1
|
Luzak V, Osses E, Danese A, Odendaal C, Cosentino RO, Stricker SH, Haanstra JR, Erhard F, Siegel TN. SLAM-seq reveals independent contributions of RNA processing and stability to gene expression in African trypanosomes. Nucleic Acids Res 2024:gkae1203. [PMID: 39673807 DOI: 10.1093/nar/gkae1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024] Open
Abstract
Gene expression is a multi-step process that converts DNA-encoded information into proteins, involving RNA transcription, maturation, degradation, and translation. While transcriptional control is a major regulator of protein levels, the role of post-transcriptional processes such as RNA processing and degradation is less well understood due to the challenge of measuring their contributions individually. To address this challenge, we investigated the control of gene expression in Trypanosoma brucei, a unicellular parasite assumed to lack transcriptional control. Instead, mRNA levels in T. brucei are controlled by post-transcriptional processes, which enabled us to disentangle the contribution of both processes to total mRNA levels. In this study, we developed an efficient metabolic RNA labeling approach and combined ultra-short metabolic labeling with transient transcriptome sequencing (TT-seq) to confirm the long-standing assumption that RNA polymerase II transcription is unregulated in T. brucei. In addition, we established thiol (SH)-linked alkylation for metabolic sequencing of RNA (SLAM-seq) to globally quantify RNA processing rates and half-lives. Our data, combined with scRNA-seq data, indicate that RNA processing and stability independently affect total mRNA levels and contribute to the variability seen between individual cells in African trypanosomes.
Collapse
Affiliation(s)
- Vanessa Luzak
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esteban Osses
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Danese
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Planegg-Martinsried 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Planegg-Martinsried 82152, Germany
| | - Christoff Odendaal
- Systems Biology Lab/A-LIFE, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan H Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Planegg-Martinsried 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Planegg-Martinsried 82152, Germany
| | - Jurgen R Haanstra
- Systems Biology Lab/A-LIFE, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Florian Erhard
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Chair of Computational Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 2024; 15:2310452. [PMID: 38605598 PMCID: PMC11018031 DOI: 10.1080/19491034.2024.2310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 04/13/2024] Open
Abstract
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
Collapse
Affiliation(s)
| | - Samson O. Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Smith JE, Wang KJ, Kennedy EM, Hakim JM, So J, Beaver AK, Magesh A, Gilligan-Steinberg SD, Zheng J, Zhang B, Moorthy DN, Akin EH, Mwakibete L, Mugnier MR. DNA damage drives antigen diversification through mosaic Variant Surface Glycoprotein (VSG) formation in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.582209. [PMID: 39253459 PMCID: PMC11383311 DOI: 10.1101/2024.03.22.582209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Antigenic variation, using large genomic repertoires of antigen-encoding genes, allows pathogens to evade host antibody. Many pathogens, including the African trypanosome Trypanosoma brucei, extend their antigenic repertoire through genomic diversification. While evidence suggests that T. brucei depends on the generation of new variant surface glycoprotein (VSG) genes to maintain a chronic infection, a lack of experimentally tractable tools for studying this process has obscured its underlying mechanisms. Here, we present a highly sensitive targeted sequencing approach for measuring VSG diversification. Using this method, we demonstrate that a Cas9-induced DNA double-strand break within the VSG coding sequence can induce VSG recombination with patterns identical to those observed during infection. These newly generated VSGs are antigenically distinct from parental clones and thus capable of facilitating immune evasion. Together, these results provide insight into the mechanisms of VSG diversification and an experimental framework for studying the evolution of antigen repertoires in pathogenic microbes.
Collapse
Affiliation(s)
- Jaclyn E. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kevin J. Wang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Erin M. Kennedy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jill M.C. Hakim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jaime So
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alexander K. Beaver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Aishwarya Magesh
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Shane D. Gilligan-Steinberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Current Affiliation: Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Jessica Zheng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bailin Zhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Current Affiliation: Scripps Research Department of Integrative Structural and Computational Biology, La Jolla, San Diego, California, United States of America
| | - Dharani Narayan Moorthy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Elgin Henry Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lusajo Mwakibete
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Monica R. Mugnier
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Lead contact
| |
Collapse
|
4
|
Gangwar U, Choudhury H, Shameem R, Singh Y, Bansal A. Recent development in CRISPR-Cas systems for human protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:109-160. [PMID: 39266180 DOI: 10.1016/bs.pmbts.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.
