1
|
Tang B, Shi Y, Zeng Z, He X, Yu J, Chai K, Liu J, Liu L, Zhan Y, Qiu X, Tang R, Xiao Y, Xiao R. Silica's silent threat: Contributing to skin fibrosis in systemic sclerosis by targeting the HDAC4/Smad2/3 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124194. [PMID: 38782158 DOI: 10.1016/j.envpol.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, silica products are widely used in daily life, especially in skin applications, which inevitably increases the risk of silica exposure in general population. However, inadequate awareness of silica's potential hazards and lack of self-protection are of concern. Systemic sclerosis (SSc) is characterized by progressive tissue fibrosis under environmental and genetic interactions. Silica exposure is considered an important causative factor for SSc, but its pathogenesis remains unclear. Within this study, we showed that lower doses of silica significantly promoted the proliferation, migration, and activation of human skin fibroblasts (HSFs) within 24 h. Silica injected subcutaneously into mice induced and exacerbated skin fibrosis. Notably, silica increased histone deacetylase-4 (HDAC4) expression by inducing its DNA hypomethylation in normal HSFs. The elevated HDAC4 expression was also confirmed in SSc HSFs. Furthermore, HDAC4 was positively correlated with Smad2/3 phosphorylation and COL1, α-SMA, and CTGF expression. The HDAC4 inhibitor LMK235 mitigated silica-induced upregulation of these factors and alleviated skin fibrosis in SSc mice. Taken together, silica induces and exacerbates skin fibrosis in SSc patients by targeting the HDAC4/Smad2/3 pathway. Our findings provide new insights for evaluating the health hazards of silica exposure and identify HDAC4 as a potential interventional target for silica-induced SSc skin fibrosis.
Collapse
Affiliation(s)
- Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke Chai
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Licong Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Iitani Y, Miki R, Imai K, Fuma K, Ushida T, Tano S, Yoshida K, Yokoi A, Kajiyama H, Kotani T. Interleukin-17A stimulation induces alterations in Microglial microRNA expression profiles. Pediatr Res 2024; 95:167-173. [PMID: 37758861 DOI: 10.1038/s41390-023-02825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Increased maternal interleukin (IL)-17A and activated microglia are pivotal factors contributing to the pathological phenotypes of maternal immune activation (MIA), developing neurodevelopmental disorders in offspring. This study aimed to determine whether IL-17A affects the microglial microRNA (miRNA) profiles. METHODS The miRNA expression profiles of primary cultured microglia stimulated with recombinant IL-17A were examined comprehensively using miRNA sequencing and validated through qRT-PCR. The expressions of miRNAs target genes identified using bioinformatics, were investigated in microglia transfected with mimic miRNA. The target gene's expression was also examined in the fetal brains of the MIA mouse model induced by maternal lipopolysaccharide (LPS) administration. RESULTS Primary cultured microglia expressed the IL-17A receptor and increased proinflammatory cytokines and nitric oxide synthase 2 upon treatment with IL-17A. Among the three miRNAs with |log2FC | >1, only mmu-miR-206-3p expression was significantly up-regulated by IL-17A. Transfection with the mmu-miR-206-3p mimic resulted in a significant decrease in the expression of Hdac4 and Igf1, target genes of mmu-miR-206-3p. Hdac4 expression also significantly decreased in the LPS-induced MIA model. CONCLUSIONS IL-17A affected microglial miRNA profiles with upregulated mmu-miR-206-3p. These findings suggest that targeting the IL-17A/mmu-miR-206-3p pathway may be a new strategy for predicting MIA-related neurodevelopmental deficits and providing preventive interventions. IMPACT Despite the growing evidence of interleukin (IL)-17A and microglia in the pathology of maternal immune activation (MIA), the downstream of IL-17A in microglia is not fully known. IL-17A altered microRNA profiles and upregulated the mmu-miR-206-3p expression in microglia. The mmu-miR-206-3p reduced autism spectrum disorder (ASD) related gene expressions, Hdac4 and Igf1. The Hdac4 expression was also reduced in the brain of MIA offspring. The hsa-miR-206 sequence is consistent with that of mmu-miR-206-3p. This study may provide clues to pathological mechanisms leading to predictions and interventions for ASD children born to mothers with IL-17A-related disorders.
Collapse
Affiliation(s)
- Yukako Iitani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Rika Miki
- Laboratory of Bell Research Center‑Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Kazuya Fuma
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
- Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466‑8560, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466‑8550, Japan.
- Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466‑8560, Japan.
| |
Collapse
|
3
|
Petrocelli JJ, Liu J, Yee EM, Ferrara PJ, Bourrant PE, de Hart NMMP, Tatum SM, Holland WJ, Funai K, Drummond MJ. Skeletal muscle-specific inducible AMPKα1/α2 knockout mice develop muscle weakness, glycogen depletion, and fibrosis that persists during disuse atrophy. Am J Physiol Endocrinol Metab 2024; 326:E50-E60. [PMID: 38019084 PMCID: PMC11193510 DOI: 10.1152/ajpendo.00261.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
The 5' adenosine monophosphate-activated protein kinase (AMPK) is an important skeletal muscle regulator implicated as a possible therapeutic target to ameliorate the local undesired deconditioning of disuse atrophy. However, the muscle-specific role of AMPK in regulating muscle function, fibrosis, and transcriptional reprogramming during physical disuse is unknown. The purpose of this study was to determine how the absence of both catalytic subunits of AMPK in skeletal muscle influences muscle force production, collagen deposition, and the transcriptional landscape. We generated skeletal muscle-specific tamoxifen-inducible AMPKα1/α2 knockout (AMPKα-/-) mice that underwent 14 days of hindlimb unloading (HU) or remained ambulatory for 14 days (AMB). We found that AMPKα-/- during ambulatory conditions altered body weight and myofiber size, decreased muscle function, depleted glycogen stores and TBC1 domain family member 1 (TBC1D1) phosphorylation, increased collagen deposition, and altered transcriptional pathways. Primarily, pathways related to cellular senescence and mitochondrial biogenesis and function were influenced by the absence of AMPKα. The effects of AMPKα-/- persisted, but were not worsened, following hindlimb unloading. Together, we report that AMPKα is necessary to maintain skeletal muscle quality.NEW & NOTEWORTHY We determined that skeletal muscle-specific AMPKα knockout (KO) mice display functional, fibrotic, and transcriptional alterations before and during muscle disuse atrophy. We also observed that AMPKα KO drives muscle fibrosis and pathways related to cellular senescence that continues during the hindlimb unloading period.
