1
|
Lansink LIM, Skinner OP, Engel JA, Lee HJ, Soon MSF, Williams CG, SheelaNair A, Pernold CPS, Laohamonthonkul P, Akter J, Stoll T, Hill MM, Talman AM, Russell A, Lawniczak M, Jia X, Chua B, Anderson D, Creek DJ, Davenport MP, Khoury DS, Haque A. Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites. mBio 2023; 14:e0112923. [PMID: 37449844 PMCID: PMC10470790 DOI: 10.1128/mbio.01129-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Maturation rates of malaria parasites within red blood cells (RBCs) can be influenced by host nutrient status and circadian rhythm; whether host inflammatory responses can also influence maturation remains less clear. Here, we observed that systemic host inflammation induced in mice by an innate immune stimulus, lipopolysaccharide (LPS), or by ongoing acute Plasmodium infection, slowed the progression of a single cohort of parasites from one generation of RBC to the next. Importantly, plasma from LPS-conditioned or acutely infected mice directly inhibited parasite maturation during in vitro culture, which was not rescued by supplementation, suggesting the emergence of inhibitory factors in plasma. Metabolomic assessments confirmed substantial alterations to the plasma of LPS-conditioned and acutely infected mice, and identified a small number of candidate inhibitory metabolites. Finally, we confirmed rapid parasite responses to systemic host inflammation in vivo using parasite scRNA-seq, noting broad impairment in transcriptional activity and translational capacity specifically in trophozoites but not rings or schizonts. Thus, we provide evidence that systemic host inflammation rapidly triggered transcriptional alterations in circulating blood-stage Plasmodium trophozoites and predict candidate inhibitory metabolites in the plasma that may impair parasite maturation in vivo. IMPORTANCE Malaria parasites cyclically invade, multiply, and burst out of red blood cells. We found that a strong inflammatory response can cause changes to the composition of host plasma, which directly slows down parasite maturation. Thus, our work highlights a new mechanism that limits malaria parasite growth in the bloodstream.
Collapse
Affiliation(s)
- Lianne I. M. Lansink
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Biology, University of York, Wentworth Way, York, Yorkshire, United Kingdom
| | - Oliver P. Skinner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica A. Engel
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Megan S. F. Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Cameron G. Williams
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Clara P. S. Pernold
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | | | - Jasmin Akter
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Arthur M. Talman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Andrew Russell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mara Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Miles P. Davenport
- The Kirby Institute, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - David S. Khoury
- The Kirby Institute, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Huang T, Zeleznik OA, Roberts AL, Balasubramanian R, Clish CB, Eliassen AH, Rexrode KM, Tworoger SS, Hankinson SE, Koenen KC, Kubzansky LD. Plasma Metabolomic Signature of Early Abuse in Middle-Aged Women. Psychosom Med 2022; 84:536-546. [PMID: 35471987 PMCID: PMC9167800 DOI: 10.1097/psy.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Metabolomic profiling may provide insights into biological mechanisms underlying the strong epidemiologic links observed between early abuse and cardiometabolic disorders in later life. METHODS We examined the associations between early abuse and midlife plasma metabolites in two nonoverlapping subsamples from the Nurses' Health Study II, comprising 803 (mean age = 40 years) and 211 women (mean age = 61 years). Liquid chromatography-tandem mass spectrometry assays were used to measure metabolomic profiles, with 283 metabolites consistently measured in both subsamples. Physical and sexual abuse before age 18 years was retrospectively assessed by validated questions integrating type/frequency of abuse. Analyses were conducted in each sample and pooled using meta-analysis, with multiple testing adjustment using the q value approach for controlling the positive false discovery rate. RESULTS After adjusting for age, race, menopausal status, body size at age 5 years, and childhood socioeconomic indicators, more severe early abuse was consistently associated with five metabolites at midlife (q value < 0.20 in both samples), including lower levels of serotonin and C38:3 phosphatidylethanolamine plasmalogen and higher levels of alanine, proline, and C40:6 phosphatidylethanolamine. Other metabolites potentially associated with early abuse (q value < 0.05 in the meta-analysis) included triglycerides, phosphatidylcholine plasmalogens, bile acids, tyrosine, glutamate, and cotinine. The association between early abuse and midlife metabolomic profiles was partly mediated by adulthood body mass index (32% mediated) and psychosocial distress (13%-26% mediated), but not by other life-style factors. CONCLUSIONS Early abuse was associated with distinct metabolomic profiles of multiple amino acids and lipids in middle-aged women. Body mass index and psychosocial factors in adulthood may be important intermediates for the observed association.
