1
|
Yu X, Cao S, Deng X, Chen Y, Sun M, Zhao P, Zhang Q, Chen J, Chen JX. Enhancing early breast cancer detection with APE1-triggered oligonucleotide probes and graphene oxide: The impact of variable AP site modification on sensitivity and specificity. Talanta 2025; 287:127505. [PMID: 39862516 DOI: 10.1016/j.talanta.2024.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge. In this study, we present an innovative detection platform triggered by endogenous DNA repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1). This platform utilizes an oligonucleotide probe with variable modified AP sites (denoted as AOP) coupled with graphene oxide (GO) for quantifying miR-1246. Our in vitro experiments reveal that the proposed method employing the AOP2 probe with two AP sites exhibits exceptional selectivity and sensitivity. The method achieves a detection limit as low as 2.3 pM towards miR-1246, which is approximately 260-fold more sensitive than the enzyme-free system. RT-qPCR experiments further validate the accuracy and practicability of the AOP2-based platform. In clinical trials, our platform has successfully differentiated between BC patients and normal healthy controls. In conclusion, we have established an integrated biosensing technology for PCR-free, non-invasive liquid biopsies of miR-1246, offering a promising approach for BC diagnosis.
Collapse
Affiliation(s)
- Xuezhao Yu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China
| | - Sujian Cao
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Xuexian Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanyan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mengxu Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Pei Zhao
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China.
| | - Jun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
2
|
Mozioğlu E, Hussels M, Engel S. Determination of limit of detection (LOD) for loop-mediated isothermal amplification (LAMP) of human cytomegalovirus (hCMV) DNA. Diagn Microbiol Infect Dis 2025; 111:116567. [PMID: 39476772 DOI: 10.1016/j.diagmicrobio.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024]
Abstract
The importance of cytomegalovirus in clinical practice remains and samples are monitored for CMV DNA titers to predict the development of disease. LAMP assays have gained increasing interest in the diagnosis of many pathogens since they do not require thermocycling, reduce the complexity of the required instrumentation as well as providing sensitivity and rapidity. So far, very few studies on CMV detection by LAMP have been reported in the literature and therefore the performance of LAMP CMV assays needs to be further characterized. In a set-up for biometrological evaluation of the suitability of the LAMP assay for CMV diagnosis, a LAMP assay was performed on a total of 192 samples with 24 replicates of 8 different hCMV DNA concentrations. The LOD was calculated as 39.09 copy/reaction (25.33 copy/reaction to 65.84 copy/reaction) with 95 % confidence, representing a range that is suitable for qualitative detection. Furthermore, the lower limit of quantification was estimated at approximately 100 copy/reaction. The LOD and LLOQ values obtained in this first study to assess the biometrological relevance of LAMP CMV tests are consistent when compared to studies published before. However further study under different conditions is needed for the use of LAMP tests in clinical applications.
Collapse
Affiliation(s)
- Erkan Mozioğlu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, İstanbul, Türkiye; Bioanalysis Laboratory, National Metrology Institute, The Scientific and Technological Research Council of Türkiye (TÜBİTAK - UME), Kocaeli, Türkiye.
| | - Martin Hussels
- Flow Cytometry and Microscopy Laboratory, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Susanne Engel
- Flow Cytometry and Microscopy Laboratory, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| |
Collapse
|
3
|
Chen Q, Zhang LJ, Song TY, Ge JQ. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and visual detection of Anguillid herpesvirus 1. J Virol Methods 2024; 330:115014. [PMID: 39214419 DOI: 10.1016/j.jviromet.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
China has the largest aquaculture eel production in the world. High-density cultivation pattern often results in an outbreak of epidemic diseases. Since the 1990s, eel "mucus sloughing and hemorrhagic septicemia disease" was often broke out in China, and brought huge economic losses to eel breeders. Anguillid herpesvirus 1 (AngHV) was detected and isolated from the diseased eel, and proved to be the pathogen of the disease. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed for rapid, sensitive, and specific detection of AngHV. A set of six primers targeting the ORF51 gene of AngHV was designed, which could effectively detect purified AngHV virions, AngHV-infected cells, or eel tissue samples. The suitable reaction temperature is 63℃, and the reaction time is 40 min. There was no cross-reaction with eel and other fish viruses, including Infectious pancreatic necrosis virus (IPNV), Marine birnavirus (MABV), Rana grylio virus (RGV), Cyprinid herpesvirus 3 (CyHV-3), and Eel iridovirus (EIV). The lower detection limit of the AngHV LAMP assay is 10 copies of AngHV genome DNA, which is at least 100 times more sensitive than conventional PCR in detecting AngHV. The assay could effectively detect AngHV from collected samples with typical clinical symptoms of AngHV infection. It suggested that the LAMP assay could be used in specific detection of AngHV and has great potential for early diagnosis of AngHV infection in the farm.
Collapse
Affiliation(s)
- Qiang Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Li-Juan Zhang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Tie-Ying Song
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jun-Qing Ge
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
| |
Collapse
|
4
|
Huang S, Wang S, Wang T, Song H, Guo Y, Xiong X, Wang L. Validation of a Novel Strategy for Fluorescence Quenching for a Self-Quenching Fluorogenic Probe and Its Application for Visual Loop-Mediated Isothermal Amplification Detection During Food Safety Analysis. Foods 2024; 13:3816. [PMID: 39682888 DOI: 10.3390/foods13233816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The self-quenching fluorogenic probe facilitates precise identification of LAMP (loop-mediated isothermal amplification) amplicons, unaffected by non-specific products resulting from primer dimers. However, low quenching efficiency by surrounding nucleobases leads to high background signal, posing significant challenges for visual inspection with the naked eye. The present study aims to identify an oligonucleotide sequence that is complementary to the self-quenching fluorogenic probe, and to employ the fluorescence super-quenching mechanism of double-stranded DNA to establish a visualization system for the LAMP assay. The results indicated that the incorporation of a sequence fully complementary to the probe could significantly reduce the system's background fluorescence (p < 0.05). When the melting temperature exceeds room temperature, truncating the complementary sequence from the 3' end does not compromise the probe's quenching efficiency. The LAMP visualization system, using a 10-13-base complementary sequence of the loop primer-based probe, could effectively minimize background fluorescence and yield straightforward visual results post-reaction. Applied to rainbow trout and Atlantic salmon detection, the system detected 1 pg DNA in a closed-tube format. In conclusion, a suitable complementary sequence can reduce the background fluorescence of the self-quenching fluorogenic probe. Employing this sequence alongside the self-quenching fluorogenic probe to develop a low-background fluorescence LAMP system demonstrates great potential for successful visual detection and holds considerable promotional merit.
Collapse
Affiliation(s)
- Sisi Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Tianlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hongwei Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yan Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Castellanos LR, Chaffee R, Kumar H, Mezgebo BK, Kassau P, Peirano G, Pitout JDD, Kim K, Pillai DR. A novel machine-learning aided platform for rapid detection of urine ESBLs and carbapenemases: URECA-LAMP. J Clin Microbiol 2024; 62:e0086924. [PMID: 39445836 PMCID: PMC11559160 DOI: 10.1128/jcm.00869-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
Pathogenic gram-negative bacteria frequently carry genes encoding extended-spectrum beta-lactamases (ESBL) and/or carbapenemases. Of great concern are carbapenem resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite the need for rapid AMR diagnostics globally, current molecular detection methods often require expensive equipment and trained personnel. Here, we present a novel machine-learning-aided platform for the rapid detection of ESBLs and carbapenemases using Loop-mediated isothermal Amplification (LAMP). The platform consists of (i) an affordable device for sample lysis, LAMP amplification, and visual fluorometric detection; (ii) a LAMP screening panel to detect the most common ESBL and carbapenemase genes; and (iii) a smartphone application for automated interpretation of results. Validation studies on clinical isolates and urine samples demonstrated percent positive and negative agreements above 95% for all targets. Accuracy, precision, and recall values of the machine learning model deployed in the smartphone application were all above 92%. Providing a simplified workflow, minimal operation training, and results in less than an hour, this study demonstrated the platform's feasibility for near-patient testing in resource-limited settings.IMPORTANCEExtended-spectrum beta-lactamases (ESBL) and carbapenemases confer resistance to third-generation cephalosporins and carbapenems in pathogenic Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Conventional antimicrobial susceptibility testing is based on phenotypic methods, and results can take several days to be obtained. Current genotypic detection methods can be rapid but require expensive equipment and trained personnel. In this study, we present a novel machine learning-aided platform for the rapid detection of ESBLs and carbapenemases using Loop-mediated isothermal Amplification (LAMP). The validation of the platform demonstrated percent positive and negative agreements above 95% for all targets. The newly developed platform provided a simplified workflow, minimal technical training, and results in less than an hour. This study demonstrated the platform's feasibility for rapid testing of ESBL and carbapenemases in bacteria and urine specimens.
Collapse
Affiliation(s)
- L. Ricardo Castellanos
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Chaffee
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore (IIT Indore), Indore, Madhya Pradesh, India
| | - Biniyam Kahsay Mezgebo
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pawulos Kassau
- Amhara Public Health Institute, Amhara Bahir Dar, Ethiopia
| | - Gisele Peirano
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Johann D. D. Pitout
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Dylan R. Pillai
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Gomes Torres ACMB, Mathias C, Baal SCS, Kohler AF, Cunha ML, Blanes L. Advancements in LAMP-Based Diagnostics: Emerging Techniques and Applications in Viral Detection with a Focus on Herpesviruses in Transplant Patient Management. Int J Mol Sci 2024; 25:11506. [PMID: 39519059 PMCID: PMC11546353 DOI: 10.3390/ijms252111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a highly effective molecular diagnostic technique, particularly advantageous for point-of-care (POC) settings. In recent years, LAMP has expanded to include various adaptations such as DARQ-LAMP, QUASR, FLOS-LAMP, displacement probes and molecular beacons. These methods enable multiplex detection of multiple targets in a single reaction, enhancing cost-effectiveness and diagnostic efficiency. Consequently, LAMP has gained significant traction in diagnosing diverse viruses, notably during the COVID-19 pandemic. However, its application for detecting Herpesviridae remains relatively unexplored. This group of viruses is of particular interest due to their latency and potential reactivation, crucial for immunocompromised patients, including organ and hematopoietic stem cell transplant recipients. This review highlights recent advancements in LAMP for virus diagnosis and explores current research trends and future prospects, emphasizing the detection challenges posed by Herpesviridae.