Collapse
Affiliation(s)
- Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Jingtong Liu
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Elena M Yee
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Paul-Emile Bourrant
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Naomi M M P de Hart
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William J Holland
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Katsuhiko Funai
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Liu J, Chen Y, Chen H, Wang Y, Li D, Zhang Q, Chai L, Qiu Y, Zhang J, Shen N, Wang Q, Wang J, Li M. Macrophage migration inhibitory factor exacerbates asthmatic airway remodeling via dynamin-related protein 1-mediated autophagy activation. Respir Res 2023; 24:216. [PMID: 37674165 PMCID: PMC10481618 DOI: 10.1186/s12931-023-02526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) and GTPase dynamin-related protein 1 (Drp1)-dependent aberrant mitochondrial fission are closely linked to the pathogenesis of asthma. However, it is unclear whether Drp1-mediated mitochondrial fission and its downstream targets mediate MIF-induced proliferation of airway smooth muscle cells (ASMCs) in vitro and airway remodeling in chronic asthma models. The present study aims to clarify these issues. METHODS In this study, primary cultured ASMCs and ovalbumin (OVA)-induced asthmatic rats were applied. Cell proliferation was detected by CCK-8 and EdU assays. Western blotting was used to detect extracellular signal-regulated kinase (ERK) 1/2, Drp1, autophagy-related markers and E-cadherin protein phosphorylation and expression. Inflammatory cytokines production, airway reactivity test, histological staining and immunohistochemical staining were conducted to evaluate the development of asthma. Transmission electron microscopy was used to observe the mitochondrial ultrastructure. RESULTS In primary cultured ASMCs, MIF increased the phosphorylation level of Drp1 at the Ser616 site through activation of the ERK1/2 signaling pathway, which further activated autophagy and reduced E-cadherin expression, ultimately leading to ASMCs proliferation. In OVA-induced asthmatic rats, MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) treatment, suppression of mitochondrial fission by Mdivi-1 or inhibiting autophagy with chloroquine phosphate (CQ) all attenuated the development of airway remodeling. CONCLUSIONS The present study provides novel insights that MIF promotes airway remodeling in asthma by activating autophagy and degradation of E-cadherin via ERK/Drp1 signaling pathway, suggesting that targeting MIF/ERK/Drp1 might have potential therapeutic value for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Jin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
5
|
Huang B, Liu M, Le G. LINC1810064F22Rik sequesters miR-206-5p away from HDAC4 to exacerbate allergic airway inflammation and airway remodeling in an ovalbumin mouse model of asthma. Int Immunopharmacol 2023; 119:110097. [PMID: 37068338 DOI: 10.1016/j.intimp.2023.110097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Allergic inflammation and airway remodeling frequently occur in asthma. This study clarifies a novel LINC1810064F22Rik-mediated ceRNA mechanism involved in asthma-induced allergic inflammation and airway remodeling based on bioinformatics analysis and in vivo and in vitro experiments. The differentially expressed lncRNAs and downstream effectors were predicted in silico. The targeting relationship among LINC1810064F22Rik, miR-206-5p, and HDAC4 was predicted by bioinformatics analysis, which was further validated by dual luciferase reporter gene assay. The asthma-like airway inflammation was induced in mice using ovalbumin (OVA) sensitization/challenge with immune adjuvant Al(OH)3, while alveolar epithelial cells (AECs) were exposed to IL-33 to mimic in vitro inflammatory environment. LINC1810064F22Rik and HDAC4 were highly expressed, while miR-206-5p was poorly expressed in the tracheal tissues of OVA mice and the IL-33-treated AECs. The OVA mice and IL-33-treated AECs were subjected to gain- or loss-of-function experiments to detect the interaction of LINC1810064F22Rik/miR-206-5p/HDAC4 axis and their effects on allergic inflammation and airway remodeling. LINC1810064F22Rik competitively bound to miR-206-5p, and miR-206-5p targeted and inhibited HDAC4. The in vivo animal experiments indicated that LINC1810064F22Rik promoted asthma-induced allergic inflammation and airway remodeling by sequestering miR-206-5p away from HDAC4. The evidence provided by our study highlighted the involvement of the LINC1810064F22Rik/miR-206-5p/HDAC4 axis in facilitating allergic airway inflammation and airway remodeling in OVA mice.
Collapse
Affiliation(s)
- Bin Huang
- Department of Pediatrics, Pingxiang People's Hospital, Pingxiang 337055, PR China.
| | - Ming Liu
- Department of Pediatrics, Pingxiang People's Hospital, Pingxiang 337055, PR China
| | - Gaozhong Le
- Department of Pediatrics, Pingxiang People's Hospital, Pingxiang 337055, PR China
| |
Collapse
|
6
|
Yin M, Kim J, Choi JI, Bom JS, Bae HB, Jeong S. AMPK reduces macrophage endotoxin tolerance through inhibition of TGF-β1 production and its signaling pathway. Int Immunopharmacol 2023; 118:110146. [PMID: 37037116 DOI: 10.1016/j.intimp.2023.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is involved in suppression of the development of endotoxin tolerance, which is a driver of the immunosuppression induced by sepsis. However, the mechanism by which AMPK inhibits the development of endotoxin tolerance has not been clearly elucidated. Therefore, the present study was performed to investigate the mechanism by which the AMPK activator, metformin, inhibits the development of endotoxin tolerance. Lipopolysaccharide (LPS) increased the production of transforming growth factor (TGF)-β1 in macrophages, which was inhibited by metformin and resveratrol. Knockdown of AMPKα1 inhibited the suppressive effect of metformin on LPS-induced TGF-β1 production. TGF-β neutralizing antibody and TGF-β type I receptor inhibitor increased the production of TNF-α and IL-6 via LPS restimulation in tolerized macrophages. LPS increased Smad2 phosphorylation, but this was inhibited in cells treated with TGF-β neutralizing antibody or metformin. Smad2 knockdown inhibited the development of endotoxin tolerance, as evidenced by increased TNF-α production in response to LPS restimulation in tolerized macrophages. TGF-β1 expression was increased, and the levels of TNF-α and IL-6 production induced by LPS stimulation were decreased, in splenocytes of cecal ligation and puncture (CLP) model mice compared to sham-operated controls. However, metformin treatment suppressed the production of TGF-β1, and enhanced the production of TNF-α and IL-6 induced by LPS stimulation in splenocytes of CLP mice. These results indicated that AMPK activation inhibits LPS-induced TGF-β1 production and its signaling pathway, thus suppressing the development of endotoxin tolerance in macrophages.
Collapse
Affiliation(s)
- Mei Yin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, South Korea
| | - Joungmin Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Jeong-Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Joon-Suk Bom
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hong-Beom Bae
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea.
| | - Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea.
| |
Collapse
|
7
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
8
|
Liu X, Zhao L, Gao Y, Chen Y, Tian Q, Son JS, Chae SA, de Avila JM, Zhu MJ, Du M. AMP-activated protein kinase inhibition in fibro-adipogenic progenitors impairs muscle regeneration and increases fibrosis. J Cachexia Sarcopenia Muscle 2023; 14:479-492. [PMID: 36513394 PMCID: PMC9891933 DOI: 10.1002/jcsm.13150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Following muscle injury, fibro-adipogenic progenitors (FAPs) are rapidly activated and undergo apoptosis at the resolution stage, which is required for proper muscle regeneration. When excessive FAPs remain, it contributes to fibrotic and fatty infiltration, impairing muscle recovery. Mechanisms controlling FAP apoptosis remain poorly defined. We hypothesized that AMP-activated protein kinase (AMPK) in FAPs mediates their apoptosis during the muscle regeneration. METHODS To test, AMPKα1fl/fl PDGFRαCre mice were used to knock out AMPKα1 in FAPs. Following AMPKα1 knockout, the mice were injected with phosphate-buffered saline or glycerol to induce muscle injury. Tibialis anterior muscle and FAPs were collected at 3, 7 and 14 days post-injury (dpi) for further analysis. RESULTS We found that AMPKα1 deletion in FAPs enhanced p65 translocation to the nuclei by 110% (n = 3; P < 0.01). AMPKα1 knockout group had a higher gene expression of MMP-9 (matrix metalloproteinase-9) by 470% (n = 3; P < 0.05) and protein level by 39% (n = 3; P < 0.05). Loss of AMPKα1 up-regulated the active TGF-β1 (transforming growth factor-β1) levels by 21% (n = 3; P < 0.05). TGF-β promoted apoptotic resistance, because AMPKα1-deficient group had 36% lower cleaved Caspase 3 (cCAS3) content (n = 3; P < 0.05). Fibrotic differentiation of FAPs was promoted, with increased collagen protein level by 54% (n = 3; P < 0.05). Moreover, obesity decreased phosphorylation of AMPK by 54% (n = 3; P < 0.05), which decreased cCAS3 in FAPs by 44% (n = 3; P < 0.05) and elevated collagen accumulation (52%; n = 3; P < 0.05) during muscle regeneration. CONCLUSIONS These data suggest that AMPK is a key mediator of FAPs apoptosis, and its inhibition due to obesity results in fibrosis of regenerated muscle.
