1
|
Menétrey M, Kupferschmid C, Gerstl S, Spolenak R. On the Resolution Limit of Electrohydrodynamic Redox 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402067. [PMID: 39092685 DOI: 10.1002/smll.202402067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Additive manufacturing (AM) will empower the next breakthroughs in nanotechnology by combining unmatched geometrical freedom with nanometric resolution. Despite recent advances, no micro-AM technique has been able to synthesize functional nanostructures with excellent metal quality and sub-100 nm resolution. Here, significant breakthroughs in electrohydrodynamic redox 3D printing (EHD-RP) are reported by directly fabricating high-purity Cu (>98 at.%) with adjustable voxel size from >6µm down to 50 nm. This unique tunability of the feature size is achieved by managing in-flight solvent evaporation of the ion-loaded droplet to either trigger or prevent the Coulomb explosion. In the first case, the landing of confined droplets on the substrate allows the fabrication of high-aspect-ratio 50 nm-wide nanopillars, while in the second, droplet disintegration leads to large-area spray deposition. It is discussed that the reported pillar width corresponds to the ultimate resolution achievable by EHD printing. The unrivaled feature size and growth rate (>100 voxel s-1) enable the direct manufacturing of 30 µm-tall atom probe tomography (APT) tips that unveil the pristine microstructure and chemistry of the deposit. This method opens up prospects for the development of novel materials for 3D nano-printing.
Collapse
Affiliation(s)
- Maxence Menétrey
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Cédric Kupferschmid
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Stephan Gerstl
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Otto-Stern-Weg 3, Zürich 8093, Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Höflich K, Maćkosz K, Jureddy CS, Tsarapkin A, Utke I. Direct electron beam writing of silver using a β-diketonate precursor: first insights. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1117-1124. [PMID: 39224534 PMCID: PMC11368048 DOI: 10.3762/bjnano.15.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Direct electron beam writing is a powerful tool for fabricating complex nanostructures in a single step. The electron beam locally cleaves the molecules of an adsorbed gaseous precursor to form a deposit, similar to 3D printing but without the need for a resist or development step. Here, we employ for the first time a silver β-diketonate precursor for focused electron beam-induced deposition (FEBID). The used compound (hfac)AgPMe3 operates at an evaporation temperature of 70-80 °C and is compatible with commercially available gas injection systems used in any standard scanning electron microscope. Growth of smooth 3D geometries could be demonstrated for tightly focused electron beams, albeit with low silver content in the deposit volume. The electron beam-induced deposition proved sensitive to the irradiation conditions, leading to varying compositions of the deposit and internal inhomogeneities such as the formation of a layered structure consisting of a pure silver layer at the interface to the substrate covered by a deposit layer with low silver content. Imaging after the deposition process revealed morphological changes such as the growth of silver particles on the surface. While these effects complicate the application for 3D printing, the unique deposit structure with a thin, compact silver film beneath the deposit body is interesting from a fundamental point of view and may offer additional opportunities for applications.
Collapse
Affiliation(s)
- Katja Höflich
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| | - Krzysztof Maćkosz
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| | - Chinmai S Jureddy
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| | - Aleksei Tsarapkin
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Ivo Utke
- Laboratory of Mechanics for Materials and Nanostructures, Empa – Swiss Federal Laboratories for Material Science and Technology, Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland
| |
Collapse
|
3
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Volkov OM, Pylypovskyi OV, Porrati F, Kronast F, Fernandez-Roldan JA, Kákay A, Kuprava A, Barth S, Rybakov FN, Eriksson O, Lamb-Camarena S, Makushko P, Mawass MA, Shakeel S, Dobrovolskiy OV, Huth M, Makarov D. Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes. Nat Commun 2024; 15:2193. [PMID: 38467623 PMCID: PMC10928081 DOI: 10.1038/s41467-024-46403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.
Collapse
Affiliation(s)
- Oleksii M Volkov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
- Kyiv Academic University, 03142, Kyiv, Ukraine.
| | - Fabrizio Porrati
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany.
| | - Florian Kronast
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Jose A Fernandez-Roldan
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Attila Kákay
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Alexander Kuprava
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Filipp N Rybakov
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121, Uppsala, Sweden
| | - Sebastian Lamb-Camarena
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
- University of Vienna, Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Pavlo Makushko
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Mohamad-Assaad Mawass
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4 - 6, 14195, Berlin, Germany
| | - Shahrukh Shakeel
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Oleksandr V Dobrovolskiy
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
| | - Michael Huth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
5
|
Jungwirth F, Salvador-Porroche A, Porrati F, Jochmann NP, Knez D, Huth M, Gracia I, Cané C, Cea P, De Teresa JM, Barth S. Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2967-2977. [PMID: 38444783 PMCID: PMC10910579 DOI: 10.1021/acs.jpcc.3c08250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
The investigation of precursor classes for the fabrication of nanostructures is of specific interest for maskless fabrication and direct nanoprinting. In this study, the differences in material composition depending on the employed process are illustrated for focused-ion-beam- and focused-electron-beam-induced deposition (FIBID/FEBID) and compared to the thermal decomposition in chemical vapor deposition (CVD). This article reports on specific differences in the deposit composition and microstructure when the (H3Si)2Fe(CO)4 precursor is converted into an inorganic material. Maximum metal/metalloid contents of up to 90 at. % are obtained in FIBID deposits and higher than 90 at. % in CVD films, while FEBID with the same precursor provides material containing less than 45 at. % total metal/metalloid content. Moreover, the Fe:Si ratio is retained well in FEBID and CVD processes, but FIBID using Ga+ ions liberates more than 50% of the initial Si provided by the precursor. This suggests that precursors for FIBID processes targeting binary materials should include multiple bonding such as bridging positions for nonmetals. In addition, an in situ method for investigations of supporting thermal effects of precursor fragmentation during the direct-writing processes is presented, and the applicability of the precursor for nanoscale 3D FEBID writing is demonstrated.
Collapse
Affiliation(s)
- Felix Jungwirth
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
- Institute
for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Alba Salvador-Porroche
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Fabrizio Porrati
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
| | - Nicolas P. Jochmann
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
- Institute
for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Daniel Knez
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz 8010, Austria
| | - Michael Huth
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
| | - Isabel Gracia
- Institut
de Microelectrònica de Barcelona (IMB), Centre Nacional de
Microelectrònica (CNM), Consejo Superior
de Investigaciones Científicas (CSIC), Barcelona 08193, Spain
| | - Carles Cané
- Institut
de Microelectrònica de Barcelona (IMB), Centre Nacional de
Microelectrònica (CNM), Consejo Superior
de Investigaciones Científicas (CSIC), Barcelona 08193, Spain
| | - Pilar Cea
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, Zaragoza 50009, Spain
- Laboratorio
de Microscopías Avanzadas (LMA), Universidad de Zaragoza, Edificio de
I+D+i, Campus Río Ebro, Zaragoza 50018, Spain
| | - José María De Teresa
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Sven Barth
- Institute
of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany
- Institute
for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| |
Collapse
|
6
|
Li X, Wang Z, Lei Z, Ding W, Shi X, Yan J, Ku J. Magnetic characterization techniques and micromagnetic simulations of magnetic nanostructures: from zero to three dimensions. NANOSCALE 2023. [PMID: 37981862 DOI: 10.1039/d3nr04493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The investigation of the magnetic characteristics of magnetic nanostructures (MNs) in various dimensions is a crucial direction of research in nanomagnetism, with MNs belonging to various dimensions exhibiting magnetic properties related to their geometry. A better understanding of these magnetic properties is required for MN manipulation. The primary tools for researching MNs are magnetic characterisation techniques with great spatial resolution and spin sensitivity. Micromagnetic simulation is another technique that minimises experimental costs, while providing information on the magnetic structure and magnetic behaviour, and has enormous potential for predicting, validating, and extending the magnetic characterisation results. This review first looks at the progress of research into quantitatively characterising the magnetic properties of low-dimensional (including 0D, 1D, and 2D) and 3D MNs in two directions: magnetic characterisation techniques and micromagnetic simulations, with a particular emphasis on the potential for future applications of these techniques. Single magnetic characterization techniques, single micromagnetic simulations, or a mix of both are utilised in these research studies to investigate MNs in a variety of dimensions. How the magnetic characterisation techniques and micromagnetic simulations can be better applied to MNs in various dimensions is then outlined. This discussion has significant application potential for low-dimensional and 3D MNs.