Collapse
Affiliation(s)
| | - Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Mylena Lemes Cunha
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil;
| |
Collapse
|
7
|
Ajjampur SSR, Mankad S, Manuel M, Ruth R, Prabakaran AD, Janagaraj V, David T, Joseph P, Rupali P. Evaluation of Molecular Assays for Diagnosis of Amoebic Liver Abscess in India with Bayesian Latent Class Analysis. Am J Trop Med Hyg 2024; 111:791-795. [PMID: 39043162 PMCID: PMC11448513 DOI: 10.4269/ajtmh.23-0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Amoebic liver abscess (ALA) is the most common extra-intestinal complication of Entamoeba histolytica, accounting for 50,000 deaths annually, and is endemic in South Asia. Diagnosis based on microscopic examination is insensitive, and serological assays are not discerning of current infections in endemic settings with high exposure. For a rapid and confirmatory laboratory diagnosis of ALA, the performance of a polymerase chain reaction (PCR), quantitative real time PCR (qPCR), digital droplet PCR (ddPCR), and a loop-mediated isothermal amplification (LAMP) assay that detects E. histolytica DNA in liver abscess pus, and a lectin antigen detection ELISA were evaluated against clinical diagnosis (based on predefined criteria) as the gold standard. Owing to the lack of a laboratory gold standard, a Bayesian latent class analysis approach was also used to determine sensitivity and specificity of these assays. In the latent class analysis, qPCR and ddPCR showed the highest sensitivity (98% and 98.1%) and specificity (both 96.6%), and although clinical diagnosis had a comparable sensitivity to qPCR and ddPCR (95.2%), poorer specificity (64.3%) was seen. Kappa agreement analysis showed that qPCR and ddPCR had a perfect agreement of 1 followed by an agreement of 0.76 (95% CI: 0.64-0.88) with PCR. Considering the performance characteristics and relative ease of setting up qPCR as well as the wide availability of qPCR equipment needed, this would be the most optimal assay for rapid, confirmatory, molecular diagnosis of ALA in the tertiary care laboratory setting in India, whereas further optimization of LAMP or antibody-based detection is required for use at smaller or secondary hospitals.
Collapse
Affiliation(s)
- Sitara Swarna Rao Ajjampur
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Sanket Mankad
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - Malathi Manuel
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Renita Ruth
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Ashok D. Prabakaran
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Venkateshprabhu Janagaraj
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Thambu David
- Department of Medicine, Christian Medical College, Vellore, India
| | - Philip Joseph
- Department of Hepatopancreatico Biliary Surgery, Christian Medical College, Vellore, India
| | - Priscilla Rupali
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| |
Collapse
|
8
|
Dąbrowska J, Groblewska M, Bendykowska M, Sikorski M, Gromadzka G. Effective Laboratory Diagnosis of Parasitic Infections of the Gastrointestinal Tract: Where, When, How, and What Should We Look For? Diagnostics (Basel) 2024; 14:2148. [PMID: 39410552 PMCID: PMC11475984 DOI: 10.3390/diagnostics14192148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
(1) Introduction: Gastrointestinal parasites (GIPs) are one of the most common causes of disease in the world. Clinical diagnosis of most parasitic diseases is difficult because they do not produce characteristic symptoms. (2) Methods: The PubMed, Science Direct, and Wiley Online Library medical databases were reviewed using the following phrases: "parasitic infections and diagnostics", "intestinal parasites", "gastrointestinal parasites", "parasitic infections and diagnostics", and their combinations. (3) Results and Conclusions: Correct diagnosis of GIP involves determining the presence of a parasite and establishing a relationship between parasite invasion and disease symptoms. The diagnostic process should consider the possibility of the coexistence of infection with several parasites at the same time. In such a situation, diagnostics should be planned with consideration of their frequency in each population and the local epidemiological situation. The importance of the proper interpretation of laboratory test results, based on good knowledge of the biology of the parasite, should be emphasized. The presence of the parasite may not be causally related to the disease symptoms. Due to wide access to laboratories, patients often decide to perform tests themselves without clinical justification. Research is carried out using various methods which are often unreliable. This review briefly covers current laboratory methods for diagnosing the most common gastrointestinal parasitic diseases in Europe. In particular, we provide useful information on the following aspects: (i) what to look for and where to look for it (suitability of feces, blood, duodenal contents, material taken from endoscopy or biopsy, tissue samples, and locations for searching for eggs, cysts, parasites, parasite genetic material, and characteristics of immune responses indicating parasitic infections); (ii) when material should be collected for diagnosis and/or to check the effectiveness of treatment; (iii) how-that is, by what methods-laboratory diagnostics should be carried out. Here, the advantages and disadvantages of direct and indirect methods of detecting parasites will be discussed. False-positive or false-negative results are a problem facing many tests. Available tests have different sensitivities and specificities. Therefore, especially in doubtful situations, tests for the presence of the pathogen should be performed using various available methods. It is important that the methods used make it possible to distinguish an active infection from a past infection. Finally, we present laboratory "case reports", in which we will discuss the diagnostic procedure that allows for the successful identification of parasites. Additionally, we briefly present the possibilities of using artificial intelligence to improve the effectiveness of diagnosing parasitic diseases.
Collapse
Affiliation(s)
- Julia Dąbrowska
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Maria Groblewska
- Student Scientific Association, Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Maria Bendykowska
- Immunis Student Scientific Association, Cardinal Stefan Wyszynski University, ul. Dewajtis 5, 01-815 Warsaw, Poland
| | - Maksymilian Sikorski
- Immunis Student Scientific Association, Cardinal Stefan Wyszynski University, ul. Dewajtis 5, 01-815 Warsaw, Poland
| | - Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
9
|
Zhao Y, Qiu J, Jiang P, Wang M, Sun M, Fan G, Yang N, Huang N, Han Y, Han L, Zhang Y. RNA extraction-free reduced graphene oxide-based RT-LAMP fluorescence assay for highly sensitive SARS-CoV-2 detection. Talanta 2024; 277:126413. [PMID: 38876035 DOI: 10.1016/j.talanta.2024.126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Infectious diseases have always been a seriously endanger for human life and health. A rapid, accurate and ultra-sensitive virus nucleic acid detection is still a challenge to deal with infectious diseases. Here, a RNA extraction-free reduced graphene oxide-based reverse transcription-loop-mediated isothermal amplification (EF-G-RT-LAMP) fluorescence assay was developed to achieve high-throughput, rapid and ultra-sensitive SARS-CoV-2 RNA detection. The whole detection process only took ∼36 min. The EF-G-RT-LAMP assay achieves a detection limit of 0.6 copies μL-1 with a wide dynamic range of aM-pM. A large number (up to 384) of samples can be detected simultaneously. Simulated detection of the COVID-19 pseudovirus and clinical samples in nasopharyngeal swabs demonstrated a high-throughput, rapid and ultra-sensitive practical detection capability of the EF-G-RT-LAMP assay. The results proved that the assay would be used as a rapid, easy-to-implement approach for epidemiologic diagnosis and could be extended to other nucleic acid detections.
Collapse
Affiliation(s)
- Yujuan Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Peiqing Jiang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Min Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Guangpeng Fan
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Ningkai Yang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Ning Huang
- Shandong Lifei Biological Group, Qingdao, 266000, China
| | - Yunrui Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; School of Integrated Circuits, Shandong University, Jinan, Shandong, 250100, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; School of Integrated Circuits, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
10
|
Alfahl Z, Biggins S, Higgins O, Chueiri A, Smith TJ, Morris D, O'Dwyer J, Hynds PD, Burke LP, O’Connor L. A rapid on-site loop-mediated isothermal amplification technology as an early warning system for the detection of Shiga toxin-producing Escherichia coli in water. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001485. [PMID: 39109421 PMCID: PMC11304963 DOI: 10.1099/mic.0.001485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.
Collapse
Affiliation(s)
- Zina Alfahl
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Sean Biggins
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Owen Higgins
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Alexandra Chueiri
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Terry J. Smith
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland
| | - Paul D. Hynds
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Liam P. Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O’Connor
- Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
- Molecular Diagnostics Research Group, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Lee JE, Kim SA, Chang JY, Mun H, Shim WB. A molecular beacon design for a colorimetric loop-mediated isothermal amplification assay. Anal Bioanal Chem 2024; 416:4029-4038. [PMID: 38829382 DOI: 10.1007/s00216-024-05342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
In this study, a molecular beacon (MB) was designed for colorimetric loop-mediated isothermal amplification (cLAMP). The length of complementary bases on the MB, guanine and cytosine content (GC content), and hybridization sites of complementary bases were investigated as key factors affecting the design of the MB. We designed MBs consisting of 10, 15, and 20 complementary bases located at both ends of the HRPzyme. In the case of the long dumbbell DNA structure amplified from the hlyA gene of Listeria monocytogenes, possessing a flat region (F1c-B1) of 61 base pairs (bp), an MB was designed to intercalate into the flat region between the F1c and B1 regions of the LAMP amplicons. In the case of the short dumbbell DNA structure amplified from the bcfD gene of Salmonella species possessing a flat region (F1c-B1) length of 6 bp, another MB was designed to intercalate into the LoopF or LoopB regions of the LAMP amplicons. The results revealed that the hybridization site of the MB on the LAMP amplicons was not crucial in designing the MB, but the GC content was an important factor. The highest hybridization efficiencies for LAMP amplicons were obtained from hlyA gene-specific and bcfD gene-specific MBs containing 20- and 15-base complementary sequences, respectively, which exhibited the highest GC content. Therefore, designing MBs with a high GC content is an effective solution to overcome the low hybridization efficiency of cLAMP assays. The results obtained can be used as primary data for designing MBs to improve cLAMP accessibility.
