1
|
Grav LM, Rojek JB, la Cour Karottki KJ, Lee JS, Kildegaard HF. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Methods Mol Biol 2025; 2853:49-69. [PMID: 39460914 DOI: 10.1007/978-1-0716-4104-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Genome editing has become an important aspect of Chinese hamster ovary (CHO) cell line engineering for improving the production of recombinant protein therapeutics. Currently, the engineering focus is directed toward expanding product diversity while controlling and improving product quality and yields. In this chapter, we present our protocol for using the genome editing tool Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to knock out engineering target genes in CHO cells. As an example, we describe how to knock out the glutamine synthetase (GS) gene, which increases the selection efficiency of the GS-mediated gene amplification system.
Collapse
Affiliation(s)
- Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Johan Blatt Rojek
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Woo HJ, Kim J, Kim SM, Kim D, Moon JY, Park D, Lee JS. Context-dependent genomic locus effects on antibody production in recombinant Chinese hamster ovary cells generated through random integration. Comput Struct Biotechnol J 2024; 23:1654-1665. [PMID: 38680870 PMCID: PMC11046053 DOI: 10.1016/j.csbj.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
High-yield production of therapeutic protein using Chinese hamster ovary (CHO) cells requires stable cell line development (CLD). CLD typically uses random integration of transgenes; however, this results in clonal variation and subsequent laborious clone screening. Therefore, site-specific integration of a protein expression cassette into a desired chromosomal locus showing high transcriptional activity and stability, referred to as a hot spot, is emerging. Although positional effects are important for therapeutic protein expression, the sequence-specific mechanisms by which hotspots work are not well understood. In this study, we performed whole-genome sequencing (WGS) to locate randomly inserted vectors in the genome of recombinant CHO cells expressing high levels of monoclonal antibodies (mAbs) and experimentally validated these locations and vector compositions. The integration site was characterized by active histone marks and potential enhancer activities, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated indel mutations in the region upstream of the integration site led to a significant reduction in specific antibody productivity by up to 30%. Notably, the integration site and its core region did not function equivalently outside the native genomic context, showing a minimal effect on the increase in exogenous protein expression in the host cell line. We also observed a superior production capacity of the mAb expressing cell line compared to that of the host cell line. Collectively, this study demonstrates that developing recombinant CHO cell lines to produce therapeutic proteins at high levels requires a balance of factors including transgene configuration, genomic locus landscape, and host cell properties.
Collapse
Affiliation(s)
- Hyun Jee Woo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jaehoon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Molecular Science and Technology Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Yun Moon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Yoon C, Lee E, Kim D, Joung S, Kim Y, Jung H, Kim Y, Lee GM. SiMPl-GS: Advancing Cell Line Development via Synthetic Selection Marker for Next-Generation Biopharmaceutical Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405593. [PMID: 39105414 PMCID: PMC11481413 DOI: 10.1002/advs.202405593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Rapid and efficient cell line development (CLD) process is essential to expedite therapeutic protein development. However, the performance of widely used glutamine-based selection systems is limited by low selection efficiency, stringency, and the inability to select multiple genes. Therefore, an AND-gate synthetic selection system is rationally designed using split intein-mediated protein ligation of glutamine synthetase (GS) (SiMPl-GS). Split sites of the GS are selected using a computational approach and validated with GS-knockout Chinese hamster ovary cells for their potential to enable cell survival in a glutamine-free medium. In CLD, SiMPl-GS outperforms the wild-type GS by selectively enriching high producers. Unlike wild-type GS, SiMPl-GS results in cell pools in which most cells produce high levels of therapeutic proteins. Harnessing orthogonal split intein pairs further enables the selection of four plasmids with a single selection, streamlining multispecific antibody-producing CLD. Taken together, SiMPl-GS is a simple yet effective means to expedite CLD for therapeutic protein production.
Collapse
Affiliation(s)
- Chansik Yoon
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Eun‐ji Lee
- Biotherapeutics Translational Research CenterKRIBBDaejeon34113Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
| | - Dongil Kim
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Siyun Joung
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Yujin Kim
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Heungchae Jung
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
- BIO CenterDaejeon TechnoparkDaejeon34054Republic of Korea
| | - Yeon‐Gu Kim
- Biotherapeutics Translational Research CenterKRIBBDaejeon34113Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| |
Collapse
|
4
|
Peterman EL, Ploessl DS, Galloway KE. Accelerating Diverse Cell-Based Therapies Through Scalable Design. Annu Rev Chem Biomol Eng 2024; 15:267-292. [PMID: 38594944 DOI: 10.1146/annurev-chembioeng-100722-121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.
Collapse
Affiliation(s)
- Emma L Peterman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Deon S Ploessl
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
5
|
González-Hernández Y, Perré P. Building blocks needed for mechanistic modeling of bioprocesses: A critical review based on protein production by CHO cells. Metab Eng Commun 2024; 18:e00232. [PMID: 38501051 PMCID: PMC10945193 DOI: 10.1016/j.mec.2024.e00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
This paper reviews the key building blocks needed to develop a mechanistic model for use as an operational production tool. The Chinese Hamster Ovary (CHO) cell, one of the most widely used hosts for antibody production in the pharmaceutical industry, is considered as a case study. CHO cell metabolism is characterized by two main phases, exponential growth followed by a stationary phase with strong protein production. This process presents an appropriate degree of complexity to outline the modeling strategy. The paper is organized into four main steps: (1) CHO systems and data collection; (2) metabolic analysis; (3) formulation of the mathematical model; and finally, (4) numerical solution, calibration, and validation. The overall approach can build a predictive model of target variables. According to the literature, one of the main current modeling challenges lies in understanding and predicting the spontaneous metabolic shift. Possible candidates for the trigger of the metabolic shift include the concentration of lactate and carbon dioxide. In our opinion, ammonium, which is also an inhibiting product, should be further investigated. Finally, the expected progress in the emerging field of hybrid modeling, which combines the best of mechanistic modeling and machine learning, is presented as a fascinating breakthrough. Note that the modeling strategy discussed here is a general framework that can be applied to any bioprocess.
Collapse
Affiliation(s)
- Yusmel González-Hernández
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| |
Collapse
|
6
|
Lee Z, Wan J, Shen A, Barnard G. Gene copy number, gene configuration and LC/HC mRNA ratio impact on antibody productivity and product quality in targeted integration CHO cell lines. Biotechnol Prog 2024; 40:e3433. [PMID: 38321634 DOI: 10.1002/btpr.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
The augmentation of transgene copy numbers is a prevalent approach presumed to enhance transcriptional activity and product yield. CHO cell lines engineered via targeted integration (TI) offer an advantageous platform for investigating the interplay between gene copy number, mRNA abundance, product yield, and product quality. Our investigation revealed that incrementally elevating the gene copy numbers of both IgG heavy chain (HC) and light chain (LC) concurrently resulted in the attainment of plateaus in mRNA levels and product titers, notably occurring beyond four to five gene copies integrated at the same TI site. Furthermore, maintaining a fixed gene copy number while varying the position of genes within the vector influenced the LC/HC mRNA ratio, which subsequently exerted a substantial impact on product titer. Moreover, manipulation of the LC/HC gene ratio through the introduction of surplus LC gene copies led to heightened LC mRNA expression and a reduction in the levels of high molecular weight species. It is noteworthy that the effects of excess LC on product titer were dependent on the specific molecule under consideration. The strategic utilization of PCR tags enabled precise quantification of transcription from each expression slot within the vector, facilitating the identification of highly expressive and less expressive slots. Collectively, these findings significantly enhance our understanding of stable antibody production in TI CHO cell lines.
Collapse
Affiliation(s)
- Zion Lee
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Jun Wan
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Amy Shen
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Gavin Barnard
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| |
Collapse
|
7
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
8
|
Hozumi S, Chen YC, Takemoto T, Sawatsubashi S. Cas12a and MAD7, genome editing tools for breeding. BREEDING SCIENCE 2024; 74:22-31. [PMID: 39246434 PMCID: PMC11375424 DOI: 10.1270/jsbbs.23049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/15/2024] [Indexed: 09/10/2024]
Abstract
Food shortages due to population growth and climate change are expected to occur in the near future as a problem that urgently requires solutions. Conventional breeding techniques, notably crossbreeding and mutation breeding, are known for being inefficient and time-consuming in obtaining seeds and seedlings with desired traits. Thus, there is an urgent need for novel methods for efficient plant breeding. Breeding by genome editing is receiving substantial attention because it can efficiently modify the target gene to obtain desired traits compared with conventional methods. Among the programmable sequence-specific nucleases that have been developed for genome editing, CRISPR-Cas12a and CRISPR-MAD7 nucleases are becoming more broadly adopted for the application of genome editing in grains, vegetables and fruits. Additionally, ST8, an improved variant of MAD7, has been developed to enhance genome editing efficiency and has potential for application to breeding of crops.