Collapse
Affiliation(s)
- Xin Li
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| | - Zhaolian Wang
- Shandong Huate Magnet Technology Co., Ltd, Weifang 261000, China
| | - Zhongyun Lei
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Wei Ding
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Xiao Shi
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jujian Yan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jiangang Ku
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| |
Collapse
|
7
|
Winkler R, Brugger-Hatzl M, Porrati F, Kuhness D, Mairhofer T, Seewald LM, Kothleitner G, Huth M, Plank H, Barth S. Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model System: High-Energy Fragmentation vs. Low-Energy Decomposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2907. [PMID: 37947751 PMCID: PMC10647607 DOI: 10.3390/nano13212907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Electron-induced fragmentation of the HFeCo3(CO)12 precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation. The use of the single source precursor provides a unique insight into high- and low-energy fragmentation channels being active in the same deposit formation process.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | | | - Fabrizio Porrati
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
| | - David Kuhness
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Thomas Mairhofer
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Lukas M. Seewald
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Michael Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Sven Barth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
8
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
9
|
Khatua S, Gingras MJP, Rau JG. Pseudo-Goldstone Modes and Dynamical Gap Generation from Order by Thermal Disorder. PHYSICAL REVIEW LETTERS 2023; 130:266702. [PMID: 37450813 DOI: 10.1103/physrevlett.130.266702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 07/18/2023]
Abstract
Accidental ground state degeneracies-those not a consequence of global symmetries of the Hamiltonian-are inevitably lifted by fluctuations, often leading to long-range order, a phenomenon known as "order-by-disorder" (ObD). The detection and characterization of ObD in real materials currently lacks clear, qualitative signatures that distinguish ObD from conventional energetic selection. We show that for order by thermal disorder (ObTD) such a signature exists: a characteristic temperature dependence of the fluctuation-induced pseudo-Goldstone gap. We demonstrate this in a minimal two-dimensional model that exhibits ObTD, the ferromagnetic Heisenberg-compass model on a square lattice. Using spin-dynamics simulations and self-consistent mean-field calculations, we determine the pseudo-Goldstone gap, Δ, and show that at low temperatures it scales as the square root of temperature, sqrt[T]. We establish that a power-law temperature dependence of the gap is a general consequence of ObTD, showing that all key features of this physics can be captured in a simple model of a particle moving in an effective potential generated by the fluctuation-induced free energy.
Collapse
Affiliation(s)
- Subhankar Khatua
- Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Michel J P Gingras
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jeffrey G Rau
- Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
10
|
Jurczyk J, Höflich K, Madajska K, Berger L, Brockhuis L, Edwards TEJ, Kapusta C, Szymańska IB, Utke I. Ligand Size and Carbon-Chain Length Study of Silver Carboxylates in Focused Electron-Beam-Induced Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091516. [PMID: 37177061 PMCID: PMC10180361 DOI: 10.3390/nano13091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Gas-assisted focused electron-beam-induced deposition is a versatile tool for the direct writing of complex-shaped nanostructures with unprecedented shape fidelity and resolution. While the technique is well-established for various materials, the direct electron beam writing of silver is still in its infancy. Here, we examine and compare five different silver carboxylates, three perfluorinated: [Ag2(µ-O2CCF3)2], [Ag2(µ-O2CC2F5)2], and [Ag2(µ-O2CC3F7)2], and two containing branched substituents: [Ag2(µ-O2CCMe2Et)2] and [Ag2(µ-O2CtBu)2], as potential precursors for focused electron-beam-induced deposition. All of the compounds show high sensitivity to electron dissociation and efficient dissociation of Ag-O bonds. The as-deposited materials have silver contents from 42 at.% to above 70 at.% and are composed of silver nano-crystals with impurities of carbon and fluorine between them. Precursors with the shortest carbon-fluorine chain ligands yield the highest silver contents. In addition, the deposited silver content depends on the balance of electron-induced ligand co-deposition and ligand desorption. For all of the tested compounds, low electron flux was related to high silver content. Our findings demonstrate that silver carboxylates constitute a promising group of precursors for gas-assisted focused electron beam writing of high silver content materials.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katja Höflich
- Helmholtz-Zentrum Berlin Für Materialien und Energie, Nanoscale Structures and Microscopic Analysis, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Ferdinand-Braun Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Leo Brockhuis
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Thomas Edward James Edwards
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| |
Collapse
|
11
|
Winkler R, Brugger-Hatzl M, Seewald LM, Kuhness D, Barth S, Mairhofer T, Kothleitner G, Plank H. Additive Manufacturing of Co 3Fe Nano-Probes for Magnetic Force Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1217. [PMID: 37049311 PMCID: PMC10097098 DOI: 10.3390/nano13071217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCo3Fe(CO)12 precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based Co3Fe MFM nano-probes.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | | | | | - David Kuhness
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Sven Barth
- Institute of Physics, Goethe University, 60438 Frankfurt, Germany
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Thomas Mairhofer
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
12
|
Porrati F, Barth S, Gazzadi GC, Frabboni S, Volkov OM, Makarov D, Huth M. Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures. ACS NANO 2023; 17:4704-4715. [PMID: 36826847 DOI: 10.1021/acsnano.2c10968] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core-shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core-shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.
Collapse
Affiliation(s)
- Fabrizio Porrati
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Gian Carlo Gazzadi
- S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, I-41125 Modena, Italy
| | - Stefano Frabboni
- S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, I-41125 Modena, Italy
- FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, I-41125 Modena, Italy
| | - Oleksii M Volkov
- Helmholtz-Zentrum DresdenRossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Denys Makarov
- Helmholtz-Zentrum DresdenRossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Michael Huth
- Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Kuprava A, Huth M. Fast and Efficient Simulation of the FEBID Process with Thermal Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:858. [PMID: 36903735 PMCID: PMC10005571 DOI: 10.3390/nano13050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Focused electron-beam-induced deposition (FEBID) is a highly versatile direct-write approach with particular strengths in the 3D nanofabrication of functional materials. Despite its apparent similarity to other 3D printing approaches, non-local effects related to precursor depletion, electron scattering and sample heating during the 3D growth process complicate the shape-true transfer from a target 3D model to the actual deposit. Here, we describe an efficient and fast numerical approach to simulate the growth process, which allows for a systematic study of the influence of the most important growth parameters on the resulting shape of the 3D structures. The precursor parameter set derived in this work for the precursor Me3PtCpMe enables a detailed replication of the experimentally fabricated nanostructure, taking beam-induced heating into account. The modular character of the simulation approach allows for additional future performance increases using parallelization or drawing on the use of graphics cards. Ultimately, beam-control pattern generation for 3D FEBID will profit from being routinely combined with this fast simulation approach for optimized shape transfer.
Collapse
|
14
|
Lasseter J, Rack PD, Randolph SJ. Selected Area Deposition of High Purity Gold for Functional 3D Architectures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:757. [PMID: 36839126 PMCID: PMC9965196 DOI: 10.3390/nano13040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings can be selectively grown with the Me2Au (acac) precursor onto nanoscale 3D architectures via a pulsed laser pyrolytic chemical vapor deposition process. The selected area of deposition is achieved due to the high thermal resistance of the nanoscale geometries. Focused electron beam induced deposits (FEBID) and carbon nanofibers are functionalized with gold coatings, and we demonstrate the effects that laser irradiance, pulse width, and precursor pressure have on the growth rate. Furthermore, we demonstrate selected area deposition with a feature-targeting resolutions of ~100 and 5 µm, using diode lasers coupled to a multimode (915 nm) and single mode (785 nm) fiber optic, respectively. The experimental results are rationalized via finite element thermal modeling.
Collapse
Affiliation(s)
- John Lasseter
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Philip D. Rack
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Steven J. Randolph
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
15
|
Fowlkes J, Winkler R, Rack PD, Plank H. 3D Nanoprinting Replication Enhancement Using a Simulation-Informed Analytical Model for Electron Beam Exposure Dose Compensation. ACS OMEGA 2023; 8:3148-3175. [PMID: 36713724 PMCID: PMC9878664 DOI: 10.1021/acsomega.2c06596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
3D nanoprinting, using focused electron beam-induced deposition, is prone to a common structural artifact arising from a temperature gradient that naturally evolves during deposition, extending from the electron beam impact region (BIR) to the substrate. Inelastic electron energy loss drives the Joule heating and surface temperature variations lead to precursor surface concentration variations due, in most part, to temperature-dependent precursor surface desorption. The result is unwanted curvature when prescribing linear segments in 3D objects, and thus, complex geometries contain distortions. Here, an electron dose compensation strategy is presented to offset deleterious heating effects; the Decelerating Beam Exposure Algorithm, or DBEA, which corrects for nanowire bending a priori, during computer-aided design, uses an analytical solution derived from information gleaned from 3D nanoprinting simulations. Electron dose modulation is an ideal solution for artifact correction because variations in electron dose have no influence on temperature. Thus, the generalized compensation strategy revealed here will help advance 3D nanoscale printing fidelity for focused electron beam-induced deposition.