Collapse
Affiliation(s)
- Jeong-Eun Lee
- Institute of Smart Farm Research Center, Gyeongsang National University, Jinju, 52828, Gyeongnam, Korea
| | - Sol-A Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju, 52834, Gyeongnam, Korea
| | - Ji-Yoon Chang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Gyeongnam, Korea
- Division of Food Science and Technology, Gyeongsang National University, Jinju, 52828, Gyeongnam, Korea
| | - Hyoyoung Mun
- Apteasy MJ Inc., BI Center, 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Korea
| | - Won-Bo Shim
- Institute of Smart Farm Research Center, Gyeongsang National University, Jinju, 52828, Gyeongnam, Korea.
- Division of Food Science and Technology, Gyeongsang National University, Jinju, 52828, Gyeongnam, Korea.
| |
Collapse
|
12
|
Hossain T, Lungu C, de Schrijver S, Kuali M, Crespo R, Reddy N, Ngubane A, Kan TW, Reddy K, Rao S, Palstra RJ, Madlala P, Ndung'u T, Mahmoudi T. Specific quantification of inducible HIV-1 reservoir by RT-LAMP. COMMUNICATIONS MEDICINE 2024; 4:123. [PMID: 38918506 PMCID: PMC11199587 DOI: 10.1038/s43856-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Strategies toward HIV-1 cure aim to clear, inactivate, reduce, or immunologically control the virus from a pool of latently infected cells such that combination antiretroviral therapy (cART) can be safely interrupted. In order to assess the impact of any putative curative interventions on the size and inducibility of the latent HIV-1 reservoir, robust and scalable assays are needed to precisely quantify the frequency of infected cells containing inducible HIV-1. METHODS We developed Specific Quantification of Inducible HIV-1 by RT-LAMP (SQuHIVLa), leveraging the high sensitivity and specificity of RT-LAMP, performed in a single reaction, to detect and quantify cells expressing tat/rev HIV-1 multiply spliced RNA (msRNA) upon activation. The LAMP primer/probe used in SQuHIVLa was designed to exclusively detect HIV-1 tat/rev msRNA and adapted for different HIV-1 subtypes. RESULTS Using SQuHIVLa, we successfully quantify the inducible viral reservoir in CD4+ T cells from people living with HIV-1 subtypes B and C on cART. The assay demonstrates high sensitivity, specificity, and reproducibility. CONCLUSIONS SQuHIVLa offers a high throughput, scalable, and specific HIV-1 reservoir quantification tool that is amenable to resource-limited settings. This assay poses remarkable potential in facilitating the evaluation of potential interventional strategies toward achieving HIV-1 cure.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cynthia Lungu
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sten de Schrijver
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mamokoena Kuali
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Reddy
- Africa Health Research Institute, Durban, South Africa
| | - Ayanda Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Tsung Wai Kan
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert-Jan Palstra
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paradise Madlala
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Crego-Vicente B, del Olmo MD, Muro A, Fernández-Soto P. Multiplexing LAMP Assays: A Methodological Review and Diagnostic Application. Int J Mol Sci 2024; 25:6374. [PMID: 38928080 PMCID: PMC11203869 DOI: 10.3390/ijms25126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The loop-mediated isothermal amplification (LAMP) technique is a great alternative to PCR-based methods, as it is fast, easy to use and works with high sensitivity and specificity without the need for expensive instruments. However, one of the limitations of LAMP is difficulty in achieving the simultaneous detection of several targets in a single tube, as the methodologies that allow this rely on fluorogenic probes containing specific target sequences, complicating their adaptation and the optimization of assays. Here, we summarize different methods for the development of multiplex LAMP assays based on sequence-specific detection, illustrated with a schematic representation of the technique, and evaluate their practical application based on the real-time detection and quantification of results, the possibility to visualize the results at a glance, the prior stabilization of reaction components, promoting the point-of-care use, the maximum number of specific targets amplified, and the validation of the technique in clinical samples. The various LAMP multiplexing methodologies differ in their operating conditions and mechanism. Each methodology has its advantages and disadvantages, and the choice among them will depend on specific application interests.
Collapse
Affiliation(s)
| | | | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (M.D.d.O.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (M.D.d.O.)
| |
Collapse
|
14
|
Batuer M, Yuan Y, Yu M, Meng C. Establishment and evaluation of a new fluorescent probe method based on loop-mediated isothermal amplification for the detection of Mycobacterium tuberculosis complex. LUMINESCENCE 2024; 39:e4795. [PMID: 38899381 DOI: 10.1002/bio.4795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
We aimed to develop a novel diagnostic method called multiplex fluorescence of loop primer upon self-dequenching loop-mediated isothermal amplification (mFLOS-LAMP) for the rapid detection of Mycobacterium tuberculosis complex (MTBC). A set of specific primers was designed to target the detection of IS1081 and IS6110 genes, which are insertion sequences within the MTBC. The 110 sputum specimens collected were assessed using the established mFLOS-LAMP method, multiplex polymerase chain reaction, Xpert MTB/RIF, and smear microscopy. The optimal reaction temperature and duration for mFLOS-LAMP were determined to be 65°C and 30 min, respectively, by optimizing the entire system. The detection sensitivity of mFLOS-LAMP was 6.0 × 101 CFU/mL, by Bacillus Calmette-Guerin, and the mFLOS-LAMP sensitivity of M. tuberculosis H37Rv genomic DNA was 500 fg, and the specificity was 100%. The sensitivity of mFLOS-LAMP was 94.2% and the specificity was 96.6%, when Xpert MTB/RIF was used as the reference method. There was no statistically significant difference in their detection rate (χ2 = 0, P = 1.000), and the consistency was good (kappa = 0.909, P < 0.001). The receiver operating characteristic analysis yielded the maximum area under the curve of 0.954. The mFLOS-LAMP method demonstrated high sensitivity and specificity, allowing for swift and accurate detection of MTBC.
Collapse
Affiliation(s)
- Mireguli Batuer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Yuan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mengsi Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cunren Meng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
16
|
Selva Sharma A, Lee NY. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: A comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coord Chem Rev 2024; 509:215769. [DOI: 10.1016/j.ccr.2024.215769] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Park SY, Sivakumar R, Lee NY. D-Glucose-Mediated Gold Nanoparticle Fabrication for Colorimetric Detection of Foodborne Pathogens. BIOSENSORS 2024; 14:284. [PMID: 38920588 PMCID: PMC11202049 DOI: 10.3390/bios14060284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Gold nanoparticle (AuNP) fabrication via the oxidation of D-glucose is applied for detecting two foodborne pathogens, Enterococcus faecium (E. faecium) and Staphylococcus aureus (S. aureus). D-glucose is used as a reducing agent due to its oxidation to gluconic acid by sodium hydroxide (NaOH), resulting in the formation of AuNPs. Based on this mechanism, we develop AuNP-based colorimetric detection in conjunction with loop-mediated isothermal amplification (LAMP) for accurately identifying the infectious bacteria. Here, Au+ ions bind to the base of double-stranded DNA. In the presence of D-glucose and NaOH, the LAMP amplicon-Au+ complex maintains its bound state at 65 °C for 10 min while it is reduced to AuNPs in a dispersed form, exhibiting a red color. We aimed to pre-mix D-glucose with LAMP reagents before amplification and induce successful colorimetry without inhibiting amplification to simplify the experimental process and decrease the reaction time. Therefore, the entire process, including LAMP and colorimetric detection, is accomplished in approximately 1 h. The limit of detection of E. faecium and S. aureus is confirmed using the introduced method as 101 CFU/mL and 100 fg/μL, respectively. We expect that colorimetric detection using D-glucose-mediated AuNP synthesis offers an application for simple and immediate molecular diagnosis.
Collapse
Affiliation(s)
| | | | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.Y.P.); (R.S.)
| |
Collapse
|
18
|
Yang Y, Xue H, Tang Y, Tao W, Wang Y, Guan M, Fei Y, Wang S, Wang L, Xiong X. Development of a one-pot and sequence-specific LAMP assay based on the self-quenching probe integrated by the complementary oligonucleotide for an enhanced fluorescence quenching. Food Chem 2024; 441:138354. [PMID: 38183726 DOI: 10.1016/j.foodchem.2024.138354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Single-modified fluorogenic primer (Sfp) enables accurate identification of LAMP amplicons without being affected by non-specific products. However, the fluorescence self-quenching by nucleobases for Sfp is generally of low efficiency, and the high background signal makes it a great challenge to achieve visual inspection with naked eyes. In the present study, the oligonucleotide (Ao) complementary to Sfp was designed, which would hybridize to Sfp and dramatically heighten the quenching effect, leading to a low background signal in negative reaction. Instead, for positive reaction, Sfp is incorporated into the double-stranded amplicons, resulting in dequenching and consequently, enhanced fluorescence. The detection scheme can be further improved by a dual-color fluorescence strategy, allowing visual detection of 1 pg rainbow trout DNA in a closed-tube format within 30 min. Therefore, our LAMP-Ao-Sfp assay represents a useful tool for rapid and sensitive detection, and can serve as a reliable method for on-site detection in low-resource settings.