Collapse
Affiliation(s)
- Xiangdong Liu
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Liang Zhao
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Yao Gao
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Yanting Chen
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Qiyu Tian
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jun Seok Son
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Song Ah Chae
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jeanene Marie de Avila
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Utility of Hypoglycemic Agents to Treat Asthma with Comorbid Obesity. Pulm Ther 2022; 9:71-89. [PMID: 36575356 PMCID: PMC9931991 DOI: 10.1007/s41030-022-00211-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Adults with obesity may develop asthma that is ineffectively controlled by inhaled corticosteroids and long-acting beta-adrenoceptor agonists. Mechanistic and translational studies suggest that metabolic dysregulation that occurs with obesity, particularly hyperglycemia and insulin resistance, contributes to altered immune cell function and low-grade systemic inflammation. Importantly, in these cases, the same proinflammatory cytokines believed to contribute to insulin resistance may also be responsible for airway remodeling and hyperresponsiveness. In the past decade, new research has emerged assessing whether hypoglycemic therapies impact comorbid asthma as reflected by the incidence of asthma, asthma-related emergency department visits, asthma-related hospitalizations, and asthma-related exacerbations. The purpose of this review article is to discuss the mechanism of action, preclinical data, and existing clinical studies regarding the efficacy and safety of hypoglycemic therapies for adults with obesity and comorbid asthma.
Collapse
|
10
|
Figueira-Gonçalves JM, Golpe R. Impact of Oral Antidiabetics Agents in the Prevention of COPD Exacerbations. Arch Bronconeumol 2022:S0300-2896(22)00667-6. [PMID: 36609104 DOI: 10.1016/j.arbres.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Juan Marco Figueira-Gonçalves
- Pneumology and Thoracic Surgery Service, Unit for Patients with Highly Complex COPD, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; University Institute of Tropical Disease and Public Health of the Canary Islands, University of La Laguna, Santa Cruz de Tenerife, Spain.
| | - Rafael Golpe
- Pneumology Service, University Hospital Lucus Augusti, Lugo, Spain
| |
Collapse
|
11
|
CHEN J, WANG Y, ZHANG N, XUE X. Shenqihuatan formula reduces inflammation by inhibiting transforming growth factor-beta-stimulated signaling pathway in airway smooth muscle cells. J TRADIT CHIN MED 2022; 42:520-529. [PMID: 35848968 PMCID: PMC9924674 DOI: 10.19852/j.cnki.jtcm.20220519.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To study the effects and mechanism of Shenqihuatan formula (, SQHT) of the transforming growth factor-beta (TGF-β)-stimulated cell processes in airway remodeling. METHODS The current study examined cell viability using a Cell Counting Kit-8 assay. Furthermore, a Transwell assay was conducted to detect the ability of cell migration, and apoptosis was detected via flowcytometry. Western Blot and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the expression levels of apoptosis or inflammation-related factors, such as TGF-β, Interleukin-1β (IL-1β), B cell lymphoma 2 (Bcl-2), Bcl-2-Associated X (Bax), Ras homolog gene family, member A (RhoA), recombinant rho associated coiled coil containing protein kinase 1/2 (ROCK1/2), extracellular regulated protein kinases 1/2 (ERK1/2), Snail, and Slug. Finally, the expression levels of matrix metalloproteinase-9 (MMP-9) and Tissue inhibitor of metalloproteinase (TIMP-1) were admeasured by enzyme-linked immuno sorbent assay. RESULTS The results demonstrated that SQHT inhibited the viability and migration, as well as the the F-actin formation and cytoskeletal reorganization of airway smooth muscle cells (ASMCs) stimulated by TGF-β. By monitoring the changes of critical regulators in the presence of the formula, it was observed that the expression levels of TGF-β, IL-1β, Bcl-2, RhoA, ROCK1/2, ERK1/2, Snail, and Slug were markedly suppressed, whereas Bax expression exhibited the opposite effect. Compared with a well-characterized RhoA pathway inhibitor, Fasudil, SQHT generated equivalent or even higher inhibitory effects on these processes in ASMCs. CONCLUSIONS Collectively, these suggested that SQHT can reduce airway inflammation by inhibiting TGF-β-stimulated signaling pathways in ASMCs. These findings may provide a novel remedy for treating ASMC inflammation, which causes thickening and obstruction of the airway in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jingjing CHEN
- 1 Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan 030012, China
| | - Yuanyuan WANG
- 2 Anhui University of Traditional Chinese Medicine, Hefei 230038, China
| | - Nianzhi ZHANG
- 3 Department of Respiratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
- Prof. ZHANG Nianzhi, Department of Respiratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China. , Telephone: +86-13505615645
| | - Xiaoming XUE
- 1 Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan 030012, China
| |
Collapse
|
12
|
Jiang T, Zhao D, Zheng Z, Li Z. Sigma-1 Receptor Alleviates Airway Inflammation and Airway Remodeling Through AMPK/CXCR4 Signal Pathway. Inflammation 2022; 45:1298-1312. [PMID: 35029796 DOI: 10.1007/s10753-022-01621-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/23/2022]
Abstract
Sigma non-opioid intracellular receptor 1 (Sigma-1R) has been proven to play a major role in inflammation and structural remodeling. However, its role in airway inflammation and airway remodeling remains unclear. The purpose of this study aimed to explore the role and mechanism of Sigma-1R in airway remodeling and epithelial-mesenchymal transition (EMT) process in vivo and in vitro. We observed the decrease of Sigma-1R in lung tissue of asthma model. In the mouse model of allergic airway inflammation (AAI), Sigma-1R agonist RPE-084 significantly relieved airway inflammation and airway remodeling, while Sigma-1R antagonist BD1047 (B8562) had opposite effects. Further research showed that RPE-084 treatment increased the expression of pAMPK and inhibited the expression of CXCR4. Furthermore, RPE-084 treatment suppressed the levels of IL-4, IL-5, and IL-13 in BALF. We found that RPE-084 or Sigma-1R overexpression vector treatment regulated cell cycle and inhibited cell proliferation, migration, and EMT process in TGF-β1-induced 16HBE cells. Finally, we confirmed that AMP-activated protein kinase (AMPK) inhibitor compound C or CXCR4 agonist ATI-2341 both reversed the effects of Sigma-1R on TGF-β1-induced 16 HBE cells. In a word, our research shows that Sigma-1R is helpful to improve airway remodeling of asthma, and emphasizes a new candidate molecular for asthma treatment.
Collapse
Affiliation(s)
- Te Jiang
- Department of Pediatrics, Qujiang New District, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Xi'anShaanxi Province, 710061, China
| | - Di Zhao
- Department of Pediatrics, Qujiang New District, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Xi'anShaanxi Province, 710061, China
| | - Zhiyuan Zheng
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Zhankui Li
- Department of Pediatrics, Qujiang New District, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Xi'anShaanxi Province, 710061, China.
| |
Collapse
|
13
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Zhao P, Xia W, Wei J, Feng Y, Xie M, Niu Z, Liu H, Ke S, Liu H, Tang A, He G. An Investigation of the Mechanisms of Radiation-Induced Muscle Injury in a Tree Shrew ( Tupaia belangeri) Model. Dose Response 2022; 20:15593258221082878. [PMID: 35360454 PMCID: PMC8961377 DOI: 10.1177/15593258221082878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Animal models suitable for investigating mechanisms behind radiation-induced
muscle injury are lacking. We developed a tree shrew model of such injury
and investigated pathological changes and mechanisms. Methods Animals were divided into control (n = 5), radiation-induced acute injury (n
= 5), and radiation-induced chronic injury (n = 5) groups. Tensor veli
palatini (TVP) muscles of acute injury and chronic injury groups were
dissected under a microscope at 1 and 24 weeks after radiation therapy,
respectively. TVP muscles were stained with HE and Masson to visualize
pathological changes. ELISA was performed to measure oxidative injury.