Collapse
Affiliation(s)
- Shunya Hozumi
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yi-Chen Chen
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Tatsuya Takemoto
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shun Sawatsubashi
- Setsuro Tech Inc., Fujii Memorial Institute of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
- Research and Innovation Liaison Office, Institute for Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
9
|
Kim SH, Park JH, Shin S, Shin S, Chun D, Kim YG, Yoo J, You WK, Lee JS, Lee GM. Genome-Wide CRISPR/Cas9 Screening Unveils a Novel Target ATF7IP-SETDB1 Complex for Enhancing Difficult-to-Express Protein Production. ACS Synth Biol 2024; 13:634-647. [PMID: 38240694 DOI: 10.1021/acssynbio.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
With the emerging novel biotherapeutics that are typically difficult-to-express (DTE), improvement is required for high-yield production. To identify novel targets that can enhance DTE protein production, we performed genome-wide fluorescence-activated cell sorting (FACS)-based clustered regularly interspaced short palindromic repeats (CRISPR) knockout screening in bispecific antibody (bsAb)-producing Chinese hamster ovary (CHO) cells. The screen identified the two highest-scoring genes, Atf7ip and Setdb1, which are the binding partners for H3K9me3-mediated transcriptional repression. The ATF7IP-SETDB1 complex knockout in bsAb-producing CHO cells suppressed cell growth but enhanced productivity by up to 2.7-fold. Decreased H3K9me3 levels and an increased transcriptional expression level of the transgene were also observed. Furthermore, perturbation of the ATF7IP-SETDB1 complex in monoclonal antibody (mAb)-producing CHO cells led to substantial improvements in mAb production, increasing the productivity by up to 3.9-fold without affecting the product quality. Taken together, the genome-wide FACS-based CRISPR screen identified promising targets associated with histone methylation, whose perturbation enhanced the productivity by unlocking the transgene expression.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jong-Ho Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biotherapeutics Translational Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sungwook Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Dahyun Chun
- Department of R&D, ABL Bio Inc, Seongnam 13488, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, UST, , Daejeon 34113, Republic of Korea
| | - Jiseon Yoo
- Department of R&D, ABL Bio Inc, Seongnam 13488, Republic of Korea
| | - Weon-Kyoo You
- Department of R&D, ABL Bio Inc, Seongnam 13488, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Barnard GC, Zhou M, Shen A, Yuk IH, Laird MW. Utilizing targeted integration CHO pools to potentially accelerate the GMP manufacturing of monoclonal and bispecific antibodies. Biotechnol Prog 2024; 40:e3399. [PMID: 37874920 DOI: 10.1002/btpr.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Monoclonal antibodies (mAbs) are effective therapeutic agents against many acute infectious diseases including COVID-19, Ebola, RSV, Clostridium difficile, and Anthrax. mAbs can therefore help combat a future pandemic. Unfortunately, mAb development typically takes years, limiting its potential to save lives during a pandemic. Therefore "pandemic mAb" timelines need to be shortened. One acceleration tool is "deferred cloning" and leverages new Chinese hamster ovary (CHO) technology based on targeted gene integration (TI). CHO pools, instead of CHO clones, can be used for Phase I/II clinical material production. A final CHO clone (producing the mAb with a similar product quality profile and preferably with a higher titer) can then be used for Phase III trials and commercial manufacturing. This substitution reduces timelines by ~3 months. We evaluated our novel CHO TI platform to enable deferred cloning. We created four unique CHO pools expressing three unique mAbs (mAb1, mAb2, and mAb3), and a bispecific mAb (BsAb1). We then performed single-cell cloning for mAb1 and mAb2, identifying three high-expressing clones from each pool. CHO pools and clones were inoculated side-by-side in ambr15 bioreactors. CHO pools yielded mAb titers as high as 10.4 g/L (mAb3) and 7.1 g/L (BsAb1). Subcloning yielded CHO clones expressing higher titers relative to the CHO pools while yielding similar product quality profiles. Finally, we showed that CHO TI pools were stable by performing a 3-month cell aging study. In summary, our CHO TI platform can increase the speed to clinic for a future "pandemic mAb."
Collapse
Affiliation(s)
- Gavin C Barnard
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michelle Zhou
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michael W Laird
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| |
Collapse
|
11
|
Kim K, Kim YS, Jang JW, Lee GM. Enhancing the production of recombinant human TGF-β1 through an understanding of TGF-β1 synthesis, signaling, and endocytosis in CHO cells. Biotechnol J 2024; 19:e2300269. [PMID: 37985244 DOI: 10.1002/biot.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
To enhance the production of recombinant human transforming growth factor-beta1 (rhTGF-β1) in Chinese hamster ovary (CHO) cells, rhTGF-β1 was first characterized for endocytosis, signaling pathway, and overall maturation process. The mature rhTGF-β1 used for clinical application was internalized into CHO cells and inhibited the growth of CHO cells in a dose-dependent manner. However, mature rhTGF-β1 was mostly produced in the form of latent rhTGF-β1 in cultures of recombinant CHO (rCHO) cells producing rhTGF-β1 (CHO-rhTGF-β1). The concentration of active mature rhTGF-β1 in the culture supernatant of CHO-rhTGF-β1 cells was not high enough to compromise yield. In addition, a significant amount of unprocessed precursors was produced by CHO-rhTGF-β1 cells. Overexpression of PACEsol, a soluble form of furin, in CHO-rhTGF-β1 cells was effective for the proteolytic cleavage of unprocessed precursors. The highest mature rhTGF-β1 concentration (6.4 μg mL-1 ) was obtained with the PACEsol-expressing clone, which was approximately 45% higher than that of the parental clone (P < 0.01). Thus, a comprehensive understanding of the intrinsic properties of rhTGF-β1 with respect to the overall maturation process, signaling pathway, and endocytosis is essential for effectively enhancing the production of mature rhTGF-β1 in CHO cells.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Young Sik Kim
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Ju Woong Jang
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Yoon C, Baek KE, Kim D, Lee GM. Mitigating transcriptional bottleneck using a constitutively active transcription factor, VP16-CREB, in mammalian cells. Metab Eng 2023; 80:33-44. [PMID: 37709006 DOI: 10.1016/j.ymben.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
High-level expression of recombinant proteins in mammalian cells has long been an area of interest. Inefficient transcription machinery is often an obstacle in achieving high-level expression of recombinant proteins in mammalian cells. Synthetic promoters have been developed to improve the transcription efficiency, but have achieved limited success due to the limited availability of transcription factors (TFs). Here, we present a TF-engineering approach to mitigate the transcriptional bottlenecks of recombinant proteins. This includes: (i) identification of cAMP response element binding protein (CREB) as a candidate TF by searching for TFs enriched in the cytomegalovirus (CMV) promoter-driven high-producing recombinant Chinese hamster ovary (rCHO) cell lines via transcriptome analysis, (ii) confirmation of transcriptional limitation of active CREB in rCHO cell lines, and (iii) direct activation of the transgene promoter by expressing constitutively active CREB at non-cytotoxic levels in rCHO cell lines. With the expression of constitutively active VP16-CREB, the production of therapeutic proteins, such as monoclonal antibody and etanercept, in CMV promoter-driven rCHO cell lines was increased up to 3.9-fold. VP16-CREB was also used successfully with synthetic promoters containing cAMP response elements. Taken together, this strategy to introduce constitutively active TFs into cells is a useful means of overcoming the transcriptional limitations in recombinant mammalian cells.
Collapse
Affiliation(s)
- Chansik Yoon
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyoung Eun Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Dongil Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
14
|
Wu Z, Xu G, He W, Yu C, Huang W, Zheng S, Kang D, Xie MH, Cao X, Wang L, Wei K. Comparability strategy and demonstration for post-approval production cell line change of a bevacizumab biosimilar IBI305. Antib Ther 2023; 6:194-210. [PMID: 37680352 PMCID: PMC10481892 DOI: 10.1093/abt/tbad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023] Open
Abstract
High-producing cell line could improve the affordability and availability of biotherapeutic products. A post-approval production cell line change, low-titer CHO-K1S to high-titer CHO-K1SV GS-KO, was performed for a China marketed bevacizumab biosimilar IBI305. Currently, there is no regulatory guideline specifically addressing the requirements for comparability study of post-approval cell line change, which is generally regarded as the most complex process change for biological products. Following the quality by design principle and risk assessment, an extensive analytical characterization and three-way comparison was performed by using a panel of advanced analytical methods. Orthogonal and state-of-the-art techniques including nuclear magnetic resonance and high-resolution mass spectrometry were applied to mitigate the potential uncertainties of higher-order structures and to exclude any new sequence variants, scrambled disulfide bonds, glycan moiety and undesired process-related impurities such as host cell proteins. Nonclinical and clinical pharmacokinetics (PK) studies were conducted subsequently to further confirm the comparability. The results demonstrated that the post-change IBI305 was analytically comparable to the pre-change one and similar to the reference product in physicochemical and biological properties, as well as the degradation behaviors in accelerated stability and forced degradation studies. The comparability was further confirmed by comparable PK, pharmacodynamics, toxicological and immunogenicity profiles of nonclinical and clinical studies. The comparability strategy presented here might extend to cell line changes of other post-approval biological products, and particularly set a precedent in China for post-approval cell line change of commercialized biosimilars.