Collapse
Affiliation(s)
- Utkarsh Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Risha Shameem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yashi Singh
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Asencio C, Hervé P, Morand P, Oliveres Q, Morel CA, Prouzet-Mauleon V, Biran M, Monic S, Bonhivers M, Robinson DR, Ouellette M, Rivière L, Bringaud F, Tetaud E. Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Mol Microbiol 2024; 121:1079-1094. [PMID: 38558208 DOI: 10.1111/mmi.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.
Collapse
Affiliation(s)
| | - Perrine Hervé
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | | | | | | - Marc Biran
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
| | - Sarah Monic
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Loïc Rivière
- Univ. Bordeaux, CNRS, MFP, UMR 5234, Bordeaux, France
| | | | | |
Collapse
|
6
|
Kovářová J, Moos M, Barrett MP, Horn D, Zíková A. The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis. PLoS Negl Trop Dis 2024; 18:e0012007. [PMID: 38394337 PMCID: PMC10917290 DOI: 10.1371/journal.pntd.0012007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
Collapse
Affiliation(s)
- Julie Kovářová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Faria JRC, Tinti M, Marques CA, Zoltner M, Yoshikawa H, Field MC, Horn D. An allele-selective inter-chromosomal protein bridge supports monogenic antigen expression in the African trypanosome. Nat Commun 2023; 14:8200. [PMID: 38081826 PMCID: PMC10713589 DOI: 10.1038/s41467-023-44043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
UPF1-like helicases play roles in telomeric heterochromatin formation and X-chromosome inactivation, and also in monogenic variant surface glycoprotein (VSG) expression via VSG exclusion-factor-2 (VEX2), a UPF1-related protein in the African trypanosome. We show that VEX2 associates with chromatin specifically at the single active VSG expression site on chromosome 6, forming an allele-selective connection, via VEX1, to the trans-splicing locus on chromosome 9, physically bridging two chromosomes and the VSG transcription and splicing compartments. We further show that the VEX-complex is multimeric and self-regulates turnover to tightly control its abundance. Using single cell transcriptomics following VEX2-depletion, we observed simultaneous derepression of many other telomeric VSGs and multi-allelic VSG expression in individual cells. Thus, an allele-selective, inter-chromosomal, and self-limiting VEX1-2 bridge supports monogenic VSG expression and multi-allelic VSG exclusion.
Collapse
Affiliation(s)
- Joana R C Faria
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
- Biology Department, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Catarina A Marques
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Martin Zoltner
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Harunori Yoshikawa
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Mark C Field
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
8
|
Escrivani DO, Scheidt V, Tinti M, Faria J, Horn D. Competition among variants is predictable and contributes to the antigenic variation dynamics of African trypanosomes. PLoS Pathog 2023; 19:e1011530. [PMID: 37459347 PMCID: PMC10374056 DOI: 10.1371/journal.ppat.1011530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/27/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Several persistent pathogens employ antigenic variation to continually evade mammalian host adaptive immune responses. African trypanosomes use variant surface glycoproteins (VSGs) for this purpose, transcribing one telomeric VSG expression-site at a time, and exploiting a reservoir of (sub)telomeric VSG templates to switch the active VSG. It has been known for over fifty years that new VSGs emerge in a predictable order in Trypanosoma brucei, and differential activation frequencies are now known to contribute to the hierarchy. Switching of approximately 0.01% of dividing cells to many new VSGs, in the absence of post-switching competition, suggests that VSGs are deployed in a highly profligate manner, however. Here, we report that switched trypanosomes do indeed compete, in a highly predictable manner that is dependent upon the activated VSG. We induced VSG gene recombination and switching in in vitro culture using CRISPR-Cas9 nuclease to target the active VSG. VSG dynamics, that were independent of host immune selection, were subsequently assessed using RNA-seq. Although trypanosomes activated VSGs from repressed expression-sites at relatively higher frequencies, the population of cells that activated minichromosomal VSGs subsequently displayed a competitive advantage and came to dominate. Furthermore, the advantage appeared to be more pronounced for longer VSGs. Differential growth of switched clones was also associated with wider differences, affecting transcripts involved in nucleolar function, translation, and energy metabolism. We conclude that antigenic variants compete, and that the population of cells that activates minichromosome derived VSGs displays a competitive advantage. Thus, competition among variants impacts antigenic variation dynamics in African trypanosomes and likely prolongs immune evasion with a limited set of antigens.