RT-qPCR and immunohistochemical staining was performed to measure expression
levels of miR-206 and histone deacetylase 4 (HDAC4). Results Compared to the control group, acute injury group showed a significant
decrease in miR-206 expression (.061 ± .38, P < .05) and a significant
increase in HDAC4 expression (37.05 ± 20.68, P < .05). Chronic injury
group showed a significant decrease in miR-206 expression (.23 ± .19, P <
.05) and a significant increase in HDAC4 expression (9.66 ± 6.12, P
< .05). Discussion A tree shrew model of radiation-induced muscle injury was established by
exposing TVP muscle region to radiation of 20-Gy. Experimental results
indicated that injury caused by radiation persisted despite gradual healing
of the TVP muscle and miR-206 regulatory pathway plays a key role in
regulating radiation-induced muscle injury.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Wei Xia
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Jianglian Wei
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Yiwei Feng
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Mao Xie
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Zhijie Niu
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Heng Liu
- School of Information and Management, Guangxi Medical University, Nanning, China
| | - Shenghui Ke
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Huayu Liu
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Anzhou Tang
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Guangyao He
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
15
|
Yang R, Wang D, Han S, Gu Y, Li Z, Deng L, Yin A, Gao Y, Li X, Yu Y, Wang X. MiR-206 suppresses the deterioration of intrahepatic cholangiocarcinoma and promotes sensitivity to chemotherapy by inhibiting interactions with stromal CAFs. Int J Biol Sci 2022; 18:43-64. [PMID: 34975317 PMCID: PMC8692143 DOI: 10.7150/ijbs.62602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant subtype of cholangiocarcinoma (CCA) with poor prognosis. In iCCA, the interplay between the stroma and tumor cells results in resistance to adjuvant chemotherapy. Increasing evidence indicates that miR-206 participates in tumor progression, but its role in iCCA is still unclear. The aim of this study was to identify dysregulated miR-206 expression in iCCA and to further explore the underlying mechanism. Methods: MiR-206 expression was proven to be downregulated in iCCA tissues by qPCR, and its correlation with clinical characteristics and prognosis was investigated. iCCA-derived cancer-associated fibroblast cells (CAFs) and normal fibroblast cells (NFs) were isolated and identified. MiR-206 was knocked in or down in CAFs and CCA cells, respectively, to explore the role of miR-206, and coculture of these treated CCAs and CAFs was conducted to explore the effects of miR-206 on their mutual promoting effects. Exosomes carrying miR-206 and an orthotopic mouse model were used to determine the inhibitory effects of miR-206 on iCCA deterioration in vivo. Results: We confirmed that miR-206 is a suppressor of iCCA. Overexpressing miR-206 in CCA cells inhibited cell proliferation, migration and invasion. When cocultured with CCA cells, NFs downregulated miR-206 expression, and NFs were susceptible to transforming into CAFs. Moreover, CAFs promoted CCA cell malignant behaviors and gemcitabine resistance. Overexpressing miR-206 in CAFs or CCA cells inhibited this mutual promoting effect. Additionally, when delivered by exosomes, miR-206 suppressed tumor deterioration. And combined with gemcitabine, this treatment resulted in a longer survival time. Conclusion: Our study explained that the interaction between CCA cells and CAFs promoted iCCA deterioration. As a suppressive factor, miR-206 inhibited aggressive characteristics and gemcitabine resistance by interfering with this mutual promoting effect. This research elucidated the molecular mechanism underlying the unfavorable chemotherapeutic response of patients with iCCA, which provided a promising target for iCCA treatment.
Collapse
Affiliation(s)
- Renjie Yang
- School of Medicine, Southeast University, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Dong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Shen Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yichao Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Zhi Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Lei Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Aihong Yin
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- School of Medicine, Southeast University, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| |
Collapse
|
16
|
Li PF, Chung CH, Liu JS, Lu CH, Su SC, Kuo FC, Ho LJ, Chen KC, Su YT, Chu NF, Lee CH, Hsieh CH, Hung YJ, Lin FH, Chien WC, Liang YJ. Association of dipeptidyl peptidase-4 inhibitor use and the risk of asthma development among type 2 diabetes patients. Ther Adv Respir Dis 2022; 16:17534666221135320. [DOI: 10.1177/17534666221135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Numerous studies have shown that dipeptidyl peptidase-4 inhibitors (DPP-4i) may regulate immunological pathways implicated in asthma. The association between DPP-4i use and risk of asthma development is limited, however. Aim: We aimed to evaluate if DPP-4i treatment in individuals with type 2 diabetes mellitus (T2DM) is associated with a lower risk and severity of asthma. Methods: We performed a population-based retrospective cohort study using the Longitudinal National Health Insurance Research database between 2008 and 2015. After one-to-four propensity score matching from 1,914,201 patients with defined criteria, we enrolled 3001 patients who were on DPP-4i (DPP-4i group) for a diagnosis of T2DM but without a diagnosis of asthma for further analysis. Cox proportional hazards regression analysis was performed to estimate and compare the risk of developing and severity of asthma, including no acute exacerbations event (No-AE), acute exacerbations (AEs), status asthmaticus (Status), and required endotracheal intubation (ET-tube intubated), between the two groups. Results: The participants had a mean age of 66.05 ± 17.23 years and the mean follow-up time was 4.96 ± 4.39 years. The risk of asthma development was significantly lower in the DPP-4i group than in the non-DPP-4i group [adjusted hazard ratio (HR) = 0.65; 95% confidence interval (CI) = 0.29–0.83; p < 0.001], with a class effect. This trend was observed for severity of asthma as No-AE (HR = 0.55; 95% CI = 0.24–0.70; p < 0.001), AE (HR = 0.57; 95% CI = 0.26–0.73; p < 0.001), and Status (HR = 0.78; 95% CI = 0.35–0.99; p = 0.047), but not in ET-tube intubated cases (HR = 0.96; 95% CI = 0.43–1.22; p = 0.258). Conclusion: The use of DPP-4i decreased the risk and severity of asthma with a class effect among No-AE, AE, status of asthma events, but not in ET-tube intubated events. Our report suggests that DPP-4i may play a role in attenuating the impact of asthma on incidence in the future and on more severe forms of disease exacerbation in T2DM patients.
Collapse
Affiliation(s)
- Peng-Fei Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Li-Ju Ho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Kuan-Chan Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Yu-Te Su
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Nain-Feng Chu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical School, Taipei
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center 114, Taipei
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering and Institute of Life Science, Fu Jen Catholic University, Number 510, Zhong-Zheng Road, Xin-Zhuang, New Taipei 242
| |
Collapse
|
17
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
18
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021; 22:ijms22168971. [PMID: 34445677 PMCID: PMC8396527 DOI: 10.3390/ijms22168971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin increases insulin sensitivity and has cardio and vascular protection actions. Studies related to adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this molecule in asthma. Studies based on various asthma animal models and on the key cells involved in the allergic response have provided important insights about this relation. Some of them indicated protection and others reversed the balance towards negative effects. Many of them described the cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still need to be provided. In this article, we will, briefly, present the general actions of adiponectin and the epidemiological studies supporting the relation with asthma. The main focus of the current review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From this perspective, we will provide arguments for and against the positive influence of this molecule in asthma, also indicating the controversies and sketching out the potential directions of research to complete the picture.
Collapse
|
20
|
Wu TD, Fawzy A, Akenroye A, Keet C, Hansel NN, McCormack MC. Metformin Use and Risk of Asthma Exacerbation Among Asthma Patients with Glycemic Dysfunction. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:4014-4020.e4. [PMID: 34293503 DOI: 10.1016/j.jaip.2021.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Diabetes is associated with worse asthma morbidity. Metformin, which treats diabetes, may have a role among patients with asthma and glycemic dysfunction. OBJECTIVE To determine the association between metformin use and asthma exacerbations among patients with diabetes. METHODS We queried the Johns Hopkins electronic health record from April 1, 2013, to May 31, 2018. Adults with asthma and diabetes were followed from first hemoglobin A1c (HbA1c) test to an asthma-related systemic corticosteroid prescription, emergency department (ED) visit, or hospitalization. Multivariable Cox models estimated time to each outcome associated with metformin use, modeled as either time-invariant (status at HbA1c testing) or time-dependent (based on fill data). Mediation of results by HbA1c was assessed. Sensitivity analysis was performed by propensity score matching. RESULTS The cohort comprised 1749 adults with asthma and diabetes. Metformin use at entry was associated with a lower hazard of asthma-related ED visits (adjusted hazard ratio [aHR], 0.40; 95% CI, 0.22-0.75) but not steroid prescription (aHR, 0.89; 95% CI, 0.70-1.13) or hospitalization (aHR, 0.38; 95% CI, 0.13-1.12). HbA1c did not mediate the association with ED visits. With metformin exposure modeled as time-dependent, metformin use was additionally associated with lower hazard of asthma-related hospitalization (aHR, 0.30; 95% CI, 0.09-0.93). Results were consistent within a subcohort of 698 metformin users matched 1:1 to nonusers by propensity score. CONCLUSIONS Metformin use, independent of glycemic control and obesity, was associated with lower hazard of asthma-related ED visits and hospitalizations. Metformin may have benefit in patients with asthma and glycemic dysfunction.
