1
|
Bekeschus S, Heuser M, Miebach L, Frank M, von Woedtke T, Schmidt A. Viral inactivation of murine coronavirus via multiple gas plasma-derived reactive species. Redox Biol 2025; 82:103591. [PMID: 40085974 PMCID: PMC11954120 DOI: 10.1016/j.redox.2025.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
The recent pandemic has highlighted the urgent need to elucidate the pathophysiological mechanisms underlying viral effects in humans and is driving the search for innovative antiviral therapies. Several studies have investigated the ability of gas plasma, a partially ionized gas that simultaneously generates several reactive species, to be a new antiviral tool. However, several aspects of the mechanisms of antiviral action of gas plasma remained elusive. In this study, we, for the first time, used a gas plasma device approved for medical purposes and routinely applied in the clinics, especially for wound healing, to test its antiviral activity against a murine corona-virus in vitro (MHV-GFP), a research model analogous to human coronaviruses such as SARS-CoV-2. For this, we established a novel high-content imaging assay that gave quantitative and kinetic information about infection and reduced viral activity in murine fibroblasts (17Cl-1) host cells. Gas plasma treatment delayed viral infectivity and reduced overall infection and toxicity in 17Cl1 cells. Various antioxidants at different concentrations were screened to identify ROS relevant to antiviral effects. Catalase provided no virus protection, and DMSO, mannitol, histidine, Trolox, and ascorbic acid only modestly reduced gas plasma virucidal efficacy. By contrast, glutathione, tyrosine, and cysteine showed profound but not complete protection of MHV from gas plasma-derived reactive species, suggesting pivotal roles of superoxide radicals and peroxynitrite gas in plasma-driven viral inactivation. At extended gas plasma exposure times, fewer intact MHV RNA were detected, indicative of reactive species-driven RNA modifications or degradation as an additional mechanism of action. Virus particle size changes measured by electron microscopy were moderate. Collectively, we identified the potent antiviral activity of a clinically approved argon plasma jet along with potential mechanisms of action.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Leibniz Health Research Alliance, 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, 18057, Rostock, Germany.
| | - Meike Heuser
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Leibniz Health Research Alliance, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Leibniz Health Research Alliance, 17489, Greifswald, Germany
| | - Marcus Frank
- Department of Medical Biology and Electron Microscopy Center, Rostock University Medical Center, 18057, Rostock, Germany
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Leibniz Health Research Alliance, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, 17475, Greifswald, Germany
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Leibniz Health Research Alliance, 17489, Greifswald, Germany
| |
Collapse
|
2
|
Krewing M, Weisgerber KM, Dirks T, Bobkov I, Schubert B, Bandow JE. Iron-sulfur cluster proteins present the weak spot in non-thermal plasma-treated Escherichia coli. Redox Biol 2025; 81:103562. [PMID: 40023980 PMCID: PMC11915174 DOI: 10.1016/j.redox.2025.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Non-thermal atmospheric pressure plasmas have an antiseptic activity beneficial in different medical applications. In a genome-wide screening, hydrogen peroxide and superoxide were identified as key species contributing to the antibacterial effects of plasma while [FeS] cluster proteins emerged as potential cellular targets. We investigated the impact of plasma treatment on [FeS] cluster homeostasis in Escherichia coli treated for 1 min with the effluent of a microscale atmospheric pressure plasma jet (μAPPJ). Mutants defective in [FeS] cluster synthesis and maintenance lacking the SufBC2D scaffold protein complex or desulfurase IscS were hypersensitive to plasma treatment. Monitoring the activity of [FeS] cluster proteins of the tricarboxylic acid cycle (aconitase, fumarase, succinate dehydrogenase) and malate dehydrogenase (no [FeS] clusters), we identified cysteine, iron, superoxide dismutase, and catalase as determinants of plasma sensitivity. Survival rates, enzyme activity, and restoration of enzyme activity after plasma treatment were superior in mutants with elevated cysteine levels and in the wildtype under iron replete conditions. Mutants with elevated hydrogen peroxide and superoxide detoxification capacity over-expressing sodA and katE showed full protection from plasma-induced enzyme inactivation and survival rates increased from 34 % (controls) to 87 %. Our study indicates that metabolic and genetic adaptation of bacteria may result in plasma tolerance and resistance, respectively.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Kim Marie Weisgerber
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ivan Bobkov
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Nishimura A, Tanaka T, Shimoda K, Ida T, Sasaki S, Umezawa K, Imamura H, Urano Y, Ichinose F, Kaneko T, Akaike T, Nishida M. Non-thermal atmospheric pressure plasma-irradiated cysteine protects cardiac ischemia/reperfusion injury by preserving supersulfides. Redox Biol 2025; 79:103445. [PMID: 39637599 PMCID: PMC11663985 DOI: 10.1016/j.redox.2024.103445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic heart disease is the main global cause of death in the world. Abnormal sulfide catabolism, especially hydrogen sulfide accumulation, impedes mitochondrial respiration and worsens the prognosis after ischemic insults, but the substantial therapeutic strategy has not been established. Non-thermal atmospheric pressure plasma irradiation therapy is attracted attention as it exerts beneficial effects by producing various reactive molecular species. Growing evidence has suggested that supersulfides, formed by catenation of sulfur atoms, contribute to various biological processes involving electron transfer in cells. Here, we report that non-thermal plasma-irradiated cysteine (Cys∗) protects mouse hearts against ischemia/reperfusion (I/R) injury by preventing supersulfide catabolism. Cys∗ has a weak but long-lasting supersulfide activity, and the treatment of rat cardiomyocytes with Cys∗ prevents mitochondrial dysfunction after hypoxic stress. Cys∗ increases sulfide-quinone oxidoreductase (SQOR), and silencing SQOR abolishes Cys∗-induced supersulfide formation and cytoprotection. Local administration of mouse hearts with Cys∗ significantly reduces infarct size with preserving supersulfide levels after I/R. These results suggest that maintaining supersulfide formation through SQOR underlies cardioprotection by Cys∗ against I/R injury.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; SOKENDAI, Department of Physiological Sciences, Okazaki, 444-8787, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; SOKENDAI, Department of Physiological Sciences, Okazaki, 444-8787, Japan; Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tomoaki Ida
- Organization for Research Promotion, Osaka Metropolitan University, Sakai, 599-8531, Japan; Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Shota Sasaki
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Keitaro Umezawa
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Hiromi Imamura
- Organization of Research Initiatives, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Toshiro Kaneko
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan; SOKENDAI, Department of Physiological Sciences, Okazaki, 444-8787, Japan; Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Stapelmann K, Gershman S, Miller V. Plasma-liquid interactions in the presence of organic matter-A perspective. JOURNAL OF APPLIED PHYSICS 2024; 135:160901. [PMID: 38681528 PMCID: PMC11055635 DOI: 10.1063/5.0203125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
As investigations in the biomedical applications of plasma advance, a demand for describing safe and efficacious delivery of plasma is emerging. It is quite clear that not all plasmas are "equal" for all applications. This Perspective discusses limitations of the existing parameters used to define plasma in context of the need for the "right plasma" at the "right dose" for each "disease system." The validity of results extrapolated from in vitro studies to preclinical and clinical applications is discussed. We make a case for studying the whole system as a single unit, in situ. Furthermore, we argue that while plasma-generated chemical species are the proposed key effectors in biological systems, the contribution of physical effectors (electric fields, surface charging, dielectric properties of target, changes in gap electric fields, etc.) must not be ignored.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Sophia Gershman
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
5
|