Collapse
Affiliation(s)
- Ying Yang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Yalin Tang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenjia Tao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yaru Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Mingyue Guan
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
19
|
Costa-Ribeiro A, Lamas A, Garrido-Maestu A. Evaluating Commercial Loop-Mediated Isothermal Amplification Master Mixes for Enhanced Detection of Foodborne Pathogens. Foods 2024; 13:1635. [PMID: 38890864 PMCID: PMC11172173 DOI: 10.3390/foods13111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Loop-mediated isothermal amplification, LAMP, is nowadays the most popular isothermal nucleic acid amplification technique, and as such, several commercial, ready-to-use master mixes have flourished. Unfortunately, independent studies to determine their performance are limited. The current study performed an independent evaluation of the existing ready-to-use commercial LAMP master mixes WarmStart® LAMP Kit, LavaLAMP™ DNA Master Mix, Saphir Bst Turbo GreenMaster, OptiGene Fast Master Mix ISO-004, and SynLAMP Mix. To reduce bias, three different genes, namely ttr (Salmonella spp.), rfbE (E. coli O157), and hly (Listeria monocytogenes), were targeted. The comparison was based on amplification speed, performance with decreasing DNA concentrations, and the effect of five typical LAMP reaction additives (betaine, DMSO, pullulan, TMAC, and GuHCl). Significant differences were observed among the different master mixes. OptiGene provided the fastest amplification and showed less detrimental effects associated with the supplements evaluated. Out of the chemicals tested, pullulan provided the best results in terms of amplification speed. It is noteworthy that the different additives impacted the master mixes differently. Overall, the current study provides insights into the performance of commercial LAMP master mixes, which can be of value for the scientific community to better select appropriate reagents when developing new methods.
Collapse
Affiliation(s)
- Ana Costa-Ribeiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, Veterinary School, Campus Terra, University of Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- Laboratory of Microbiology and Technology of Marine Products (MicroTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
20
|
Jang WS, Park S, Bae JH, Yoon SY, Lim CS, Cho MC. Development of a multiplex Loop-Mediated Isothermal Amplification (LAMP) for the diagnosis of bacterial periprosthetic joint infection. PLoS One 2024; 19:e0302783. [PMID: 38753660 PMCID: PMC11098349 DOI: 10.1371/journal.pone.0302783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is one of the most serious and debilitating complications that can occur after total joint arthroplasty. Therefore, early diagnosis and appropriate treatment are important for a good prognosis. Recently, molecular diagnostic methods have been widely used to detect the causative microorganisms of PJI sensitively and rapidly. The Multiplex Loop-Mediated Isothermal Amplification (LAMP) method eliminates the complex temperature cycling and delays caused by temperature transitions seen in polymerase chain reaction (PCR) methods, making it faster and easier to perform compared to PCR-based assays. Therefore, this study developed a multiplex LAMP assay for diagnosing bacterial PJI using LAMP technology and evaluated its analytical and clinical performance. METHODS We developed a multiplex LAMP assay for the detection of five bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa, and Escherichia coli, frequently observed to be the causative agents of PJI. The method of analytical sensitivity and cross-reactivity were determined by spiking standard strains into the joint synovial fluid. The analytical sensitivity of the multiplex LAMP assay was compared with that of a quantitative real-time PCR (qPCR) assay. Clinical performance was evaluated using 20 joint synovial fluid samples collected from patients suspected of having bacterial PJI. RESULTS The analytical sensitivity of the gram-positive bacterial multiplex LAMP assay and qPCR were 105/104 CFU/mL, 103/103 CFU/mL, and 105/104 CFU/mL against S. agalactiae, S. epidermidis, and S. aureus, respectively. For P. aeruginosa and E. coli, the analytical sensitivity of the multiplex LAMP and qPCR assays were 105/104 and 106/104 CFU/mL, respectively. The multiplex LAMP assay detects target bacteria without cross-reacting with other bacteria, and exhibited 100% sensitivity and specificity in clinical performance evaluation. CONCLUSIONS This multiplex LAMP assay can rapidly detect five high-prevalence bacterial species causing bacterial PJI, with excellent sensitivity and specificity, in less than 1 h, and it may be useful for the early diagnosis of PJI.
Collapse
Affiliation(s)
- Woong Sik Jang
- Department of Emergency Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Young Yoon
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Chul Cho
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Xu Y, Li M, Lin M, Lv Y, Cui D, Wang Y, Xie J. A Multiplex Fluorescence of Loop Primer Upon Self-Dequenching Loop-Mediated Isothermal Amplification Assay for the Detection of Epstein-Barr Virus and Human Parvovirus B19 in Clinical Transplant Samples. Viral Immunol 2024; 37:177-185. [PMID: 38625025 DOI: 10.1089/vim.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Viral infections are major causes of mortality in solid-organ and hematopoietic stem cell transplant recipients. Epstein-Barr virus (EBV) and Parvovirus B19 (B19V) are among the common viral infections after transplantation and were recommended for increased screening in relevant guidelines. Therefore, the development of rapid, specific, and cost-effective diagnostic methods for EBV and B19V is of paramount importance. We applied Fluorescence of Loop Primer Upon Self-Dequenching Loop-mediated Isothermal Amplification (FLOS-LAMP) for the first time to develop a novel multiplex assay for the detection of EBV and B19V; the fluorophore attached to the probe are self-quenched in unbound state. After binding to the dumbbell-shaped DNA target, the fluorophore is dequenched, resulting in fluorescence development. The novel multiplex FLOS-LAMP assay was optimized by testing various ratios of primer sets. This novel assay, with great specificity, did not cross-react with the common virus. For the detection of EBV and B19V, the limits of detection could reach 969 and 798 copies/μL, respectively, and the assay could be completed within 25 min. Applying this novel assay to detect 200 clinical transplant individuals indicated that the novel assay had high specificity and good sensitivity. We developed multiplex FLOS-LAMP assay for the detection of EBV and B19V, which has the potential to become an important tool for clinical transplant patient screening.
Collapse
Affiliation(s)
- Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miaomiao Li
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengjiao Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongjun Wang
- Key Laboratory of Blood Safety Research of Zhejiang Province, Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Mondal R, Shaw S, Mandal P, Dam P, Mandal AK. Recent advances in the biosensors application for reviving infectious disease management in silkworm model: a new way to combat microbial pathogens. Arch Microbiol 2024; 206:206. [PMID: 38575737 DOI: 10.1007/s00203-024-03933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Silkworms are an essential economic insect but are susceptible to diseases during rearing, leading to yearly losses in cocoon production. While chemical control is currently the primary method to reduce disease incidences, its frequent use can result in loss of susceptibility to pathogens and, ultimately, antibiotic resistance. To effectively prevent or control disease, growers must accurately, sensitively, and quickly detect causal pathogens to determine the best management strategies. Accurate recognition of diseased silkworms can prevent pathogen transmission and reduce cocoon loss. Different pathogen detection methods have been developed to achieve this objective, but they need more precision, specificity, consistency, and promptness and are generally unsuitable for in-situ analysis. Therefore, detecting silkworm diseases under rearing conditions is still an unsolved problem. As a consequence of this, there is an enormous interest in the development of biosensing systems for the early and precise identification of pathogens. There is also significant room for improvement in translating novel biosensor techniques to identify silkworm pathogens. This study explores the types of silkworm diseases, their symptoms, and their causal microorganisms. Moreover, we compare the traditional approaches used in silkworm disease diagnostics along with the latest sensing technologies, with a precise emphasis on lateral flow assay-based biosensors that can detect and manage silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Shubhajit Shaw
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Pankaj Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India.
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India.
| |
Collapse
|
23
|
Ngoc LTN, Lee YC. Current Trends in RNA Virus Detection via Nucleic Acid Isothermal Amplification-Based Platforms. BIOSENSORS 2024; 14:97. [PMID: 38392016 PMCID: PMC10886876 DOI: 10.3390/bios14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Ribonucleic acid (RNA) viruses are one of the major classes of pathogens that cause human diseases. The conventional method to detect RNA viruses is real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), but it has some limitations. It is expensive and time-consuming, with infrastructure and trained personnel requirements. Its high throughput requires sophisticated automation and large-scale infrastructure. Isothermal amplification methods have been explored as an alternative to address these challenges. These methods are rapid, user-friendly, low-cost, can be performed in less specialized settings, and are highly accurate for detecting RNA viruses. Microfluidic technology provides an ideal platform for performing virus diagnostic tests, including sample preparation, immunoassays, and nucleic acid-based assays. Among these techniques, nucleic acid isothermal amplification methods have been widely integrated with microfluidic platforms for RNA virus detection owing to their simplicity, sensitivity, selectivity, and short analysis time. This review summarizes some common isothermal amplification methods for RNA viruses. It also describes commercialized devices and kits that use isothermal amplification techniques for SARS-CoV-2 detection. Furthermore, the most recent applications of isothermal amplification-based microfluidic platforms for RNA virus detection are discussed in this article.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
24
|
Chan TTY, Chow FWN, Fung J, Cheng FKK, Lo GCS, Tsang CC, Luk HKH, Wong ACP, He Z, Aw-Yong KL, Liu X, Yuen KY, Woo PCY, Lau SKP. A sensitive and simple RT-LAMP assay for sarbecovirus screening in bats. Microbiol Spectr 2023; 11:e0259123. [PMID: 37971222 PMCID: PMC10715088 DOI: 10.1128/spectrum.02591-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE We report the application of a colorimetric and fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to facilitate mass screening for sarbecoviruses in bats. The assay was evaluated using a total of 838 oral and alimentary samples from bats and demonstrated comparable sensitivity and specificity to quantitative reverse transcription PCR (qRT-PCR), with a simple setup. The addition of SYTO9, a fluorescent nucleic acid stain, also allows for quantitative analysis. The scalability and simplicity of the assay are believed to contribute to improving preparedness for detecting emerging coronaviruses by applying it to field studies and surveillance.