Collapse
Affiliation(s)
- Douglas O Escrivani
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Viktor Scheidt
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Joana Faria
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
9
|
Rao SPS, Gould MK, Noeske J, Saldivia M, Jumani RS, Ng PS, René O, Chen YL, Kaiser M, Ritchie R, Francisco AF, Johnson N, Patra D, Cheung H, Deniston C, Schenk AD, Cortopassi WA, Schmidt RS, Wiedemar N, Thomas B, Palkar R, Ghafar NA, Manoharan V, Luu C, Gable JE, Wan KF, Myburgh E, Mottram JC, Barnes W, Walker J, Wartchow C, Aziz N, Osborne C, Wagner J, Sarko C, Kelly JM, Manjunatha UH, Mäser P, Jiricek J, Lakshminarayana SB, Barrett MP, Diagana TT. Cyanotriazoles are selective topoisomerase II poisons that rapidly cure trypanosome infections. Science 2023; 380:1349-1356. [PMID: 37384702 DOI: 10.1126/science.adh0614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Srinivasa P S Rao
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Matthew K Gould
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jonas Noeske
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Manuel Saldivia
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Rajiv S Jumani
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Pearly S Ng
- Novartis Institute for Tropical Diseases, Singapore
| | - Olivier René
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Yen-Liang Chen
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Ryan Ritchie
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Nila Johnson
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Debjani Patra
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Harry Cheung
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Colin Deniston
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | | | | | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Natalie Wiedemar
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Bryanna Thomas
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Rima Palkar
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | | | | | - Catherine Luu
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Jonathan E Gable
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, Singapore
| | - Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Whitney Barnes
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - John Walker
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Charles Wartchow
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Natasha Aziz
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Colin Osborne
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Juergen Wagner
- Novartis Institute for Tropical Diseases, Singapore
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christopher Sarko
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - John M Kelly
- London School of Hygiene and Tropical Medicine, London, UK
| | - Ujjini H Manjunatha
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Jan Jiricek
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Suresh B Lakshminarayana
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Michael P Barrett
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Thierry T Diagana
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| |
Collapse
|
10
|
Hassan S, Ganai BA. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 2023; 39:151. [PMID: 37029313 DOI: 10.1007/s11274-023-03603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
11
|
Makarov A, Began J, Mautone IC, Pinto E, Ferguson L, Zoltner M, Zoll S, Field MC. The role of invariant surface glycoprotein 75 in xenobiotic acquisition by African trypanosomes. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:18-35. [PMID: 36789350 PMCID: PMC9896412 DOI: 10.15698/mic2023.02.790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
The surface proteins of parasitic protozoa mediate functions essential to survival within a host, including nutrient accumulation, environmental sensing and immune evasion. Several receptors involved in nutrient uptake and defence from the innate immune response have been described in African trypanosomes and, together with antigenic variation, contribute towards persistence within vertebrate hosts. Significantly, a superfamily of invariant surface glycoproteins (ISGs) populates the trypanosome surface, one of which, ISG75, is implicated in uptake of the century-old drug suramin. By CRISPR/Cas9 knockout and biophysical analysis, we show here that ISG75 directly binds suramin and mediates uptake of additional naphthol-related compounds, making ISG75 a conduit for entry of at least one structural class of trypanocidal compounds. However, ISG75 null cells present only modest attenuation of suramin sensitivity, have unaltered viability in vivo and in vitro and no alteration to suramin-invoked proteome responses. While ISG75 is demonstrated as a valid suramin cell entry pathway, we suggest the presence of additional mechanisms for suramin accumulation, further demonstrating the complexity of trypanosomatid drug interactions and potential for evolution of resistance.