Collapse
Affiliation(s)
- Zhouyi Wu
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Gangling Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wu He
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wanqiu Huang
- Department of Analytical Science, Innovent Biologics, Inc., Suzhou 215123, China
| | - Shirui Zheng
- Department of Medical Science, Innovent Biologics, Inc., Suzhou 215123, China
| | - Dian Kang
- Department of Drug Discovery, Innovent Biologics, Inc., Suzhou 215123, China
| | - Michael H Xie
- Department of Analytical Science, Innovent Biologics, Inc., Suzhou 215123, China
| | - Xingjun Cao
- Department of Analytical Science, Innovent Biologics, Inc., Suzhou 215123, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Kaikun Wei
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| |
Collapse
|
15
|
Srila W, Baumann M, Riedl M, Rangnoi K, Borth N, Yamabhai M. Glutamine synthetase (GS) knockout (KO) using CRISPR/Cpf1 diversely enhances selection efficiency of CHO cells expressing therapeutic antibodies. Sci Rep 2023; 13:10473. [PMID: 37380701 DOI: 10.1038/s41598-023-37288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
The glutamine synthetase (GS)-based Chinese hamster ovary (CHO) selection system is an attractive approach to efficiently identify suitable clones in the cell line generation process for biologics manufacture, for which GS-knockout (GS-KO) CHO cell lines are commonly used. Since genome analysis indicated that there are two GS genes in CHO cells, deleting only 1 GS gene could potentially result in the activation of other GS genes, consequently reducing the selection efficiency. Therefore, in this study, both GS genes identified on chromosome 5 (GS5) and 1 (GS1) of CHO-S and CHO-K1, were deleted using CRISPR/Cpf1. Both single and double GS-KO CHO-S and K1 showed robust glutamine-dependent growth. Next, the engineered CHO cells were tested for their efficiency of selection of stable producers of two therapeutic antibodies. Analysis of pool cultures and subclones after a single round of 25 µM methionine sulfoxinime (MSX) selection indicated that for CHO-K1 the double GS5,1-KO was more efficient as in the case of a single GS5-KO the GS1 gene was upregulated. In CHO-S, on the other hand, with an autologously lower level of expression of both variants of GS, a single GS5-KO was more robust and already enabled selection of high producers. In conclusion, CRISPR/Cpf1 can be efficiently used to knock out GS genes from CHO cells. The study also indicates that for the generation of host cell lines for efficient selection, the initial characterisation of expression levels of the target gene as well as the identification of potential escape mechanisms is important.
Collapse
Affiliation(s)
- Witsanu Srila
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Markus Riedl
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Kuntalee Rangnoi
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria.
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
16
|
Sun H, Wang S, Lu M, Tinberg CE, Alba BM. Protein production from HEK293 cell line-derived stable pools with high protein quality and quantity to support discovery research. PLoS One 2023; 18:e0285971. [PMID: 37267316 DOI: 10.1371/journal.pone.0285971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Antibody-based therapeutics and recombinant protein reagents are often produced in mammalian expression systems, which provide human-like post-translational modifications. Among the available mammalian cell lines used for recombinant protein expression, Chinese hamster ovary (CHO)-derived suspension cells are generally utilized because they are easy to culture and tend to produce proteins in high yield. However, some proteins purified from CHO cell overexpression suffer from clipping and display undesired non-human post translational modifications (PTMs). In addition, CHO cell lines are often not suitable for producing proteins with many glycosylation motifs for structural biology studies, as N-linked glycosylation of proteins poses challenges for structure determination by X-ray crystallography. Hence, alternative and complementary cell lines are required to address these issues. Here, we present a robust method for expressing proteins in human embryonic kidney 293 (HEK293)-derived stable pools, leading to recombinant protein products with much less clipped species compared to those expressed in CHO cells and with higher yield compared to those expressed in transiently-transfected HEK293 cells. Importantly, the stable pool generation protocol is also applicable to HEK293S GnTI- (N-acetylglucosaminyltransferase I-negative) and Expi293F GnTI- suspension cells, facilitating production of high yields of proteins with less complex glycans for use in structural biology projects. Compared to HEK293S GnTI- stable pools, Expi293F GnTI- stable pools consistently produce proteins with similar or higher expression levels. HEK293-derived stable pools can lead to a significant cost reduction and greatly promote the production of high-quality proteins for diverse research projects.
Collapse
Affiliation(s)
- Hong Sun
- Biologic Therapeutic Discovery, Amgen Research, South San Francisco, California, United States of America
| | - Songyu Wang
- Biologic Therapeutic Discovery, Amgen Research, South San Francisco, California, United States of America
| | - Mei Lu
- Biologic Therapeutic Discovery, Amgen Research, South San Francisco, California, United States of America
| | - Christine E Tinberg
- Biologic Therapeutic Discovery, Amgen Research, South San Francisco, California, United States of America
| | - Benjamin M Alba
- Biologic Therapeutic Discovery, Amgen Research, South San Francisco, California, United States of America
| |
Collapse
|
17
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
18
|
Yang W, Zhang J, Xiao Y, Li W, Wang T. Screening Strategies for High-Yield Chinese Hamster Ovary Cell Clones. Front Bioeng Biotechnol 2022; 10:858478. [PMID: 35782513 PMCID: PMC9247297 DOI: 10.3389/fbioe.2022.858478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are by far the most commonly used mammalian expression system for recombinant expression of therapeutic proteins in the pharmaceutical industry. The development of high-yield stable cell lines requires processes of transfection, selection, screening and adaptation, among which the screening process requires tremendous time and determines the level of forming highly productive monoclonal cell lines. Therefore, how to achieve productive cell lines is a major question prior to industrial manufacturing. Cell line development (CLD) is one of the most critical steps in the production of recombinant therapeutic proteins. Generation of high-yield cell clones is mainly based on the time-consuming, laborious process of selection and screening. With the increase in recombinant therapeutic proteins expressed by CHO cells, CLD has become a major bottleneck in obtaining cell lines for manufacturing. The basic principles for CLD include preliminary screening for high-yield cell pool, single-cell isolation and improvement of productivity, clonality and stability. With the development of modern analysis and testing technologies, various screening methods have been used for CLD to enhance the selection efficiency of high-yield clonal cells. This review provides a comprehensive overview on preliminary screening methods for high-yield cell pool based on drug selective pressure. Moreover, we focus on high throughput methods for isolating high-yield cell clones and increasing the productivity and stability, as well as new screening strategies used for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| |
Collapse
|
19
|
Improved Titer in Late-Stage Mammalian Cell Culture Manufacturing by Re-Cloning. Bioengineering (Basel) 2022; 9:bioengineering9040173. [PMID: 35447733 PMCID: PMC9030702 DOI: 10.3390/bioengineering9040173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 01/19/2023] Open
Abstract
Improving productivity to reduce the cost of biologics manufacturing and ensure that therapeutics can reach more patients remains a major challenge faced by the biopharmaceutical industry. Chinese hamster ovary (CHO) cell lines are commonly prepared for biomanufacturing by single cell cloning post-transfection and recovery, followed by lead clone screening, generation of a research cell bank (RCB), cell culture process development, and manufacturing of a master cell bank (MCB) to be used in early phase clinical manufacturing. In this study, it was found that an additional round of cloning and clone selection from an established monoclonal RCB or MCB (i.e., re-cloning) significantly improved titer for multiple late phase monoclonal antibody upstream processes. Quality attributes remained comparable between the processes using the parental clones and the re-clones. For two CHO cells expressing different antibodies, the re-clone performance was successfully scaled up at 500-L or at 2000-L bioreactor scales, demonstrating for the first time that the re-clone is suitable for late phase and commercial manufacturing processes for improvement of titer while maintaining comparable product quality to the early phase process.