Collapse
Affiliation(s)
- Tianshi David Wu
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, Texas; Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ayobami Akenroye
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Corinne Keet
- Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
21
|
Wei W, Chen W, He N. HDAC4 induces the development of asthma by increasing Slug-upregulated CXCL12 expression through KLF5 deacetylation. J Transl Med 2021; 19:258. [PMID: 34118928 PMCID: PMC8199843 DOI: 10.1186/s12967-021-02812-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Asthma is a frequently occurring respiratory disease with an increasing incidence around the world. Airway inflammation and remodeling are important contributors to the occurrence of asthma. We conducted this study aiming at exploring the effect of Histone deacetylase 4 (HDAC4)-mediated Kruppel-like factor 5 (KLF5)/Slug/CXC chemokine ligand-12 (CXCL12) axis on the development of asthma in regulation of airway inflammation and remodeling. Methods An asthmatic rat model was induced by ovalbumin (OVA) irrigation, and determined HDAC4, KLF5, Slug, and CXCL12 expression in the lung tissues by RT-qPCR and Western blot assay. OVA was also used to induce a cell model of asthma in human BEAS-2B and HBE135-E6E7bronchial epithelial cells. The airway hyperresponsiveness (AHR), and expression of inflammatory cytokines in model mice were examined using methacholine challenge test and ELISA. The biological behaviors were measured in asthma model bronchial smooth muscle cells (BSMCs) following loss- and gain- function approaches. The interactions between HDAC4, KLF5, Slug, and CXCL12 were also detected by IP assay, dual luciferase gene reporter assay, and ChIP. Results HDAC4 was upregulated in lung tissues of OVA-induced asthmatic mice, and inhibition of HDAC4 alleviated the airway inflammation and remodeling. HDAC4 increased KLF5 transcriptional activity through deacetylation; deacetylated KLF5 bound to the promoter of Slug and transcriptionally upregulated Slug expression, which in turn increased the expression of CXCL12 to promote the inflammation in bronchial epithelial cells and thus induce the proliferation and migration of BSMCs. Conclusion Collectively, HDAC4 deacetylates KLF5 to upregulate Slug and CXCL12, thereby causing airway remodeling and facilitating progression of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02812-7.
Collapse
Affiliation(s)
- Wendi Wei
- Department of Hepatology, Taian Hospital of Traditional Chinese Medicine, Taian, 271000, People's Republic of China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China
| | - Naifeng He
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Alsharairi NA. Scutellaria baicalensis and Their Natural Flavone Compounds as Potential Medicinal Drugs for the Treatment of Nicotine-Induced Non-Small-Cell Lung Cancer and Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5243. [PMID: 34069141 PMCID: PMC8155851 DOI: 10.3390/ijerph18105243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Flavonoids as the largest group of natural phytochemical compounds have received significant attention, as demonstrated by clinical trials, due to their chemotherapeutic and/or pharmacological effects against non-small-cell lung cancer (NSCLC) and asthma. Scutellaria baicalensis (S. baicalensis), known as one of the most popular medicinal plants and used in several countries, contains natural active flavone constituents, with the major compounds of the roots being baicalein, baicalin, wogonin, wogonoside and oroxylin A. S. baicalensis and their compounds are proven to have inhibitory effects on NSCLC cells when used at different concentrations. However, the exact mechanisms by which these compounds exert their therapeutic effects against asthma remain unexplored. Indeed, the mechanisms by which S. baicalensis and its flavone compounds exert a protective effect against nicotine-induced NSCLC and asthma are not yet fully understood. Therefore, this review explores the mechanisms involved in the therapeutic potential of flavone-rich extracts from S. baicalensis in nicotine-induced NSCLC and asthma.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
23
|
van de Wetering C, Elko E, Berg M, Schiffers CHJ, Stylianidis V, van den Berge M, Nawijn MC, Wouters EFM, Janssen-Heininger YMW, Reynaert NL. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol 2021; 43:101995. [PMID: 33979767 PMCID: PMC8131726 DOI: 10.1016/j.redox.2021.101995] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.
Collapse
Affiliation(s)
- Cheryl van de Wetering
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Marijn Berg
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Caspar H J Schiffers
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vasili Stylianidis
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maarten van den Berge
- Pulmonology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Martijn C Nawijn
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
24
|
GAS5 regulates viability and apoptosis in TGF-β1-stimulated bronchial epithelial cells by regulating miR-217/HDAC4 axis. Genes Genomics 2021; 43:837-846. [PMID: 33864612 DOI: 10.1007/s13258-021-01092-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Asthma is a serious respiratory disease that affects the physical and mental health of children. Airway epithelial apoptosis concomitantly mediated by transforming growth factor-β1 (TGF-β1) is a crucial component of asthma pathogenesis. LncRNA growth Arrest Specific 5 (GAS5), microRNA-217 (miR-217) and Histone deacetylase 4 (HDAC4) shown a close relationship with TGF-β1-induced injury of airway epithelial. However, the mechanism underlying TGF-β1-induced injury of airway epithelial in asthma still needs to be investigated. OBJECTIVE We aimed to investigate the effect and underlying mechanism of GAS5/miR-217/HDAC4 axis in TGF-β1-stimulated bronchial epithelial cells. METHODS The levels of were detected by quantitative real-time polymerase chain reaction (RT-qPCR). All protein levels were determined by western blot. Cell viability and apoptosis rate were assessed by Methyl thiazolyl tetrazolium (MTT) and Flow cytometry, respectively. The targeting relationship between miR-217 and GAS5 or HDAC4 was examined with dual-luciferase reporter assay. RESULTS TGF-β1, GAS5, HDAC4 were up-regulated, while miR-217 was down-regulated in bronchial mucosal tissues of asthmatic children and TGF-β1-treated BEAS-2B cells. TGF-β1 could reduce cell viability and induce apoptosis, while these effects could be reversed by downregulation of GAS5 or HDAC4. Mechanically, GAS5 acted as a sponge for miR-217 to regulate the expression of HDAC4. Furthermore, overexpression of HDAC4 rescued the effects of GAS5 knockdown on viability and apoptosis of TGF-β1-induced BEAS-2B cells. GAS5 knockdown induced cell viability and hampered cell apoptosis in TGF-β1-stimulated BEAS-2B cells by regulating the miR-217/HDAC4 axis. CONCLUSIONS The lncRNA GAS5/miR-217/HDAC4 axis played an important role in regulating TGF-β1-induced bronchial epithelial cells injury, thus contributing to asthma.
Collapse
|
25
|
You YN, Xing QQ, Zhao X, Ji JJ, Yan H, Zhou T, Dong YM, Ren LS, Hou ST, Ding YY. Gu-Ben-Fang-Xiao decoction modulates lipid metabolism by activating the AMPK pathway in asthma remission. Biomed Pharmacother 2021; 138:111403. [PMID: 33714782 DOI: 10.1016/j.biopha.2021.111403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gu-Ben-Fang-Xiao decoction (GBFXD), derived from the traditional Chinese medicine Yu-Ping-Feng-San, is widely used in clinical settings and has obvious curative effects in respiratory diseases. GBFXD regulates cholesterol transport and lipid metabolism in chronic persistent asthma. There is evidence for its beneficial effects in the remission stage of asthma; however, its metabolic regulatory effects and underlying mechanisms during asthma remission are unclear. In the present study, we used liquid chromatography-mass spectrometry (LC-MS) to analyse the metabolic profile of mouse serum during asthma remission. The acquired LC-MS data were subjected to a multivariate analysis for identification of significantly altered metabolites. In total, 42 metabolites were significantly differentially expressed among the control, model, and GBFXD groups. In particular, levels of fatty acids, acylcarnitines, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, triglycerides, and diacylglycerols were altered during asthma remission. GBFXD may maintain lipid homeostasis on the lung surface by modulating lipid metabolism and may thereby alleviate asthma. We further quantified hypogeic acid (FA 16:1) based on targeted metabolomics and found that GBFXD may regulate fatty acid metabolism by activating the AMP-activated protein kinase (AMPK) pathway. These results support the use of GBFXD in patients with asthma remission.
