causes significant morbidity worldwide, attributed to the numerous toxicants generated by tobacco combustion. Electronic cigarettes (ECIG) and heated tobacco products (HTP) are considered alternative smoking/vaping products that deliver nicotine through an inhaled aerosol and emit fewer harmful constituents than CS. However, their long-term impacts on human health are not well established. Nicotine exposure has been linked to lipolysis and body weight loss, while smoking has been associated with insulin resistance and hyperinsulinemia. Enhanced function of beige (thermogenic) adipocytes has been proposed as a means to reduce obesity and metabolic disorders. In this study, we compared the effect of extract-enriched media via exposure of culture medium to CS, HTP aerosol, and ECIG aerosol on the viability and the differentiation of 3T3-L1 pre-adipocytes to beige adipocytes. Only CS extract caused a decrease in cell viability in a dose- and time-dependent manner. Furthermore, relative lipid accumulation and expression levels of the adipocyte markers Pgc-1α, Ppar-γ and Resistin were significantly decreased in cells exposed to CS extract. Our results demonstrate that CS extract, in contrast to HTP and ECIG extracts, significantly impairs differentiation of pre-adipocytes to beige adipocytes and may therefore impact significantly adipose tissue metabolic function.
Collapse
Affiliation(s)
- Zoi Zagoriti
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (Z.Z.); (K.F.)
| | - Mohamed A. El Mubarak
- Laboratory of Pharmacokinetics, Department of Pharmacy, University of Patras, 26504 Patras, Greece;
| | - Konstantinos Farsalinos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (Z.Z.); (K.F.)
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
30
|
Jalaleddine N, El-Hajjar L, Dakik H, Shaito A, Saliba J, Safi R, Zibara K, El-Sabban M. Pannexin1 Is Associated with Enhanced Epithelial-To-Mesenchymal Transition in Human Patient Breast Cancer Tissues and in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:cancers11121967. [PMID: 31817827 PMCID: PMC6966616 DOI: 10.3390/cancers11121967] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Loss of connexin-mediated cell-cell communication is a hallmark of breast cancer progression. Pannexin1 (PANX1), a glycoprotein that shares structural and functional features with connexins and engages in cell communication with its environment, is highly expressed in breast cancer metastatic foci; however, PANX1 contribution to metastatic progression is still obscure. Here we report elevated expression of PANX1 in different breast cancer (BRCA) subtypes using RNA-seq data from The Cancer Genome Atlas (TCGA). The elevated PANX1 expression correlated with poorer outcomes in TCGA BRCA patients. In addition, gene set enrichment analysis (GSEA) revealed that epithelial-to-mesenchymal transition (EMT) pathway genes correlated positively with PANX1 expression. Pharmacological inhibition of PANX1, in MDA-MB-231 and MCF-7 breast cancer cells, or genetic ablation of PANX1, in MDA-MB-231 cells, reverted the EMT phenotype, as evidenced by decreased expression of EMT markers. In addition, PANX1 inhibition or genetic ablation decreased the invasiveness of MDA-MB-231 cells. Our results suggest PANX1 overexpression in breast cancer is associated with a shift towards an EMT phenotype, in silico and in vitro, attributing to it a tumor-promoting effect, with poorer clinical outcomes in breast cancer patients. This association offers a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Nour Jalaleddine
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Beirut 1107-2809, Lebanon;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Hassan Dakik
- University of Tours, EA 7501 GICC, CNRS ERL 7001 LNOx, CEDEX 01, 37032 Tours, France;
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, Beirut 1105, Lebanon;
| | - Jessica Saliba
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Rémi Safi
- Department of Dermatology, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Kazem Zibara
- ER045-Laboratory of Stem Cells, PRASE, Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
- Correspondence: ; Tel.: +961-1-350000 (ext. 4765-4766)
| |
Collapse
|
31
|
Wavreil FD, Heggland SJ. Cinnamon-flavored electronic cigarette liquids and aerosols induce oxidative stress in human osteoblast-like MG-63 cells. Toxicol Rep 2019; 7:23-29. [PMID: 31871899 PMCID: PMC6909334 DOI: 10.1016/j.toxrep.2019.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022] Open
Abstract