Bekeschus S. Gas plasmas technology: from biomolecule redox research to medical therapy. Biochem Soc Trans 2023; 51:2071-2083. [PMID: 38088441 DOI: 10.1042/bst20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Physical plasma is one consequence of gas ionization, i.e. its dissociation of electrons and ions. If operated in ambient air containing oxygen and nitrogen, its high reactivity produces various reactive oxygen and nitrogen species (RONS) simultaneously. Technology leap innovations in the early 2010s facilitated the generation of gas plasmas aimed at clinics and operated at body temperature, enabling their potential use in medicine. In parallel, their high potency as antimicrobial agents was systematically discovered. In combination with first successful clinical trials, this led in 2013 to the clinical approval of first medical gas plasma devices in Europe for promoting the healing of chronic and infected wounds and ulcers in dermatology. While since then, thousands of patients have benefited from medical gas plasma therapy, only the appreciation of the critical role of gas plasma-derived RONS led to unraveling first fragments of the mechanistic basics of gas plasma-mediated biomedical effects. However, drawing the complete picture of effectors and effects is still challenging. This is because gas plasma-produced RONS not only show a great variety of dozens of types but also each of them having distinct spatio-temporal concentration profiles due to their specific half-lives and reactivity with other types of RONS as well as different types of (bio) molecules they can react with. However, this makes gas plasmas fascinating and highly versatile tools for biomolecular redox research, especially considering that the technical capacity of increasing and decreasing individual RONS types holds excellent potential for tailoring gas plasmas toward specific applications and disease therapies.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
6
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
7
|
Clemen R, Arlt K, Miebach L, von Woedtke T, Bekeschus S. Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells. Cells 2022; 11:cells11223659. [PMID: 36429087 PMCID: PMC9688260 DOI: 10.3390/cells11223659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In cancer, antigen-presenting cells (APC), including dendritic cells (DCs), take up and process proteins to mount adaptive antitumor immune responses. This often happens in the context of inflamed cancer, where reactive oxygen species (ROS) are ubiquitous to modify proteins. However, the inflammatory consequences of oxidized protein uptake in DCs are understudied. To this end, we investigated human monocyte-derived cell surface marker expression and cytokine release profiles when exposed to oxidized and native proteins. Seventeen proteins were analyzed, including viral proteins (e.g., CMV and HBV), inflammation-related proteins (e.g., HO1 and HMGB1), matrix proteins (e.g., Vim and Coll), and vastly in the laboratory used proteins (e.g., BSA and Ova). The multifaceted nature of inflammation-associated ROS was mimicked using gas plasma technology, generating reactive species cocktails for protein oxidation. Fourteen oxidized proteins led to elevated surface marker expression levels of CD25, CD40, CD80, CD86, and MHC-II as well as strongly modified release of IL6, IL8, IL10, IL12, IL23, MCP-1, and TNFα compared to their native counterparts. Especially IL8, heme oxygenase 2, and vimentin oxidation gave pronounced effects. Furthermore, protein kinase phospho-array studies in monocyte-derived cells pulsed with native vs. oxidized IL8 and insulin showed enhanced AKT and RSK2 phosphorylation. In summary, our data provide for the first time an overview of the functional consequences of oxidized protein uptake by human monocyte-derived cells and could therefore be a starting point for exploiting such principle in anticancer therapy in the future.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kevin Arlt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
8
|
Mrochen DM, Miebach L, Skowski H, Bansemer R, Drechsler CA, Hofmanna U, Hein M, Mamat U, Gerling T, Schaible U, von Woedtke T, Bekeschus S. Toxicity and virucidal activity of a neon-driven micro plasma jet on eukaryotic cells and a coronavirus. Free Radic Biol Med 2022; 191:105-118. [PMID: 36041652 PMCID: PMC9420207 DOI: 10.1016/j.freeradbiomed.2022.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Plasma medicine is a developing field that utilizes the effects of cold physical plasma on biological substrates for therapeutic purposes. Approved plasma technology is frequently used in clinics to treat chronic wounds and skin infections. One mode of action responsible for beneficial effects in patients is the potent antimicrobial activity of cold plasma systems, which is linked to their unique generation of a plethora of reactive oxygen and nitrogen species (ROS). During the SARS-CoV-2 pandemic, it became increasingly clear that societies need novel ways of passive and active protection from viral airway infections. Plasma technology may be suitable for superficial virus inactivation. Employing an optimized neon-driven micro plasma jet, treatment time-dependent ROS production and cytotoxic effects to different degrees were found in four different human cell lines with respect to their metabolic activity and viability. Using the murine hepatitis virus (MHV), a taxonomic relative of human coronaviruses, plasma exposure drastically reduced the number of infected murine fibroblasts by up to 3000-fold. Direct plasma contact (conductive) with the target maximized ROS production, cytotoxicity, and antiviral activity compared to non-conductive treatment with the remote gas phase only. Strikingly, antioxidant pretreatment reduced but not abrogated conductive plasma exposure effects, pointing to potential non-ROS-related mechanisms of antiviral activity. In summary, an optimized micro plasma jet showed antiviral activity and cytotoxicity in human cells, which was in part ROS-dependent. Further studies using more complex tissue models are needed to identify a safe dose-effect window of antiviral activity at modest toxicity.
Collapse
Affiliation(s)
- Daniel M Mrochen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thoracic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Henry Skowski
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Robert Bansemer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Chiara A Drechsler
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Obstetrics and Gynecology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ulfilas Hofmanna
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Manuel Hein
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany
| | - Uwe Mamat
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ulrich Schaible
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany.
| |
Collapse
|
9
|
Ahmadi M, Nasri Z, von Woedtke T, Wende K. d-Glucose Oxidation by Cold Atmospheric Plasma-Induced Reactive Species. ACS OMEGA 2022; 7:31983-31998. [PMID: 36119990 PMCID: PMC9475618 DOI: 10.1021/acsomega.2c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The glucose oxidation cascade is fascinating; although oxidation products have high economic value, they can manipulate the biological activity through posttranslational modification such as glycosylation of proteins, lipids, and nucleic acids. The concept of this work is based on the ability of reactive species induced by cold atmospheric plasma (CAP) in aqueous liquids and the corresponding gas-liquid interface to oxidize biomolecules under ambient conditions. Here, we report the oxidation of glucose by an argon-based dielectric barrier discharge plasma jet (kINPen) with a special emphasis on examining the reaction pathway to pinpoint the most prominent reactive species engaged in the observed oxidative transformation. Employing d-glucose and d-glucose-13C6 solutions and high-resolution mass spectrometry and ESI-tandem MS/MS spectrometry techniques, the occurrence of glucose oxidation products, for example, aldonic acids and aldaric acids, glucono- and glucaro-lactones, as well as less abundant sugar acids including ribonic acid, arabinuronic acid, oxoadipic acid, 3-deoxy-ribose, glutaconic acid, and glucic acid were surveyed. The findings provide deep insights into CAP chemistry, reflecting a switch of reactive species generation with the feed gas modulation (Ar or Ar/O2 with N2 curtain gas). Depending on the gas phase composition, a combination of oxygen-derived short-lived hydroxyl (•OH)/atomic oxygen [O(3P)] radicals was found responsible for the glucose oxidation cascade. The results further illustrate that the presence of carbohydrates in cell culture media, gel formulations (agar), or other liquid targets (juices) modulate the availability of CAP-generated species in vitro. In addition, a glycocalyx is attached to many mammalian proteins, which is essential for the respective physiologic role. It might be questioned if its oxidation plays a role in CAP activity.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Zahra Nasri
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Thomas von Woedtke
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- University
Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Walther-Rathenau-Straße 49A, Greifswald 17489, Germany