Collapse
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Oana A. Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Andrea L. Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA
| | | | - A. Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Shelley S. Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
3
|
Nicol JL, Woodrow C, Cunningham BJ, Mollee P, Weber N, Smith MD, Nicol AJ, Gordon LG, Hill MM, Skinner TL. An Individualized Exercise Intervention for People with Multiple Myeloma—Study Protocol of a Randomized Waitlist-Controlled Trial. Curr Oncol 2022; 29:901-923. [PMID: 35200576 PMCID: PMC8870457 DOI: 10.3390/curroncol29020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
People with multiple myeloma (MM) are second only to people with lung cancer for the poorest reported health-related quality of life (HRQoL) of all cancer types. Whether exercise can improve HRQoL in MM, where bone pain and lesions are common, requires investigation. This trial aims to evaluate the efficacy of an exercise intervention compared with control on HRQoL in people with MM. Following baseline testing, people with MM (n = 60) will be randomized to an exercise (EX) or waitlist control (WT) group. EX will complete 12-weeks of supervised (24 sessions) and unsupervised (12 sessions) individualized, modular multimodal exercise training. From weeks 12–52, EX continue unsupervised training thrice weekly, with one optional supervised group-based session weekly from weeks 12–24. The WT will be asked to maintain their current activity levels for the first 12-weeks, before completing the same protocol as EX for the following 52 weeks. Primary (patient-reported HRQoL) and secondary (bone health and pain, fatigue, cardiorespiratory fitness, muscle strength, body composition, disease response, and blood biomarkers) outcomes will be assessed at baseline, 12-, 24- and 52-weeks. Adverse events, attendance, and adherence will be recorded and cost-effectiveness analysis performed. The findings will inform whether exercise should be included as part of standard myeloma care to improve the health of this unique population.
Collapse
Affiliation(s)
- Jennifer L. Nicol
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia; (B.J.C.); (A.J.N.); (T.L.S.)
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (L.G.G.); (M.M.H.)
- Correspondence:
| | - Carmel Woodrow
- Haematology, Division of Cancer, Princess Alexandra Hospital, Brisbane 4102, Australia; (C.W.); (P.M.)
| | - Brent J. Cunningham
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia; (B.J.C.); (A.J.N.); (T.L.S.)
| | - Peter Mollee
- Haematology, Division of Cancer, Princess Alexandra Hospital, Brisbane 4102, Australia; (C.W.); (P.M.)
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Nicholas Weber
- Haematology, Cancer Care Services, Royal Brisbane and Women’s Hospital, Brisbane 4006, Australia;
| | - Michelle D. Smith
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia;
| | - Andrew J. Nicol
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia; (B.J.C.); (A.J.N.); (T.L.S.)
- Brisbane Clinic for Lymphoma, Myeloma and Leukaemia, Greenslopes Private Hospital, Brisbane 4120, Australia
| | - Louisa G. Gordon
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (L.G.G.); (M.M.H.)
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
- Palliative Care Outcomes Centre, School of Nursing and Cancer, Queensland University of Technology, Brisbane 4059, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (L.G.G.); (M.M.H.)