Collapse
Affiliation(s)
- Jason
D. Fowlkes
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Robert Winkler
- Christian
Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes
(DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010Graz, Austria
| | - Philip D. Rack
- Department
of Materials Science and Engineering, University
of Tennessee, Knoxville, Tennessee37996, United States
| | - Harald Plank
- Christian
Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes
(DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010Graz, Austria
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010Graz, Austria
- Graz
Centre for Electron Microscopy, 8010Graz, Austria
| |
Collapse
|
16
|
Weitzer A, Winkler R, Kuhness D, Kothleitner G, Plank H. Controlled Morphological Bending of 3D-FEBID Structures via Electron Beam Curing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4246. [PMID: 36500873 PMCID: PMC9737864 DOI: 10.3390/nano12234246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Focused electron beam induced deposition (FEBID) is one of the few additive, direct-write manufacturing techniques capable of depositing complex 3D nanostructures. In this work, we explore post-growth electron beam curing (EBC) of such platinum-based FEBID deposits, where free-standing, sheet-like elements were deformed in a targeted manner by local irradiation without precursor gas present. This process diminishes the volumes of exposed regions and alters nano-grain sizes, which was comprehensively characterized by SEM, TEM and AFM and complemented by Monte Carlo simulations. For obtaining controlled and reproducible conditions for smooth, stable morphological bending, a wide range of parameters were varied, which will here be presented as a first step towards using local EBC as a tool to realize even more complex nano-architectures, beyond current 3D-FEBID capabilities, such as overhanging structures. We thereby open up a new prospect for future applications in research and development that could even be further developed towards functional imprinting.
Collapse
Affiliation(s)
- Anna Weitzer
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - David Kuhness
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Harald Plank
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| |
Collapse
|
17
|
Ehrmann G, Blachowicz T, Ehrmann A. Magnetic 3D-Printed Composites-Production and Applications. Polymers (Basel) 2022; 14:3895. [PMID: 36146040 PMCID: PMC9504960 DOI: 10.3390/polym14183895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional printing enables building objects shaped with a large degree of freedom. Additional functionalities can be included by modifying the printing material, e.g., by embedding nanoparticles in the molten polymer feedstock, the resin, or the solution used for printing, respectively. Such composite materials may be stronger or more flexible, conductive, magnetic, etc. Here, we give an overview of magnetic composites, 3D-printed by different techniques, and their potential applications. The production of the feedstock is described as well as the influence of printing parameters on the magnetic and mechanical properties of such polymer/magnetic composites.
Collapse
Affiliation(s)
- Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM)
| | - Tomasz Blachowicz
- Institute of Physics-Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
18
|
Salvador-Porroche A, Herrer L, Sangiao S, de Teresa JM, Cea P. Low-resistivity Pd nanopatterns created by a direct electron beam irradiation process free of post-treatment steps. NANOTECHNOLOGY 2022; 33:405302. [PMID: 34983030 DOI: 10.1088/1361-6528/ac47cf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
The ability to create metallic patterned nanostructures with excellent control of size, shape and spatial orientation is of utmost importance in the construction of next-generation electronic and optical devices as well as in other applications such as (bio)sensors, reactive surfaces for catalysis, etc. Moreover, development of simple, rapid and low-cost fabrication processes of metallic patterned nanostructures is a challenging issue for the incorporation of such devices in real market applications. In this contribution, a direct-write method that results in highly conducting palladium-based nanopatterned structures without the need of applying subsequent curing processes is presented. Spin-coated films of palladium acetate were irradiated with an electron beam to produce palladium nanodeposits (PdNDs) with controlled size, shape and height. The use of different electron doses was investigated and its influence on the PdNDs features determined, namely: (1) thickness of the deposits, (2) atomic percentage of palladium content, (3) oxidation state of palladium in the deposit, (4) morphology of the sample and grain size of the Pd nanocrystals and (5) resistivity. It has been probed that the use of high electron doses, 30000μC cm-2results in the lowest resistivity reported to date for PdNDs, namely 145μΩ cm, which is only one order of magnitude higher than bulk palladium. This result paves the way for development of simplified lithography processes of nanostructured deposits avoiding subsequent post-treatment steps.
Collapse
Affiliation(s)
- Alba Salvador-Porroche
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Lucía Herrer
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - José María de Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
19
|
Utke I, Swiderek P, Höflich K, Madajska K, Jurczyk J, Martinović P, Szymańska I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.213851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Vanadium and Manganese Carbonyls as Precursors in Electron-Induced and Thermal Deposition Processes. NANOMATERIALS 2022; 12:nano12071110. [PMID: 35407228 PMCID: PMC9000455 DOI: 10.3390/nano12071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023]
Abstract
The material composition and electrical properties of nanostructures obtained from focused electron beam-induced deposition (FEBID) using manganese and vanadium carbonyl precursors have been investigated. The composition of the FEBID deposits has been compared with thin films derived by the thermal decomposition of the same precursors in chemical vapor deposition (CVD). FEBID of V(CO)6 gives access to a material with a V/C ratio of 0.63–0.86, while in CVD a lower carbon content with V/C ratios of 1.1–1.3 is obtained. Microstructural characterization reveals for V-based materials derived from both deposition techniques crystallites of a cubic phase that can be associated with VC1−xOx. In addition, the electrical transport measurements of direct-write VC1−xOx show moderate resistivity values of 0.8–1.2 × 103 µΩ·cm, a negligible influence of contact resistances and signatures of a granular metal in the temperature-dependent conductivity. Mn-based deposits obtained from Mn2(CO)10 contain ~40 at% Mn for FEBID and a slightly higher metal percentage for CVD. Exclusively insulating material has been observed in FEBID deposits as deduced from electrical conductivity measurements. In addition, strong tendencies for postgrowth oxidation have to be considered.
Collapse
|
21
|
Sheka DD, Pylypovskyi OV, Volkov OM, Yershov KV, Kravchuk VP, Makarov D. Fundamentals of Curvilinear Ferromagnetism: Statics and Dynamics of Geometrically Curved Wires and Narrow Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105219. [PMID: 35044074 DOI: 10.1002/smll.202105219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Indexed: 06/14/2023]
Abstract
Low-dimensional magnetic architectures including wires and thin films are key enablers of prospective ultrafast and energy efficient memory, logic, and sensor devices relying on spin-orbitronic and magnonic concepts. Curvilinear magnetism emerged as a novel approach in material science, which allows tailoring of the fundamental anisotropic and chiral responses relying on the geometrical curvature of magnetic architectures. Much attention is dedicated to magnetic wires of Möbius, helical, or DNA-like double helical shapes, which act as prototypical objects for the exploration of the fundamentals of curvilinear magnetism. Although there is a bulk number of original publications covering fabrication, characterization, and theory of magnetic wires, there is no comprehensive review of the theoretical framework of how to describe these architectures. Here, theoretical activities on the topic of curvilinear magnetic wires and narrow nanoribbons are summarized, providing a systematic review of the emergent interactions and novel physical effects caused by the curvature. Prospective research directions of curvilinear spintronics and spin-orbitronics are discussed, the fundamental framework for curvilinear magnonics are outlined, and mechanically flexible curvilinear architectures for soft robotics are introduced.
Collapse
Affiliation(s)
- Denis D Sheka
- Faculty of Radiophysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
- Kyiv Academic University, Kyiv, 03142, Ukraine
| | - Oleksii M Volkov
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
| | - Kostiantyn V Yershov
- Leibniz-Institut für Festkörper- und Werkstoffforschung, IFW Dresden, 01171, Dresden, Germany
- Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, Kyiv, 03142, Ukraine
| | - Volodymyr P Kravchuk
- Institut für Theoretische Festkörperphysik, Karlsruher Institut für Technologie, 76131, Karlsruhe, Germany
- Bogolyubov Institute for Theoretical Physics of National Academy of Sciences of Ukraine, Kyiv, 03142, Ukraine
| | - Denys Makarov
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany
| |
Collapse
|
22
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
23
|
Jungwirth F, Porrati F, Schuck AG, Huth M, Barth S. Direct Writing of Cobalt Silicide Nanostructures Using Single-Source Precursors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48252-48259. [PMID: 34592822 DOI: 10.1021/acsami.1c14117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two new precursors for focused electron beam-induced deposition (FEBID) of cobalt silicides have been synthesized and evaluated. The H3SiCo(CO)4 and H2Si(Co(CO)4)2 single-source precursors retain the initial metal ratios and show low sensitivity to changes in the FEBID parameters such as acceleration voltage, beam current, and precursor pressure. The precursors allow the direct writing of material containing ∼55 to 60 at % total metal/metalloid content combined with high growth rates. During the deposition process an average of ∼80% of the carbonyl ligands are cleaved off in these planar deposits. Postgrowth electron curing does not change the deposits' composition, but resistivities decrease after the curing procedure. Temperature-dependent electrical properties indicate the presence of a granular metal for both cured samples and the as-grown Co2Si deposit, while the as-grown CoSi material is on the insulating side of the metal-insulator transition. The observed magnetoresistance behavior is indicative of tunneling magnetoresistance and is substantially reduced upon postgrowth irradiation treatment.