Collapse
|
20
|
Sacco SA, Tuckowski AM, Trenary I, Kraft L, Betenbaugh MJ, Young JD, Smith KD. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Biotechnol Bioeng 2022; 119:1712-1727. [PMID: 35312045 DOI: 10.1002/bit.28084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022]
Abstract
The glutamine synthetase (GS) expression system is commonly used to ensure stable transgene integration and amplification in CHO host lines. Transfected cell populations are typically grown in the presence of the GS inhibitor, methionine sulfoximine (MSX), to further select for increased transgene copy number. However, high levels of GS activity produce excess glutamine. We hypothesized that attenuating the GS promoter while keeping the strong IgG promoter on the GS-IgG expression vector would result in a more efficient cellular metabolic phenotype. Herein, we characterized CHO cell lines expressing GS from either an attenuated promoter or an SV40 promoter and selected with/without MSX. CHO cells with the attenuated GS promoter had higher IgG specific productivity and lower glutamine production compared to cells with SV40-driven GS expression. Selection with MSX increased both specific productivity and glutamine production, regardless of GS promoter strength. 13 C metabolic flux analysis (MFA) was performed to further assess metabolic differences between these cell lines. Interestingly, central carbon metabolism was unaltered by the attenuated GS promoter while the fate of glutamate and glutamine varied depending on promoter strength and selection conditions. This study highlights the ability to optimize the GS expression system to improve IgG production and reduce wasteful glutamine overflow, without significantly altering central metabolism. Additionally, a detailed supplementary analysis of two "lactate runaway" reactors provides insight into the poorly understood phenomenon of excess lactate production by some CHO cell cultures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Angela M Tuckowski
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA.,Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lauren Kraft
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA.,Asimov, 1325 Boylston St, Boston, MA, 02215
| |
Collapse
|
21
|
Zhang Q, Jiang B, Nelson L, Huhn S, Du Z, Chasin LA. A multi‐auxotrophic CHO cell line for the rapid isolation of producers of diverse or high levels of recombinant proteins. Biotechnol Bioeng 2022; 119:1392-1404. [DOI: 10.1002/bit.28074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qinghao Zhang
- Department of Biological Sciences Columbia University New York NY USA
| | - Bo Jiang
- Merck & Co., Inc. Kenilworth NJ USA
- Gilead Sciences, Inc
| | | | | | - Zhimei Du
- Merck & Co., Inc. Kenilworth NJ USA
- Atara Biotherapeutics, Inc
| | | |
Collapse
|
22
|
Kyeong M, Lee JS. Endogenous BiP reporter system for simultaneous identification of ER stress and antibody production in Chinese hamster ovary cells. Metab Eng 2022; 72:35-45. [PMID: 35182754 DOI: 10.1016/j.ymben.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
As the biopharmaceutical industry expands, improving the production of therapeutic proteins using Chinese hamster ovary (CHO) cells is important. However, excessive and complicated protein production causes protein misfolding and triggers endoplasmic reticulum (ER) stress. When ER stress occurs, cells mediate the unfolded protein response (UPR) pathway to restore protein homeostasis and folding capacity of the ER. However, when the cells fail to control prolonged ER stress, UPR induces apoptosis. Therefore, monitoring the degree of UPR is required to achieve high productivity and the desired quality. In this study, we developed a fluorescence-based UPR monitoring system for CHO cells. We integrated mGFP into endogenous HSPA5 encoding BiP, a major ER chaperone, and the primary ER stress activation sensor, using CRISPR/Cas9-mediated targeted integration. The mGFP expression level changed according to the ER stress induced by chemical treatment and batch culture in the engineered cell line. Using this monitoring system, we demonstrated that host cells and recombinant CHO cell lines with different mean fluorescence intensities (MFI; basal expression levels of BiP) possess a distinct capacity for stress culture conditions induced by recombinant protein production. Antibody-producing recombinant CHO cell lines were generated using site-specific integration based on host cells equipped with the BiP reporter system. Targeted integrants showed a strong correlation between productivity and MFI, reflecting the potential of this monitoring system as a screening readout for high producers. Taken together, these data demonstrate the utility of the endogenous BiP reporter system for the detection of real-time dynamic changes in endogenous UPR and its potential for applications in recombinant protein production during CHO cell line development.
Collapse
Affiliation(s)
- Minji Kyeong
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
23
|
Sharma S, Agnihotri N, Kumar S. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochem Pharmacol 2022; 198:114943. [DOI: 10.1016/j.bcp.2022.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
|
24
|
Altamura R, Doshi J, Benenson Y. Rational design and construction of multi-copy biomanufacturing islands in mammalian cells. Nucleic Acids Res 2022; 50:561-578. [PMID: 34893882 PMCID: PMC8754653 DOI: 10.1093/nar/gkab1214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Cell line development is a critical step in the establishment of a biopharmaceutical manufacturing process. Current protocols rely on random transgene integration and amplification. Due to considerable variability in transgene integration profiles, this workflow results in laborious screening campaigns before stable producers can be identified. Alternative approaches for transgene dosage increase and integration are therefore highly desirable. In this study, we present a novel strategy for the rapid design, construction, and genomic integration of engineered multiple-copy gene constructs consisting of up to 10 gene expression cassettes. Key to this strategy is the diversification, at the sequence level, of the individual gene cassettes without altering their protein products. We show a computational workflow for coding and regulatory sequence diversification and optimization followed by experimental assembly of up to nine gene copies and a sentinel reporter on a contiguous scaffold. Transient transfections in CHO cells indicates that protein expression increases with the gene copy number on the scaffold. Further, we stably integrate these cassettes into a pre-validated genomic locus. Altogether, our findings point to the feasibility of engineering a fully mapped multi-copy recombinant protein 'production island' in a mammalian cell line with greatly reduced screening effort, improved stability, and predictable product titers.
Collapse
Affiliation(s)
- Raffaele Altamura
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Jiten Doshi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
25
|
Teixeira AP, Stücheli P, Ausländer S, Ausländer D, Schönenberger P, Hürlemann S, Fussenegger M. CelloSelect - A synthetic cellobiose metabolic pathway for selection of stable transgenic CHO cell lines. Metab Eng 2022; 70:23-30. [PMID: 35007751 DOI: 10.1016/j.ymben.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Current protocols for generating stable transgenic cell lines mostly rely on antibiotic selection or the use of specialized cell lines lacking an essential part of their metabolic machinery, but these approaches require working with either toxic chemicals or knockout cell lines, which can reduce productivity. Since most mammalian cells cannot utilize cellobiose, a disaccharide consisting of two β-1,4-linked glucose molecules, we designed an antibiotic-free selection system, CelloSelect, which consists of a selection cassette encoding Neurospora crassa cellodextrin transporter CDT1 and β-glucosidase GH1-1. When cultivated in glucose-free culture medium containing cellobiose, CelloSelect-transfected cells proliferate by metabolizing cellobiose as a primary energy source, and are protected from glucose starvation. We show that the combination of CelloSelect with a PiggyBac transposase-based integration strategy provides a platform for the swift and efficient generation of stable transgenic cell lines. Growth rate analysis of metabolically engineered cells in cellobiose medium confirmed the expansion of cells stably expressing high levels of a cargo fluorescent marker protein. We further validated this strategy by applying the CelloSelect system for stable integration of sequences encoding two biopharmaceutical proteins, erythropoietin and the monoclonal antibody rituximab, and confirmed that the proteins are efficiently produced in either cellobiose- or glucose-containing medium in suspension-adapted CHO cells cultured in chemically defined media. We believe coupling heterologous metabolic pathways additively to the endogenous metabolism of mammalian cells has the potential to complement or to replace current cell-line selection systems.