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Tina L. Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia; (B.J.C.); (A.J.N.); (T.L.S.)
| |
Collapse
|
4
|
Persistent level of mental distress in PTSD patients is not reflected in cytokine levels 1 year after the treatment. Acta Neuropsychiatr 2021; 33:254-260. [PMID: 33902770 DOI: 10.1017/neu.2021.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Cross-sectional data show that post-traumatic stress disorder (PTSD) patients often have increased levels of circulating inflammatory markers. There is, however, still a paucity of longitudinal studies with long follow-up times on levels of cytokines in such patients. The current study assesses patients with and without PTSD diagnosis 1 year after discharge from inpatient treatment. METHODS Patients in treatment for serious non-psychotic mental disorders were recruited at the beginning of their treatment stay at a psychiatric centre in Norway. Ninety patients submitted serum samples and filled out the Hopkins Symptom Checklist-90 Revised Global Severity Index (HSCL-90R GSI) questionnaire during their mainstay and at a follow-up stay 1 year after discharge. Of these patients, 33 were diagnosed with PTSD, 48 with anxiety, depression, or eating disorder, while 9 patients had missing data. The patients were diagnosed using the Mini-International Neuropsychiatric Interview (MINI). RESULTS At the follow-up stay (T3), PTSD patients had higher levels of GSI scores than non-PTSD patients (p = 0.048). These levels were unchanged from the year before (T2) in both groups. The levels of circulating cytokines/chemokine did not differ between the PTSD and non-PTSD patients at T3. At T2, however, the PTSD and non-PTSD groups exhibited different levels of interleukin 1β (IL-1β) (p = 0.053), IL-1RA (p = 0.042), and TNF-α (p = 0.037), with the PTSD patients having the higher levels. CONCLUSION Despite exhibiting different mental distress scores, the PTSD and non-PTSD patients did not differ regarding levels of circulating inflammatory markers at 1-year follow-up.
Collapse
|
5
|
Carleial S, Nätt D, Unternährer E, Elbert T, Robjant K, Wilker S, Vukojevic V, Kolassa IT, Zeller AC, Koebach A. DNA methylation changes following narrative exposure therapy in a randomized controlled trial with female former child soldiers. Sci Rep 2021; 11:18493. [PMID: 34531495 PMCID: PMC8445994 DOI: 10.1038/s41598-021-98067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The aftermath of traumatization lives on in the neural and epigenetic traces creating a momentum of affliction in the psychological and social realm. Can psychotherapy reorganise these memories through changes in DNA methylation signatures? Using a randomised controlled parallel group design, we examined methylome-wide changes in saliva samples of 84 female former child soldiers from Eastern DR Congo before and six months after Narrative Exposure Therapy. Treatment predicted differentially methylated positions (DMPs) related to ALCAM, RIPOR2, AFAP1 and MOCOS. In addition, treatment associations overlapped at gene level with baseline clinical and social outcomes. Treatment related DMPs are involved in memory formation-the key agent in trauma focused treatments-and enriched for molecular pathways commonly affected by trauma related disorders. Results were partially replicated in an independent sample of 53 female former child soldiers from Northern Uganda. Our results suggest a molecular impact of psychological treatment in women with war-related childhood trauma.Trial registration: Addressing Heightened Levels of Aggression in Traumatized Offenders With Psychotherapeutic Means (ClinicalTrials.gov Identifier: NCT02992561, 14/12/2016).