Collapse
Affiliation(s)
- Felix Jungwirth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Fabrizio Porrati
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Alfons G Schuck
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Michael Huth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Abstract
Molecular magnets are a relatively new class of purely organic or metallo-organic materials, showing magnetism even without an external magnetic field. This interdisciplinary field between chemistry and physics has been gaining increased interest since the 1990s. While bulk molecular magnets are usually hard to build because of their molecular structures, low-dimensional molecular magnets are often easier to construct, down to dot-like (zero-dimensional) structures, which are investigated by different scanning probe technologies. On these scales, new effects such as superparamagnetic behavior or coherent switching during magnetization reversal can be recognized. Here, we give an overview of the recent advances in molecular nanomagnets, starting with single-molecule magnets (0D), typically based on Mn12, Fe8, or Mn4, going further to single-chain magnets (1D) and finally higher-dimensional molecular nanomagnets. This review does not aim to give a comprehensive overview of all research fields dealing with molecular nanomagnets, but instead aims at pointing out diverse possible materials and effects in order to stimulate new research in this broad field of nanomagnetism.
Collapse
|
25
|
Hinum-Wagner J, Kuhness D, Kothleitner G, Winkler R, Plank H. FEBID 3D-Nanoprinting at Low Substrate Temperatures: Pushing the Speed While Keeping the Quality. NANOMATERIALS 2021; 11:nano11061527. [PMID: 34207654 PMCID: PMC8229455 DOI: 10.3390/nano11061527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
High-fidelity 3D printing of nanoscale objects is an increasing relevant but challenging task. Among the few fabrication techniques, focused electron beam induced deposition (FEBID) has demonstrated its high potential due to its direct-write character, nanoscale capabilities in 3D space and a very high design flexibility. A limitation, however, is the low fabrication speed, which often restricts 3D-FEBID for the fabrication of single objects. In this study, we approach that challenge by reducing the substrate temperatures with a homemade Peltier stage and investigate the effects on Pt based 3D deposits in a temperature range of 5–30 °C. The findings reveal a volume growth rate boost up to a factor of 5.6, while the shape fidelity in 3D space is maintained. From a materials point of view, the internal nanogranular composition is practically unaffected down to 10 °C, followed by a slight grain size increase for even lower temperatures. The study is complemented by a comprehensive discussion about the growth mechanism for a more general picture. The combined findings demonstrate that FEBID on low substrate temperatures is not only much faster, but practically free of drawbacks during high fidelity 3D nanofabrication.
Collapse
Affiliation(s)
- Jakob Hinum-Wagner
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
| | - David Kuhness
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
| | - Gerald Kothleitner
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria;
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Robert Winkler
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
- Correspondence: (R.W.); (H.P.)
| | - Harald Plank
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria; (J.H.-W.); (D.K.)
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria;
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
- Correspondence: (R.W.); (H.P.)
| |
Collapse
|
26
|
Berger L, Jurczyk J, Madajska K, Szymańska IB, Hoffmann P, Utke I. Room Temperature Direct Electron Beam Lithography in a Condensed Copper Carboxylate. MICROMACHINES 2021; 12:580. [PMID: 34065297 PMCID: PMC8161174 DOI: 10.3390/mi12050580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
High-resolution metallic nanostructures can be fabricated with multistep processes, such as electron beam lithography or ice lithography. The gas-assisted direct-write technique known as focused electron beam induced deposition (FEBID) is more versatile than the other candidates. However, it suffers from low throughput. This work presents the combined approach of FEBID and the above-mentioned lithography techniques: direct electron beam lithography (D-EBL). A low-volatility copper precursor is locally condensed onto a room temperature substrate and acts as a positive tone resist. A focused electron beam then directly irradiates the desired patterns, leading to local molecule dissociation. By rinsing or sublimation, the non-irradiated precursor is removed, leaving copper-containing structures. Deposits were formed with drastically enhanced growth rates than FEBID, and their composition was found to be comparable to gas-assisted FEBID structures. The influence of electron scattering within the substrate as well as implementing a post-purification protocol were studied. The latter led to the agglomeration of high-purity copper crystals. We present this as a new approach to electron beam-induced fabrication of metallic nanostructures without the need for cryogenic or hot substrates. D-EBL promises fast and easy fabrication results.
Collapse
Affiliation(s)
- Luisa Berger
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland; (L.B.); (J.J.)
| | - Jakub Jurczyk
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland; (L.B.); (J.J.)
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Madajska
- Department of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (K.M.); (I.B.S.)
| | - Iwona B. Szymańska
- Department of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (K.M.); (I.B.S.)
| | - Patrik Hoffmann
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun, Switzerland;
| | - Ivo Utke
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland; (L.B.); (J.J.)
| |
Collapse
|
27
|
Glessi C, Mahgoub A, Hagen CW, Tilset M. Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:257-269. [PMID: 33824846 PMCID: PMC7991619 DOI: 10.3762/bjnano.12.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Seven gold(I) N-heterocyclic carbene (NHC) complexes were synthesized, characterized, and identified as suitable precursors for focused electron beam-induced deposition (FEBID). Several variations on the core Au(NHC)X moiety were introduced, that is, variations of the NHC ring (imidazole or triazole), of the alkyl N-substituents (Me, Et, or iPr), and of the ancillary ligand X (Cl, Br, I, or CF3). The seven complexes were tested as FEBID precursors in an on-substrate custom setup. The effect of the substitutions on deposit composition and growth rate indicates that the most suitable organic ligand for the gold precursor is triazole-based, with the best deposit composition of 15 atom % gold, while the most suitable anionic ligand is the trifluoromethyl group, leading to a growth rate of 1 × 10-2 nm3/e-.
Collapse
Affiliation(s)
- Cristiano Glessi
- Department of Chemistry and Centre for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126 Blindern, NO-0318 Oslo, Norway
| | - Aya Mahgoub
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - Cornelis W Hagen
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - Mats Tilset
- Department of Chemistry and Centre for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126 Blindern, NO-0318 Oslo, Norway
| |
Collapse
|
28
|
Magén C, Pablo-Navarro J, De Teresa JM. Focused-Electron-Beam Engineering of 3D Magnetic Nanowires. NANOMATERIALS 2021; 11:nano11020402. [PMID: 33557442 PMCID: PMC7914621 DOI: 10.3390/nano11020402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Focused-electron-beam-induced deposition (FEBID) is the ultimate additive nanofabrication technique for the growth of 3D nanostructures. In the field of nanomagnetism and its technological applications, FEBID could be a viable solution to produce future high-density, low-power, fast nanoelectronic devices based on the domain wall conduit in 3D nanomagnets. While FEBID has demonstrated the flexibility to produce 3D nanostructures with almost any shape and geometry, the basic physical properties of these out-of-plane deposits are often seriously degraded from their bulk counterparts due to the presence of contaminants. This work reviews the experimental efforts to understand and control the physical processes involved in 3D FEBID growth of nanomagnets. Co and Fe FEBID straight vertical nanowires have been used as benchmark geometry to tailor their dimensions, microstructure, composition and magnetism by smartly tuning the growth parameters, post-growth purification treatments and heterostructuring.
Collapse
Affiliation(s)
- César Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-876-555369; Fax: +34-976-762-776
| | - Javier Pablo-Navarro
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Expanding 3D Nanoprinting Performance by Blurring the Electron Beam. MICROMACHINES 2021; 12:mi12020115. [PMID: 33499214 PMCID: PMC7911092 DOI: 10.3390/mi12020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
Additive, direct-write manufacturing via a focused electron beam has evolved into a reliable 3D nanoprinting technology in recent years. Aside from low demands on substrate materials and surface morphologies, this technology allows the fabrication of freestanding, 3D architectures with feature sizes down to the sub-20 nm range. While indispensably needed for some concepts (e.g., 3D nano-plasmonics), the final applications can also be limited due to low mechanical rigidity, and thermal- or electric conductivities. To optimize these properties, without changing the overall 3D architecture, a controlled method for tuning individual branch diameters is desirable. Following this motivation, here, we introduce on-purpose beam blurring for controlled upward scaling and study the behavior at different inclination angles. The study reveals a massive boost in growth efficiencies up to a factor of five and the strong delay of unwanted proximal growth. In doing so, this work expands the design flexibility of this technology.
Collapse
|
30
|
Kuhness D, Gruber A, Winkler R, Sattelkow J, Fitzek H, Letofsky-Papst I, Kothleitner G, Plank H. High-Fidelity 3D Nanoprinting of Plasmonic Gold Nanoantennas. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1178-1191. [PMID: 33372522 DOI: 10.1021/acsami.0c17030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The direct-write fabrication of freestanding nanoantennas for plasmonic applications is a challenging task, as demands for overall morphologies, nanoscale features, and material qualities are very high. Within the small pool of capable technologies, three-dimensional (3D) nanoprinting via focused electron beam-induced deposition (FEBID) is a promising candidate due to its design flexibility. As FEBID materials notoriously suffer from high carbon contents, the chemical postgrowth transfer into pure metals is indispensably needed, which can severely harm or even destroy FEBID-based 3D nanoarchitectures. Following this challenge, we first dissect FEBID growth characteristics and then combine individual advantages by an advanced patterning approach. This allows the direct-write fabrication of high-fidelity shapes with nanoscale features in the sub-10 nm range, which allow a shape-stable chemical transfer into plasmonically active Au nanoantennas. The here-introduced strategy is a generic approach toward more complex 3D architectures for future applications in the field of 3D plasmonics.