| | - Kristian Wende
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| |
Collapse
|
10
|
Ahn GR, Park HJ, Koh YG, Shin SH, Kim YJ, Song MG, Lee JO, Hong HK, Lee KB, Kim BJ. Low-intensity cold atmospheric plasma reduces wrinkles on photoaged skin through hormetic induction of extracellular matrix protein expression in dermal fibroblasts. Lasers Surg Med 2022; 54:978-993. [PMID: 35662062 DOI: 10.1002/lsm.23559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent evidence indicates that cold atmospheric plasma (CAP) can upregulate the production of extracellular matrix (ECM) proteins in dermal fibroblasts and enhance transdermal drug delivery when applied at a low intensity. OBJECTIVES The aim of this study was to evaluate the effect of low-intensity CAP (LICAP) on photoaging-induced wrinkles in an animal model and the expression profiles of ECM proteins in human dermal fibroblasts. METHODS Each group was subjected to photoaging induction and allocated to therapy (LICAP, topical polylactic acid (PLA), or both). The wrinkles were evaluated via visual inspection, quantitative analysis, and histology. The expression of collagen I/III and fibronectin was assessed using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunofluorescence. The amount of aqueous reactive species produced by LICAP using helium and argon gas was also measured. RESULTS Wrinkles significantly decreased in all treatment groups compared to those in the untreated control. The differences remained significant for at least 4 weeks. Dermal collagen density increased following LICAP and PLA application. LICAP demonstrated a hormetic effect on ECM protein expression in human dermal fibroblasts. The production of reactive species increased, showing a biphasic pattern, with an initial linear phase and a slow saturation phase. The initial linearity was sustained for a longer time in the helium plasma (~60 s) than in the argon plasma (~15 s). CONCLUSION LICAP appears to be a novel treatment option for wrinkles on the photodamaged skin. This treatment effect seems to be related to its hormetic effect on dermal ECM production.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyung Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
| | - Young Gue Koh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yu Jin Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Min Gyo Song
- School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Jung Ok Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyuck Ki Hong
- Human IT Convergence System R&D Division, Korea Electronics Technology Institute, Seongnam-Si, Gyeonggi-do, Korea
| | - Kyu Back Lee
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea.,School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Ahmadi M, Potlitz F, Link A, von Woedtke T, Nasri Z, Wende K. Flucytosine-based prodrug activation by cold physical plasma. Arch Pharm (Weinheim) 2022; 355:e2200061. [PMID: 35621706 DOI: 10.1002/ardp.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species (ROS) are known to trigger drug release from arylboronate-containing ROS-responsive prodrugs. In cancer cells, elevated levels of ROS can be exploited for the selective activation of prodrugs via Baeyer-Villiger type oxidation rearrangement sequences. Here, we report a proof of concept to demonstrate that these cascades can as well be initiated by cold physical plasma (CPP). An analog of a recently reported fluorouracil prodrug based on the less toxic drug 5-fluorocytosine (5-FC) was synthesized with a view to laboratory safety reasons and used as a model compound to prove our hypothesis that CPP is suitable as a trigger for the prodrug activation. Although the envisioned oxidation and rearrangement with successive loss of boronic acid species could be achieved by plasma treatment, the anticipated spontaneous liberation of 5-FC was inefficient in the model case. However, the obtained results suggest that custom-tailored CPP-responsive prodrugs might become an evolving research field.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Felix Potlitz
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Thomas von Woedtke
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Zahra Nasri
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| |
Collapse
|
12
|
Okazaki Y, Tanaka H, Matsumoto KI, Hori M, Toyokuni S. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys 2021; 705:108901. [PMID: 33964248 DOI: 10.1016/j.abb.2021.108901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Recent developments in electronics have enabled the medical applications of non-thermal plasma (NTP), which elicits reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydroxyl radical (●OH), hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide (O2●-), ozone, and nitric oxide at near-physiological temperatures. In preclinical studies or human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral and biofilm-related infections, wound healing, and cancer cell death. To elucidate the solution-phase biological effects of NTP in the presence of biocompatible reducing agents, we employed electron paramagnetic resonance (EPR) spectroscopy to quantify ●OH using a spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO); 1O2 using a fluorescent probe; and O2●- and H2O2 using luminescent probes in the presence of thiols or tempol. NTP-induced ●OH was significantly scavenged by dithiothreitol (DTT), reduced glutathione (GSH), and oxidized glutathione (GSSG) in 2 or 5 mM DMPO. NTP-induced O2●- was significantly scavenged by 10 μM DTT and GSH, while 1O2 was not efficiently scavenged by these compounds. GSSG degraded H2O2 more effectively than GSH and DTT, suggesting that the disulfide bonds reacted with H2O2. In the presence of 1-50 mM DMPO, NTP-induced H2O2 quantities were unchanged. The inhibitory effect of tempol concentration (50 and 100 μM) on H2O2 production was observed in 1 and 10 mM DMPO, whereas it became ineffective in 50 mM DMPO. Furthermore, DMPO-OH did not interact with tempol. These results suggest that DMPO and tempol react competitively with O2●-. Further studies are warranted to elucidate the interaction between NTP-induced ROS and biomolecules.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
13
|
Khabipov A, Freund E, Liedtke KR, Käding A, Riese J, van der Linde J, Kersting S, Partecke LI, Bekeschus S. Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells. Cancers (Basel) 2021; 13:2525. [PMID: 34064000 PMCID: PMC8196763 DOI: 10.3390/cancers13112525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Eric Freund
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kim Rouven Liedtke
- Department of Trauma and Orthopedic Surgery, Schleswig-Holstein University Medical Center, Arnold-Heller-Straße 3, 24105 Kiel, Germany;
| | - Andre Käding
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Janik Riese
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Julia van der Linde
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Stephan Kersting
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Lars-Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- Department of General, Visceral and Thoracic Surgery, Schleswig Helios Medical Center, St. Jürgener Str. 1-3, 24837 Schleswig, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
14
|
ROS Cocktails as an Adjuvant for Personalized Antitumor Vaccination? Vaccines (Basel) 2021; 9:vaccines9050527. [PMID: 34069708 PMCID: PMC8161309 DOI: 10.3390/vaccines9050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Today, the critical role of the immune system in tumor control is undisputed. Checkpoint antibody immunotherapy augments existing antitumor T cell activity with durable clinical responses in many tumor entities. Despite the presence of tumor-associated antigens and neoantigens, many patients have an insufficient repertoires of antitumor T cells. Autologous tumor vaccinations aim at alleviating this defect, but clinical success is modest. Loading tumor material into autologous dendritic cells followed by their laboratory expansion and therapeutic vaccination is promising, both conceptually and clinically. However, this process is laborious, time-consuming, costly, and hence less likely to solve the global cancer crisis. Therefore, it is proposed to re-focus on personalized anticancer vaccinations to enhance the immunogenicity of autologous therapeutic tumor vaccines. Recent work re-established the idea of using the alarming agents of the immune system, oxidative modifications, as an intrinsic adjuvant to broaden the antitumor T cell receptor repertoire in cancer patients. The key novelty is the use of gas plasma, a multi-reactive oxygen and nitrogen species-generating technology, for diversifying oxidative protein modifications in a, so far, unparalleled manner. This significant innovation has been successfully used in proof-of-concept studies and awaits broader recognition and implementation to explore its chances and limitations of providing affordable personalized anticancer vaccines in the future. Such multidisciplinary advance is timely, as the current COVID-19 crisis is inexorably reflecting the utmost importance of innovative and effective vaccinations in modern times.