Collapse
Affiliation(s)
- Samuel Carleial
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany
| | - Daniel Nätt
- grid.5640.70000 0001 2162 9922Division of Neurobiology, Department of Biomedical and Clinical Sciences, University of Linköping, Building 463, Room 12.023, Linköping, Sweden
| | - Eva Unternährer
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,grid.6612.30000 0004 1937 0642Child- and Adolescent Research Department, Psychiatric University Hospitals Basel (UPK), University of Basel, Basel, Switzerland
| | - Thomas Elbert
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| | - Katy Robjant
- Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| | - Sarah Wilker
- Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany ,grid.7491.b0000 0001 0944 9128Department of Psychology and Sports Science, University of Bielefeld, 33501 Bielefeld, Germany
| | - Vanja Vukojevic
- grid.6612.30000 0004 1937 0642Psychiatric University Clinics, Transfaculty Research Platform, University of Basel, Wilhelm Klein-Strasse 27, CH-4012 Basel, Switzerland
| | - Iris-Tatjana Kolassa
- Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany ,grid.6582.90000 0004 1936 9748Department of Clinical and Biological Psychology, Institute of Psychology & Education, University of Ulm, Ulm University, Ulm, Germany
| | - Anja C. Zeller
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| | - Anke Koebach
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| |
Collapse
|
6
|
Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Büsselberg D, Podbielska H, Kunin AA, Evsevyeva ME, Shapira N, Paul F, Erb C, Dietrich DE, Felbel D, Karabatsiakis A, Bubnov R, Polivka J, Polivka J, Birkenbihl C, Fröhlich H, Hofmann-Apitius M, Kubatka P. Caution, "normal" BMI: health risks associated with potentially masked individual underweight-EPMA Position Paper 2021. EPMA J 2021; 12:243-264. [PMID: 34422142 PMCID: PMC8368050 DOI: 10.1007/s13167-021-00251-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised "normal" body weight and individually optimal weight. To this end, the basic principle of personalised medicine "one size does not fit all" has to be applied. Contextually, "normal" but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters-all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Alena Liskova
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Anatolij A. Kunin
- Departments of Maxillofacial Surgery and Hospital Dentistry, Voronezh N.N. Burdenko State Medical University, Voronezh, Russian Federation
| | | | - Niva Shapira
- Nutrition Department, Ashkelon Academic College, Ashkelon, Tel Aviv, Israel
| | - Friedemann Paul
- NeuroCure Clinical Research Centre, Experimental and Clinical Research Centre, Max Delbrueck Centre for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Carl Erb
- Private Institute of Applied Ophthalmology, Berlin, Germany
| | - Detlef E. Dietrich
- European Depression Association, Brussels, Belgium
- AMEOS Clinical Centre for Psychiatry and Psychotherapy, 31135 Hildesheim, Germany
| | - Dieter Felbel
- Fachklinik Kinder und Jugendliche Psychiatrie, AMEOS Klinikum Hildesheim, Akademisches Lehrkrankenhaus für Pflege der FOM Hochschule Essen, Hildesheim, Germany
| | - Alexander Karabatsiakis
- Institute of Psychology, Department of Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Rostyslav Bubnov
- Ultrasound Department, Clinical Hospital “Pheophania”, Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jiri Polivka
- Department of Neurology, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Staré Město, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Staré Město, Czech Republic
| | - Colin Birkenbihl
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- UCB Biosciences GmbH, Alfred-Nobel Str. 10, 40789 Monheim am Rhein, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
7
|
Characterization of the effects of age and childhood maltreatment on ELOVL2 DNA methylation. Dev Psychopathol 2021; 34:864-874. [PMID: 33461631 DOI: 10.1017/s0954579420001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
DNA methylation of the elongation of very long chain fatty acids protein 2 (ELOVL2) was suggested as a biomarker of biological aging, while childhood maltreatment (CM) has been associated with accelerated biological aging. We investigated the association of age and CM experiences with ELOVL2 methylation in peripheral blood mononuclear cells (PBMC). Furthermore, we investigated ELOVL2 methylation in the umbilical cord blood mononuclear cells (UBMC) of newborns of mothers with and without CM. PBMC and UBMC were isolated from 113 mother-newborn dyads and genomic DNA was extracted. Mothers with and without CM experiences were recruited directly postpartum. Mass array spectrometry and pyrosequencing were used for methylation analyses of ELOVL2 intron 1, and exon 1 and 5' end, respectively. ELOVL2 5' end and intron 1 methylation increased with higher age but were not associated with CM experiences. On the contrary, overall ELOVL2 exon 1 methylation increased with higher CM, but these changes were minimal and did not increase with age. Maternal CM experiences and neonatal methylation of ELOVL2 intron 1 or exon 1 were not significantly correlated. Our study suggests region-specific effects of chronological age and experienced CM on ELOVL2 methylation and shows that the epigenetic biomarker for age within the ELOVL2 gene does not show accelerated biological aging years after CM exposure.