Collapse
Affiliation(s)
- Tony Tat-Yin Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Joshua Fung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Flora Ka-Kei Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - George Chi-Shing Lo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Hayes Kam-Hei Luk
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonio Cheuk-Pui Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zirong He
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Leng Aw-Yong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueyan Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| | - Susanna Kar-Pui Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Pauly MD, Ganova-Raeva L. Point-of-Care Testing for Hepatitis Viruses: A Growing Need. Life (Basel) 2023; 13:2271. [PMID: 38137872 PMCID: PMC10744957 DOI: 10.3390/life13122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Viral hepatitis, caused by hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), or hepatitis E virus (HEV), is a major global public health problem. These viruses cause millions of infections each year, and chronic infections with HBV, HCV, or HDV can lead to severe liver complications; however, they are underdiagnosed. Achieving the World Health Organization's viral hepatitis elimination goals by 2030 will require access to simpler, faster, and less expensive diagnostics. The development and implementation of point-of-care (POC) testing methods that can be performed outside of a laboratory for the diagnosis of viral hepatitis infections is a promising approach to facilitate and expedite WHO's elimination targets. While a few markers of viral hepatitis are already available in POC formats, tests for additional markers or using novel technologies need to be developed and validated for clinical use. Potential methods and uses for the POC testing of antibodies, antigens, and nucleic acids that relate to the diagnosis, monitoring, or surveillance of viral hepatitis infections are discussed here. Unmet needs and areas where additional research is needed are also described.
Collapse
Affiliation(s)
| | - Lilia Ganova-Raeva
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., NE, Atlanta, GA 30329, USA;
| |
Collapse
|
26
|
Samsami S, Namavari S, Ataei S, Ghasemian A, Yazdanpanah A, Sepahi N, Hatam G, Faramarzi H, Mirzaei H, Ranjbar R, Ghanbariasad A. A Novel Multiplex LAMP Assay for the Rapid and Accurate Diagnosis of Visceral Leishmaniasis Caused by Leishmania infantum from Iran. J Trop Med 2023; 2023:9326183. [PMID: 38028028 PMCID: PMC10676275 DOI: 10.1155/2023/9326183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Visceral leishmaniosis (VL) is one of the neglected tropical diseases despite being responsible for serious clinical symptoms, some of which lead to fatal outcomes. Thus, there is a need to apply accurate, rapid, and specific diagnostic measurements in order to control the disease and reduce the mortality rate. We aimed to develop and validate a multiplex LAMP assay for the diagnosis of VL caused by Leishmania infantum (L. infantum). Moreover, a thorough assessment was conducted to determine the effectiveness of multiplex LAMP in identifying various Leishmania species, such as Leishmania tropica (L. tropica) and Leishmania major (L. major) in comparison to Leishmania infantum (L. infantum). The diagnostic performance of the multiplex LAMP method for VL was compared to each LAMP assay, real-time polymerase chain reaction (RT-qPCR), and nested PCR technique. Two separated primers were set and used in a multiplex LAMP assay which was designed based on the ITS2 (internal transcribed spacer II) and were selected on the basis of conserved and high copy number region. Multiplex LAMP primers were designed using an online tool available at https://www.primerexplorer.jp/e. The alignment was performed using MEGA5, and the primers were further adjusted utilizing GENE Runner software. All molecular methods were tested on the serial dilution of cloned plasmid containing ITS region from standard strains of L. infantum, L. tropica, and L. major. Moreover, multiplex LAMP assay was evaluated and compared based on both standard strains and 55 clinical samples from humans as well as dogs. Various approaches were applied to interpret the multiplex LAMP reaction which deciphered a higher sensitivity when compared to the RT-qPCR for L. infantum (one copy number of plasmid, equal to 0.85 femtograms (fg) of plasmid concentration, and 0.004 parasite DNA per μL) detection while these three standard strains of Leishmania were confirmed to contain 40 DNA copies using RT-qPCR. Additionally, the multiplex LAMP detection limit was approximately equivalent to RT-qPCR for L. major and L. tropica, which included 0.342 picograms (pg) and 342 femtograms (fg) of plasmid concentration, 4 × 103 and 4 × 102 copy number of plasmid, and 17.1 and 1.71 parasite DNA per μL for L. major and L. tropica, respectively. Nested PCR exhibited a lower detection limit for L. infantum of 4 × 106 plasmid copy number compared to multiplex LAMP and RT-qPCR. Multiplex LAMP has the potential for accurate and rapid detection of infectious disease, successful treatment, and finding and monitoring asymptomatic cases, especially in low-income countries.
Collapse
Affiliation(s)
- Sahar Samsami
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Sahar Namavari
- Department of Medical Biotechnologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeed Ataei
- Department of Medical Biotechnologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ava Yazdanpanah
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Neda Sepahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholamreza Hatam
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Faramarzi
- Department of Community Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Mirzaei
- Department of Medical Genetics, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Razie Ranjbar
- Department of Medical Biotechnologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnologies, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
27
|
Kim HR, Kim JM, Baek JS, Park J, Kim WI, Ku BK, Jeoung HY, Lee KK, Park CK. An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control. Viruses 2023; 15:2204. [PMID: 38005882 PMCID: PMC10674262 DOI: 10.3390/v15112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
For rapid and reliable detection of porcine epidemic diarrhea virus (PEDV) from pig clinical samples, a multiplex, real-time, reverse transcription loop-mediated isothermal amplification (mqRT-LAMP) was developed using two sets of primers and assimilating probes specific to the PEDV N gene and the Sus scrofa β-actin gene, which was used as an endogenous internal positive control (EIPC) to avoid false-negative results. The assay specifically amplified both target genes of PEDV and EIPC in a single reaction without any interference but did not amplify other porcine viral nucleic acids. The limit of detection was 10 copies/μL, 100-fold lower than that of a reverse transcription-polymerase chain reaction (RT-PCR) and equivalent to that of quantitative/real-time RT-PCR (qRT-PCR). This assay has high repeatability and reproducibility with coefficients of variation < 4.0%. The positive signal of the mqRT-LAMP assay was generated within 25 min, demonstrating advantages in rapid detection of PEDV over RT-PCR or qRT-PCR assay, which require at least 2 h turnaround times. In clinical evaluation, the detection rate of PEDV by mqRT-LAMP assay (77.3%) was higher than that of RT-PCR assay (69.7%), and comparable to qRT-PCR (76.8%) with almost 100% concordance (kappa value 0.98). The developed mqRT-LAMP assay can serve as an advanced alternative method for PEDV diagnosis because it has high sensitivity and specificity, rapidity, and reliability even in resource-limited laboratories.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Jong-Min Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Ji-Su Baek
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Jonghyun Park
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Bok Kyung Ku
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Choi-Kyu Park
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| |
Collapse
|
28
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
29
|
Hertenstein T, Tang Y, Day AS, Reynolds J, Viboolmate PV, Yoon JY. Rapid and sensitive detection of miRNA via light scatter-aided emulsion-based isothermal amplification using a custom low-cost device. Biosens Bioelectron 2023; 237:115444. [PMID: 37329805 DOI: 10.1016/j.bios.2023.115444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs are likely to be a next-generation clinical biomarker for many diseases. While gold-standard technologies, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR), exist for microRNA detection, there is a need for rapid and low-cost testing. Here, an emulsion loop-mediated isothermal amplification (eLAMP) assay was developed for miRNA that compartmentalizes a LAMP reaction and shortens the time-to-detection. The miRNA was a primer to facilitate the overall amplification rate of template DNA. Light scatter intensity decreased when the emulsion droplet got smaller during the ongoing amplification, which was utilized to moitor the amplification non-invasively. A custom low-cost device was designed and fabricated using a computer cooling fan, a Peltier heater, an LED, a photoresistor, and a temperature controller. It allowed more stable vortexing and accurate light scatter detection. Three miRNAs, miR-21, miR-16, and miR-192, were successfully detected using the custom device. Specifically, new template and primer sequences were developed for miR-16 and miR-192. Zeta potential measurements and microscopic observations confirmed emulsion size reduction and amplicon adsorption. The detection limit was 0.01 fM, corresponding to 2.4 copies per reaction, and the detection could be made in 5 min. Since the assays were rapid and both template and miRNA + template could eventually be amplified, we introduced the success rate (compared to the 95% confidence interval of the template result) as a new measure, which worked well with lower concentrations and inefficient amplifications. This assay brings us one step closer to allowing circulating miRNA biomarker detection to become commonplace in the clinical world.
Collapse
Affiliation(s)
- Tyler Hertenstein
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Alexander S Day
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Patrick V Viboolmate
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
30
|
Lee JP, Woo JA, Shin WR, Park YS, Kim HK, Ahn JY, Kim YH. Distinction of Male and Female Trees of Ginkgo biloba Using LAMP. Mol Biotechnol 2023; 65:1693-1703. [PMID: 36745281 PMCID: PMC9901403 DOI: 10.1007/s12033-023-00673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/14/2023] [Indexed: 02/07/2023]
Abstract
Ginkgo biloba is utilized as food, medicine, wood, and street trees among other things. The objective of this study was to develop a loop-mediated isothermal amplification (LAMP) assay for gender distinction of G. biloba. Male-specific SCAR gene can be utilized to identify G. biloba gender using LAMP. The optimized LAMP conditions, temperature 60 °C, 2-mM MgSO4, and [F3/B3]:[FIP/BIP] primer ratio of 1:4 were selected as final conditions. The G. biloba SCAR LAMP displayed a sensitivity of 10 ng when amplified by concentration under the optimum conditions. Additionally, it demonstrated a particular response in male with SYBR Green I in LAMP analysis that can be a more powerful tool for field and scale-up applications. Our work represents a first attempt to identify G. biloba gender using LAMP and offers an efficient and reliable tool for roadside landscaping.
Collapse
Affiliation(s)
- Jin-Pyo Lee
- Department of Microbiology, Chungbuk National University, Seowon-Gu, Cheongju, 28644, South Korea
| | - Joo-Ah Woo
- Department of Microbiology, Chungbuk National University, Seowon-Gu, Cheongju, 28644, South Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, Seowon-Gu, Cheongju, 28644, South Korea
| | - Yoon Shin Park
- Department of Microbiology, Chungbuk National University, Seowon-Gu, Cheongju, 28644, South Korea
| | - Hye Kwon Kim
- Department of Microbiology, Chungbuk National University, Seowon-Gu, Cheongju, 28644, South Korea
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, Seowon-Gu, Cheongju, 28644, South Korea.