Collapse
|
15
|
Differential Effect of Non-Thermal Plasma RONS on Two Human Leukemic Cell Populations. Cancers (Basel) 2021; 13:cancers13102437. [PMID: 34069922 PMCID: PMC8157554 DOI: 10.3390/cancers13102437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary As the number of investigations into the use of non-thermal plasma (NTP) for cancer treatment expands, it is becoming apparent that susceptibility of different cancer cells to NTP varies. We hypothesized that such differences could be attributed to the cell type-dependent interactions between NTP-generated reactive oxygen and nitrogen species (RONS) and the target cells. To test this hypothesis, we examined how two different human leukemic cell lines—Jurkat T lymphocytes and THP-1 monocytes—influence hydrogen peroxide and nitrite content in media after NTP exposure. We also assessed the potential of NTP to enhance immunogenicity in these cells and assayed phagocytosis of NTP-exposed leukemic cells by macrophages. Our results highlight the significance of target-mediated modulation of plasma chemical species in the development and clinical use of protocols involving plasma sources for use in cancer therapeutic application. Abstract Non-thermal plasma application to cancer cells is known to induce oxidative stress, cytotoxicity and indirect immunostimulatory effects on antigen presenting cells (APCs). The purpose of this study was to evaluate the responses of two leukemic cell lines—Jurkat T lymphocytes and THP-1 monocytes—to NTP-generated reactive oxygen and nitrogen species (RONS). Both cell types depleted hydrogen peroxide, but THP-1 cells neutralized it almost immediately. Jurkat cells transiently blunted the frequency-dependent increase in nitrite concentrations in contrast to THP-1 cells, which exhibited no immediate effect. A direct relationship between frequency-dependent cytotoxicity and mitochondrial superoxide was observed only in Jurkat cells. Jurkat cells were very responsive to NTP in their display of calreticulin and heat shock proteins 70 and 90. In contrast, THP-1 cells were minimally responsive or unresponsive. Despite no NTP-dependent decrease in cell surface display of CD47 in either cell line, both cell types induced migration of and phagocytosis by APCs. Our results demonstrate that cells modulate the RONS-mediated changes in liquid chemistry, and, importantly, the resultant immunomodulatory effects of NTP can be independent of NTP-induced cytotoxicity.
Collapse
|
16
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
17
|
Plasma Treated Water Solutions in Cancer Treatments: The Contrasting Role of RNS. Antioxidants (Basel) 2021; 10:antiox10040605. [PMID: 33920049 PMCID: PMC8071004 DOI: 10.3390/antiox10040605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
Plasma Treated Water Solutions (PTWS) recently emerged as a novel tool for the generation of Reactive Oxygen and Nitrogen Species (ROS and RNS) in liquids. The presence of ROS with a strong oxidative power, like hydrogen peroxide (H2O2), has been proposed as the main effector for the cancer-killing properties of PTWS. A protective role has been postulated for RNS, with nitric oxide (NO) being involved in the activation of antioxidant responses and cell survival. However, recent evidences proved that NO-derivatives in proper mixtures with ROS in PTWS could enhance rather than reduce the selectivity of PTWS-induced cancer cell death through the inhibition of specific antioxidant cancer defenses. In this paper we discuss the formation of RNS in different liquids with a Dielectric Barrier Discharge (DBD), to show that NO is absent in PTWS of complex composition like plasma treated (PT)-cell culture media used for in vitro experiments, as well as its supposed protective role. Nitrite anions (NO2-) instead, present in our PTWS, were found to improve the selective death of Saos2 cancer cells compared to EA.hy926 cells by decreasing the cytotoxic threshold of H2O2 to non-toxic values for the endothelial cell line.
Collapse
|
18
|
Xu H, Zhu Y, Du M, Wang Y, Ju S, Ma R, Jiao Z. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. WATER RESEARCH 2021; 188:116513. [PMID: 33091801 DOI: 10.1016/j.watres.2020.116513] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Although the identification of effective reactive oxygen species (ROS) generated by plasma has been extensively studied, yet the subcellular mechanism of microbial inactivation has never been clearly elucidated in plasma disinfection processes. In this study, subcellular mechanism of yeast cell inactivation during plasma-liquid interaction was revealed in terms of comprehensive factors including cell morphology, membrane permeability, lipid peroxidation, membrane potential, intracellular redox homeostasis (intracellular ROS and H2O2, and antioxidant system (SOD, CAT and GSH)), intracellular ionic equilibrium (intracellular H+ and K+) and energy metabolism (mitochondrial membrane potential, intracellular Ca2+ and ATP level). The ROS analysis show that ·OH, 1O2, ·O2-and H2O2 were generated in this plasma-liquid interaction system and ·O2-served as the precursor of 1O2. Additionally, the solution pH was reduced. Plasma can effectively inactivate yeast cells mainly via apoptosis by damaging cell membrane, intracellular redox and ion homeostasis and energy metabolism as well as causing DNA fragmentation. ROS scavengers (l-His, d-Man and SOD) and pH buffer (phosphate buffer solution, PBS) were employed to investigate the role of five antimicrobial factors (·OH, 1O2, ·O2-, H2O2 and low pH) in plasma sterilization. Results show that they have different influences on the aforementioned cell physiological activities. The ·OH and 1O2 contributed most to the yeast inactivation. The ·OH mainly attacked cell membrane and increased cell membrane permeability. The disturb of cell energy metabolism was mainly attributed to 1O2. The damage of cell membrane as well as extracellular low pH could break the intracellular ionic equilibrium and further reduce cell membrane potential. The remarkable increase of intracellular H2O2 was mainly due to the influx of extracellular H2O2 via destroyed cell membrane, which played a little role in yeast inactivation during 10-min plasma treatment. These findings provide comprehensive insights into the antimicrobial mechanism of plasma, which can promote the development of plasma as an alternative water disinfection strategy.
Collapse
Affiliation(s)
- Hangbo Xu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yupan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Mengru Du
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yuqi Wang
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Siyao Ju
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
19
|
Heslin C, Boehm D, Gilmore BF, Megaw J, Freeman TA, Hickok NJ, Cullen PJ, Bourke P. Biomolecules as Model Indicators of In Vitro and In Vivo Cold Plasma Safety. FRONTIERS IN PHYSICS 2021; 8:613046. [PMID: 37124146 PMCID: PMC10136044 DOI: 10.3389/fphy.2020.613046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The potential applications for cold plasma in medicine are extensive, from microbial inactivation and induction of apoptosis in cancer cells to stimulating wound healing and enhancing the blood coagulation cascade. The safe bio-medical application of cold plasma and subsequent effect on complex biological pathways requires precision and a distinct understanding of how physiological redox chemistry is manipulated. Chemical modification of biomolecules such as carbohydrates, proteins, and lipids treated with cold plasma have been characterized, however, the context of how alterations of these molecules affect cell behavior or in vivo functionality has not been determined. Thus, this study examines the cytotoxic and mutagenic effects of plasma-treated molecules in vitro using CHO-K1 cells and in vivo in Galleria mellonella larvae. Specifically, albumin, glucose, cholesterol, and arachidonic acid were chosen as representative biomolecules, with established involvement in diverse bioprocesses including; cellular respiration, intracellular transport, cell signaling or membrane structure. Long- and short-term effects depended strongly on the molecule type and the treatment milieu indicating the impact of chemical and physical modifications on downstream biological pathways. Importantly, absence of short-term toxicity did not always correlate with absence of longer-term effects, indicating the need to comprehensively assess ongoing effects for diverse biological applications.