As noncombustible nicotine delivery devices, electronic cigarettes (e-cigarettes) are the most popular tobacco product among youth. The widespread popularity of e-cigarettes combined with possible health consequences suggest a need to further research health hazards associated with e-cigarette use. Since conventional tobacco use is a risk factor for osteoporosis, this study investigates the impact of nicotine-free, cinnamon-flavored e-cigarette liquid (e-liquid) on bone-forming osteoblasts compared to flavorless e-liquid. Human tumor-derived osteoblast-like MG-63 cells were exposed for 24 h or 48 h to 0.0.4 %, 0.04 %, 0.4 % or 1 % of unvaped e-liquid or 0.0025 %, 0.025 %, 0.25 %, 1 % or 2.5 % of aerosol condensate in addition to a culture medium only control. Changes in cell viability were assessed by MTT assay, and the expression of a key bone protein, collagen type I, was analyzed by immunofluorescence. Production of reactive oxygen species (ROS) was detected by fluorometry to assess oxidative stress. Cell viability decreased in a dose-dependent manner, and ROS production increased, which was most pronounced with cinnamon-flavored e-liquids. There were no detectable changes in collagen type I protein following exposure to any of the aerosol condensates. This study demonstrates osteoblast-like cells are sensitive to both e-liquids and aerosol condensates and suggests the cytotoxicity of cinnamon-flavored e-liquids might be associated with oxidative stress rather than changes in collagen type I protein expression. This in vitro study provides insight into the potential impacts of e-cigarette use on bone cells.
Collapse
Affiliation(s)
| | - Sara J. Heggland
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| |
Collapse
|
32
|
Cai X, Gao L, Cucchiarini M, Madry H. Association of Nicotine with Osteochondrogenesis and Osteoarthritis Development: The State of the Art of Preclinical Research. J Clin Med 2019; 8:jcm8101699. [PMID: 31623196 PMCID: PMC6832988 DOI: 10.3390/jcm8101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
The deleterious effects of nicotine on various health conditions have been well documented. Although many orthopedic diseases are adversely affected by nicotine, little is known about its preclinical effects on chondrogenesis or osteogenesis, cartilage formation, osteoarthritis (OA), and osteochondral repair. A systematic review was conducted examining the current scientific evidence on the effects of nicotine on chondrogenesis or osteogenesis in vitro, possible consequences of prenatal nicotine exposure (PNE) on cartilage and OA susceptibility in the offspring, and whether nicotine affects OA development and osteochondral repair in vivo, always focusing on their underlying mechanisms. The data reveal dose-dependent effects on articular chondrocytes and on the chondrogenesis and osteogenesis of medicinal signaling cells in vitro, with lower doses often resulting in positive effects and higher doses causing negative effects. PNE negatively affects articular cartilage development and induces OA in the offspring without or with nicotine exposure. In contrast, protective effects on OA development were only reported in monosodium iodoacetate-induced small animal models. Finally, nicotine repressed MSC-based osteochondral repair in vivo. Future studies need to investigate dose-dependent clinical effects of smoking on cartilage quality in offspring, OA susceptibility and progression, and osteochondral repair more in detail, thus identifying possible thresholds for its pathological effects.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
33
|
Worley JR, Parker GC. Effects of environmental stressors on stem cells. World J Stem Cells 2019; 11:565-577. [PMID: 31616535 PMCID: PMC6789190 DOI: 10.4252/wjsc.v11.i9.565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Environmental toxicants are ubiquitous, and many are known to cause harmful health effects. However, much of what we know or think we know concerning the targets and long-term effects of exposure to environmental stressors is sadly lacking. Toxicant exposure may have health effects that are currently mischaracterized or at least mechanistically incompletely understood. While much of the recent excitement about stem cells (SCs) focuses on their potential as therapeutic agents, they also offer a valuable resource to give us insight into the mechanisms and risks of toxicant effects. Not only as a response to the increasing ethical pressure to reduce animal testing, SC studies allow us valuable insight into the true effects of human exposure to environmental stressors under controlled conditions. We present a review of the history of publications on the effects of environmental stressors on SCs, followed by a consolidation of the literature over the past five years on a subset of key environmental stressors of importance to human health and their effects on both embryonic and tissue SCs. The review will make constructive suggestions as to areas of toxicant research where further studies are needed, as well as making indications of the potential utility for advancing knowledge and directing research on environmental toxicology.