Collapse
|
8
|
Determining effects of adolescent stress exposure on risk for posttraumatic stress disorder in adulthood. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Ghezzi P. Environmental risk factors and their footprints in vivo - A proposal for the classification of oxidative stress biomarkers. Redox Biol 2020; 34:101442. [PMID: 32035921 PMCID: PMC7327955 DOI: 10.1016/j.redox.2020.101442] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 01/06/2023] Open
Abstract
Environmental agents, including socioeconomic condition, and host factors can act as causal agents and risk factors in disease. We use biomarkers and sociomarkers to study causal factors, such as overproduction of reactive oxygen species (ROS) which could play a role in disease through oxidative stress. It is therefore important to define the exact meaning of the biomarker we measure. In this review we attempt a classification of biomarkers related to oxidative stress based on their biological meaning. We define as type zero biomarkers the direct measurement of ROS in vivo in patients. Type 1 biomarkers are the most frequently used indicators of oxidative stress, represented by oxidized lipids, proteins or nucleic acids and their bases. Type 2 biomarkers are indicators of the activation of biochemical pathways that can lead to the formation of ROS. Type 3 biomarkers are host factors such as small-molecular weight antioxidants and antioxidant enzymes, while type 4 biomarkers measure genetic factors and mutations that could modify the susceptibility of an individual to oxidative stress. We also discuss whether biomarkers are actionable or not, that is if the specific blockade of these molecules can ameliorate disease or if they are just surrogate markers. The proposed classification of biomarkers of oxidative stress based on their meaning and ambiguities, within the theoretical framework of the oxidative stress theory of disease may help identify those diseases, and individuals, where oxidative stress has a causal role, to allow targeted therapy and personalized medicine.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Department of Clinical Medicine, Brighton and Sussex Medical School, Brighton, BN19RY, United Kingdom.
| |
Collapse
|
10
|
Mohamed A, Collins J, Jiang H, Molendijk J, Stoll T, Torta F, Wenk MR, Bird RJ, Marlton P, Mollee P, Markey KA, Hill MM. Concurrent lipidomics and proteomics on malignant plasma cells from multiple myeloma patients: Probing the lipid metabolome. PLoS One 2020; 15:e0227455. [PMID: 31914155 PMCID: PMC6948732 DOI: 10.1371/journal.pone.0227455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal expansion of malignant plasma cells. Though durable remissions are possible, MM is considered incurable, with relapse occurring in almost all patients. There has been limited data reported on the lipid metabolism changes in plasma cells during MM progression. Here, we evaluated the feasibility of concurrent lipidomics and proteomics analyses from patient plasma cells, and report these data on a limited number of patient samples, demonstrating the feasibility of the method, and establishing hypotheses to be evaluated in the future. Methods Plasma cells were purified from fresh bone marrow aspirates using CD138 microbeads. Proteins and lipids were extracted using a bi-phasic solvent system with methanol, methyl tert-butyl ether, and water. Untargeted proteomics, untargeted and targeted lipidomics were performed on 7 patient samples using liquid chromatography-mass spectrometry. Two comparisons were conducted: high versus low risk; relapse versus newly diagnosed. Proteins and pathways enriched in the relapsed group was compared to a public transcriptomic dataset from Multiple Myeloma Research Consortium reference collection (n = 222) at gene and pathways level. Results From one million purified plasma cells, we were able to extract material and complete untargeted (~6000 and ~3600 features in positive and negative mode respectively) and targeted lipidomics (313 lipids), as well as untargeted proteomics analysis (~4100 reviewed proteins). Comparative analyses revealed limited differences between high and low risk groups (according to the standard clinical criteria), hence we focused on drawing comparisons between the relapsed and newly diagnosed patients. Untargeted and targeted lipidomics indicated significant down-regulation of phosphatidylcholines (PCs) in relapsed MM. Although there was limited overlap of the differential proteins/transcripts, 76 significantly enriched pathways in relapsed MM were common between proteomics and transcriptomics data. Further evaluation of transcriptomics data for lipid metabolism network revealed enriched correlation of PC, ceramide, cardiolipin, arachidonic acid and cholesterol metabolism pathways to be exclusively correlated among relapsed but not in newly-diagnosed patients. Conclusions This study establishes the feasibility and workflow to conduct integrated lipidomics and proteomics analyses on patient-derived plasma cells. Potential lipid metabolism changes associated with MM relapse warrant further investigation.