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, Seowon-Gu, Cheongju, 28644, South Korea.
| |
Collapse
|
31
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
32
|
Kimura K, Miyazaki A, Suzuki T, Yamamoto T, Kitazawa Y, Maejima K, Namba S, Yamaji Y. A Reverse-Transcription Loop-Mediated Isothermal Amplification Technique to Detect Tomato Mottle Mosaic Virus, an Emerging Tobamovirus. Viruses 2023; 15:1688. [PMID: 37632030 PMCID: PMC10459350 DOI: 10.3390/v15081688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Tomato mottle mosaic virus (ToMMV) is an emerging seed-transmissible tobamovirus that infects tomato and pepper. Since the first report in 2013 in Mexico, ToMMV has spread worldwide, posing a serious threat to the production of both crops. To prevent the spread of this virus, early and accurate detection of infection is required. In this study, we developed a detection method for ToMMV based on reverse-transcription loop-mediated isothermal amplification (RT-LAMP). A LAMP primer set was designed to target the genomic region spanning the movement protein and coat protein genes, which is a highly conserved sequence unique to ToMMV. This RT-LAMP detection method achieved 10-fold higher sensitivity than conventional RT-polymerase chain reaction methods and obtained high specificity without false positives for closely related tobamoviruses or healthy tomato plants. This method can detect ToMMV within 30 min of direct sampling of an infected tomato leaf using a toothpick and therefore does not require RNA purification. Given its high sensitivity, specificity, simplicity, and rapidity, the RT-LAMP method developed in this study is expected to be valuable for point-of-care testing in field surveys and for large-scale testing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
33
|
Jagannath A, Li Y, Cong H, Hassan J, Gonzalez G, Wang W, Zhang N, Gilchrist MD. UV-Assisted Hyperbranched Poly(β-amino ester) Modification of a Silica Membrane for Two-Step Microfluidic DNA Extraction from Blood. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319124 DOI: 10.1021/acsami.3c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Integrating nucleic acid extraction in amplification-based point-of-care diagnostics will be a significant feature for next-generation point-of-care virus detection devices. However, extracting DNA efficiently on a microfluidic chip poses many technological and commercialization challenges, including manual steps, multiple instruments, pretreatment processes, and the use of organic solvents (ethanol, IPA) that inhibit detection, which is not viable with routine testing such as viral load monitoring of transplant patients for post-operative care. This paper presents a microfluidic system capable of two-step DNA extraction from blood using a UV-assisted hyperbranched poly(β-amino ester) (HPAE)-modified silica membrane for cytomegalovirus (CMV) detection in a rapid and instrument-free manner without the presence of amplification inhibitors. HPAEs of varying branch ratios were synthesized, screened, and coated on a silica membrane and bonded between two layers of poly(methyl methacrylate) (PMMA) substrates. Our system could selectively extract DNA from blood with an efficiency of 94% and a lower limit viral load of 300 IU/mL in 20 min. The extracted DNA was used as the template for real-time loop-mediated isothermal amplification (LAMP)-based detection of CMV and was found to produce a fluorescent signal intensity that was comparable with commercially extracted templates. This system can be integrated easily with a nucleic acid amplification system and used for routine rapid testing of viral load in patient blood samples.
Collapse
Affiliation(s)
- Akshaya Jagannath
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yinghao Li
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hengji Cong
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jaythoon Hassan
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Wenxin Wang
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| | - Michael D Gilchrist
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| |
Collapse
|
34
|
Lamas A, Azinheiro S, Roumani F, Prado M, Garrido-Maestu A. Evaluation of the effect of outer primer structure, and inner primer linker sequences, in the performance of Loop-mediated isothermal amplification. Talanta 2023; 260:124642. [PMID: 37167680 DOI: 10.1016/j.talanta.2023.124642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Loop-mediated isothermal amplification, or LAMP, is nowadays the most popular isothermal nucleic acid amplification technique. This technique implements a minimum of four primers, named outer (F3/B3) and inner primers (FIP/BIP). The inner primers hybridize in two distinct regions, and some studies have reported that the usage of a linker, typically composed of four thymines, in the middle of these primers can improve assay performance. In addition to this, dual-priming oligonucleotides, DPO, have been reported to provide highly specific reducing non-specific amplifications. Considering the large number of primers implemented in LAMP assays, in the current study the suitability of DPO primers replacing regular outer primers; and their combination with different linker sequences in the inner primers were explored. The results demonstrated that replacing standard F3/B3 by DPO primers does not significantly affect that overall performance of the assay, and provides additional stability to temperature changes. This observations were consistent regardless the type of linker implemented in the inner primers, out of which in the current study a linker composed of thymines significantly outperformed the other options tested, most likely due to a combination of sequence and physical structure.
Collapse
Affiliation(s)
- Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory, Department of Analytical Chemistry, Nutrition and Bromatology, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Sarah Azinheiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal; Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Veterinary Science, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Foteini Roumani
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal; Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Veterinary Science, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
35
|
Varghese J, De Silva I, Millar DS. Latest Advances in Arbovirus Diagnostics. Microorganisms 2023; 11:1159. [PMID: 37317133 DOI: 10.3390/microorganisms11051159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Arboviruses are a diverse family of vector-borne pathogens that include members of the Flaviviridae, Togaviridae, Phenuviridae, Peribunyaviridae, Reoviridae, Asfarviridae, Rhabdoviridae, Orthomyxoviridae and Poxviridae families. It is thought that new world arboviruses such as yellow fever virus emerged in the 16th century due to the slave trade from Africa to America. Severe disease-causing viruses in humans include Japanese encephalitis virus (JEV), yellow fever virus (YFV), dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), Crimean-Congo hemorrhagic fever virus (CCHFV), severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV). Numerous methods have been developed to detect the presence of these pathogens in clinical samples, including enzyme-linked immunosorbent assays (ELISAs), lateral flow assays (LFAs) and reverse transcriptase-polymerase chain reaction (RT-PCR). Most of these assays are performed in centralized laboratories due to the need for specialized equipment, such as PCR thermal cyclers and dedicated infrastructure. More recently, molecular methods have been developed which can be performed at a constant temperature, termed isothermal amplification, negating the need for expensive thermal cycling equipment. In most cases, isothermal amplification can now be carried out in as little as 5-20 min. These methods can potentially be used as inexpensive point of care (POC) tests and in-field deployable applications, thus decentralizing the molecular diagnosis of arboviral disease. This review focuses on the latest developments in isothermal amplification technology and detection techniques that have been applied to arboviral diagnostics and highlights future applications of these new technologies.
Collapse
Affiliation(s)
- Jano Varghese
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Imesh De Silva
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Douglas S Millar
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| |
Collapse
|
36
|
Zhang X, Zhao Y, Zeng Y, Zhang C. Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection. Diagnostics (Basel) 2023; 13:diagnostics13091530. [PMID: 37174922 PMCID: PMC10177487 DOI: 10.3390/diagnostics13091530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Loop-mediated isothermal amplification (LAMP), as the rank one alternative to a polymerase chain reaction (PCR), has been widely applied in point-of-care testing (POCT) due to its rapid, simple, and cost-effective characteristics. However, it is difficult to achieve real-time monitoring and multiplex detection with the traditional LAMP method. In addition, these approaches that use turbidimetry, sequence-independent intercalating dyes, or pH-sensitive indicators to indirectly reflect amplification can result in false-positive results if non-specific amplification occurs. To fulfill the needs of specific target detection and one-pot multiplex detection, a variety of probe-based LAMP assays have been developed. This review focuses on the principles of these assays, summarizes their applications in pathogen detection, and discusses their features and advantages over the traditional LAMP methods.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yongjuan Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yi Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
37
|
Jee H, Park S, Lee J, Lim CS, Jang WS. Comparative Clinical Evaluation of a Novel FluA/FluB/SARS-CoV-2 Multiplex LAMP and Commercial FluA/FluB/SARS-CoV-2/RSV RT-qPCR Assays. Diagnostics (Basel) 2023; 13:diagnostics13081432. [PMID: 37189533 DOI: 10.3390/diagnostics13081432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Influenza and coronaviruses cause highly contagious respiratory diseases that cause millions of deaths worldwide. Public health measures implemented during the current coronavirus disease (COVID-19) pandemic have gradually reduced influenza circulation worldwide. As COVID-19 measures have relaxed, it is necessary to monitor and control seasonal influenza during this COVID-19 pandemic. In particular, the development of rapid and accurate diagnostic methods for influenza and COVID-19 is of paramount importance because both diseases have significant public health and economic impacts. To address this, we developed a multi-loop-mediated isothermal amplification (LAMP) kit capable of simultaneously detecting influenza A/B and SARS-CoV-2. The kit was optimized by testing various ratios of primer sets for influenza A/B (FluA/FluB) and SARS-CoV-2 and internal control (IC). The FluA/FluB/SARS-CoV-2 multiplex LAMP assay showed 100% specificity for uninfected clinical samples and sensitivities of 90.6%, 86.89%, and 98.96% for LAMP kits against influenza A, influenza B, and SARS-CoV-2 clinical samples, respectively. Finally, the attribute agreement analysis for clinical tests indicated substantial agreement between the multiplex FluA/FluB/SARS-CoV-2/IC LAMP and commercial AllplexTM SARS-CoV-2/FluA/FluB/RSV assays.