Collapse
Affiliation(s)
- Jessica R Worley
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, United States
| |
Collapse
|
34
|
Voos N, Goniewicz ML, Eissenberg T. What is the nicotine delivery profile of electronic cigarettes? Expert Opin Drug Deliv 2019; 16:1193-1203. [PMID: 31495244 DOI: 10.1080/17425247.2019.1665647] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Electronic cigarettes (e-cigarettes) are a rapidly evolving class of tobacco products intended to deliver nicotine to users. There are many types of e-cigarettes available and the most popular type today in the United States are 'pod' based devices that use high nicotine concentration liquids. Understanding the nicotine delivery capabilities of e-cigarettes is imperative for understanding their addictive potential and safety profile, informing regulation, and revealing their potential use as smoking cessation aids. Areas covered: This review discusses nicotine content of e-cigarettes, effectiveness of nicotine aerosolization by devices, delivery of nicotine to users, and user and device characteristics that impact each of these. Expert opinion: Modern e-cigarettes have the potential to deliver equal or more nicotine compared to a tobacco cigarette. Future research needs to identify the nicotine delivery profiles likely to benefit public health and the means to regulate them appropriately while also identifying those that are likely to cause harm. Public health benefit accrues if e-cigarettes help smokers quit combustible cigarettes completely. Harm is possible if inadequate nicotine delivery undermines cessation attempts, e-cigarettes facilitate continued combustible cigarette use, long-term e-cigarette use is associated with substantial morbidity/mortality, and/or e-cigarettes increase the initiation of combustible cigarette use among never smokers.
Collapse
Affiliation(s)
- Natalie Voos
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Thomas Eissenberg
- Department of Psychology, Virginia Commonwealth University , Richmond , VA , USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
35
|
Zahedi A, Phandthong R, Chaili A, Leung S, Omaiye E, Talbot P. Mitochondrial Stress Response in Neural Stem Cells Exposed to Electronic Cigarettes. iScience 2019; 16:250-269. [PMID: 31200115 PMCID: PMC6562374 DOI: 10.1016/j.isci.2019.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells provide a sensitive model to study exposure to toxicants, such as cigarette smoke. Electronic cigarettes (ECs) are popular nicotine delivery devices, often targeted to youth and pregnant mothers. However, little is known about how chemicals in ECs might affect neural stem cells, and in particular their mitochondria, organelles that maintain cell functionality and health. Here we show that the mechanism underlying EC-induced stem cell toxicity is stress-induced mitochondrial hyperfusion (SIMH), a transient survival response accompanied by increased mitochondrial oxidative stress. We identify SIMH as a survival response to nicotine, now widely available in EC refill fluids and in pure form for do-it-yourself EC products. These observed mitochondrial alterations combined with autophagy dysfunction to clear damaged mitochondria could lead to faulty stem cell populations, accelerate cellular aging, and lead to acquired mitochondriopathies. Any nicotine-containing product may likewise stress stem cells with long-term repercussions for users and passively exposed individuals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Atena Zahedi
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Angela Chaili
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Sara Leung
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Esther Omaiye
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Prue Talbot
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA.