Collapse
Affiliation(s)
- Yan-Nan You
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiong-Qiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian-Jian Ji
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying-Mei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Shun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Ting Hou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan-Yuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
26
|
Wu TD, Fawzy A, Kinney GL, Bon J, Neupane M, Tejwani V, Hansel NN, Wise RA, Putcha N, McCormack MC. Metformin use and respiratory outcomes in asthma-COPD overlap. Respir Res 2021; 22:70. [PMID: 33637087 PMCID: PMC7908718 DOI: 10.1186/s12931-021-01658-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 01/09/2023] Open
Abstract
Background Metformin is associated with improved respiratory outcomes in asthma; however, metformin in COPD and asthma-COPD overlap (ACO) remains unexplored. Objective To determine the association between metformin use and respiratory outcomes in COPD and ACO. Study design and methods Participants with COPD (FEV1/FVC < 0.70) in the Genetic Epidemiology of COPD study (COPDGene®) were categorized as ACO (n = 510), defined as concurrent physician-diagnosed asthma before age 40 years, or COPD alone (n = 3459). We estimated the association of baseline metformin use with (1) rate of total and severe respiratory exacerbations during follow-up, (2) cross-sectional St. George’s Respiratory Questionnaire (SGRQ) score, six-minute walk distance (6MWD), and post-bronchodilator FEV1 percent predicted (FEV1pp), and (3) 5-year change in SGRQ, 6MWD, and FEV1pp. We also examined change in SGRQ, 6MWD and FEV1pp among participants who initiated metformin during follow-up (n = 108) compared to persistent metformin non-users (n = 2080). Analyses were adjusted for sociodemographic factors, medications, and comorbidities. Results Among participants with ACO, metformin use was associated with lower rate of total (adjusted incidence rate ratio [aIRR] 0.3; 95% confidence interval [95%CI] 0.11, 0.77) and severe exacerbations (aIRR 0.29; 95%CI 0.10, 0.89). Among participants with COPD alone, there was no association between metformin use with total (aIRR 0.98; 95%CI 0.62, 1.5) or severe exacerbations (aIRR 1.3; 95% CI 0.68, 2.4) (p-interaction < 0.05). Metformin use was associated with lower baseline SGRQ score (adjusted mean difference [aMD] − 2.7; 95%CI − 5.3, − 0.2) overall. Metformin initiation was associated with improved SGRQ score (aMD –10.0; 95% CI − 18.7, − 1.2) among participants with ACO but not COPD alone (p-interaction < 0.05). There was no association between metformin use and 6MWD or FEV1pp in any comparison. Conclusions Metformin use was associated with fewer respiratory exacerbations and improved quality of life among individuals with ACO but not COPD alone. Results suggest a potential role for metformin in ACO which requires further prospective study. Trial Registry: NCT00608764
Collapse
Affiliation(s)
- Tianshi David Wu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA.,Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD, 21205, USA
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD, 21205, USA
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Jessica Bon
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Maniraj Neupane
- Department of Critical Care Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Vickram Tejwani
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD, 21205, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD, 21205, USA
| | - Robert A Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD, 21205, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD, 21205, USA
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St. 5th Floor, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Woo J, Koziol-White C, Panettieri R, Jude J. TGF-β: The missing link in obesity-associated airway diseases? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100016. [PMID: 34909651 PMCID: PMC8663968 DOI: 10.1016/j.crphar.2021.100016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Obesity is emerging as a global public health epidemic. The co-morbidities associated with obesity significantly contribute to reduced quality of life, mortality, and global healthcare burden. Compared to other asthma comorbidities, obesity prominently engenders susceptibility to inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), contributes to greater disease severity and evokes insensitivity to current therapies. Unlike in other metabolic diseases associated with obesity, the mechanistic link between obesity and airway diseases is only poorly defined. Transforming growth factor-β (TGF-β) is a pleiotropic inflammatory cytokine belonging to a family of growth factors with pivotal roles in asthma. In this review, we summarize the role of TGF-β in major obesity-associated co-morbidities to shed light on mechanisms of the diseases. Literature evidence shows that TGF-β mechanistically links many co-morbidities with obesity through its profibrotic, remodeling, and proinflammatory functions. We posit that TGF-β plays a similar mechanistic role in obesity-associated inflammatory airway diseases such as asthma and COPD. Concerning the role of TGF-β on metabolic effects of obesity, we posit that TGF-β has a similar mechanistic role in obesity-associated inflammatory airway diseases in interplay with different comorbidities such as hypertension, metabolic diseases like type 2 diabetes, and cardiomyopathies. Future studies in TGF-β-dependent mechanisms in obesity-associated inflammatory airway diseases will advance our understanding of obesity-induced asthma and help find novel therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Joanna Woo
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Corresponding author. Rutgers Institute for Translational Medicine & Science, Rm# 4276, 89 French Street, New Brunswick, NJ08901, United States.
| |
Collapse
|
28
|
Chen X, Jiang Y, Li W, Li X, Lin Y, Liu X, Jiang Z, Xiao Z. Six-ingredient-Xiao-qing-long decoction inhibited TGF- β1-induced proliferation and migration of human airway smooth muscle cells by regulating FKBP51/AKT signaling. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1875055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Xiufeng Chen
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yonghong Jiang
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wen Li
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao Li
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan Lin
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiuxiu Liu
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhiyan Jiang
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhen Xiao
- Department of Pediatrics, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
29
|
Liu T, Sun Y, Bai W. The Role of Epigenetics in the Chronic Sinusitis with Nasal Polyp. Curr Allergy Asthma Rep 2020; 21:1. [PMID: 33236242 DOI: 10.1007/s11882-020-00976-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and heterogeneous inflammatory disease. The underlying epigenetic mechanisms and treatment of CRSwNP are partially understood. Of the different epigenetic changes in CRSwNP, histone deacetylases (HDACs), methylation of DNA, and the levels of miRNA are widely studied. Here, we review the human studies of epigenetic mechanisms in CRSwNP. RECENT FINDINGS The promoters of COL18A1, PTGES, PLAT, and TSLP genes are hypermethylated in CRSwNP compared with those of controls, while the promoters of PGDS, ALOX5AP, LTB4R, IL-8, and FZD5 genes are hypomethylated in CRSwNP. Promoter hypermethylation suppresses the gene expression, while promoter hypomethylation increases the gene expression. Studies have shown the elevation in the levels of HDAC2, HDAC4, and H3K4me3 in CRSwNP. In CRSwNP patients, there is also an upregulation of certain miRNAs including miR-125b, miR-155, miR-19a, miR-142-3p, and miR-21 and downregulation of miR-4492. Epigenetics takes part in the immunology of CRSwNP and may give rise to endotypes of CRSwNP. Both HDAC2 and the miRNA including miR-18a, miR-124a, and miR-142-3p may take function in the regulation of glucocorticoid resistance. HDAC inhibitors and KDM2B have shown effectiveness in decreasing nasal polyp, and DNA methyltransferase (DNMT) or HDAC inhibitors may have a potential efficacy for the treatment of CRSwNP. Recent advances in the epigenetics of CRSwNP have led to the identification of several potential therapeutic targets for this disease. The use of epigenetics may provide novel and effective biomarkers and therapies for the treatment of nasal polyp.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Sun
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
30
|
Pan Y, Liu L, Zhang Q, Shi W, Feng W, Wang J, Wang Q, Li S, Li M. Activation of AMPK suppresses S1P-induced airway smooth muscle cells proliferation and its potential mechanisms. Mol Immunol 2020; 128:106-115. [PMID: 33126079 DOI: 10.1016/j.molimm.2020.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/13/2023]
Abstract
The aims of the present study were to investigate the signaling mechanisms for sphingosine-1-phosphate (S1P)-induced airway smooth muscle cells (ASMCs) proliferation and to explore the effect of activation of adenosine monophosphate-activated protein kinase (AMPK) on S1P-induced ASMCs proliferation and its underlying mechanisms. S1P phosphorylated signal transducer and activator of transcription 3 (STAT3) through binding to S1PR2/3, and this further sequentially up-regulated polo-like kinase 1 (PLK1) and inhibitor of differentiation 2 (ID2) protein expression. Pretreatment of cells with S1PR2 antagonist JTE-013, S1PR3 antagonist CAY-10444, knockdown of STAT3, PLK1 and ID2 attenuated S1P-triggered ASMCs proliferation. In addition, activation of AMPK by metformin inhibited S1P-induced ASMCs proliferation by suppressing STAT3 phosphorylation and therefore suppression of PLK1 and ID2 protein expression. Our study suggests that S1P promotes ASMCs proliferation by stimulating S1PR2/3/STAT3/PLK1/ID2 axis, and activation of AMPK suppresses ASMCs proliferation by targeting on STAT3 signaling pathway. Activation of AMPK might benefit asthma by inhibiting airway remodeling.