Collapse
Affiliation(s)
- Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Pascal Stücheli
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Pascal Schönenberger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Samuel Hürlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
26
|
Kim D, Yoon C, Lee GM. Small molecule epigenetic modulators for enhancing recombinant antibody production in CHO cell cultures. Biotechnol Bioeng 2021; 119:820-831. [PMID: 34961935 DOI: 10.1002/bit.28013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022]
Abstract
Small molecule epigenetic modulators that modify epigenetic states in cells are useful tools for regulating gene expression by inducing chromatin remodeling. To identify small molecule epigenetic modulators that enhance recombinant protein expression in CHO cells, we examined eight histone deacetylase inhibitors (iHDACs) and six DNA methyltransferase inhibitors as chemical additives in recombinant CHO (rCHO) cell cultures. Among these, a benzamide-based iHDAC, CI994, was the most effective in increasing monoclonal antibody (mAb) production. Despite suppressing cell growth, the addition of CI994 to mAb-expressing GSR cell cultures at 10 μM resulted in a 2.3-fold increase in maximum mAb concentration due to a 3.0-fold increase in specific mAb productivity (q mAb ). CI994 increased mAb mRNA levels and histone H3 acetylation in GSR cells, and ChIP-qPCR analysis revealed that CI994 significantly increased the histone H3 acetylation level at the CMV promoter driving mAb gene expression, indicating that chromatin remodeling in the promoter region results in enhanced mAb gene transcription and q mAb . Similar beneficial effects of CI994 on mAb production were observed in mAb-expressing CS13-1.00 cells. Collectively, our findings indicate that CI994 increases mAb production in rCHO cell cultures by chromatin remodeling resulting from acetylation of histones in the mAb gene promoter. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dongil Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Chansik Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
27
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
28
|
Ayolabi CI, Olusola BA, Lawal AA, Chibuike AD, Nzekwue BN. Detection of novel paramyxoviruses in Chaerephon bat species in Nigeria and phylogenetics of paramyxoviruses co-evolution with bats in Africa. Zoonoses Public Health 2021; 69:117-135. [PMID: 34817117 DOI: 10.1111/zph.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Bat paramyxoviruses (PmV) are a diverse group of viruses and include zoonotic viruses such as henipaviruses. Members of this group in other continents have been associated with severe respiratory and neurological infections in animals and humans. Furthermore, despite the richness of diverse bat species that can transmit this virus in African countries like Nigeria, there is very scanty information as to the presence and co-evolution of paramyxoviruses in bats. There is a need for continuous surveillance of zoonotic viruses and their biological reservoirs as this will help in the prevention and management of pathogens' spillovers. This study detected novel paramyxoviruses in Chaerephon nigeriae bat species found in Badagry, Lagos. Phylogenetic analyses of paramyxovirus sequences' co-evolution with frugivorous and insectivorous bats circulating in African countries were also performed using sequences of African origin available in the Database of Bat-Associated Viruses (DBatVir: http://www.mgc.ac.cn/DBatVir/). Oral swabs (n = 18) and blood samples (n = 32) were collected from C. nigeriae bats in Badagry, Lagos. The L gene of bat paramyxovirus was detected in all oral swabs using PCR techniques. Six of the amplicons were successfully sequenced. Estimated phylogenies placed the sequences in close relationship with those isolated from insectivorous bats. Phylogenetic analyses of previously sequenced isolates in the African region showed the likelihood of different co-evolution mechanisms of paramyxoviruses with frugivorous bats compared with insectivorous bats. This may be due to codon usage bias of the L gene. Spatial distribution of paramyxoviruses in African countries showed limited ongoing surveillance of this virus in the continent, especially in southern and northern countries. Extensive surveillance of paramyxoviruses with possible zoonotic potentials among bat species in the continent is recommended. This will provide further insights into co-evolution as well as prevent possible spillover into the human population.
Collapse
|
29
|
Kim SH, Baek M, Park S, Shin S, Lee JS, Lee GM. Improving the secretory capacity of CHO producer cells: The effect of controlled Blimp1 expression, a master transcription factor for plasma cells. Metab Eng 2021; 69:73-86. [PMID: 34775077 DOI: 10.1016/j.ymben.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 01/23/2023]
Abstract
With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1β in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1β expression, only Blimp1β expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1β expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1β expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1β expressing rCHO cells and plasma cells. Blimp1β expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1β improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Minhye Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
30
|
Kim MG, Lee GM. Blockage of undesirable endocytosis of recombinant human growth/differentiation factor-5 in Chinese hamster ovary cell cultures requires heparin analogs with specific chain lengths. Biotechnol J 2021; 16:e2100227. [PMID: 34347378 DOI: 10.1002/biot.202100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022]
Abstract
Cell surface heparan sulfate proteoglycan (HSPG)-mediated endocytosis lowers the yield of recombinant human bone morphogenetic proteins (rhBMPs), such as rhBMP-2 and rhBMP-4, from Chinese hamster ovary (CHO) cell cultures. Exogenous recombinant human growth/differentiation factor-5 (rhGDF-5), a member of the BMP family, bound to cell surface HSPGs and was actively internalized into CHO cells. Knockdown of heparan sulfate (HS) synthesis enzymes in CHO cells revealed that the chain length and N-sulfation of HS affected the binding of rhGDF-5 to HSPGs and subsequent rhGDF-5 internalization. To increase product yield by minimizing rhGDF-5 internalization in recombinant CHO (rCHO) cell cultures, heparin, and dextran sulfate (DS) of various polysaccharide chain lengths, which are structural analogs of HS, were examined for blockage of rhGDF-5 internalization. Heparin fragments of four monosaccharides (MW of 1.2 kDa) and DS (MW of 15 kDa) did not inhibit rhGDF-5 internalization whereas unfractionated heparin and DS of 200 kDa could significantly inhibit it. Compared to the control cultures, supplementation with unfractionated heparin or DS of 200 kDa at 1 g L-1 resulted in more than a 10-fold increase in the maximum rhGDF-5 concentration. Taken together, the supplementation of structural HS analogs improved rhGDF-5 production in rCHO cell cultures by inhibiting rhGDF-5 internalization. GRAPHICAL ABSTRACT AND LAY SUMMARY: Cell surface heparan sulfate proteoglycan (HSPG)-mediated endocytosis lowers the yield of rhGDF-5 from CHO cell cultures. In this study, the authors found that the length and N-sulfation of HS chain determine the binding of rhGDF-5 to HSPGs and subsequent rhGDF-5 internalization. Based on this finding, the authors successfully used heparin analogs with specific chain lengths to enhance the rhGDF-5 yield by blocking rhGDF-5 internalization.
Collapse
Affiliation(s)
- Mi Gyeom Kim
- Department of Biological Sciences, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
31
|
Shin S, Kim SH, Lee JS, Lee GM. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synth Biol 2021; 10:1715-1727. [PMID: 34133132 DOI: 10.1021/acssynbio.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J Biotechnol 2021; 337:35-45. [PMID: 34171439 DOI: 10.1016/j.jbiotec.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 06/19/2021] [Indexed: 11/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell expression platform for biotherapeutic recombinant molecules yet some proteins remain difficult to express (DTE) in this, and other, systems. In recombinant cell lines expressing DTE proteins, cellular processes to restore proteostasis can be triggered when the folding and modification capabilities are exceeded, including the unfolded protein response and ER-associated degradation (ERAD) and proteasomal degradation. We therefore investigated whether the proteasome activity of CHO cells was linked to their ability to produce recombinant proteins. We found cell lines with diverse monoclonal antibody (mAb) productivity show different susceptibilities to inhibitors of proteasome activity. Subsequently, we applied selective pressure using proteasome inhibitors on mAb producing cells to determine the impact on cell growth and recombinant protein production, and to apply proteasome selective pressure above that of a metabolic selection marker during recombinant cell pool construction. The presence of proteasome inhibitors during cell pool construction expressing two different model molecules, including a DTE Fc-fusion protein, resulted in the generation of cell pools with enhanced productivity. The increased productivities, and ability to select for higher producing cells, has potential to improve clonal selection during upstream processes of DTE proteins.
Collapse
|
33
|
Huhn SC, Ou Y, Tang X, Jiang B, Liu R, Lin H, Du Z. Improvement of the efficiency and quality in developing a new CHO host cell line. Biotechnol Prog 2021; 37:e3185. [PMID: 34142466 DOI: 10.1002/btpr.3185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chinese hamster ovary (CHO) cells are a ubiquitous tool for industrial therapeutic recombinant protein production. However, consistently generating high-producing clones remains a major challenge during the cell line development process. The glutamine synthetase (GS) and dihydrofolate reductase (DHFR) selection systems are commonly used CHO expression platforms based on controlling the balance of expression between the transgenic and endogenous GS or DHFR genes. Since the expression of the endogenous selection gene in CHO hosts can interfere with selection, generating a corresponding null CHO cell line is required to improve selection stringency, productivity, and stability. However, the efficiency of generating bi-allelic genetic knockouts using conventional protocols is very low (<5%). This significantly affects clone screening efficiency and reduces the chance of identifying robust knockout host cell lines. In this study, we use the GS expression system as an example to improve the genome editing process with zinc finger nucleases (ZFNs), resulting in improved GS-knockout efficiency of up to 46.8%. Furthermore, we demonstrate a process capable of enriching knockout CHO hosts with robust bioprocess traits. This integrated host development process yields a larger number of GS-knockout hosts with desired growth and recombinant protein expression characteristics.