Collapse
Affiliation(s)
- Caitlin Heslin
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Daniela Boehm
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | | | - Julianne Megaw
- School of Pharmacy, Queens University Belfast, Belfast, United Kingdom
| | - Theresa A. Freeman
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Jefferson University, Philadelphia, PA, United States
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Jefferson University, Philadelphia, PA, United States
| | - P. J. Cullen
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Paula Bourke
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Śmiłowicz D, Kogelheide F, Schöne AL, Stapelmann K, Awakowicz P, Metzler-Nolte N. Catalytic oxidation of small organic molecules by cold plasma in solution in the presence of molecular iron complexes †. Sci Rep 2020; 10:21652. [PMID: 33303899 PMCID: PMC7728814 DOI: 10.1038/s41598-020-78683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022] Open
Abstract
The plasma-mediated decomposition of volatile organic compounds has previously been investigated in the gas phase with metal oxides as heterogeneous catalysts. While the reactive species in plasma itself are well investigated, very little is known about the influence of metal catalysts in solution. Here, we present initial investigations on the time-dependent plasma-supported oxidation of benzyl alcohol, benzaldehyde and phenol in the presence of molecular iron complexes in solution. Products were identified by HPLC, ESI-MS, FT-IR, and [Formula: see text] spectroscopy. Compared to metal-free oxidation of the substrates, which is caused by reactive oxygen species and leads to a mixture of products, the metal-mediated reactions lead to one product cleanly, and faster than in the metal-free reactions. Most noteworthy, even catalytic amounts of metal complexes induce these clean transformations. The findings described here bear important implications for plasma-supported industrial waste transformations, as well as for plasma-mediated applications in biomedicine, given the fact that iron is the most abundant redox-active metal in the human body.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Friederike Kogelheide
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Anna Lena Schöne
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Peter Awakowicz
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
21
|
Busco G, Robert E, Chettouh-Hammas N, Pouvesle JM, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic Biol Med 2020; 161:290-304. [PMID: 33039651 DOI: 10.1016/j.freeradbiomed.2020.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The maintenance of skin integrity is crucial to ensure the physiological barrier against exogenous compounds, microorganisms and dehydration but also to fulfill social and aesthetic purposes. Besides the development of new actives intended to enter a formulation, innovative technologies based on physical principles have been proposed in the last years. Among them, Cold Atmospheric Plasma (CAP) technology, which already showed interesting results in dermatology, is currently being studied for its potential in skin treatments and cares. CAP bio-medical studies gather several different expertise ranging from physics to biology through chemistry and biochemistry, making this topic hard to pin. In this review we provide a broad survey of the interactions between CAP and skin. In the first section, we tried to give some fundamentals on skin structure and physiology, related to its essential functions, together with the main bases on cold plasma and its physicochemical properties. In the following parts we dissected and analyzed each CAP parameter to highlight the already known and the possible effects they can play on skin. This overview aims to get an idea of the potential of cold atmospheric plasma technology in skin biology for the future developments of dermo-cosmetic treatments, for example in aging prevention.
Collapse
Affiliation(s)
- Giovanni Busco
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France; Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France.
| | - Eric Robert
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | | | - Jean-Michel Pouvesle
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France.
| |
Collapse
|
22
|
Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases 2020; 15:061008. [PMID: 33238712 DOI: 10.1116/6.0000529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cold physical plasmas are emerging tools for wound care and cancer control that deliver reactive oxygen species (ROS) and nitrogen species (RNS). Alongside direct effects on cellular signaling processes, covalent modification of biomolecules may contribute to the observed physiological consequences. The potential of ROS/RNS generated by two different plasma sources (kINPen and COST-Jet) to introduce post-translational modifications (PTMs) in the peptides angiotensin and bradykinin was explored. While the peptide backbone was kept intact, a significant introduction of oxidative PTMs was observed. The modifications cluster at aromatic (tyrosine, histidine, and phenylalanine) and neutral amino acids (isoleucine and proline) with the introduction of one, two, or three oxygen atoms, ring cleavages of histidine and tryptophan, and nitration/nitrosylation predominantly observed. Alkaline and acidic amino acid (arginine and aspartic acid) residues showed a high resilience, indicating that local charges and the chemical environment at large modulate the attack of the electron-rich ROS/RNS. Previously published simulations, which include only OH radicals as ROS, do not match the experimental results in full, suggesting the contribution of other short-lived species, i.e., atomic oxygen, singlet oxygen, and peroxynitrite. The observed PTMs are relevant for the biological activity of peptides and proteins, changing polarity, folding, and function. In conclusion, it can be assumed that an introduction of covalent oxidative modifications at the amino acid chain level occurs during a plasma treatment. The introduced changes, in part, mimic naturally occurring patterns that can be interpreted by the cell, and subsequently, these PTMs allow for prolonged secondary effects on cell physiology.
Collapse
|
23
|
O’Sullivan D, O’Neill L, Bourke P. Direct Plasma Deposition of Collagen on 96-Well Polystyrene Plates for Cell Culture. ACS OMEGA 2020; 5:25069-25076. [PMID: 33043185 PMCID: PMC7542593 DOI: 10.1021/acsomega.0c02073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/24/2020] [Indexed: 05/31/2023]
Abstract
A cold atmospheric plasma unit was used to deposit a biologic, in this case collagen, onto a surface. A collagen coating was applied to 96-well polystyrene plates at a range of powers to determine the effects of the plasma power on the coating structure and viability. Plasma characterization was carried out using voltage, current, and power measurements. Coating characterization was completed using gravimetric measurement, cell growth, water contact angle, as well as spectroscopic analysis and compared to commercial collagen-coated plates. Cell culture studies were also undertaken. The plasma coating matched the performance of the commercial plate but dramatically reduced production time and cost. This method could allow for automated inline production of collagen-coated plates for cell culture applications.
Collapse
Affiliation(s)
- Denis O’Sullivan
- TheraDep,
Questum, Ballingarrane Science and Technology
Park, Clonmel, Co. Tipperary E91 V239, Ireland
- School
of Food Science and Environmental Health, Technical University Dublin, Dublin 7 D08 X622, Ireland
| | - Liam O’Neill
- TheraDep,
Questum, Ballingarrane Science and Technology
Park, Clonmel, Co. Tipperary E91 V239, Ireland
| | - Paula Bourke
- School
of Food Science and Environmental Health, Technical University Dublin, Dublin 7 D08 X622, Ireland
- School
of Biological Sciences, Queens University, Belfast BT7 1NN, Northern Ireland
| |
Collapse
|
24
|
Deposition of Cell Culture Coatings Using a Cold Plasma Deposition Method. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Collagen coatings were applied onto polystyrene microplates using a cold atmospheric pressure plasma process. The coatings were compared to standard wet chemical collagen thin films using microscopy, surface energy, infra-red spectroscopy, electrophoresis, and cell culture techniques. Thin films were also deposited on gold electrodes using both coating methods and their structural and barrier properties probed using cyclic voltammetry. While the wet chemical technique produced a thicker deposit, both films appear equivalent in terms of coverage, porosity, structure, and chemistry. Significantly, the cold plasma method preserves both the primary and secondary structure of the protein and this results in high biocompatibility and cell activity that is at least equivalent to the standard wet chemical technique. The significance of these results is discussed in relation to the benefits of a single step plasma coating in comparison to the traditional multi-step aseptic coating technique.
Collapse
|
25
|
Abstract
Proteins succumb to numerous post-translational modifications (PTMs). These relate to enzymatic or non-enzymatic reactions taking place in either the intracellular or extracellular compartment. While intracellular oxidative changes are mainly due to redox stress, extracellular PTMs may be induced in an inflammatory micro milieu that is rich in reactive species. The increasing recognition of oxidative modifications as a causing agent or side-effect of pathophysiological states and diseases puts oxidative PTMS (oxPTMs) into the spotlight of inflammation research. Pathological hyper-modification of proteins can lead to accumulation, aggregation, cell stress, altered antigenic peptides, and damage-associated molecular pattern (DAMP)-like recognition by host immunity. Such processes are linked to cardiovascular disease and autoinflammation. At the same time, a detailed understanding of the mechanisms governing inflammatory responses to oxPTMs may capitalize on new therapeutic routes for enhancing adaptive immune responses as needed, for instance, in oncology. We here summarize some of the latest developments of oxPTMs in disease diagnosis and therapy. Potential target proteins and upcoming technologies, such as gas plasmas, are outlined for future research that may aid in identifying the molecular basis of immunogenic vs. tolerogenic oxPTMs.
Collapse
|
26
|
Riedel F, Golda J, Held J, Davies HL, van der Woude MW, Bredin J, Niemi K, Gans T, Schulz-von der Gathen V, O'Connell D. Reproducibility of 'COST reference microplasma jets'. PLASMA SOURCES SCIENCE & TECHNOLOGY 2020; 29:095018. [PMID: 34149205 PMCID: PMC8208597 DOI: 10.1088/1361-6595/abad01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the 'biomedical applications of atmospheric pressure plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique.