Collapse
Affiliation(s)
- Alexandr Makarov
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jakub Began
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Ileana Corvo Mautone
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, Universidad de la República, Paysandú 60000, Uruguay
| | - Erika Pinto
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Liam Ferguson
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Charles University, Faculty of Science, Department of Parasitology, Vestec, Czech Republic
| | - Sebastian Zoll
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
12
|
Genetic manipulations in helminth parasites. J Parasit Dis 2023; 47:203-214. [PMID: 36712591 PMCID: PMC9869838 DOI: 10.1007/s12639-023-01567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Screening of vaccine or drug target in parasitic helminth is hindered by lack of robust tool for functional studies of parasite protein which account for the availability of only a few anti-helminthic vaccines, diagnostic assay and slower pace of development of an anthelmintic drug. With the piling up of parasite transcriptomic and genomic data, in silico screening for possible vaccine/drug target could be validated by functional characterization of proteins by RNA interference or CRISPR/Cas9. These reverse genetic engineering tools have opened up a better avenue and opportunity for screening parasitic proteins in vitro as well as in vivo. RNA interference provides a technique for silencing targeted mRNA transcript for understanding a gene function in helminth as evidence by work in Caenorhabditis elegans. Recent genetic engineering tool, CRISPR/Cas9 allows knock-out/deletion of the desired gene in parasitic helminths and the other provision it provides in terms of gene knock-in/insertion in parasite genome is still to be explored in future. This manuscript discussed the work that has been carried out on RNAi and CRISPR/Cas9 for functional studies of helminth parasitic proteins.
Collapse
|
13
|
Pal S, Dam S. CRISPR-Cas9: Taming protozoan parasites with bacterial scissor. J Parasit Dis 2022; 46:1204-1212. [PMID: 36457766 PMCID: PMC9606157 DOI: 10.1007/s12639-022-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022] Open
Abstract
The invention of CRISPR-Cas9 technology has opened a new era in which genome manipulation has become precise, faster, cheap and more accurate than previous genome editing strategies. Despite the intricacies of the genomes associated with several protozoan parasites, CRISPR-Cas9 has made a substantial contribution to parasitology. The study of functional genomics through CRISPR-Cas9 mediated gene knockout, insertion, deletion and mutation has helped in understanding intrinsic parasite biology. The invention of CRISPR-dCas9 has helped in the programmable control of protozoan gene expression and epigenetic engineering. CRISPR and CRISPR-based alternatives will continue to thrive and may aid in the development of novel anti-protozoan strategies to tame the protozoan parasites in the imminent future.
Collapse
Affiliation(s)
- Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
14
|
Geoghegan V, Carnielli JBT, Jones NG, Saldivia M, Antoniou S, Hughes C, Neish R, Dowle A, Mottram JC. CLK1/CLK2-driven signalling at the Leishmania kinetochore is captured by spatially referenced proximity phosphoproteomics. Commun Biol 2022; 5:1305. [PMID: 36437406 PMCID: PMC9701682 DOI: 10.1038/s42003-022-04280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Kinetochores in the parasite Leishmania and related kinetoplastids appear to be unique amongst eukaryotes and contain protein kinases as core components. Using the kinetochore kinases KKT2, KKT3 and CLK2 as baits, we developed a BirA* proximity biotinylation methodology optimised for sensitivity, XL-BioID, to investigate the composition and function of the Leishmania kinetochore. We could detect many of the predicted components and also discovered two novel kinetochore proteins, KKT24 and KKT26. Using KKT3 tagged with a fast-acting promiscuous biotin ligase variant, we took proximity biotinylation snapshots of the kinetochore in synchronised parasites. To quantify proximal phosphosites at the kinetochore as the parasite progressed through the cell cycle, we further developed a spatially referenced proximity phosphoproteomics approach. This revealed a group of phosphosites at the kinetochore that were highly dynamic during kinetochore assembly. We show that the kinase inhibitor AB1 targets CLK1/CLK2 (KKT10/KKT19) in Leishmania leading to defective cytokinesis. Using AB1 to uncover CLK1/CLK2 driven signalling pathways important for kinetochore function at G2/M, we found a set of 16 inhibitor responsive kinetochore-proximal phosphosites. Our results exploit new proximity labelling approaches to provide a direct analysis of the Leishmania kinetochore, which is emerging as a promising drug target.