Collapse
Affiliation(s)
- Ahmed Mohamed
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Joel Collins
- Princess Alexandra Hospital, Division of Cancer Care Services, Department of Haematology, Woolloongabba, Brisbane, Australia
- Toowoomba Hospital, Cancer Care Services, Toowoomba, Australia
- The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Hui Jiang
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Brisbane, Australia
| | - Jeffrey Molendijk
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Thomas Stoll
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Federico Torta
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Markus R. Wenk
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Robert J. Bird
- Princess Alexandra Hospital, Division of Cancer Care Services, Department of Haematology, Woolloongabba, Brisbane, Australia
| | - Paula Marlton
- Princess Alexandra Hospital, Division of Cancer Care Services, Department of Haematology, Woolloongabba, Brisbane, Australia
- The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Peter Mollee
- Princess Alexandra Hospital, Division of Cancer Care Services, Department of Haematology, Woolloongabba, Brisbane, Australia
- The University of Queensland Faculty of Medicine, Brisbane, Australia
| | - Kate A. Markey
- Princess Alexandra Hospital, Division of Cancer Care Services, Department of Haematology, Woolloongabba, Brisbane, Australia
- The University of Queensland Faculty of Medicine, Brisbane, Australia
- SLING, Department of Biochemistry, National University of Singapore, Singapore
| | - Michelle M. Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
- * E-mail:
| |
Collapse
|
11
|
Papadopoulou Z, Vlaikou AM, Theodoridou D, Komini C, Chalkiadaki G, Vafeiadi M, Margetaki K, Trangas T, Turck CW, Syrrou M, Chatzi L, Filiou MD. Unraveling the Serum Metabolomic Profile of Post-partum Depression. Front Neurosci 2019; 13:833. [PMID: 31507354 PMCID: PMC6716353 DOI: 10.3389/fnins.2019.00833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Post-partum depression (PPD) is a severe psychiatric disorder affecting ∼15% of young mothers. Early life stressful conditions in periconceptual, fetal and early infant periods or exposure to maternal psychiatric disorders, have been linked to adverse childhood outcomes interfering with physiological, cognitive and emotional development. The molecular mechanisms of PPD are not yet fully understood. Unraveling the molecular underpinnings of PPD will allow timely detection and establishment of effective therapeutic approaches. To investigate the underlying molecular correlates of PPD in peripheral material, we compared the serum metabolomes of an in detail characterized group of mothers suffering from PPD and a control group of mothers, all from Heraklion, Crete in Greece. Serum samples were analyzed by a mass spectrometry platform for targeted metabolomics, based on selected reaction monitoring (SRM), which measures the levels of up to 300 metabolites. In the PPD group, we observed increased levels of glutathione-disulfide, adenylosuccinate, and ATP, which associate with oxidative stress, nucleotide biosynthesis and energy production pathways. We also followed up the metabolomic findings in a validation cohort of PPD mothers and controls. To the very best of our knowledge, this is the first metabolomic serum analysis in PPD. Our data show that molecular changes related to PPD are detectable in peripheral material, thus paving the way for additional studies in order to shed light on the molecular correlates of PPD.