Collapse
Affiliation(s)
- Hyunseul Jee
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Seoyeon Park
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Junmin Lee
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
38
|
Chang Y, Wang Y, Li W, Wei Z, Tang S, Chen R. Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5471. [PMID: 37107752 PMCID: PMC10138381 DOI: 10.3390/ijerph20085471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Airborne viruses, such as COVID-19, cause pandemics all over the world. Virus-containing particles produced by infected individuals are suspended in the air for extended periods, actually resulting in viral aerosols and the spread of infectious diseases. Aerosol collection and detection devices are essential for limiting the spread of airborne virus diseases. This review provides an overview of the primary mechanisms and enhancement techniques for collecting and detecting airborne viruses. Indoor virus detection strategies for scenarios with varying ventilations are also summarized based on the excellent performance of existing advanced comprehensive devices. This review provides guidance for the development of future aerosol detection devices and aids in the control of airborne transmission diseases, such as COVID-19, influenza and other airborne transmission viruses.
Collapse
Affiliation(s)
- Yuqing Chang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Wen Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| |
Collapse
|
39
|
Prakash S, Aasarey R, Pandey PK, Mathur P, Arulselvi S. An inexpensive and rapid diagnostic method for detection of SARS-CoV-2 RNA by loop-mediated isothermal amplification (LAMP). MethodsX 2023; 10:102011. [PMID: 36643803 PMCID: PMC9831977 DOI: 10.1016/j.mex.2023.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
SARS-CoV-2 is a public pandemic health concern globally. Nasopharyngeal and oropharyngeal swab samples are used for Covid-19 viral detection. Sample collection procedure was tedious and uncomfortable and unsuitable for biochemical and CBC analysis in swab samples. Biochemistry and CBC tests are key determinant in management of Covid-19 patients. We developed a LAMP test to detect viral RNA in blood samples. LAMP is required four specific primers targeting the internal transcribed S-region and loop primers for viral RNA amplification. RNA was extracted from blood samples by TRIzol method. LAMP reaction was performed at 60 °C for 1 hour and amplicons were visualized in HNB dye. No cross-reactivity was seen with HBV, HCV, and HIV infected sample. Out of 40 blood samples, 33 samples were positive for LAMP and Q-PCR analysis, one sample was positive for LAMP and negative for Q-PCR, two samples were negative for LAMP but positive for Q-PCR, and four blood samples were negative for LAMP and Q-PCR. LAMP method has an accuracy of 92.50%, with sensitivity and specificity of 94.28% and 80%, respectively. Thus, LAMP diagnostic test has proved reliable, fast, inexpensive and can be useful for detection where the limited resources available.•LAMP method is a potential tool for detection of SARS-CoV-2.•Blood samples are the key determinant for routine diagnostics as well as molecular diagnostics.•LAMP assay is an appropriate diagnostics method which offers greater simplicity, low cost, sensitivity, and specificity than other methods in molecular diagnostics.
Collapse
Affiliation(s)
- S Prakash
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - R Aasarey
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P K Pandey
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Mathur
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S Arulselvi
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
40
|
Rapid and precise detection of cryptic tea pathogen Exobasidium vexans: RealAmp validation of LAMP approach. World J Microbiol Biotechnol 2022; 39:52. [PMID: 36564678 DOI: 10.1007/s11274-022-03506-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
This work embodies the development of a real time loop mediated isothermal amplification (RealAmp) assay for the rapid detection of the cryptic tea phytopathogen, Exobasidium vexans, the causal organism of blister blight disease. Due to the widespread popularity of tea as a beverage and the associated agro-economy, the rapid detection and management of the fast-spreading blister blight disease have been a longstanding necessity. Loop-mediated isothermal amplification (LAMP) primers were designed targeting the E. vexans ITS rDNA region and the reaction temperature was optimized at 62 °C with a 60 min reaction time. Amplification of the E. vexans isolates in the initial LAMP reactions was confirmed by both agarose gel electrophoresis and SYBR Green I dye based colour change visualization. The specificity of the LAMP primers for E. vexans was validated by negative testing of seven different phytopathogenic test fungi using LAMP and RealAmp assay. The positive findings in RealAmp assay for E. vexans strain were corroborated via detecting fluorescence signals in real-time. Further, the LAMP assays performed with gDNA isolated from infected tea leaves revealed positive amplification for the presence of E. vexans. The results demonstrate that this rapid and precise RealAmp assay has the potential to be applied for field-based detection of E. vexans in real-time.
Collapse
|
41
|
Daniel F, Kesterson D, Lei K, Hord C, Patel A, Kaffenes A, Congivaram H, Prakash S. Application of Microfluidics for Bacterial Identification. Pharmaceuticals (Basel) 2022; 15:ph15121531. [PMID: 36558982 PMCID: PMC9781190 DOI: 10.3390/ph15121531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial infections continue to pose serious public health challenges. Though anti-bacterial therapeutics are effective remedies for treating these infections, the emergence of antibiotic resistance has imposed new challenges to treatment. Often, there is a delay in prescribing antibiotics at initial symptom presentation as it can be challenging to clinically differentiate bacterial infections from other organisms (e.g., viruses) causing infection. Moreover, bacterial infections can arise from food, water, or other sources. These challenges have demonstrated the need for rapid identification of bacteria in liquids, food, clinical spaces, and other environments. Conventional methods of bacterial identification rely on culture-based approaches which require long processing times and higher pathogen concentration thresholds. In the past few years, microfluidic devices paired with various bacterial identification methods have garnered attention for addressing the limitations of conventional methods and demonstrating feasibility for rapid bacterial identification with lower biomass thresholds. However, such culture-free methods often require integration of multiple steps from sample preparation to measurement. Research interest in using microfluidic methods for bacterial identification is growing; therefore, this review article is a summary of current advancements in this field with a focus on comparing the efficacy of polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and emerging spectroscopic methods.
Collapse
Affiliation(s)
- Fraser Daniel
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Delaney Kesterson
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin Lei
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Catherine Hord
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA
| | - Aarti Patel
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia Kaffenes
- Department of Neuroscience, College of Arts and Sciences and College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Harrshavasan Congivaram
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
42
|
Wang J, Davidson JL, Kaur S, Dextre AA, Ranjbaran M, Kamel MS, Athalye SM, Verma MS. Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. BIOSENSORS 2022; 12:bios12121094. [PMID: 36551061 PMCID: PMC9776365 DOI: 10.3390/bios12121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Paper-based biosensors are microfluidic analytical devices used for the detection of biochemical substances. The unique properties of paper-based biosensors, including low cost, portability, disposability, and ease of use, make them an excellent tool for point-of-care testing. Among all analyte detection methods, nucleic acid-based pathogen detection offers versatility due to the ease of nucleic acid synthesis. In a point-of-care testing context, the combination of nucleic acid detection and a paper-based platform allows for accurate detection. This review offers an overview of contemporary paper-based biosensors for detecting nucleic acids from pathogens. The methods and limitations of implementing an integrated portable paper-based platform are discussed. The review concludes with potential directions for future research in the development of paper-based biosensors.
Collapse
Affiliation(s)
- Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Simerdeep Kaur
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Andres A. Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Shreya Milind Athalye
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
43
|
Chakraborty J, Chaudhary AA, Khan SUD, Rudayni HA, Rahaman SM, Sarkar H. CRISPR/Cas-Based Biosensor As a New Age Detection Method for Pathogenic Bacteria. ACS OMEGA 2022; 7:39562-39573. [PMID: 36385843 PMCID: PMC9648122 DOI: 10.1021/acsomega.2c04513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/03/2022] [Indexed: 05/25/2023]
Abstract
Methods enabling rapid and on-site detection of pathogenic bacteria are a prerequisite for public health assurance, medical diagnostics, ensuring food safety and security, and research. Many current bacteria detection technologies are inconvenient and time-consuming, making them unsuitable for field detection. New technology based on the CRISPR/Cas system has the potential to fill the existing gaps in detection. The clustered regularly interspaced short palindromic repeats (CRISPR) system is a part of the bacterial adaptive immune system to protect them from intruding bacteriophages. The immunological memory is saved by the CRISPR array of bacteria in the form of short DNA sequences (spacers) from invading viruses and incorporated with the CRISPR DNA repeats. Cas proteins are responsible for triggering and initiating the adaptive immune function of CRISPR/Cas systems. In advanced biological research, the CRISPR/Cas system has emerged as a significant tool from genome editing to pathogen detection. By considering its sensitivity and specificity, this system can become one of the leading detection methods for targeting DNA/RNA. This technique is well applied in virus detection like Dengue, ZIKA, SARS-CoV-2, etc., but for bacterial detection, this CRISPR/Cas system is limited to only a few organisms to date. In this review, we have discussed the different techniques based on the CRISPR/Cas system that have been developed for the detection of various pathogenic bacteria like L. monocytogenes, M. tuberculosis, Methicillin-resistant S. aureus, Salmonella, E. coli, P. aeruginosa, and A. baumannii.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Department
of Microbiology, Raiganj University, Raiganj, West Bengal733134, India
| | - Anis Ahmad Chaudhary
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh11623, Saudi
Arabia
| | - Salah-Ud-Din Khan
- Department
of Biochemistry, College of Medicine, Imam
Mohammad Ibn Saud Islamic University (IMSIU), Riyadh11623, Saudi
Arabia
| | - Hassan Ahmad Rudayni
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh11623, Saudi
Arabia
| | | | - Hironmoy Sarkar
- Department
of Microbiology, Raiganj University, Raiganj, West Bengal733134, India
| |
Collapse
|
44
|
Chen CY, Yang HW, Hsieh PH, Hsieh CH, Wu MH. Development of a photothermal bead-based nucleic acid amplification test (pbbNAAT) technique for a high-performance loop-mediated isothermal amplification (LAMP)–based point-of-care test (POCT). Biosens Bioelectron 2022; 215:114574. [DOI: 10.1016/j.bios.2022.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
|
45
|
Distance-based paper device using combined SYBR safe and gold nanoparticle probe LAMP assay to detect Leishmania among patients with HIV. Sci Rep 2022; 12:14558. [PMID: 36028548 PMCID: PMC9418321 DOI: 10.1038/s41598-022-18765-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Asymptomatic visceral leishmaniasis cases increase continuously, particularly among patients with HIV who are at risk to develop further symptoms of leishmaniasis. A simple, sensitive and reliable diagnosis is crucially needed due to risk populations mostly residing in rural communities with limited resources of laboratory equipment. In this study, a highly sensitive and selective determination of Leishmania among asymptomatic patients with Leishmania/HIV co-infection was achieved to simultaneously interpret and semi-quantify using colorimetric precipitates (gold-nanoparticle probe; AuNP-probe) and fluorescence (SYBR safe dye and distance-based paper device; dPAD) in one-step loop-mediated isothermal amplification (LAMP) assay. The sensitivities and specificities of 3 detection methods were equivalent and had reliable performances achieving as high as 95.5%. Detection limits were 102 parasites/mL (0.0147 ng/µL) which were 10 times more sensitive than other related studies. To empower leishmaniasis surveillance as well as prevention and control, this dPAD combined with SYBR safe and gold nanoparticle probe LAMP assay is reliably fast, simple, inexpensive and practical for field diagnostics to point-of-care settings in resource-limited areas which can be set up in all levels of healthcare facilities, especially in low to middle income countries.