Collapse
Affiliation(s)
- David Kuhness
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | | | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Jürgen Sattelkow
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Harald Fitzek
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| | - Ilse Letofsky-Papst
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
31
|
Pip P, Donnelly C, Döbeli M, Gunderson C, Heyderman LJ, Philippe L. Electroless Deposition of Ni-Fe Alloys on Scaffolds for 3D Nanomagnetism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004099. [PMID: 33025737 DOI: 10.1002/smll.202004099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
3D magnetic nanostructures are of great interest due to the possibility to design novel properties and the benefits for both technological applications such as high-density data storage, as well as more fundamental studies. One of the main challenges facing the realization of these three-dimensional systems is their fabrication, which includes the deposition of magnetic materials on 3D surfaces. In this work, the electroless deposition of Ni-Fe on a 3D-printed, non-conductive microstructure is presented. The deposited films exhibit low coercivity, with the saturation magnetization and composition corresponding to the archetypal soft magnetic material permalloy. For fundamental studies of 3D micromagnetism, this new development in fabrication offers the possibility to combine the flexibility of 3D nanofabrication techniques such as two-photon lithography for the fabrication of 3D scaffolds with a homogeneous soft ferromagnetic thin film, and thus represents an important step toward exploring the rich physics of complex 3D magnetic architectures with tailored properties and the development of advanced applications.
Collapse
Affiliation(s)
- Petai Pip
- Laboratory for Mechanics of Materials and Nanostructures, Empa (Swiss Federal Laboratories for Materials Testing and Research), Thun, 3602, Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Claire Donnelly
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HT, UK
| | - Max Döbeli
- Ion Beam Physics, Department of Physics, ETH Zurich, Zurich, 8093, Switzerland
| | - Christopher Gunderson
- Laboratory for Mechanics of Materials and Nanostructures, Empa (Swiss Federal Laboratories for Materials Testing and Research), Thun, 3602, Switzerland
| | - Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Laetitia Philippe
- Laboratory for Mechanics of Materials and Nanostructures, Empa (Swiss Federal Laboratories for Materials Testing and Research), Thun, 3602, Switzerland
| |
Collapse
|
32
|
Dobrovolskiy OV, Bunyaev SA, Vovk NR, Navas D, Gruszecki P, Krawczyk M, Sachser R, Huth M, Chumak AV, Guslienko KY, Kakazei GN. Spin-wave spectroscopy of individual ferromagnetic nanodisks. NANOSCALE 2020; 12:21207-21217. [PMID: 33057527 DOI: 10.1039/d0nr07015g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The increasing demand for nanoscale magnetic devices requires development of 3D magnetic nanostructures. In this regard, focused electron beam induced deposition (FEBID) is a technique of choice for direct-writing of complex nano-architectures with applications in nanomagnetism, magnon spintronics, and superconducting electronics. However, intrinsic properties of nanomagnets are often poorly known and can hardly be assessed by local optical probe techniques. Here, an original spatially resolved approach is demonstrated for spin-wave spectroscopy of individual circular magnetic elements with sample volumes down to about 10-3 μm3. The key component of the setup is a coplanar waveguide whose microsized central part is placed over a movable substrate with well-separated CoFe-FEBID nanodisks which exhibit standing spin-wave resonances. The circular symmetry of the disks allows for the deduction of the saturation magnetization and the exchange stiffness of the material using an analytical theory. A good correspondence between the results of analytical calculations and micromagnetic simulations is revealed, indicating a validity of the used analytical model going beyond the initial thin-disk approximation used in the theoretical derivation. The presented approach is especially valuable for the characterization of direct-write magnetic elements opening new horizons for 3D nanomagnetism and magnonics.
Collapse
Affiliation(s)
| | - Sergey A Bunyaev
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Nikolay R Vovk
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal and Department of Physics, V. N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - David Navas
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal and Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, 28049 Madrid, Spain
| | - Pawel Gruszecki
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 2, 61-614 Poznań, Poland and Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego St. 17, 60-179 Poznań, Poland
| | - Maciej Krawczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 2, 61-614 Poznań, Poland
| | - Roland Sachser
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Michael Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Andrii V Chumak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Konstantin Y Guslienko
- Division de Fisica de Materiales, Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del Pais Vasco, UPV/EHU, Paseo M. Lardizabal 3, 20018 San Sebastian, Spain and IKERBASQUE, the Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Gleb N Kakazei
- Institute of Physics for Advanced Materials, Nanotechnology and Photonics (IFIMUP)/Departamento de Física e Astronomia, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
33
|
Fernández-Pacheco A, Skoric L, De Teresa JM, Pablo-Navarro J, Huth M, Dobrovolskiy OV. Writing 3D Nanomagnets Using Focused Electron Beams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3774. [PMID: 32859076 PMCID: PMC7503546 DOI: 10.3390/ma13173774] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
Collapse
Affiliation(s)
- Amalio Fernández-Pacheco
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Luka Skoric
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Javier Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Oleksandr V. Dobrovolskiy
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
34
|
Belianinov A, Burch MJ, Ievlev A, Kim S, Stanford MG, Mahady K, Lewis BB, Fowlkes JD, Rack PD, Ovchinnikova OS. Direct Write of 3D Nanoscale Mesh Objects with Platinum Precursor via Focused Helium Ion Beam Induced Deposition. MICROMACHINES 2020; 11:E527. [PMID: 32455865 PMCID: PMC7281202 DOI: 10.3390/mi11050527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques.
Collapse
Affiliation(s)
- Alex Belianinov
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (A.B.); (M.J.B.); (A.I.); (S.K.); (J.D.F.); (P.D.R.)
| | - Matthew J. Burch
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (A.B.); (M.J.B.); (A.I.); (S.K.); (J.D.F.); (P.D.R.)
| | - Anton Ievlev
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (A.B.); (M.J.B.); (A.I.); (S.K.); (J.D.F.); (P.D.R.)
| | - Songkil Kim
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (A.B.); (M.J.B.); (A.I.); (S.K.); (J.D.F.); (P.D.R.)
- School of Mechanical Engineering, Pusan National University, Busan 46241, Korea
| | - Michael G. Stanford
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.G.S.); (K.M.); (B.B.L.)
| | - Kyle Mahady
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.G.S.); (K.M.); (B.B.L.)
| | - Brett B. Lewis
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.G.S.); (K.M.); (B.B.L.)
| | - Jason D. Fowlkes
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (A.B.); (M.J.B.); (A.I.); (S.K.); (J.D.F.); (P.D.R.)
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.G.S.); (K.M.); (B.B.L.)
| | - Philip D. Rack
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (A.B.); (M.J.B.); (A.I.); (S.K.); (J.D.F.); (P.D.R.)
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.G.S.); (K.M.); (B.B.L.)
| | - Olga S. Ovchinnikova
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (A.B.); (M.J.B.); (A.I.); (S.K.); (J.D.F.); (P.D.R.)
| |
Collapse
|
35
|
Donnelly C, Scagnoli V. Imaging three-dimensional magnetic systems with x-rays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:213001. [PMID: 31796657 DOI: 10.1088/1361-648x/ab5e3c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent progress in nanofabrication and additive manufacturing have facilitated the building of nanometer-scale three-dimensional (3D) structures, that promise to lead to an emergence of new functionalities within a number of fields, compared to state-of-the-art two dimensional systems. In magnetism, the move to 3D systems offers the possibility for novel magnetic properties not available in planar systems, as well as enhanced performance, both of which are key for the development of new technological applications. In this review paper we will focus our attention on 3D magnetic systems and how their magnetic configuration can be retrieved using x-ray magnetic nanotomography. We will start with an introduction to magnetic materials, and their relevance to our everyday life, along with the growing impact that they will have in the coming years in, for example, reducing energy consumption. We will then briefly introduce common methods used to study magnetic materials, such as electron holography, neutron and x-ray imaging. In particular, we will focus on x-ray magnetic circular dichroism (XMCD) and how it can be used to image magnetic moment configurations. As a next step we will introduce tomography for 3D imaging, and how it can be adapted to study magnetic materials. Particular attention will be given to explaining the reconstruction algorithms that can be used to retrieve the magnetic moment configuration from the experimental data, as these represent one of the main challenges so far, as well as the different experimental geometries that are available. Recent experimental results will be used as specific examples to guide the reader through each step in order to make sure that the paper will be accessible for those interested in the topic that do not have a specialized background on magnetic imaging. Finally, we will describe the future prospects of such studies, identifying the current challenges facing the field, and how these can be tackled. In particular we will highlight the exciting possibilities offered by the next generation of synchrotron sources which will deliver diffraction limited beams, as well as with the extension of well-established methodologies currently implemented for the study of two-dimensional magnetic materials to achieve higher dimensional investigations.