Collapse
Affiliation(s)
- Steven C Huhn
- Biologics Upstream Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yang Ou
- Biologics Upstream Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey, USA.,MRL Postdoctoral Research Program, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Xiaoyan Tang
- Biologics Upstream Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bo Jiang
- Biologics Upstream Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ren Liu
- Biologics Upstream Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Henry Lin
- Biologics Upstream Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhimei Du
- Biologics Upstream Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
34
|
Rajendran S, Balasubramanian S, Webster L, Lee M, Vavilala D, Kulikov N, Choi J, Tang C, Hunter M, Wang R, Kaur H, Karunakaran S, Sitaraman V, Minshull J, Boldog F. Accelerating and de-risking CMC development with transposon-derived manufacturing cell lines. Biotechnol Bioeng 2021; 118:2301-2311. [PMID: 33704772 PMCID: PMC8252637 DOI: 10.1002/bit.27742] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
The development of highly productive, genetically stable manufacturing cell lines is on the critical path to IND filing for protein-based biologic drugs. Here, we describe the Leap-In Transposase® platform, a novel transposon-based mammalian (e.g., Chinese hamster ovary) cell line development system that produces high-titer stable pools with productivity and product quality attributes that are highly comparable to clones that are subsequently derived therefrom. The productivity distributions of clones are strongly biased toward high producers, and genetic and expression stability is consistently high. By avoiding the poor integration rates, concatemer formation, detrimental transgene recombination, low average expression level, unpredictable product quality, and inconsistent genetic stability characteristic of nonhomologous recombination methods, Leap-In provides several opportunities to de-risk programs early and reduce timelines and resources.
Collapse
Affiliation(s)
- Sowmya Rajendran
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Sowmya Balasubramanian
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Lynn Webster
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Maggie Lee
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Divya Vavilala
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Nicolay Kulikov
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Jessica Choi
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Calvin Tang
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Molly Hunter
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Rebecca Wang
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Harpreet Kaur
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Surya Karunakaran
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Varsha Sitaraman
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Jeremy Minshull
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| | - Ferenc Boldog
- Cell Line DevelopmentProtein Purification and Protein Analytical Departments of ATUM, Inc.NewarkCaliforniaUSA
| |
Collapse
|
35
|
Structure-guided selection of puromycin N-acetyltransferase mutants with enhanced selection stringency for deriving mammalian cell lines expressing recombinant proteins. Sci Rep 2021; 11:5247. [PMID: 33664348 PMCID: PMC7933286 DOI: 10.1038/s41598-021-84551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
Puromycin and the Streptomyces alboniger-derived puromycin N-acetyltransferase (PAC) enzyme form a commonly used system for selecting stably transfected cultured cells. The crystal structure of PAC has been solved using X-ray crystallography, revealing it to be a member of the GCN5-related N-acetyltransferase (GNAT) family of acetyltransferases. Based on structures in complex with acetyl-CoA or the reaction products CoA and acetylated puromycin, four classes of mutations in and around the catalytic site were designed and tested for activity. Single-residue mutations were identified that displayed a range of enzymatic activities, from complete ablation to enhanced activity relative to wild-type (WT) PAC. Cell pools of stably transfected HEK293 cells derived using two PAC mutants with attenuated activity, Y30F and A142D, were found to secrete up to three-fold higher levels of a soluble, recombinant target protein than corresponding pools derived with the WT enzyme. A third mutant, Y171F, appeared to stabilise the intracellular turnover of PAC, resulting in an apparent loss of selection stringency. Our results indicate that the structure-guided manipulation of PAC function can be utilised to enhance selection stringency for the derivation of mammalian cell lines secreting elevated levels of recombinant proteins.
Collapse
|
36
|
High level stable expression of recombinant HIV gp120 in glutamine synthetase gene deficient HEK293T cells. Protein Expr Purif 2021; 181:105837. [PMID: 33529763 DOI: 10.1016/j.pep.2021.105837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022]
Abstract
Due to the important pathological roles of the HIV-1 gp120, the protein has been intensively used in the research of HIV. However, recombinant gp120 preparation has proven to be difficult because of extremely low expression levels. In order to facilitate gp120 expression, previous methods predominantly involved the replacement of native signal peptide with a heterologous one, resulting in very limited improvement. Currently, preparation of recombinant gp120 with native glycans relies solely on transient expression systems, which are not amendable for large scale production. In this work, we employed a different approach for gp120 expression. Besides replacing the native gp120 signal peptide with that of rat serum albumin and optimizing its codon usage, we generated a stable gp120-expressing cell line in a glutamine synthetase knockout HEK293T cell line that we established for the purpose of amplification of recombinant gene expressions. The combined usage of these techniques dramatically increased gp120 expression levels and yielded a functional product with human cell derived glycan. This method may be applicable to large scale preparation of other viral envelope proteins, such as that of the emerging SARS-CoV-2, or other glycoproteins which require the presence of authentic human glycans.
Collapse
|
37
|
Lao-Gonzalez T, Bueno-Soler A, Duran-Hernandez A, Sosa-Aguiar K, Hinojosa-Puerta LE, Hernandez-Garcia T, de la Luz-Hernandez KR, Palacios-Oliva J, Boggiano-Ayo T. Screening and selection strategy for the establishment of biosimilar to trastuzumab-expressing CHO-K1 cell lines. AMB Express 2021; 11:1. [PMID: 33389203 PMCID: PMC7778674 DOI: 10.1186/s13568-020-01157-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The high prices of biopharmaceuticals or biologics used in the treatment of many diseases limit the access of patients to these novel therapies. One example is the monoclonal antibody trastuzumab, successfully used for breast cancer treatment. An economic alternative is the generation of biosimilars to these expensive biopharmaceuticals. Since antibody therapies may require large doses over a long period of time, robust platforms and strategies for cell line development are essential for the generation of recombinant cell lines with higher levels of expression. Here, we obtained trastuzumab-expressing CHO-K1 cells through a screening and selection strategy that combined the use of host cells pre-adapted to protein-free media and suspension culture and lentiviral vectors. The results demonstrated that the early screening strategy obtained recombinant CHO-K1 cell populations with higher enrichment of IgG-expressing cells. Moreover, the measurement of intracellular heavy chain polypeptide by flow cytometry was a useful metric to characterize the homogeneity of cell population, and our results suggest this could be used to predict the expression levels of monoclonal antibodies in early stages of cell line development. Additionally, we propose an approach using 25 cm2 T-flasks in suspension and shaking culture conditions as a screening tool to identify high producing cell lines. Finally, trastuzumab-expressing CHO-K1 clones were generated and characterized by batch culture, and preliminary results related to HER2-recognition capacity were successful. Further optimization of elements such as gene optimization, vector selection, type of amplification/selection system, cell culture media composition, in combination with this strategy will allow obtaining high producing clones.
Collapse
Affiliation(s)
- Thailin Lao-Gonzalez
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Playa, Havana, 10600 Cuba
| | - Alexi Bueno-Soler
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| | | | - Katya Sosa-Aguiar
- Immunotherapy Direction, Center of Molecular Immunology, Playa, 11600 Havana, Cuba
| | - Luis Eduardo Hinojosa-Puerta
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
- CIMAB S. A, Playa, 11600 Havana, Cuba
| | - Tays Hernandez-Garcia
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| | | | - Julio Palacios-Oliva
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| | - Tammy Boggiano-Ayo
- Process Development Direction, Center of Molecular Immunology, Playa, Havana, 11600 Cuba
| |
Collapse
|
38
|
Hilliard W, Lee KH. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Biotechnol Bioeng 2020; 118:659-675. [PMID: 33049068 DOI: 10.1002/bit.27599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
The Chinese hamster ovary (CHO) cell lines that are used to produce commercial quantities of therapeutic proteins commonly exhibit a decrease in productivity over time in culture, a phenomenon termed production instability. Random integration of the transgenes encoding the protein of interest into locations in the CHO genome that are vulnerable to genetic and epigenetic instability often causes production instability through copy number loss and silencing of expression. Several recent publications have shown that these cell line development challenges can be overcome by using site-specific integration (SSI) technology to insert the transgenes at genomic loci, often called "hotspots," that are transcriptionally permissive and have enhanced stability relative to the rest of the genome. However, extensive characterization of the CHO epigenome is needed to identify hotspots that maintain their desirable epigenetic properties in an industrial bioprocess environment and maximize transcription from a single integrated transgene copy. To this end, the epigenomes and transcriptomes of two distantly related cell lines, an industrially relevant monoclonal antibody-producing cell line and its parental CHO-K1 host, were characterized using high throughput chromosome conformation capture and RNAseq to analyze changes in the epigenome that occur during cell line development and associated changes in system-wide gene expression. In total, 10.9% of the CHO genome contained transcriptionally permissive three-dimensional chromatin structures with enhanced genetic and epigenetic stability relative to the rest of the genome. These safe harbor regions also showed good agreement with published CHO epigenome data, demonstrating that this method was suitable for finding genomic regions with epigenetic markers of active and stable gene expression. These regions significantly reduce the genomic search space when looking for CHO hotspots with widespread applicability and can guide future studies with the goal of maximizing the potential of SSI technology in industrial production CHO cell lines.