Collapse
|
46
|
Hsieh SA, Shamsaei D, Eitzmann DR, Anderson JL. Digital Droplet Loop-Mediated Isothermal Amplification Featuring a Molecular Beacon Assay, 3D Printed Droplet Generation, and Smartphone Imaging for Sequence-Specific DNA Detection. Anal Chem 2022; 94:11949-11956. [PMID: 35973866 DOI: 10.1021/acs.analchem.2c02979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acid detection is widely used in the amplification and quantitation of nucleic acids from biological samples. While polymerase chain reaction (PCR) enjoys great popularity, expensive thermal cyclers are required for precise temperature control. Loop-mediated isothermal amplification (LAMP) enables highly sensitive, rapid, and low-cost amplification of nucleic acids at constant temperatures. LAMP detection often relies on double-stranded DNA-binding dyes or metal indicators that lack sequence selectivity. Molecular beacons (MBs) are hairpin-shaped oligonucleotide probes whose sequence specificity in LAMP provides the capability of differentiating between single-nucleotide polymorphisms (SNPs). Digital droplet LAMP (ddLAMP) enables a large number of independent LAMP reactions to be performed and provides quantification of target DNA sequences. However, a major challenge with ddLAMP is the requirement of expensive droplet generators to form homogeneous microdroplets. In this study, we demonstrate for the first time that a three-dimensional (3D) printed droplet generation platform can be coupled to a LAMP assay featuring MBs as sequence-specific probes. The low-cost 3D printed droplet generator system was designed, and its customizability was demonstrated in the formation of monodisperse ddLAMP assay-in-oil microdroplets. Additionally, a smartphone-based imaging system is demonstrated to increase accessibility for point-of-care applications. The MB-ddLAMP assay is shown to discriminate between two SNPs at various amplification temperatures to afford a useful platform for sequence-specific, sensitive, and accurate DNA quantification. This work expands the utility of MBs to ddLAMP for quantitative studies in the detection of SNPs and exploits the customizability of 3D printing technologies to optimize the homogeneity, size, and volume of oil-in-water microdroplets.
Collapse
Affiliation(s)
- Shu-An Hsieh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Danial Shamsaei
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
47
|
Das D, Lin CW, Kwon JS, Chuang HS. Rotational diffusometric sensor with isothermal amplification for ultra-sensitive and rapid detection of SARS-CoV-2 nsp2 cDNA. Biosens Bioelectron 2022; 210:114293. [PMID: 35477152 PMCID: PMC9020650 DOI: 10.1016/j.bios.2022.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
In the wake of a pandemic, the development of rapid, simple, and accurate molecular diagnostic tests can significantly aid in reducing the spread of infections. By combining particle imaging with molecular assays, a quick and highly sensitive biosensor can readily identify a pathogen at low concentrations. Here, we implement functionalized particle-enabled rotational diffusometry in combination with loop-mediated isothermal amplification for the rapid detection of the SARS-CoV-2 nsp2 gene in the recombinant plasmid as a proof of concept for COVID-19 diagnostics. By analyzing the images of blinking signals generated by these modified particles, the change in micro-level viscosity due to nucleic acid amplification was measured. The high sensitivity of rotational diffusometry enabled facile detection within 10 min, with a limit of detection of 70 ag/μL and a sample volume of 2 μL. Tenfold higher detection sensitivity was observed for rotational diffusometry in comparison with real-time PCR. In addition, the system stability and the effect of temperature on rotational diffusometric measurements were studied and reported. These results demonstrated the utility of a rotational diffusometric platform for the rapid and sensitive detection of SARS-CoV-2 cDNA fragments.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan
| | - Jae-Sung Kwon
- Department of Mechanical Engineering, Incheon National University, Incheon, Republic of Korea.
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan; Core Facility Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
48
|
Li Q, Xue H, Fei Y, Cao M, Xiong X, Xiong X, Yang Y, Wang L. Visual detection of rainbow trout ( Oncorhynchus mykiss) and Atlantic salmon ( Salmo salar) simultaneously by duplex loop-mediated isothermal amplification. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100107. [PMID: 35769395 PMCID: PMC9235052 DOI: 10.1016/j.fochms.2022.100107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is often confounded by the non-specific amplification arising from primer dimers, off-target priming, and other artifacts. Precipitation of the DNA produced during LAMP with the use of specific fluorescently labeled probe has proved the effectiveness in specific detection. Herein, two fluorophores (ROX and FAM) were attached to the primers S-LB-6 and R-FIP for Atlantic salmon and rainbow trout, respectively, which are self-quenched in unbound state and become de-quenched after binding to the dumbbell-shaped DNA specifically. The DNA precipitation and appearance of small sediment took 10 s of centrifugation at 1000 g, by adding polyethylenimine (PEI) 600. Each target species was specifically amplified with the predicted color of PEI-DNA sediment, namely red for Atlantic salmon, green for rainbow trout, and pale yellow for mixed species. The optimized duplex LAMP system has proved its specificity and can detect as little as 1 ng DNA in visual detection.
Collapse
Affiliation(s)
- Qiuping Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Min Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Ying Yang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Province 210037, China
| |
Collapse
|
49
|
Detection of Isoniazid and Rifampin Resistance in Mycobacterium tuberculosis Clinical Isolates from Sputum Samples by High-Resolution Melting Analysis. Curr Microbiol 2022; 79:257. [PMID: 35852629 DOI: 10.1007/s00284-022-02960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The effective management of multidrug-resistant tuberculosis (MDR-TB) and the need for rapid and accurate screening of rifampin (RIF) and isoniazid (INH)-resistant Mycobacterium tuberculosis (Mtb) isolates are the most fundamental and difficult challenges facing the global TB control. The present study aimed to compare the diagnostic accuracy of high-resolution melting-curve analysis (HRMA) in comparison to multiplex allele-specific PCR (MAS-PCR) and xpert MTB/RIF as well as the conventional drug-susceptibility test (DST) and gene sequencing for the detection of INH and RIF resistance in the Mtb isolates. In the present study, a total of 431 Mtb isolates including 11 MDR (%2.55), 7 INH resistance (%1.62), two RIF resistance (%0.46), and 411 sensitive isolates were phenotypically confirmed. HRMA assay identified katG gene mutations and the mabA-inhA promoter region in 15 of 18 INH-resistant samples and rpoB gene mutations were successfully evaluated in 11 out of 13 RIF-resistant samples. The sensitivity and specificity of the HRMA method were 83.3% and 98.8% for INH and 84.6% and 99% for RIF, respectively. The most common mutation in RIF-resistance-determining region (RRDR) occurred at codon 531 (TCG → TTG)(84.6%) and then at codon 513 (CAA → GTA)(7.6%) and 526 (CAC → TAC) (7.6%), which resulted in the amino-acid changes. Also, 88.8% of INH-resistant samples had mutations in the katG gene and the mabA-inhA promoter region, of which the highest mutation occurred at codon 315 (AGC → ACC) of the katG gene. In conclusion, all these results indicated that the sensitivity and specificity of the HRM method were increased when the katG gene and the mabA-inhA promoter region were used as a target.
Collapse
|
50
|
Boutal H, Moguet C, Pommiès L, Simon S, Naas T, Volland H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics (Basel) 2022; 12:1744. [PMID: 35885647 PMCID: PMC9317642 DOI: 10.3390/diagnostics12071744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global spread of antimicrobial resistant (AMR) bacteria represents a considerable public health concern, yet their detection and identification of their resistance mechanisms remain challenging. Optimal diagnostic tests should provide rapid results at low cost to enable implementation in any microbiology laboratory. Lateral flow assays (LFA) meet these requirements and have become essential tools to combat AMR. This review presents the versatility of LFA developed for the AMR detection field, with particular attention to those directly triggering β-lactamases, their performances, and specific limitations. It considers how LFA can be modified by detecting not only the enzyme, but also its β-lactamase activity for a broader clinical sensitivity. Moreover, although LFA allow a short time-to-result, they are generally only implemented after fastidious and time-consuming techniques. We present a sample processing device that shortens and simplifies the handling of clinical samples before the use of LFA. Finally, the capacity of LFA to detect amplified genetic determinants of AMR by isothermal PCR will be discussed. LFA are inexpensive, rapid, and efficient tools that are easy to implement in the routine workflow of laboratories as new first-line tests against AMR with bacterial colonies, and in the near future directly with biological media.
Collapse
Affiliation(s)
- Hervé Boutal
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Christian Moguet
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Lilas Pommiès
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Thierry Naas
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
- Team Resist, UMR1184, Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 91190 Gif-sur-Yvette, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| |
Collapse
|