Collapse
Affiliation(s)
- Zoe Papadopoulou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgia Chalkiadaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chris W Turck
- Proteomics and Biomarkers, Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
12
|
Mellon SH, Bersani FS, Lindqvist D, Hammamieh R, Donohue D, Dean K, Jett M, Yehuda R, Flory J, Reus VI, Bierer LM, Makotkine I, Abu Amara D, Henn Haase C, Coy M, Doyle FJ, Marmar C, Wolkowitz OM. Metabolomic analysis of male combat veterans with post traumatic stress disorder. PLoS One 2019; 14:e0213839. [PMID: 30883584 PMCID: PMC6422302 DOI: 10.1371/journal.pone.0213839] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/02/2019] [Indexed: 12/26/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with impaired major domains of psychology and behavior. Individuals with PTSD also have increased co-morbidity with several serious medical conditions, including autoimmune diseases, cardiovascular disease, and diabetes, raising the possibility that systemic pathology associated with PTSD might be identified by metabolomic analysis of blood. We sought to identify metabolites that are altered in male combat veterans with PTSD. In this case-control study, we compared metabolomic profiles from age-matched male combat trauma-exposed veterans from the Iraq and Afghanistan conflicts with PTSD (n = 52) and without PTSD (n = 51) (‘Discovery group’). An additional group of 31 PTSD-positive and 31 PTSD-negative male combat-exposed veterans was used for validation of these findings (‘Test group’). Plasma metabolite profiles were measured in all subjects using ultrahigh performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. We identified key differences between PTSD subjects and controls in pathways related to glycolysis and fatty acid uptake and metabolism in the initial ‘Discovery group’, consistent with mitochondrial alterations or dysfunction, which were also confirmed in the ‘Test group’. Other pathways related to urea cycle and amino acid metabolism were different between PTSD subjects and controls in the ‘Discovery’ but not in the smaller ‘Test’ group. These metabolic differences were not explained by comorbid major depression, body mass index, blood glucose, hemoglobin A1c, smoking, or use of analgesics, antidepressants, statins, or anti-inflammatories. These data show replicable, wide-ranging changes in the metabolic profile of combat-exposed males with PTSD, with a suggestion of mitochondrial alterations or dysfunction, that may contribute to the behavioral and somatic phenotypes associated with this disease.
Collapse
Affiliation(s)
- Synthia H. Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, United States of America
- * E-mail:
| | - F. Saverio Bersani
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Daniel Lindqvist
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Duncan Donohue
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Kelsey Dean
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, United States of America
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Janine Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Victor I. Reus
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Linda M. Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Iouri Makotkine
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Duna Abu Amara
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
| | - Clare Henn Haase
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
| | - Michelle Coy
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| | - Francis J. Doyle
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Charles Marmar
- Department of Psychiatry, New York University Langone Medical School, New York, NY, United States of America
- Stephen and Alexandra Cohen Veteran Center for Posttraumatic Stress and Traumatic Brain Injury, New York, NY, United States of America
| | - Owen M. Wolkowitz
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, United States of America
| |
Collapse
|
13
|
Shiels RG, Vidimce J, Pearson AG, Matthews B, Wagner KH, Battle AR, Sakellaris H, Bulmer AC. Unprecedented Microbial Conversion of Biliverdin into Bilirubin-10-sulfonate. Sci Rep 2019; 9:2988. [PMID: 30814600 PMCID: PMC6393463 DOI: 10.1038/s41598-019-39548-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
Biliverdin (BV) possesses antioxidant and anti-inflammatory properties, with previous reports identifying protection against oxidant and inflammatory injury in animal models. Recent reports indicate that intra-duodenal administration of BV results in the formation of an uncharacterised metabolite, which is potently absorbed into the blood and excreted into the bile. This compound may be responsible for protection against inflammatory responses. This study aimed to identify novel, enterally-derived BV metabolites and determine the source of their metabolic transformation. Rat duodena and bacterial cultures of Citrobacter youngae were treated with BV and subsequently analysed via high performance liquid chromatography/high resolution tandem mass spectrometry to identify and characterise metabolites of BV. A highly abundant metabolite was detected in duodenal wash and bacterial culture supernatants with a 663.215 m/z (3 ppm mass accuracy) and a composition of C33N4O9H36S, which conformed to the predicted structure of bilirubin-10-sulfonate (BRS) and possessed a λmax of 440 nm. Bilirubin-10-sulfonate was then synthesized for comparative LCMS/MS analysis and matched with that of the biologically formed BV metabolite. This report confirms the formation of a previously undocumented metabolite of BV in mammals, indicating that a new metabolic pathway likely exists for BV metabolism requiring enteric bacteria, Citrobacter youngae. These data may have important implications with regard to understanding and harnessing the therapeutic efficacy of oral BV administration.