Collapse
Affiliation(s)
- Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Ginsenoside Re Preserves Cardiac Function and Ameliorates Left Ventricular Remodeling in a Rat Model of Myocardial Infarction. J Cardiovasc Pharmacol 2020; 75:91-97. [PMID: 31599782 DOI: 10.1097/fjc.0000000000000752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ginsenoside Re, an herbal ingredient from ginseng, has been demonstrated to protect the heart from various cardiovascular diseases. In this study, we investigated the protective effects and mechanisms of ginsenoside Re (Gin-Re) on cardiac function and left ventricular remodeling in a rat model of myocardial infarction (MI). After ligating the left anterior descending coronary artery, Wistar rats were treated with Gin-Re (135 mg/kg) by gavage everyday for 4 weeks. Serological detection showed that Gin-Re significantly inhibited myocardial injury and attenuated oxidative stress in MI rats. Echocardiographic observation showed that Gin-Re significantly improved cardiac function and prevented left ventricular dilatation induced by MI. Pathological observation found that Gin-Re significantly decreased interstitial fibrosis in the left ventricle of MI rats. Compared with the MI group, Gin-Re treatment promoted AMPKα phosphorylation, decreased TGF-β1 expression, and attenuated Smad2/3 activation. After Gin-Re treatment, the phosphorylation of FAK, PI3K p110α, and Akt was enhanced in MI rats, while PI3K p110β showed no difference compared with the MI group. These results indicate that Gin-Re may improve MI-induced cardiac dysfunction and mitigate ventricular remodeling through regulation of the AMPK/TGF-β1/Smad2/3 and FAK/PI3K p110α/Akt signaling pathways.
Collapse
|
32
|
Zhu FF, Wang YM, He GZ, Chen YF, Gao YD. Different effects of acetyl-CoA carboxylase inhibitor TOFA on airway inflammation and airway resistance in a mice model of asthma. Pharmacol Rep 2020; 72:1011-1020. [PMID: 32048254 PMCID: PMC7223088 DOI: 10.1007/s43440-019-00027-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/14/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Background and objective Acetyl CoA carboxylase (ACC) regulates the differentiation of Th1, Th2, Th17 cells and Treg cells, which play a critical role in airway inflammation of asthma. Here we investigated the role of ACC in the pathogenesis of asthma. Methods Chicken Ovalbumin-sensitized and -challenged mice were divided into three groups, PBS group, DMSO (solvent of TOFA) group and ACC inhibitor 5-tetradecyloxy-2-furoic acid (TOFA) + DMSO group. Airway inflammation was assessed with histology, percentages of CD4+T cell subsets in lung and spleen was assessed with flow cytometry, and airway responsiveness was assessed with FinePointe RC system. The expression of characteristic transcription factors of CD4+T cell subsets was evaluated with real-time PCR. Cytokine levels in bronchoalveolar lavage fluid (BALF) and serum was determined with ELISA. Results In asthma mice, the expression of ACC increased, while the expression of phosphorylated ACC (pACC) decreased. TOFA had no significant effect on pACC expression. TOFA reduced serum IgE, airway inflammatory cells infiltration and goblet cell hyperplasia, but dramatically increased airway responsiveness. TOFA significantly reduced the percentages of Th1, Th2, Th17 cells in lung and spleen, the expression of GATA3 and RORγt in lung, and IFN-γ, IL-4, IL-17A levels in BALF and serum. TOFA had no significant effect on the percentage of Treg cells, IL-10 level and the expression of T-bet and Foxp3. Conclusion Acetyl-CoA carboxylase inhibitor TOFA might have a distinct effect on asthmatic airway inflammation and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Fang-Fang Zhu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi-Min Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China
| | - Guang-Zhen He
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China
| | - Yi-Fei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
33
|
Mi L, Zhou Y, Wu D, Tao Q, Wang X, Zhu H, Gao X, Wang J, Ling R, Deng J, Mao C, Chen D. ACSS2/AMPK/PCNA pathway‑driven proliferation and chemoresistance of esophageal squamous carcinoma cells under nutrient stress. Mol Med Rep 2019; 20:5286-5296. [PMID: 31638228 DOI: 10.3892/mmr.2019.10735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022] Open
Abstract
Although platinum‑based chemotherapy is the first‑line choice for locally advanced or metastatic esophageal squamous cell carcinoma (ESCC) patients, accelerated recurrence and chemoresistance remain inevitable. New evidence suggests that metabolism reprogramming under stress involves independent processes that are executed with a variety of proteins. This study investigated the functions of nutrient stress (NS)‑mediated acetyl‑CoA synthetase short‑chain family member 2 (ACSS2) in cell proliferation and cisplatin‑resistance and examined its combined effects with proliferating cell nuclear antigen (PCNA), a key regulator of DNA replication and repair. Here, it was demonstrated that under NS, when the AMP‑activated protein kinase (AMPK) pathway was activated, ESCC cells maintained proliferation and chemoresistance was distinctly upregulated as determined by CCK‑8 assay. As determined using immunoblotting and RT‑qPCR, compared with normal esophageal epithelial cells (Het‑1A), ESCC cells were less sensitive to NS and showed increased intracellular levels of ACSS2. Moreover, it was shown that ACSS2 inhibition by siRNA not only greatly interfered with proliferation under NS but also participated in DNA repair after cisplatin treatment via PCNA suppression, and the acceleration of cell death was dependent on the activation of the AMPK pathway as revealed by the Annexin V/PI and TUNEL assay results. Our study identified crosstalk between nutrient supply and chemoresistance that could be exploited therapeutically to target AMPK signaling, and the results suggest ACSS2 as a potential biomarker for identifying higher‑risk patients.
Collapse
Affiliation(s)
- Lei Mi
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dan Wu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qing Tao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xuefeng Wang
- Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jing Deng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
34
|
Shaik FA, Chelikani P. Differential effects of membrane sphingomyelin and cholesterol on agonist-induced bitter taste receptor T2R14 signaling. Mol Cell Biochem 2019; 463:57-66. [DOI: 10.1007/s11010-019-03628-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
|
35
|
Li T, Yu SS, Zhou CY, Wang K, Wan YC. MicroRNA-206 inhibition and activation of the AMPK/Nampt signalling pathway enhance sevoflurane post-conditioning-induced amelioration of myocardial ischaemia/reperfusion injury. J Drug Target 2019; 28:80-91. [PMID: 31092059 DOI: 10.1080/1061186x.2019.1616744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Shan-Shan Yu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chang-Yu Zhou
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ying-Chun Wan
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
36
|
Wei YY, Xuan XC, Zhang XY, Guo TT, Dong DL. Niclosamide ethanolamine induces trachea relaxation and inhibits proliferation and migration of trachea smooth muscle cells. Eur J Pharmacol 2019; 853:229-235. [PMID: 30935895 DOI: 10.1016/j.ejphar.2019.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023]
Abstract
Our previous study found that the anthelmintic drug niclosamide relaxed the constricted arteries and inhibited proliferation and migration of vascular smooth muscle cells. Here, we investigated the effect of niclosamide ethanolamine (NEN) on trachea function and the proliferation and migration of trachea smooth muscle cells. Isometric tension of trachea was recorded by multi-channel myograph system. The cell proliferation was detected by using BrdU cell proliferation assay. The cell migration ability was evaluated by using scratch assay. The protein level was measured by using western blot technique. Acute treatment with NEN dose-dependently relaxed acetylcholine chloride (Ach)- and High K+ physiological salt solution (KPSS)-induced constriction of mice trachea. Pre-treatment with NEN inhibited Ach- and KPSS-induced constriction of mice trachea. NEN treatment inhibited proliferation of human bronchial smooth muscle cells (HBSMCs), inhibited migration of HBSMCs and rat primary trachea smooth muscle cells. NEN treatment activated adenosine monophosphate activated protein kinase (AMPK) activity and inhibited signal transducer and activator of transcription 3 (STAT3) activity in HBSMCs. In conclusion, niclosamide ethanolamine induces trachea relaxation and inhibits proliferation and migration of trachea smooth muscle cells, indicating that niclosamide might be a potential drug for chronic asthma treatment.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xiu-Chen Xuan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xi-Yue Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Ting-Ting Guo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China.