Collapse
Affiliation(s)
- F Riedel
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - J Golda
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Experimental Physics II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - J Held
- Experimental Physics II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - H L Davies
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, United Kingdom
| | - M W van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, United Kingdom
| | - J Bredin
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - K Niemi
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - T Gans
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | | | - D O'Connell
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
27
|
Smolková B, Frtús A, Uzhytchak M, Lunova M, Kubinová Š, Dejneka A, Lunov O. Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective. Int J Mol Sci 2020; 21:ijms21176226. [PMID: 32872159 PMCID: PMC7503900 DOI: 10.3390/ijms21176226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.
Collapse
Affiliation(s)
- Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Šárka Kubinová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Correspondence: ; Tel.: +420-2660-52131
| |
Collapse
|
28
|
Bekeschus S, Clemen R, Nießner F, Sagwal SK, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903438. [PMID: 32440479 PMCID: PMC7237847 DOI: 10.1002/advs.201903438] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 05/09/2023]
Abstract
Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS). Using a melanoma model, gas plasma technology is tested as a novel anticancer agent. Plasma technology derived ROS diminish tumor growth in vitro and in vivo. Varying the feed gas mixture modifies the composition of ROS. Conditions rich in atomic oxygen correlate with killing activity and elevate intratumoral immune-infiltrates of CD8+ cytotoxic T-cells and dendritic cells. T-cells from secondary lymphoid organs of these mice stimulated with B16 melanoma cells ex vivo show higher activation levels as well. This correlates with immunogenic cancer cell death and higher calreticulin and heat-shock protein 90 expressions induced by gas plasma treatment in melanoma cells. To test the immunogenicity of gas plasma treated melanoma cells, 50% of mice vaccinated with these cells are protected from tumor growth compared to 1/6 and 5/6 mice negative control (mitomycin C) and positive control (mitoxantrone), respectively. Gas plasma jet technology is concluded to provide immunoprotection against malignant melanoma both in vitro and in vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP Greifswald)Felix‐Hausdorff‐Str. 3Greifswald17489Germany
| | - Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP Greifswald)Felix‐Hausdorff‐Str. 3Greifswald17489Germany
| | - Felix Nießner
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP Greifswald)Felix‐Hausdorff‐Str. 3Greifswald17489Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP Greifswald)Felix‐Hausdorff‐Str. 3Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP Greifswald)Felix‐Hausdorff‐Str. 3Greifswald17489Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP Greifswald)Felix‐Hausdorff‐Str. 3Greifswald17489Germany
| |
Collapse
|
29
|
Wende K, Bruno G, Lalk M, Weltmann KD, von Woedtke T, Bekeschus S, Lackmann JW. On a heavy path - determining cold plasma-derived short-lived species chemistry using isotopic labelling. RSC Adv 2020; 10:11598-11607. [PMID: 35496584 PMCID: PMC9051657 DOI: 10.1039/c9ra08745a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy. Here, the contribution of plasma-generated reactive oxygen species (ROS) in plasma liquid chemistry was determined by labeling these via admixing heavy oxygen 18O2 to the feed gas or by using heavy water H2 18O as a solvent for the bait molecule. The inclusion of heavy or light oxygen atoms by the labeled ROS into the different cysteine products was determined by mass spectrometry. While products like cysteine sulfonic acid incorporated nearly exclusively gas phase-derived oxygen species (atomic oxygen and/or singlet oxygen), a significant contribution of liquid phase-derived species (OH radicals) was observed for cysteine-S-sulfonate. The role, origin, and reaction mechanisms of short-lived species, namely hydroxyl radicals, singlet oxygen, and atomic oxygen, are discussed. Interactions of these species both with the target cysteine molecule as well as the interphase and the liquid bulk are taken into consideration to shed light onto several reaction pathways resulting in observed isotopic oxygen incorporation. These studies give valuable insight into underlying plasma-liquid interaction processes and are a first step to understand these interaction processes between the gas and liquid phase on a molecular level.
Collapse
Affiliation(s)
- Kristian Wende
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Giuliana Bruno
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Michael Lalk
- Cellular Biochemistry & Metabolomics, University of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Walther-Rathenau-Str. 48 Greifswald 17489 Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Jan-Wilm Lackmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| |
Collapse
|
30
|
GSH Modification as a Marker for Plasma Source and Biological Response Comparison to Plasma Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study investigated the use of glutathione as a marker to establish a correlation between plasma parameters and the resultant liquid chemistry from two distinct sources to predefined biological outcomes. Two different plasma sources were operated at parameters that resulted in similar biological responses: cell viability, mitochondrial activity, and the cell surface display of calreticulin. Specific glutathione modifications appeared to be associated with biological responses elicited by plasma. These modifications were more pronounced with increased treatment time for the European Cooperation in Science and Technology Reference Microplasma Jet (COST-Jet) and increased frequency for the dielectric barrier discharge and were correlated with more potent biological responses. No correlations were found when cells or glutathione were exposed to exogenously added long-lived species alone. This implied that short-lived species and other plasma components were required for the induction of cellular responses, as well as glutathione modifications. These results showed that comparisons of medical plasma sources could not rely on measurements of long-lived chemical species; rather, modifications of biomolecules (such as glutathione) might be better predictors of cellular responses to plasma exposure.
Collapse
|
31
|
VON Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019; 33:1011-1026. [PMID: 31280189 DOI: 10.21873/invivo.11570] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
Plasma medicine comprises the application of physical plasma directly on or in the human body for therapeutic purposes. Three most important basic plasma effects are relevant for medical applications: i) inactivation of a broad spectrum of microorganisms, including multidrug-resistant pathogens, ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and iii) inactivation of cells by initialization of cell death with higher plasma treatment intensity, above all in cancer cells. Based on own published results as well as on monitoring of relevant literature the aim of this topical review is to summarize the state of the art in plasma medicine and connect it to redox biology. One of the most important results of basic research in plasma medicine is the insight that biological plasma effects are mainly mediated via reactive oxygen and nitrogen species influencing cellular redox-regulated processes. Plasma medicine can be considered a field of applied redox biology.
Collapse
Affiliation(s)
- Thomas VON Woedtke
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany .,Greifswald University Medicine, Greifswald, Germany
| | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| | | | | | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Los A, Ziuzina D, Boehm D, Han L, O'Sullivan D, O'Neill L, Bourke P. Efficacy of Cold Plasma for Direct Deposition of Antibiotics as a Novel Approach for Localized Delivery and Retention of Effect. Front Cell Infect Microbiol 2019; 9:428. [PMID: 31921704 PMCID: PMC6932951 DOI: 10.3389/fcimb.2019.00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial coating of medical devices has emerged as a potentially effective tool to prevent or ameliorate device-related infections. In this study the plasma deposition process for direct deposition of pharmaceutical drugs on to a range of surfaces and the retention of structure function relationship and antimicrobial efficacy against mono-species biofilms were investigated. Two selected sample antibiotics-ampicillin and gentamicin, were deposited onto two types of surfaces-polystyrene microtiter plates and stainless steel coupons. The antimicrobial efficacy of the antibiotic-coated surfaces was tested against challenge populations of both planktonic and sessile Escherichia coli and Pseudomonas aeruginosa, with responses monitored for up to 14 days. The plasma deposition process bonded the antibiotic to the surfaces, with localized retention of antibiotic activity. The antibiotics deposited on the test surfaces retained a good efficacy against planktonic cells, and importantly prevented biofilm formation of attached cells for up to 96 h. The antibiotic rapidly eluted from the surface of antibiotic-coated surfaces to the surrounding medium, with retention of effect in this surrounding milieu for up to 2 weeks. Control experiments established that there was no independent antimicrobial or growth promoting effect of the plasma deposition process, where there was no antibiotic in the helium plasma assisted delivery stream. Apart from the flexibility offered through deposition on material surfaces, there was no additive or destructive effect associated with the helium assisted plasma deposition process on the antibiotic. The plasma assisted process was a viable mean of coating clinically relevant materials and developing innovative functional materials with retention of antibiotic activity, without employing a linker or plasma modified polymer, thus minimizing bio-compatibility issues for medical device materials. This offers potential to prevent or control instrumented or non-permanent device associated infection localized to the surgical or implant site.