Collapse
Affiliation(s)
- C Donnelly
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | | |
Collapse
|
36
|
Utke I, Michler J, Winkler R, Plank H. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. MICROMACHINES 2020; 11:E397. [PMID: 32290292 PMCID: PMC7231341 DOI: 10.3390/mi11040397] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
This article reviews the state-of-the -art of mechanical material properties and measurement methods of nanostructures obtained by two nanoscale additive manufacturing methods: gas-assisted focused electron and focused ion beam-induced deposition using volatile organic and organometallic precursors. Gas-assisted focused electron and ion beam-induced deposition-based additive manufacturing technologies enable the direct-write fabrication of complex 3D nanostructures with feature dimensions below 50 nm, pore-free and nanometer-smooth high-fidelity surfaces, and an increasing flexibility in choice of materials via novel precursors. We discuss the principles, possibilities, and literature proven examples related to the mechanical properties of such 3D nanoobjects. Most materials fabricated via these approaches reveal a metal matrix composition with metallic nanograins embedded in a carbonaceous matrix. By that, specific material functionalities, such as magnetic, electrical, or optical can be largely independently tuned with respect to mechanical properties governed mostly by the matrix. The carbonaceous matrix can be precisely tuned via electron and/or ion beam irradiation with respect to the carbon network, carbon hybridization, and volatile element content and thus take mechanical properties ranging from polymeric-like over amorphous-like toward diamond-like behavior. Such metal matrix nanostructures open up entirely new applications, which exploit their full potential in combination with the unique 3D additive manufacturing capabilities at the nanoscale.
Collapse
Affiliation(s)
- Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| |
Collapse
|
37
|
Skoric L, Sanz-Hernández D, Meng F, Donnelly C, Merino-Aceituno S, Fernández-Pacheco A. Layer-by-Layer Growth of Complex-Shaped Three-Dimensional Nanostructures with Focused Electron Beams. NANO LETTERS 2020; 20:184-191. [PMID: 31869235 DOI: 10.1021/acs.nanolett.9b03565] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fabrication of three-dimensional (3D) nanostructures is of great interest to many areas of nanotechnology currently challenged by fundamental limitations of conventional lithography. One of the most promising direct-write methods for 3D nanofabrication is focused electron beam-induced deposition (FEBID), owing to its high spatial resolution and versatility. Here we extend FEBID to the growth of complex-shaped 3D nanostructures by combining the layer-by-layer approach of conventional macroscopic 3D printers and the proximity effect correction of electron beam lithography. This framework is based on the continuum FEBID model and is capable of adjusting for a wide range of effects present during deposition, including beam-induced heating, defocusing, and gas flux anisotropies. We demonstrate the capabilities of our platform by fabricating free-standing nanowires, surfaces with varying curvatures and topologies, and general 3D objects, directly from standard stereolithography (STL) files and using different precursors. Real 3D nanoprinting as demonstrated here opens up exciting avenues for the study and exploitation of 3D nanoscale phenomena.
Collapse
Affiliation(s)
- Luka Skoric
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Dédalo Sanz-Hernández
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Fanfan Meng
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Claire Donnelly
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
| | - Sara Merino-Aceituno
- Faculty of Mathematics , University of Vienna , Oskar-Morgenstern-Platz 1 , 1090 , Vienna , Austria
| | - Amalio Fernández-Pacheco
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , CB3 0HE , Cambridge , United Kingdom
- SUPA, School of Physics and Astronomy , University of Glasgow , Kelvin Building, G12 8QQ , Glasgow , Scotland, United Kingdom
| |
Collapse
|
38
|
Plank H, Winkler R, Schwalb CH, Hütner J, Fowlkes JD, Rack PD, Utke I, Huth M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. MICROMACHINES 2019; 11:E48. [PMID: 31906005 PMCID: PMC7019982 DOI: 10.3390/mi11010048] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022]
Abstract
Scanning probe microscopy (SPM) has become an essential surface characterization technique in research and development. By concept, SPM performance crucially depends on the quality of the nano-probe element, in particular, the apex radius. Now, with the development of advanced SPM modes beyond morphology mapping, new challenges have emerged regarding the design, morphology, function, and reliability of nano-probes. To tackle these challenges, versatile fabrication methods for precise nano-fabrication are needed. Aside from well-established technologies for SPM nano-probe fabrication, focused electron beam-induced deposition (FEBID) has become increasingly relevant in recent years, with the demonstration of controlled 3D nanoscale deposition and tailored deposit chemistry. Moreover, FEBID is compatible with practically any given surface morphology. In this review article, we introduce the technology, with a focus on the most relevant demands (shapes, feature size, materials and functionalities, substrate demands, and scalability), discuss the opportunities and challenges, and rationalize how those can be useful for advanced SPM applications. As will be shown, FEBID is an ideal tool for fabrication / modification and rapid prototyping of SPM-tipswith the potential to scale up industrially relevant manufacturing.
Collapse
Affiliation(s)
- Harald Plank
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria;
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| | - Robert Winkler
- Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria;
| | | | - Johanna Hütner
- GETec Microscopy GmbH, 1220 Vienna, Austria; (C.H.S.); (J.H.)
| | - Jason D. Fowlkes
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.D.F.); (P.D.R.)
- Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Philip D. Rack
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.D.F.); (P.D.R.)
- Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Ivo Utke
- Mechanics of Materials and Nanostructures Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland;
| | - Michael Huth
- Physics Institute, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
39
|
Huth M, Porrati F, Gruszka P, Barth S. Temperature-Dependent Growth Characteristics of Nb- and CoFe-Based Nanostructures by Direct-Write Using Focused Electron Beam-Induced Deposition. MICROMACHINES 2019; 11:mi11010028. [PMID: 31881650 PMCID: PMC7019710 DOI: 10.3390/mi11010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Focused electron and ion beam-induced deposition (FEBID/FIBID) are direct-write techniques with particular advantages in three-dimensional (3D) fabrication of ferromagnetic or superconducting nanostructures. Recently, two novel precursors, HCo3Fe(CO)12 and Nb(NMe3)2(N-t-Bu), were introduced, resulting in fully metallic CoFe ferromagnetic alloys by FEBID and superconducting NbC by FIBID, respectively. In order to properly define the writing strategy for the fabrication of 3D structures using these precursors, their temperature-dependent average residence time on the substrate and growing deposit needs to be known. This is a prerequisite for employing the simulation-guided 3D computer aided design (CAD) approach to FEBID/FIBID, which was introduced recently. We fabricated a series of rectangular-shaped deposits by FEBID at different substrate temperatures between 5 °C and 24 °C using the precursors and extracted the activation energy for precursor desorption and the pre-exponential factor from the measured heights of the deposits using the continuum growth model of FEBID based on the reaction-diffusion equation for the adsorbed precursor.
Collapse
|
40
|
Fowlkes JD, Winkler R, Mutunga E, Rack PD, Plank H. Simulation Informed CAD for 3D Nanoprinting. MICROMACHINES 2019; 11:mi11010008. [PMID: 31861480 PMCID: PMC7020084 DOI: 10.3390/mi11010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
A promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to non-linear distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern—the digital beam speed controls deposition into the third, or out-of-plane dimension. Multiple computer-aided design (CAD) programs exist for FEBID mesh object definition but rely on the definition of nodes and interconnecting linear nanowires. Thus, a method is needed to prevent non-linear/bending nanowires for accurate geometric synthesis. An analytical model is derived based on simulation results, calibrated using real experiments, to ensure linear nanowire deposition to compensate for implicit beam heating that takes place during FEBID. The model subsequently compensates and informs the exposure file containing the pixel-by-pixel scanning instructions, ensuring nanowire linearity by appropriately adjusting the patterning beam speeds. The derivation of the model is presented, based on a critical mass balance revealed by simulations and the strategy used to integrate the physics-based analytical model into an existing 3D nanoprinting CAD program is overviewed.
Collapse
Affiliation(s)
- Jason D. Fowlkes
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
- Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, TN 37996, USA;
- Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: ; Tel.: +865-223-2902
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Eva Mutunga
- Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, TN 37996, USA;
| | - Philip D. Rack
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
- Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
| |
Collapse
|
41
|
Späth A. Additive Nano-Lithography with Focused Soft X-rays: Basics, Challenges, and Opportunities. MICROMACHINES 2019; 10:E834. [PMID: 31801198 PMCID: PMC6953100 DOI: 10.3390/mi10120834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
Focused soft X-ray beam induced deposition (FXBID) is a novel technique for direct-write nanofabrication of metallic nanostructures from metal organic precursor gases. It combines the established concepts of focused electron beam induced processing (FEBIP) and X-ray lithography (XRL). The present setup is based on a scanning transmission X-ray microscope (STXM) equipped with a gas flow cell to provide metal organic precursor molecules towards the intended deposition zone. Fundamentals of X-ray microscopy instrumentation and X-ray radiation chemistry relevant for FXBID development are presented in a comprehensive form. Recently published proof-of-concept studies on initial experiments on FXBID nanolithography are reviewed for an overview on current progress and proposed advances of nanofabrication performance. Potential applications and advantages of FXBID are discussed with respect to competing electron/ion based techniques.