Collapse
Affiliation(s)
- William Hilliard
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
39
|
Shen CC, Lin MW, Nguyen BKT, Chang CW, Shih JR, Nguyen MTT, Chang YH, Hu YC. CRISPR-Cas13d for Gene Knockdown and Engineering of CHO Cells. ACS Synth Biol 2020; 9:2808-2818. [PMID: 32911927 DOI: 10.1021/acssynbio.0c00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chinese hamster ovary (CHO) cells are the predominant cell chassis for biopharmaceutical production. Engineering cellular pathways related to cell death, metabolism, and glycosylation in CHO cells is desired but challenging. Here, we present a novel approach that exploits CRISPR-Cas13d for gene silencing and CHO cell engineering. CRISPR-Cas13d is a burgeoning system that exploits Cas13d nuclease and guide RNA (gRNA) for RNA cleavage and gene knockdown. We first showed that CRISPR-Cas13d effectively knocked down exogenous genes in CHO cell lines (K1, DG44, and DUXB11) commonly used for recombinant protein production. We next demonstrated that CRISPR-Cas13d robustly suppressed the expression of exogenous genes and various endogenous genes involved in gene amplification, apoptosis, metabolism, and glycosylation (e.g., GS, BAK, BAX, PDK1, and FUT8) in CHO cells with efficiencies ranging from 60% to 80%, simply by transient transfection. By integrating the entire CRISPR-Cas13d system with the Sleeping Beauty system and optimal gRNA design, we further improved the knockdown efficiency and rapidly generated stable cells with ≈80%-90% knockdown. With this approach, we knocked down FUT8 expression for >90% and significantly attenuated the IgG fucosylation. These data altogether implicated the potentials of CRISPR-Cas13d for gene regulation, glycoengineering, and cell engineering of CHO cells.
Collapse
Affiliation(s)
- Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30003, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30003, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30003, Taiwan
| | - Bao Khanh Thi Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30003, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30003, Taiwan
| | | | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 72711, Vietnam
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30003, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30003, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30003, Taiwan
| |
Collapse
|
40
|
Sergeeva D, Lee GM, Nielsen LK, Grav LM. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:2546-2561. [PMID: 32835482 DOI: 10.1021/acssynbio.0c00322] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ever-growing biopharmaceutical industry relies on the production of recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. The traditional timelines of CHO cell line development can be significantly shortened by the use of targeted gene integration (TI). However, broad use of TI has been limited due to the low specific productivity (qP) of TI-generated clones. Here, we show a 10-fold increase in the qP of therapeutic glycoproteins in CHO cells through the development and optimization of a multicopy TI method. We used a recombinase-mediated cassette exchange (RMCE) platform to investigate the effect of gene copy number, 5' and 3' gene regulatory elements, and landing pad features on qP. We evaluated the limitations of multicopy expression from a single genomic site as well as multiple genomic sites and found that a transcriptional bottleneck can appear with an increase in gene dosage. We created a dual-RMCE system for simultaneous multicopy TI in two genomic sites and generated isogenic high-producing clones with qP of 12-14 pg/cell/day and product titer close to 1 g/L in fed-batch. Our study provides an extensive characterization of the multicopy TI method and elucidates the relationship between gene copy number and protein expression in mammalian cells. Moreover, it demonstrates that TI-generated CHO cells are capable of producing therapeutic proteins at levels that can support their industrial manufacture.
Collapse
Affiliation(s)
- Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane 4072, Australia
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
41
|
Evaluation of different IRES-mediated tricistronic plasmid designs for expression of an anti-PCSK9 biosimilar monoclonal antibody in CHO cells. Biotechnol Lett 2020; 42:2511-2522. [PMID: 32676798 DOI: 10.1007/s10529-020-02952-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/28/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To compare different approaches for the expression of an anti-PCSK9 biosimilar monoclonal antibody (mAb) in CHO cells using IRES-mediated tricistronic plasmid vectors combining different signal peptides, IRES elements and selection markers. RESULTS Transient transfection indicated a similar level of secreted mAb 48 h post-transfection for all constructs. However, transfections carried out with circular plasmids showed a higher expression than with linearized plasmids. After two months under selection pressure, only part of the transfected pools recovered. The cultures co-transfected using two antibiotics as selection markers for double selection did not recover. Growth, metabolism and mAb production profiles of the only part of the transfected pools recovered resulting stable pools were compared and the stable pool transfected with circular L1-LC-IRES-H7-HC-IRES-NEO plasmid was chosen for further studies, due to higher cell growth and mAb production. Critical quality attributes of the protein A-purified mAb such as purity, homogeneity, binding affinity to PCSK9, and amino acid sequence were assessed confirming the success of the approach adopted in this study. CONCLUSIONS The expression platform proposed showed to be efficient to produce a high-quality anti-PCSK9 mAb in stable CHO cell pools and provides benchmarks for fast production of different mAbs for characterization, formulation studies and pre-clinical investigation.
Collapse
|
42
|
Shin S, Kim SH, Shin SW, Grav LM, Pedersen LE, Lee JS, Lee GM. Comprehensive Analysis of Genomic Safe Harbors as Target Sites for Stable Expression of the Heterologous Gene in HEK293 Cells. ACS Synth Biol 2020; 9:1263-1269. [PMID: 32470292 DOI: 10.1021/acssynbio.0c00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human cell lines are being increasingly used as host cells to produce therapeutic glycoproteins, due to their human glycosylation machinery. In an attempt to develop a platform for generating isogenic human cell lines producing therapeutic proteins based on targeted integration, three well-known human genomic safe harbors (GSHs)-AAVS1, CCR5, and human ROSA26 loci-were evaluated with respect to the transgene expression level and stability in human embryonic kidney (HEK293) cells. Among the three GSHs, the AAVS1 locus showed the highest eGFP expression with the highest homogeneity. Transgene expression at the AAVS1 locus was sustained without selection for approximately 3 months. Furthermore, the CMV promoter showed the highest expression, followed by the EF1α, SV40, and TK promoters at the AAVS1 locus. Master cell lines were created using CRISPR/Cas9-mediated integration of the landing pad into the AAVS1 locus and were used for faster generation of recombinant cell lines that produce therapeutic proteins with recombinase-mediated cassette exchange.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sung Wook Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
43
|
Yeh CF, Lin CH, Chang HC, Tang CY, Lai PT, Hsu CH. A Microfluidic Single-Cell Cloning (SCC) Device for the Generation of Monoclonal Cells. Cells 2020; 9:cells9061482. [PMID: 32570745 PMCID: PMC7349811 DOI: 10.3390/cells9061482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Single-cell cloning (SCC) is a critical step in generating monoclonal cell lines, which are widely used as in vitro models and for producing proteins with high reproducibility for research and the production of therapeutic drugs. In monoclonal cell line generation, the development time can be shortened by validating the monoclonality of the cloned cells. However, the validation process currently requires specialized equipment that is not readily available in general biology laboratories. Here, we report a disposable SCC device, in which single cells can be isolated, validated, and expanded to form monoclonal cell colonies using conventional micropipettes and microscopes. The monoclonal cells can be selectively transferred from the SCC chip to conventional culture plates, using a tissue puncher. Using the device, we demonstrated that monoclonal colonies of actin-GFP (green fluorescent protein) plasmid-transfected A549 cells could be formed in the device within nine days and subsequently transferred to wells in plates for further expansion. This approach offers a cost-effective alternative to the use of specialized equipment for monoclonal cell generation.
Collapse
Affiliation(s)
- Chuan-Feng Yeh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-F.Y.); (C.-H.L.); (H.-C.C.); (C.-Y.T.); (P.-T.L.)
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Hui Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-F.Y.); (C.-H.L.); (H.-C.C.); (C.-Y.T.); (P.-T.L.)
- Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hao-Chen Chang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-F.Y.); (C.-H.L.); (H.-C.C.); (C.-Y.T.); (P.-T.L.)
- Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chia-Yu Tang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-F.Y.); (C.-H.L.); (H.-C.C.); (C.-Y.T.); (P.-T.L.)
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Pei-Tzu Lai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-F.Y.); (C.-H.L.); (H.-C.C.); (C.-Y.T.); (P.-T.L.)
| | - Chia-Hsien Hsu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-F.Y.); (C.-H.L.); (H.-C.C.); (C.-Y.T.); (P.-T.L.)