Collapse
Affiliation(s)
- Ryan G Shiels
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Josif Vidimce
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew G Pearson
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Ben Matthews
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andrew R Battle
- Translational Research Institute (TRI), Institute for Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4102, Australia
| | - Harry Sakellaris
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew C Bulmer
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
14
|
Boeck C, Gumpp AM, Koenig AM, Radermacher P, Karabatsiakis A, Kolassa IT. The Association of Childhood Maltreatment With Lipid Peroxidation and DNA Damage in Postpartum Women. Front Psychiatry 2019; 10:23. [PMID: 30833908 PMCID: PMC6387959 DOI: 10.3389/fpsyt.2019.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Childhood maltreatment (CM) is associated with an increased risk for the development of psychiatric and somatic disorders in later life. A potential link could be oxidative stress, which is defined as the imbalance between the amount of reactive oxygen species (ROS) and the neutralizing capacity of anti-oxidative defense systems. However, the findings linking CM with oxidative stress have been inconsistent so far. In this study, we aimed to further explore this association by investigating biological markers of DNA and lipid damage due to oxidation in a comprehensive approach over two study cohorts of postpartum women (study cohort I and study cohort II). The severity of CM experiences (maltreatment load) was assessed in both studies using the Childhood Trauma Questionnaire. In study cohort I (N = 30), we investigated whether CM was associated with higher levels of structural DNA damage in peripheral blood mononuclear cells (PBMC) by two methods that are highly sensitive for detecting nuclear DNA strand breaks (comet assay and γH2AX staining). In study cohort II (N = 117), we then assessed in a larger cohort, that was specifically controlled for potential confounders for oxidative stress measurements, two established serum and plasma biomarkers of oxidative stress, one representing oxidative DNA and RNA damage (8-hydroxy-2'-deoxyguanosine and 8-hydroxyguanosine; 8-OH(d)G) and the other representing lipid peroxidation (8-isoprostane). In study cohort I, the analyses revealed no significant main effects of maltreatment load on cellular measures of nuclear DNA damage. The analyses of peripheral oxidative stress biomarkers in study cohort II revealed a significant main effect of maltreatment load on free 8-isoprostane plasma levels, but not on total 8-isprostane plasma levels and 8-OH(d)G serum levels. Taken together, by combining different methods and two study cohorts, we found no indications for higher oxidative DNA damages with higher maltreatment load in postpartum women. Further research is needed to investigate whether this increase in free 8-isoprostane is a marker for oxidative stress or whether it is instead functionally involved in ROS-related signaling pathways that potentially regulate inflammatory processes following a history of CM.
Collapse
Affiliation(s)
- Christina Boeck
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Anja M Gumpp
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexandra M Koenig
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Is childhood maltreatment associated with murderous ideation and behaviors in adolescents in China? Psychiatry Res 2018; 270:467-473. [PMID: 30321835 DOI: 10.1016/j.psychres.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022]
Abstract
Previous research has revealed associations between childhood maltreatment (CM) and adverse health behaviors. However, little is known about the relationship between CM and adolescent murderous ideation and behaviors. A total of 5726 middle and high school students completed the Childhood Trauma Questionnaire-Short Form and the Murderous Ideation and Behaviors Questionnaire. The findings revealed that the prevalence rates for murderous ideation, plans, preparation, and attempts were 9.9%, 2.8%, 1.3%, and 0.6%, respectively. The results of multinomial logistic regression models indicated that adolescents who experienced CM were more likely to exhibit murderous ideation and behaviors, with adjusted odds ratios (AORs) ranging from 2.55 to 22.31. Additionally, a significant dose-response relationship was found between the number of CM types experienced and murderous ideation and behaviors (AORs ranging from 1.52 to 2.45). The odds of participants who had experienced three or five types of CM were significantly associated with murderous ideation and behaviors, with AORs ranging from 4.55 to 28.30 and from 5.26 to 85.45, respectively. The findings highlighted that adolescents who engaged in murderous ideation and behaviors were more likely to have a personal history of CM and revealed a dose-response relationship between the number of CM types and murderous ideation and behaviors.
Collapse
|