| |
Collapse
|
37
|
Wang J, Feng W, Li F, Shi W, Zhai C, Li S, Zhu Y, Yan X, Wang Q, Liu L, Xie X, Li M. SphK1/S1P mediates TGF-β1-induced proliferation of pulmonary artery smooth muscle cells and its potential mechanisms. Pulm Circ 2018; 9:2045894018816977. [PMID: 30430898 PMCID: PMC6295694 DOI: 10.1177/2045894018816977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The upregulation of Sphingosine kinase 1 (SphK1) expression and accompanied sphingosine-1-phosphate (S1P) production have been reported to contribute to the proliferation of pulmonary artery smooth muscle cells (PASMC) and pulmonary arterial remodeling. However, the molecular mechanisms of SphK1/S1P upregulation in PASMC and the specific mechanisms of how SphK1/S1P pathway promotes PASMC proliferation remain largely unclear. This study aims to address these issues. Here, we demonstrated that TGF-β1 significantly upregulated SphK1 expression and S1P production by promoting the phosphorylation of Smad2/3 in PASMC. Further study indicated that SphK1/S1P pathway mediated TGF-β1-induced Notch3 activation in PASMC. In addition, we showed that TGF-β1 significantly induced proliferation of PASMC, while pre-inhibition of Smad2/3 phosphorylation with SB431542 or silencing SphK1 using small interfering RNA in advance, or pre-blocking Notch3 pathway with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), attenuated TGF-β1-induced PASMC proliferation. Taken together, our study indicates that Smad2/3/SphK1/S1P/Notch3 pathway mediates TGF-β1-induced PASMC proliferation and suggests this pathway as a potential therapeutic target in the prevention and treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Fangwei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
38
|
Wang SQ, Cui SX, Qu XJ. Metformin inhibited colitis and colitis-associated cancer (CAC) through protecting mitochondrial structures of colorectal epithelial cells in mice. Cancer Biol Ther 2018; 20:338-348. [PMID: 30359174 DOI: 10.1080/15384047.2018.1529108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although a mountain of papers have showed that metformin plays a role in inhibiting cancers, but the mechanism underpinning this has not yet fully elucidated. Herein, we used AOM/DSS model, the clinicopathological features are similar to those found in humans, to investigate the effects of metformin as well as combination with 5-FU in the prevention of colitis and colitis associated cancer (CAC). Oral metformin significantly inhibited DSS-induced ulcerative colitis and AOM/DSS-induced CAC. Metformin also ameliorated 5-FU-induced colorectal gastrointestinal symptoms in mice. Metformin combination with 5-FU strongly inhibited colorectal cancer. Metformin reduced levels of the NFκB signaling components p-IKKα/β, p-NFκB, p-IκBα in colorectal mucosal cells. Transmission electron microscopy analysis suggested that the inhibition of metformin on colitis and CAC might associate with its biological activity of protecting mitochondrial structures of colorectal epithelial cells. Further analysis by Mito Tracker Red staining assay indicated that metformin prevented H2O2-induced mitochondrial fission correlated with a decrease of mitochondrial perimeter. In addition, metformin increased the level of NDUFA9, a Q-module subunit required for complex I assembly, in colorectal epithelial cells. These observations of metformin in the inhibition of colitis and CAC might associate with its activity of activating the LKB1/AMPK pathway in colorectal epithelial cells. In conclusion, metformin inhibited colitis and CAC through protecting the mitochondrial structures of colorectal epithelial cells.
Collapse
Affiliation(s)
- Shu-Qing Wang
- a Department of Pharmacology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Shu-Xiang Cui
- b Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry , School of Public Health, Capital Medical University , Beijing , China
| | - Xian-Jun Qu
- a Department of Pharmacology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| |
Collapse
|
39
|
Chen M, Zhang W, Shi J, Jiang S. TGF-β1-Induced Airway Smooth Muscle Cell Proliferation Involves TRPM7-Dependent Calcium Influx via TGFβR/SMAD3. Mol Immunol 2018; 103:173-181. [PMID: 30290314 DOI: 10.1016/j.molimm.2018.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND TRPM7 in mast cells plays a key role in asthma. However, the effect of TRPM7 on TGF-β1-induced airway smooth muscle cell (ASMC) proliferation remains unclear. Therefore, we designed this study to explore whether TRPM7 is involved in TGF-β1-induced ASMC proliferation. METHODS An asthmatic mouse model was established, and the expressions of TGF-β1 and TRPM7 in mice lungs were detected using enzyme-linked immunosorbent assay (ELISA) and western blotting. In addition, murine ASMCs were cultured and stimulated with TGF-β1. Possible TGF-β1 and TRPM7 interactions were examined using RT-PCR and western blotting analyses with ASMCs. The effect of TRPM7 knockdown on ASMC calcium influx was assessed by the fluorescent indicator indo-1. MTT and flow cytometry were applied to evaluate the effects of TRPM7 knockdown on ASMC proliferation and apoptosis. RESULTS TGF-β1 elevated the expression of TRPM7 via TGFβR/SMAD3. Knocking down TRPM7 decreased the intracellular Ca2+ concentration and cellular proliferation of ASMCs, although apoptosis remained unaffected. CONCLUSIONS Our initial findings suggest that TRPM7 inhibition may prevent asthma-induced airway remodeling.
Collapse
Affiliation(s)
- Ming Chen
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wei Zhang
- Department of Respiratory Medicine, Xili People's Hospital, Shenzhen, Guangdong Province 518055, China
| | - Jianting Shi
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Shanping Jiang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
40
|
Liu L, Zhai C, Pan Y, Zhu Y, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Sphingosine-1-phosphate induces airway smooth muscle cell proliferation, migration, and contraction by modulating Hippo signaling effector YAP. Am J Physiol Lung Cell Mol Physiol 2018; 315:L609-L621. [PMID: 29999407 DOI: 10.1152/ajplung.00554.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid, has been shown to be elevated in the airways of individuals with asthma and modulates the airway smooth muscle cell (ASMC) functions, yet its underlying molecular mechanisms are not completely understood. The aim of the present study is to address this issue. S1P induced yes-associated protein (YAP) dephosphorylation and nuclear localization via the S1PR2/3/Rho-associated protein kinase (ROCK) pathway, and this in turn increased forkhead box M1 (FOXM1) and cyclin D1 expression leading to ASMC proliferation, migration, and contraction. Pretreatment of cells with S1PR2 antagonist JTE013, S1PR3 antagonist CAY10444, or ROCK inhibitor Y27632 blocked S1P-induced alterations of YAP, FOXM1, cyclin D1, and ASMC proliferation, migration, and contraction. In addition, prior silencing of YAP or FOXM1 with siRNA reversed the effect of S1P on ASMC functions. Taken together, our study indicates that S1P stimulates ASMC proliferation, migration, and contraction by binding to S1PR2/3 and modulating ROCK/YAP/FOXM1 axis and suggests that targeting this pathway might have potential value in the management of asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| |
Collapse
|