| |
Collapse
|
36
|
Cx43 Expression Correlates with Breast Cancer Metastasis in MDA-MB-231 Cells In Vitro, In a Mouse Xenograft Model and in Human Breast Cancer Tissues. Cancers (Basel) 2019; 11:cancers11040460. [PMID: 30939738 PMCID: PMC6521103 DOI: 10.3390/cancers11040460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Connexins regulate multiple cellular functions and are considered tumor suppressors. Connexin43 (Cx43) is frequently down-regulated in breast tumors. However, Cx43 regulation during cancer onset and metastasis is complex and context-dependent. We investigated the effect of Cx43 over-expression or knock-down on the metastatic potential of MDA-MB-231 breast cancer cells in vitro and in vivo and in human breast cancer tissues. MDA-MB-231 cells over-expressing (Cx43D) or down-regulating Cx43 (shCx43) were generated and used in proliferation, migration, and invasion assays. The regulation of genes/proteins implicated in progression, invasion and metastasis was assessed in vitro and in immune-compromized mice injected with MDA-MB-231, Cx43D or shCx43 cells. Primary tumor onset/growth, metastasis and overall survival of these animals was monitored and evaluated. In addition, Cx43 expression in human breast carcinoma samples was assessed by qPCR. Cx43 over-expression increased protein levels of epithelial markers E-cadherin and zonula occludens 1 expression and resulted in the sequestration of β-catenin at the cell membrane, while Cx43 knock-down induced protein expression of the mesenchymal marker N-cadherin and an increased invasive potential of shCx43 cells. In vivo, in mice xenografted with breast cancer cells, Cx43 over-expression decreased tumor volume, attenuated cell metastasis to lungs and liver and increased overall mice survival. Importantly, the expression of Cx43 in triple negative human breast cancer tissues is also down-regulated. Collectively, Cx43 over-expression induced an epithelial-like phenotype in MDA-MB-231 cells and suppressed tumor growth and metastasis to secondary organs in vivo. In contrast, Cx43 knock-down in MDA-MB-231 cells induced a mesenchymal phenotype with increased cell invasion leading to an enhanced metastatic phenotype. These data provide evidence for a pivotal role of Cx43 in breast cancer metastasis and support the potential targeting of connexins in breast cancer therapy.
Collapse
|
37
|
Haddad C, Salman R, El-Hellani A, Talih S, Shihadeh A, Saliba NA. Reactive Oxygen Species Emissions from Supra- and Sub-Ohm Electronic Cigarettes. J Anal Toxicol 2019; 43:45-50. [PMID: 30192935 PMCID: PMC6376456 DOI: 10.1093/jat/bky065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/25/2018] [Indexed: 12/24/2022] Open
Abstract
Electronic cigarettes (ECIGs) are battery-powered devices that heat and vaporize solutions containing propylene glycol (PG) and/or vegetable glycerin (VG), nicotine and possible trace flavorants to produce an inhalable aerosol. The heating process can lead to the formation of reactive oxygen species (ROS), which are linked to various oxidative damage-initiated diseases. Several studies in the literature have addressed ROS emissions in ECIG aerosols, but the effects of power, ECIG device design and liquid composition on ROS are relatively unknown. In addition, ROS emissions have not been examined in the emerging high power, sub-Ohm device (SOD) category. In this study, an acellular 2',7'-dichlorofluorescin (DCFH) probe technique was optimized to measure ROS in ECIG aerosols. The technique was deployed to measure ROS emissions in SOD and supra-Ohm ECIGs while varying power, heater coil head design and liquid composition (PG/VG ratio and nicotine concentration). Liquids were made from analytical standards of PG, VG and nicotine and contained no flavorants. At high powers, ROS emissions in ECIGs and combustible cigarettes were similar. Across device designs, ROS emissions were uncorrelated with power (R2 = 0.261) but were highly correlated with power per unit area (R2 = 0.78). It was noticed that an increase in the VG percentage in the liquid yielded higher ROS flux, and nicotine did not affect ROS emissions. ROS emissions are a function of device design and liquid composition at a given power. For a given liquid composition, a promising metric for predicting ROS emissions across device designs and operating conditions is power per unit area of the heating coil. Importantly, ROS formation is significant even when the ECIG liquid consists of pure analytical solutions of PG and VG; it can therefore be viewed as intrinsic to ECIG operation and not solely a by-product of particular flavorants, contaminants or additives.
Collapse
Affiliation(s)
- Christina Haddad
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rola Salman
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Ahmad El-Hellani
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Soha Talih
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Alan Shihadeh
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
- Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Najat Aoun Saliba
- Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|