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan
- Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-37-246-166 (ext. 37105); Fax: +886-37-586-440
| |
Collapse
|
44
|
Angiopoietin-2-integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance. Nat Commun 2020; 11:2980. [PMID: 32532986 PMCID: PMC7293240 DOI: 10.1038/s41467-020-16795-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Proper storage of excessive dietary fat into subcutaneous adipose tissue (SAT) prevents ectopic lipid deposition-induced insulin resistance, yet the underlying mechanism remains unclear. Here, we identify angiopoietin-2 (Angpt2)–integrin α5β1 signaling as an inducer of fat uptake specifically in SAT. Adipocyte-specific deletion of Angpt2 markedly reduced fatty acid uptake and storage in SAT, leading to ectopic lipid accumulation in glucose-consuming organs including skeletal muscle and liver and to systemic insulin resistance. Mechanistically, Angpt2 activated integrin α5β1 signaling in the endothelium and triggered fatty acid transport via CD36 and FATP3 into SAT. Genetic or pharmacological inhibition of the endothelial integrin α5β1 recapitulated adipocyte-specific Angpt2 knockout phenotypes. Our findings demonstrate the critical roles of Angpt2–integrin α5β1 signaling in SAT endothelium in regulating whole-body fat distribution for metabolic health and highlight adipocyte–endothelial crosstalk as a potential target for prevention of ectopic lipid deposition-induced lipotoxicity and insulin resistance. Fat uptake and storage in subcutaneous adipose tissue (SAT) prevents ectopic fat accumulation and associated metabolic complications, however, the underlying mechanisms are incompletely understood. Here, the authors show that adipose angiopoietin-2 (Angpt2) enhances SAT size via increased endothelial fatty acid transport.
Collapse
|
45
|
Zhang Q, Jiang B, Du Z, Chasin LA. A doubly auxotrophic CHO‐K1 cell line for the production of recombinant monoclonal antibodies. Biotechnol Bioeng 2020; 117:2401-2409. [DOI: 10.1002/bit.27367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Qinghao Zhang
- Department of Biological SciencesColumbia University New York New York
| | - Bo Jiang
- Cell Line Development, Biologics Process Development & Clinical ManufacturingMerck & Co., Inc. Kenilworth New Jersey
| | - Zhimei Du
- Cell Line Development, Biologics Process Development & Clinical ManufacturingMerck & Co., Inc. Kenilworth New Jersey
| | | |
Collapse
|
46
|
Tian J, He Q, Oliveira C, Qian Y, Egan S, Xu J, Qian N, Langsdorf E, Warrack B, Aranibar N, Reily M, Borys M, Li ZJ. Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines. Eng Life Sci 2020; 20:112-125. [PMID: 32874175 PMCID: PMC7447880 DOI: 10.1002/elsc.201900124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Collapse
Affiliation(s)
- Jun Tian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Qin He
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Christopher Oliveira
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Yueming Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Susan Egan
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Jianlin Xu
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Nan‐Xin Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Erik Langsdorf
- Molecular & Cellular ScienceBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Bethanne Warrack
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Nelly Aranibar
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Reily
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Borys
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Zheng Jian Li
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| |
Collapse
|
47
|
A human expression system based on HEK293 for the stable production of recombinant erythropoietin. Sci Rep 2019; 9:16768. [PMID: 31727983 PMCID: PMC6856173 DOI: 10.1038/s41598-019-53391-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.
Collapse
|
48
|
Capella Roca B, Lao N, Barron N, Doolan P, Clynes M. An arginase-based system for selection of transfected CHO cells without the use of toxic chemicals. J Biol Chem 2019; 294:18756-18768. [PMID: 31666335 DOI: 10.1074/jbc.ra119.011162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Polyamines have essential roles in cell proliferation, DNA replication, transcription, and translation processes, with intracellular depletion of putrescine, spermidine, and spermine resulting in cellular growth arrest and eventual death. Serum-free media for CHO-K1 cells require putrescine supplementation, because these cells lack the first enzyme of the polyamine production pathway, arginase. On the basis of this phenotype, we developed an arginase-based selection system. We transfected CHO-K1 cells with a bicistronic vector co-expressing GFP and arginase and selected cells in media devoid of l-ornithine and putrescine, resulting in mixed populations stably expressing GFP. Moreover, single clones in these selective media stably expressed GFP for a total of 42 generations. Using this polyamine starvation method, we next generated recombinant CHO-K1 cells co-expressing arginase and human erythropoietin (hEPO), which also displayed stable expression and healthy growth. The hEPO-expressing clones grew in commercial media, such as BalanCD and CHO-S serum-free media (SFM)-II, as well as in a defined serum-free, putrescine-containing medium for at least 9 passages (27 generations), with a minimal decrease in hEPO titer by the end of the culture. We observed a lack of arginase activity also in several CHO cell strains (CHO-DP12, CHO-S, and DUXB11) and other mammalian cell lines, including BHK21, suggesting broader utility of this selection system. In conclusion, we have established an easy-to-apply alternative selection system that effectively generates mammalian cell clones expressing biopharmaceutically relevant or other recombinant proteins without the need for any toxic selective agents. We propose that this system is applicable to mammalian cell lines that lack arginase activity.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland; SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland.
| | - Nga Lao
- National Institute for Bioprocessing Research & Training, A94 X099 Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research & Training, A94 X099 Dublin, Ireland; School of Chemical & Bioprocessing Engineering, University College Dublin, Belfield, Dublin 4, D04V1W8, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland; SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
49
|
Dahodwala H, Kaushik P, Tejwani V, Kuo CC, Menard P, Henry M, Voldborg BG, Lewis NE, Meleady P, Sharfstein ST. Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. CURRENT RESEARCH IN BIOTECHNOLOGY 2019; 1:49-57. [PMID: 32577618 PMCID: PMC7311070 DOI: 10.1016/j.crbiot.2019.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most therapeutic monoclonal antibodies in biopharmaceutical processes are produced in Chinese hamster ovary (CHO) cells. Technological advances have rendered the selection procedure for higher producers a robust protocol. However, information on molecular mechanisms that impart the property of hyper-productivity in the final selected clones is currently lacking. In this study, an IgG-producing industrial cell line and its methotrexate (MTX)-amplified progeny cell line were analyzed using transcriptomic, proteomic, phosphoproteomic, and chromatin immunoprecipitation (ChIP) techniques. Computational prediction of transcription factor binding to the transgene cytomegalovirus (CMV) promoter by the Transcription Element Search System and upstream regulator analysis of the differential transcriptomic data suggested increased in vivo CMV promoter-cAMP response element binding protein (CREB1) interaction in the higher producing cell line. Differential nuclear proteomic analysis detected 1.3-fold less CREB1 in the nucleus of the high productivity cell line compared with the parental cell line. However, the differential abundance of multiple CREB1 phosphopeptides suggested an increase in CREB1 activity in the higher producing cell line, which was confirmed by increased association of the CMV promotor with CREB1 in the high producer cell line. Thus, we show here that the nuclear proteome and phosphoproteome have an important role in regulating final productivity of recombinant proteins from CHO cells, and that CREB1 may play a role in transcriptional enhancement. Moreover, CREB1 phosphosites may be potential targets for cell engineering for increased productivity.
Collapse
Affiliation(s)
- Hussain Dahodwala
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Prashant Kaushik
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Vijay Tejwani
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrice Menard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Bjorn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| |
Collapse
|
50
|
Bayer B, Sissolak B, Duerkop M, von Stosch M, Striedner G. The shortcomings of accurate rate estimations in cultivation processes and a solution for precise and robust process modeling. Bioprocess Biosyst Eng 2019; 43:169-178. [PMID: 31541314 PMCID: PMC6960212 DOI: 10.1007/s00449-019-02214-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
Abstract
The accurate estimation of cell growth or the substrate consumption rate is crucial for the understanding of the current state of a bioprocess. Rates unveil the actual cell status, making them valuable for quality-by-design concepts. However, in bioprocesses, the real rates are commonly not accessible due to analytical errors. We simulated Escherichia coli fed-batch fermentations, sampled at four different intervals and added five levels of noise to mimic analytical inaccuracy. We computed stepwise integral estimations with and without using moving average estimations, and smoothing spline interpolations to compare the accuracy and precision of each method to calculate the rates. We demonstrate that stepwise integration results in low accuracy and precision, especially at higher sampling frequencies. Contrary, a simple smoothing spline function displayed both the highest accuracy and precision regardless of the chosen sampling interval. Based on this, we tested three different options for substrate uptake rate estimations.
Collapse
Affiliation(s)
- B Bayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - B Sissolak
- Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria.
| | - M Duerkop
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - M von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | - G Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|