Collapse
Affiliation(s)
- Agata Los
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Lu Han
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Denis O'Sullivan
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.,TheraDep, Questum Centre, Clonmel, Ireland
| | | | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.,School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
33
|
Wolff CM, Steuer A, Stoffels I, von Woedtke T, Weltmann KD, Bekeschus S, Kolb JF. Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2020.100096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Murakami T. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism. Sci Rep 2019; 9:17138. [PMID: 31748630 PMCID: PMC6868247 DOI: 10.1038/s41598-019-53219-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
A biochemical reaction model clarifies for the first time how cold atmospheric plasmas (CAPs) affect mitochondrial redox homeostasis and energy metabolism. Fundamental mitochondrial functions in pyruvic acid oxidation, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation involving the respiratory chain (RC), adenosine triphosphate/adenosine diphosphate (ATP/ADP) synthesis machinery and reactive oxygen species/reactive nitrogen species (ROS/RNS)-mediated mechanisms are numerically simulated. The effects of CAP irradiation are modelled as 1) the influx of hydrogen peroxide (H[Formula: see text]O[Formula: see text]) to an ROS regulation system and 2) the change in mitochondrial transmembrane potential induced by RNS on membrane permeability. The CAP-induced stress modifies the dynamics of intramitochondrial H[Formula: see text]O[Formula: see text] and superoxide anions, i.e., the rhythm and shape of ROS oscillation are disturbed by H[Formula: see text]O[Formula: see text] infusion. Furthermore, CAPs control the ROS oscillatory behaviour, nicotinamide adenine dinucleotide redox state and ATP/ADP conversion through the reaction mixture over the RC, the TCA cycle and ROS regulation system. CAPs even induce a homeostatic or irreversible state transition in cell metabolism. The present computational model demonstrates that CAPs crucially affect essential mitochondrial functions, which in turn affect redox signalling, metabolic cooporation and cell fate decision of survival or death.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Seikei University, Department of Systems Design Engineering, Faculty of Science and Technology, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.
| |
Collapse
|
35
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
36
|
Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment. MICROMACHINES 2019; 10:mi10090564. [PMID: 31454918 PMCID: PMC6780561 DOI: 10.3390/mi10090564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.
Collapse
|
37
|
Wende K, von Woedtke T, Weltmann KD, Bekeschus S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol Chem 2019; 400:19-38. [PMID: 30403650 DOI: 10.1515/hsz-2018-0242] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 02/01/2023]
Abstract
Reactive oxygen and nitrogen species deposited by cold physical plasma are proposed as predominant effectors in the interaction between discharge and biomedical application. Most reactive species found in plasma sources are known in biology for inter- and intracellular communication (redox signaling) and mammalian cells are equipped to interpret the plasma derived redox signal. As such, considerable effort has been put into the investigation of potential clinical applications and the underlying mechanism, with a special emphasis on conditions orchestrated significantly via redox signaling. Among these, immune system control in wound healing and cancer control stands out with promising in vitro and in vivo effects. From the fundamental point of view, further insight in the interaction of the plasma-derived species with biological systems is desired to (a) optimize treatment conditions, (b) identify new fields of application, (c) to improve plasma source design, and (d) to identify the trajectories of reactive species. Knowledge on the biochemical reactivity of non-thermal plasmas is compiled and discussed. While there is considerable knowledge on proteins, lipids and carbohydrates have not received the attention deserved. Nucleic acids have been profoundly investigated yet focusing on molecule functionality rather than chemistry. The data collected underline the efforts taken to understand the fundamentals of plasma medicine but also indicate 'no man's lands' waiting to be discovered.
Collapse
Affiliation(s)
- Kristian Wende
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Greifswald University Medicine, Fleischmannstr. 8, D-17475 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany.,Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| |
Collapse
|
38
|
Abstract
The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research.
Collapse
|
39
|
Striesow J, Lackmann JW, Ni Z, Wenske S, Weltmann KD, Fedorova M, von Woedtke T, Wende K. Oxidative modification of skin lipids by cold atmospheric plasma (CAP): A standardizable approach using RP-LC/MS 2 and DI-ESI/MS 2. Chem Phys Lipids 2019; 226:104786. [PMID: 31229410 DOI: 10.1016/j.chemphyslip.2019.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022]
Abstract
Cold atmospheric plasma (CAP) is an emerging source for the locally defined delivery of reactive species, and its clinical potential has been identified in the control of inflammatory processes, such as acute and chronic wounds, or cancerous lesions. Lipids, due to their localization and chemical structure as ideal targets for oxidative species, are relevant modifiers of physiological processes. Human forehead lipids collected on a target were treated by an argon plasma jet and immediately analyzed by direct-infusion high-resolution tandem mass spectrometry (DI-MS2) or liquid chromatography-tandem MS (RP-LC/MS2). Subsequent data analysis was performed by LipidHunter (University of Leipzig), LipidXplorer (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden), and LipidSearch (Thermo Scientific). With either MS method, all major lipid classes of sebum lipids were detected. Significant differences regarding triacylglycerols (predominantly identified in RP-LC/MS2) and ceramides (predominantly identified in DI-MS2) indicate experimental- or approach-inherent distinctions. A CAP-driven oxidation of triacyclglycerols, ceramides, and cholesteryl esters was detected such as truncations and hydroperoxylations, but at a significantly lower extent than expected. Scavenging of reactive species due to naturally present antioxidants in the samples and the absence of a liquid interphase to allow reactive species deposition by the CAP will have contributed to the limited amount of oxidation products observed. In addition, limitations of the software's capability of identifying unexpected oxidized lipids potentially led to an underestimation of the CAP impact on skin lipids, indicating a need for further software development. With respect to the clinical application of CAP, the result indicates that intact skin with its sebum/epidermal lipid overlay is well protected and that moderate treatment will yield limited (if any) functional consequences in the dermal tissue.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
| | - Jan-Wilm Lackmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
| | - Zhixu Ni
- Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Sebastian Wenske
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
| | - Maria Fedorova
- Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany; Greifswald University Medicine, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Kristian Wende
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany.
| |
Collapse
|
40
|
Heusler T, Bruno G, Bekeschus S, Lackmann JW, von Woedtke T, Wende K. Can the effect of cold physical plasma-derived oxidants be transported via thiol group oxidation? CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2019.100086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Bruno G, Heusler T, Lackmann JW, von Woedtke T, Weltmann KD, Wende K. Cold physical plasma-induced oxidation of cysteine yields reactive sulfur species (RSS). CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2019.100083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Lackmann JW, Bruno G, Jablonowski H, Kogelheide F, Offerhaus B, Held J, Schulz-von der Gathen V, Stapelmann K, von Woedtke T, Wende K. Nitrosylation vs. oxidation - How to modulate cold physical plasmas for biological applications. PLoS One 2019; 14:e0216606. [PMID: 31067274 PMCID: PMC6505927 DOI: 10.1371/journal.pone.0216606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Thiol moieties are major targets for cold plasma-derived nitrogen and oxygen species, making CAPs convenient tools to modulate redox-signaling pathways in cells and tissues. The underlying biochemical pathways are currently under investigation but especially the role of CAP derived RNS is barely understood. Their potential role in protein thiol nitrosylation would be relevant in inflammatory processes such as wound healing and improving their specific production by CAP would allow for enhanced treatment options beyond the current application. The impact of a modified kINPen 09 argon plasma jet with nitrogen shielding on cysteine as a thiol-carrying model substance was investigated by FTIR spectroscopy and high-resolution mass spectrometry. The deposition of short-lived radical species was measured by electron paramagnetic resonance spectroscopy, long-lived species were quantified by ion chromatography (NO2-, NO3-) and xylenol orange assay (H2O2). Product profiles were compared to samples treated with the so-called COST jet, being introduced by a European COST initiative as a reference device, using both reference conditions as well as conditions adjusted to kINPen gas mixtures. While thiol oxidation was dominant under all tested conditions, an Ar + N2/O2 gas compositions combined with a nitrogen curtain fostered nitric oxide deposition and the desired generation of S-nitrosocysteine. Interestingly, the COST-jet revealed significant differences in its chemical properties in comparison to the kINPen by showing a more stable production of RNS with different gas admixtures, indicating a different •NO production pathway. Taken together, results indicate various chemical properties of kINPen and COST-jet as well as highlight the potential of plasma tuning not only by gas admixtures alone but by adjusting the surrounding atmosphere as well.