Collapse
Affiliation(s)
- Andreas Späth
- Friedrich-Alexander-University Erlangen-Nuremberg, Physical Chemistry II, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
42
|
Jurczyk J, Brewer CR, Hawkins OM, Polyakov MN, Kapusta C, McElwee-White L, Utke I. Focused Electron Beam-Induced Deposition and Post-Growth Purification Using the Heteroleptic Ru Complex (η 3-C 3H 5)Ru(CO) 3Br. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28164-28171. [PMID: 31310091 DOI: 10.1021/acsami.9b07634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Focused electron beam-induced deposition using the heteroleptic complex (η3-C3H5)Ru(CO)3Br as a precursor resulted in deposition of material with Ru content of 23 at. %. Transmission electron microscopy images indicated a nanogranular structure of pure Ru nanocrystals, embedded into a matrix containing carbon, oxygen, and bromine. The deposits were purified by annealing in a reactive 98% N2/2% H2 atmosphere at 300 °C, resulting in a reduction of contaminants and an increase of the Ru content to 83 at. %. Although a significant volume loss of 79% was found, the shrinkage was observed mostly for vertical thickness (around 75%). The lateral dimensions decreased much less significantly (around 9%). Deposition results, in conjunction with previous gas-phase and condensed-phase surface studies on the electron-induced reactions of (η3-C3H5)Ru(CO)3Br, provide insights into the behavior of allyl, carbonyl, and bromide ligands under identical electron beam irradiation.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures , Empa-Swiss Federal Laboratories for Materials Science and Technology , Feuerwerkerstrasse 39 , CH-3602 Thun , Switzerland
- Faculty of Physics and Applied Computer Science , AGH University of Science and Technology Krakow , Al. Mickiewicza 30 , 30-059 Kraków , Poland
| | - Christopher R Brewer
- Department of Chemistry , University of Florida , 32611-7200 Gainesville , Florida , United States
| | - Olivia M Hawkins
- Department of Chemistry , University of Florida , 32611-7200 Gainesville , Florida , United States
| | - Mikhail N Polyakov
- Laboratory for Mechanics of Materials and Nanostructures , Empa-Swiss Federal Laboratories for Materials Science and Technology , Feuerwerkerstrasse 39 , CH-3602 Thun , Switzerland
| | - Czeslaw Kapusta
- Faculty of Physics and Applied Computer Science , AGH University of Science and Technology Krakow , Al. Mickiewicza 30 , 30-059 Kraków , Poland
| | - Lisa McElwee-White
- Department of Chemistry , University of Florida , 32611-7200 Gainesville , Florida , United States
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures , Empa-Swiss Federal Laboratories for Materials Science and Technology , Feuerwerkerstrasse 39 , CH-3602 Thun , Switzerland
| |
Collapse
|
43
|
Sattelkow J, Fröch JE, Winkler R, Hummel S, Schwalb C, Plank H. Three-Dimensional Nanothermistors for Thermal Probing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22655-22667. [PMID: 31154756 DOI: 10.1021/acsami.9b04497] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Accessing the thermal properties of materials or even full devices is a highly relevant topic in research and development. Along with the ongoing trend toward smaller feature sizes, the demands on appropriate instrumentation to access surface temperatures with high thermal and lateral resolution also increase. Scanning thermal microscopy is one of the most powerful technologies to fulfill this task down to the sub-100 nm regime, which, however, strongly depends on the nanoprobe design. In this study, we introduce a three-dimensional (3D) nanoprobe concept, which acts as a nanothermistor to access surface temperatures. Fabrication of nanobridges is done via 3D nanoprinting using focused electron beams, which allows direct-write fabrication on prestructured, self-sensing cantilever. As individual branch dimensions are in the sub-100 nm regime, mechanical stability is first studied by a combined approach of finite-element simulation and scanning electron microscopy-assisted in situ atomic force microscopy (AFM) measurements. After deriving the design rules for mechanically stable 3D nanobridges with vertical stiffness up to 50 N m-1, a material tuning approach is introduced to increase mechanical wear resistance at the tip apex for high-quality AFM imaging at high scan speeds. Finally, we demonstrate the electrical response in dependence of temperature and find a negative temperature coefficient of -(0.75 ± 0.2) 10-3 K-1 and sensing rates of 30 ± 1 ms K-1 at noise levels of ±0.5 K, which underlines the potential of our concept.
Collapse
Affiliation(s)
| | - Johannes E Fröch
- Graz Centre for Electron Microscopy , 8010 Graz , Austria
- Institute of Biomedical Materials and Devices , University of Technology Sydney , Ultimo , New South Wales 2007 , Australia
| | | | - Stefan Hummel
- Physics of Nanostructured Materials , University of Vienna , 1090 Vienna , Austria
| | | | - Harald Plank
- Graz Centre for Electron Microscopy , 8010 Graz , Austria
| |
Collapse
|
44
|
Porrati F, Barth S, Sachser R, Dobrovolskiy OV, Seybert A, Frangakis AS, Huth M. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing. ACS NANO 2019; 13:6287-6296. [PMID: 31046238 DOI: 10.1021/acsnano.9b00059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Superconducting planar nanostructures are widely used in applications, e.g., for highly sensitive magnetometers and in basic research, e.g., to study finite size effects or vortex dynamics. In contrast, 3D superconducting nanostructures, despite their potential in quantum information processing and nanoelectronics, have been addressed only in a few pioneering experiments. This is due to the complexity of fabricating 3D nanostructures by conventional techniques such as electron-beam lithography and to the scarce number of superconducting materials available for direct-writing techniques, which enable the growth of 3D free-standing nanostructures. Here, we present a comparative study of planar nanowires and free-standing 3D nanowires fabricated by focused electron- and ion (Ga+)-beam induced deposition (FEBID and FIBID) using the precursor Nb(NMe2)3(N- t-Bu). FEBID nanowires contain about 67 atomic percent C, 22 atomic percent N, and 11 atomic percent Nb, while FIBID samples are composed of 43 atomic percent C, 13 atomic percent N, 15.5 atomic percent Ga, and 28.5 atomic percent Nb. Transmission electron microscopy shows that FEBID samples are amorphous, while FIBID samples exhibit a fcc NbC polycrystalline structure, with grains about 15-20 nm in diameter. Electrical transport measurements show that FEBID nanowires are highly resistive following a variable-range-hopping behavior. In contradistinction, FIBID planar nanowires become superconducting at Tc ≈ 5 K. In addition, the critical temperature of free-standing 3D nanowires is as high as Tc ≈ 11 K, which is close to the value of bulk NbC. In conclusion, FIBID-NbC is a promising material for the fabrication of superconducting nanowire single-photon detectors (SNSPD) and for the development of 3D superconductivity with applications in quantum information processing and nanoelectronics.
Collapse
Affiliation(s)
- Fabrizio Porrati
- Physikalisches Institut , Goethe-Universität , Max-von-Laue-Strasse 1 , D-60438 Frankfurt am Main , Germany
| | - Sven Barth
- Institute of Materials Chemistry , TU Wien , Getreidemarkt 9/BC/02 , A-1060 Wien , Austria
| | - Roland Sachser
- Physikalisches Institut , Goethe-Universität , Max-von-Laue-Strasse 1 , D-60438 Frankfurt am Main , Germany
| | - Oleksandr V Dobrovolskiy
- Physikalisches Institut , Goethe-Universität , Max-von-Laue-Strasse 1 , D-60438 Frankfurt am Main , Germany
| | - Anja Seybert
- Buchmann Institute for Molecular Life Sciences , Goethe-Universität , Max-von-Laue-Strasse 15 , D-60438 Frankfurt am Main , Germany
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences , Goethe-Universität , Max-von-Laue-Strasse 15 , D-60438 Frankfurt am Main , Germany
| | - Michael Huth
- Physikalisches Institut , Goethe-Universität , Max-von-Laue-Strasse 1 , D-60438 Frankfurt am Main , Germany
| |
Collapse
|
45
|
Mutunga E, Winkler R, Sattelkow J, Rack PD, Plank H, Fowlkes JD. Impact of Electron-Beam Heating during 3D Nanoprinting. ACS NANO 2019; 13:5198-5213. [PMID: 30986036 DOI: 10.1021/acsnano.8b09341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An artifact limiting the reproduction of three-dimensional (3D) designs using nanoprinting has been quantified. Beam-induced heating was determined through complementary experiments, models, and simulations to affect the deposition rate during the 3D nanoprinting of mesh objects using focused electron beam induced deposition (FEBID). The mesh objects are constructed using interconnected nanowires. During nanowire growth, the beam interaction driving deposition also causes local heating. The temperature at the beam impact region progressively rises as thermal resistance increases with nanowire growth. Heat dissipation resembles the classical mode of heat transfer from extended surfaces; heat must flow through the mesh object to reach the substrate sink. Simulations reveal that beam heating causes an increase in the rate of precursor desorption at the BIR, causing a concomitant decrease in the deposition rate, overwhelming an increase in the deposition rate driven by thermally enhanced precursor surface diffusion. Temperature changes as small as 10 K produce noticeable changes in deposit geometry; nanowires appear to deflect and curve toward the substrate because the vertical growth rate decreases. The 3D FEBID naturally ensues from the substrate surface upward, inducing a vertical temperature gradient along the deposit. Simulations, experiments, temperature-controlled studies, and process current monitoring all confirm the cause of nanowire distortion as beam-induced heating while also revealing the rate-determining physics governing the final deposit shape.