Collapse
Affiliation(s)
- Jan-Wilm Lackmann
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
- * E-mail: (JWL); (KW)
| | - Giuliana Bruno
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Helena Jablonowski
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Friederike Kogelheide
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Björn Offerhaus
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Julian Held
- Experimental Physics II, Ruhr University Bochum, Bochum, Germany
| | | | - Katharina Stapelmann
- Institute for Electrical Engineering and Plasma Technology, Ruhr University Bochum, Bochum, Germany
- Plasma for Life Sciences, Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas von Woedtke
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Greifswald, Germany
- * E-mail: (JWL); (KW)
| |
Collapse
|
43
|
Zocher K, Lackmann JW, Volzke J, Steil L, Lalk M, Weltmann KD, Wende K, Kolb JF. Profiling microalgal protein extraction by microwave burst heating in comparison to spark plasma exposures. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Decomposition and oxidation of methionine and tryptophan following irradiation with a nonequilibrium plasma jet and applications for killing cancer cells. Sci Rep 2019; 9:6625. [PMID: 31036847 PMCID: PMC6488654 DOI: 10.1038/s41598-019-42959-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/08/2019] [Indexed: 11/09/2022] Open
Abstract
We present evidence for the decomposition and oxidation of amino acids in aqueous solution following irradiation with a nonequilibrium plasma jet. Of 15 amino acids tested in cell culture medium, plasma irradiation induced a marked chemical change in methionine and tryptophan due to the effective production of reactive oxygen species by plasma-water interaction. We also report that plasma-treated methionine and tryptophan aqueous solutions can kill cancer cells, greatly decreasing the viability of human endometrial carcinoma (HEC-1) cancer cells due to the presence of decomposition or oxidation products generated from the amino acid. Plasma-treated methionine and tryptophan aqueous solutions also induced an anti-cancer effect on cancer-initiating cells.
Collapse
|
45
|
Activation of Murine Immune Cells upon Co-culture with Plasma-treated B16F10 Melanoma Cells. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040660] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in melanoma therapy increased median survival in patients. However, death rates are still high, motivating the need of novel avenues in melanoma treatment. Cold physical plasma expels a cocktail of reactive species that have been suggested for cancer treatment. High species concentrations can be used to exploit apoptotic redox signaling pathways in tumor cells. Moreover, an immune-stimulatory role of plasma treatment, as well as plasma-killed tumor cells, was recently proposed, but studies using primary immune cells are scarce. To this end, we investigated the role of plasma-treated murine B16F10 melanoma cells in modulating murine immune cells’ activation and marker profile. Melanoma cells exposed to plasma showed reduced metabolic and migratory activity, and an increased release of danger signals (ATP, CXCL1). This led to an altered cytokine profile with interleukin-1β (IL-1β) and CCL4 being significantly increased in plasma-treated mono- and co-cultures with immune cells. In T cells, plasma-treated melanoma cells induced extracellular signal-regulated Kinase (ERK) phosphorylation and increased CD28 expression, suggesting their activation. In monocytes, CD115 expression was elevated as a marker for activation. In summary, here we provide proof of concept that plasma-killed tumor cells are recognized immunologically, and that plasma exerts stimulating effects on immune cells alone.
Collapse
|
46
|
Bekeschus S, Freund E, Wende K, Gandhirajan RK, Schmidt A. Hmox1 Upregulation Is a Mutual Marker in Human Tumor Cells Exposed to Physical Plasma-Derived Oxidants. Antioxidants (Basel) 2018; 7:E151. [PMID: 30373228 PMCID: PMC6262576 DOI: 10.3390/antiox7110151] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Increasing numbers of cancer deaths worldwide demand for new treatment avenues. Cold physical plasma is a partially ionized gas expelling a variety of reactive oxygen and nitrogen species, which can be harnesses therapeutically. Plasmas and plasma-treated liquids have antitumor properties in vitro and in vivo. Yet, global response signatures to plasma treatment have not yet been identified. To this end, we screened eight human cancer cell lines to investigate effects of low-dose, tumor-static plasma-treated medium (PTM) on cellular activity, immune-modulatory properties, and transcriptional levels of 22 redox-related genes. With PTM, a moderate reduction of metabolic activity and modest modulation of chemokine/cytokine pattern and markers of immunogenic cell death was observed. Strikingly, the Nuclear factor (erythroid-derived 2)-like 2 (nrf2) target heme oxygenase 1 (hmox1) was upregulated in all cell lines 4 h post PTM-treatment. nrf2 was not changed, but its baseline expression inversely and significantly correlated with hmox1 expression after exposure to PTM. Besides awarding hmox1 a central role with plasma-derived oxidants, we present a transcriptional redox map of 22 targets and chemokine/cytokine secretion map of 13 targets across eight different human tumor cell lines of four tumor entities at baseline activity that are useful for future studies in this field.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Rajesh Kumar Gandhirajan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
47
|
Gorbanev Y, Privat-Maldonado A, Bogaerts A. Analysis of Short-Lived Reactive Species in Plasma-Air-Water Systems: The Dos and the Do Nots. Anal Chem 2018; 90:13151-13158. [PMID: 30289686 DOI: 10.1021/acs.analchem.8b03336] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric pressure plasmas, which are widely employed in industrial and biomedical research, as well as first clinical applications. We summarize the progress in detection of plasma-generated short-lived reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of various analytical methods in plasma-liquid systems, and provide an outlook on the possible future research goals in development of short-lived reactive species analysis methods for a general nonspecialist audience.
Collapse
Affiliation(s)
- Yury Gorbanev
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| | - Angela Privat-Maldonado
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610.,Center for Oncological Research (CORE) , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| |
Collapse
|
48
|
Plasma Treatment of Ovarian Cancer Cells Mitigates Their Immuno-Modulatory Products Active on THP-1 Monocytes. PLASMA 2018. [DOI: 10.3390/plasma1010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancers modulate their microenvironment to favor their growth. In particular, monocytes and macrophages are targeted by immuno-modulatory molecules installed by adjacent tumor cells such as ovarian carcinomas. Cold physical plasma has recently gained attention as innovative tumor therapy. We confirmed this for the OVCAR-3 and SKOV-3 ovarian cancer cell lines in a caspase 3/7 independent and dependent manner, respectively. To elaborate whether plasma exposure interferes with their immunomodulatory properties, supernatants of control and plasma-treated tumor cells were added to human THP-1 monocyte cultures. In the latter, modest effects on intracellular oxidation or short-term metabolic activity were observed. By contrast, supernatants of plasma-treated cancer cells abrogated significant changes in morphological and phenotypic features of THP-1 cells compared to those cultured with supernatants of non-treated tumor cell counterparts. This included cell motility and morphology, and modulated expression patterns of nine cell surface markers known to be involved in monocyte activation. This was particularly pronounced in SKOV-3 cells. Further analysis of tumor cell supernatants indicated roles of small particles and interleukin 8 and 18, with MCP1 presumably driving activation in monocytes. Altogether, our results suggest plasma treatment to alleviate immunomodulatory secretory products of ovarian cancer cells is important for driving a distinct myeloid cell phenotype.
Collapse
|