Collapse
Affiliation(s)
- Eva Mutunga
- Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria
| | - Jürgen Sattelkow
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria
| | - Philip D Rack
- Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria
- Christian Doppler Laboratory DEFINE, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria
- Institute of Electron Microscopy , Graz University , Steyrergasse 17 , 8010 Graz , Austria
| | - Jason D Fowlkes
- Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
46
|
Dobrovolskiy OV, Sachser R, Bunyaev SA, Navas D, Bevz VM, Zelent M, Śmigaj W, Rychły J, Krawczyk M, Vovk RV, Huth M, Kakazei GN. Spin-Wave Phase Inverter upon a Single Nanodefect. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17654-17662. [PMID: 31007012 DOI: 10.1021/acsami.9b02717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Local modification of magnetic properties of nanoelements is a key to design future-generation magnonic devices in which information is carried and processed via spin waves. One of the biggest challenges here is to fabricate simple and miniature phase-controlling elements with broad tunability. Here, we successfully realize such spin-wave phase shifters upon a single nanogroove milled by a focused ion beam in a Co-Fe microsized magnonic waveguide. By varying the groove depth and the in-plane bias magnetic field, we continuously tune the spin-wave phase and experimentally evidence a complete phase inversion. The microscopic mechanism of the phase shift is based on the combined action of the nanogroove as a geometrical defect and the lower spin-wave group velocity in the waveguide under the groove where the magnetization is reduced due to the incorporation of Ga ions during the ion-beam milling. The proposed phase shifter can easily be on-chip integrated with spin-wave logic gates and other magnonic devices. Our findings are crucial for designing nanomagnonic circuits and for the development of spin-wave nano-optics.
Collapse
Affiliation(s)
- Oleksandr V Dobrovolskiy
- Physikalisches Institut , Goethe University , 60438 Frankfurt am Main , Germany
- Physics Department , V. Karazin National University , 61077 Kharkiv , Ukraine
| | - Roland Sachser
- Physikalisches Institut , Goethe University , 60438 Frankfurt am Main , Germany
| | - Sergey A Bunyaev
- IFIMUP-IN/Departamento de Física e Astronomia University of Porto , 4169-007 Porto , Portugal
| | - David Navas
- IFIMUP-IN/Departamento de Física e Astronomia University of Porto , 4169-007 Porto , Portugal
| | - Volodymyr M Bevz
- ICST Faculty , Ukrainian State University of Railway Transport , 61050 Kharkiv , Ukraine
- Physics Department , V. Karazin National University , 61077 Kharkiv , Ukraine
| | - Mateusz Zelent
- Faculty of Physics , Adam Mickiewicz University in Poznań , Poznań 61-712 , Poland
| | - Wojciech Śmigaj
- Synopsys Northern Europe Ltd. , Bradninch Hall, Castle Street , EX4 3PL Exeter , U.K
| | - Justyna Rychły
- Faculty of Physics , Adam Mickiewicz University in Poznań , Poznań 61-712 , Poland
| | - Maciej Krawczyk
- Faculty of Physics , Adam Mickiewicz University in Poznań , Poznań 61-712 , Poland
| | - Ruslan V Vovk
- ICST Faculty , Ukrainian State University of Railway Transport , 61050 Kharkiv , Ukraine
- Physics Department , V. Karazin National University , 61077 Kharkiv , Ukraine
| | - Michael Huth
- Physikalisches Institut , Goethe University , 60438 Frankfurt am Main , Germany
| | - Gleb N Kakazei
- IFIMUP-IN/Departamento de Física e Astronomia University of Porto , 4169-007 Porto , Portugal
| |
Collapse
|
47
|
Martínez-Pérez MJ, Pablo-Navarro J, Müller B, Kleiner R, Magén C, Koelle D, de Teresa JM, Sesé J. NanoSQUID Magnetometry on Individual As-grown and Annealed Co Nanowires at Variable Temperature. NANO LETTERS 2018; 18:7674-7682. [PMID: 30458106 DOI: 10.1021/acs.nanolett.8b03329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Performing magnetization studies on individual nanoparticles is a highly demanding task, especially when measurements need to be carried out under large sweeping magnetic fields or variable temperature. Yet, characterization under varying ambient conditions is paramount in order to fully understand the magnetic behavior of these objects, e.g., the formation of nonuniform states or the mechanisms leading to magnetization reversal and thermal stability. This, in turn, is necessary for the integration of magnetic nanoparticles and nanowires into useful devices, e.g., spin-valves, racetrack memories, or magnetic tip probes. Here, we show that nanosuperconducting quantum interference devices based on high critical temperature superconductors are particularly well suited for this task. We have successfully characterized a number of individual Co nanowires grown through focused electron beam induced deposition and subsequently annealed at different temperatures. Magnetization measurements performed under sweeping magnetic fields (up to ∼100 mT) and variable temperature (1.4-80 K) underscore the intrinsic structural and chemical differences between these nanowires. These point to significant changes in the crystalline structure and the resulting effective magnetic anisotropy of the nanowires, and to the nucleation and subsequent vanishing of antiferromagnetic species within the nanowires annealed at different temperatures.
Collapse
Affiliation(s)
- M J Martínez-Pérez
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada , CSIC-Universidad de Zaragoza , 50009 Zaragoza , Spain
- Fundación ARAID , 50018 Zaragoza , Spain
| | - J Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) , Universidad de Zaragoza , 50018 Zaragoza , Spain
| | - B Müller
- Physikalisches Institut, Experimentalphysik II and Center for Quantum Science (CQ) in LISA+ , Universität Tübingen , 72076 Tübingen , Germany
| | - R Kleiner
- Physikalisches Institut, Experimentalphysik II and Center for Quantum Science (CQ) in LISA+ , Universität Tübingen , 72076 Tübingen , Germany
| | - C Magén
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada , CSIC-Universidad de Zaragoza , 50009 Zaragoza , Spain
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) , Universidad de Zaragoza , 50018 Zaragoza , Spain
| | - D Koelle
- Physikalisches Institut, Experimentalphysik II and Center for Quantum Science (CQ) in LISA+ , Universität Tübingen , 72076 Tübingen , Germany
| | - J M de Teresa
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada , CSIC-Universidad de Zaragoza , 50009 Zaragoza , Spain
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) , Universidad de Zaragoza , 50018 Zaragoza , Spain
| | - J Sesé
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada , CSIC-Universidad de Zaragoza , 50009 Zaragoza , Spain
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) , Universidad de Zaragoza , 50018 Zaragoza , Spain
| |
Collapse
|
48
|
Keller L, Huth M. Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2581-2598. [PMID: 30345218 PMCID: PMC6176821 DOI: 10.3762/bjnano.9.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 05/30/2023]
Abstract
Fabrication of three-dimensional (3D) nanoarchitectures by focused electron beam induced deposition (FEBID) has matured to a level that highly complex and functional deposits are becoming available for nanomagnetics and plasmonics. However, the generation of suitable pattern files that control the electron beam's movement, and thereby reliably map the desired target 3D structure from a purely geometrical description to a shape-conforming 3D deposit, is nontrivial. To address this issue we developed several writing strategies and associated algorithms implemented in C++. Our pattern file generator handles different proximity effects and corrects for height-dependent precursor coverage. Several examples of successful 3D nanoarchitectures using different precursors are presented that validate the effectiveness of the implementation.
Collapse
Affiliation(s)
- Lukas Keller
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Michael Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
49
|
Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications. NANOMATERIALS 2018; 8:nano8070483. [PMID: 29966338 PMCID: PMC6071276 DOI: 10.3390/nano8070483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. This work demonstrates the versatility of this hybrid technique and the interesting magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies.
Collapse
|