Collapse
Affiliation(s)
- Vincent Geoghegan
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Juliana B. T. Carnielli
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Nathaniel G. Jones
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Manuel Saldivia
- grid.418424.f0000 0004 0439 2056Novartis Institute for Tropical Diseases, Emeryville, CA USA
| | - Sergios Antoniou
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Charlotte Hughes
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Rachel Neish
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Adam Dowle
- grid.5685.e0000 0004 1936 9668Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD UK
| | - Jeremy C. Mottram
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| |
Collapse
|
15
|
Álvarez-Rodríguez A, Jin BK, Radwanska M, Magez S. Recent progress in diagnosis and treatment of Human African Trypanosomiasis has made the elimination of this disease a realistic target by 2030. Front Med (Lausanne) 2022; 9:1037094. [PMID: 36405602 PMCID: PMC9669443 DOI: 10.3389/fmed.2022.1037094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is caused by unicellular flagellated protozoan parasites of the genus Trypanosoma brucei. The subspecies T. b. gambiense is mainly responsible for mostly chronic anthroponotic infections in West- and Central Africa, accounting for roughly 95% of all HAT cases. Trypanosoma b. rhodesiense results in more acute zoonotic infections in East-Africa. Because HAT has a two-stage pathogenesis, treatment depends on clinical assessment of patients and the determination whether or not parasites have crossed the blood brain barrier. Today, ultimate confirmation of parasitemia is still done by microscopy analysis. However, the introduction of diagnostic lateral flow devices has been a major contributor to the recent dramatic drop in T. b. gambiense HAT. Other techniques such as loop mediated isothermal amplification (LAMP) and recombinant polymerase amplification (RPA)-based tests have been published but are still not widely used in the field. Most recently, CRISPR-Cas technology has been proposed to improve the intrinsic diagnostic characteristics of molecular approaches. This will become crucial in the near future, as preventing the resurgence of HAT will be a priority and will require tools with extreme high positive and negative predicted values, as well as excellent sensitivity and specificity. As for treatment, pentamidine and suramin have historically been the drugs of choice for the treatment of blood-stage gambiense-HAT and rhodesiense-HAT, respectively. For treatment of second-stage infections, drugs that pass the blood brain barrier are needed, and melarsoprol has been effectively used for both forms of HAT in the past. However, due to the high occurrence of post-treatment encephalopathy, the drug is not recommended for use in T. b. gambiense HAT. Here, a combination therapy of eflornithine and nifurtimox (NECT) has been the choice of treatment since 2009. As this treatment requires IV perfusion of eflornithine, efforts were launched in 2003 by the drugs for neglected disease initiative (DNDi) to find an oral-only therapy solution, suitable for rural sub-Saharan Africa treatment conditions. In 2019 this resulted in the introduction of fexinidazole, with a treatment regimen suitable for both the blood-stage and non-severe second-stage T. b. gambiense infections. Experimental treatment of T. b. rhodesiense HAT has now been initiated as well.
Collapse
Affiliation(s)
- Andrés Álvarez-Rodríguez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bo-Kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Stefan Magez,
| |
Collapse
|
16
|
Wincott CJ, Sritharan G, Benns HJ, May D, Gilabert-Carbajo C, Bunyan M, Fairweather AR, Alves E, Andrew I, Game L, Frickel EM, Tiengwe C, Ewald SE, Child MA. Cellular barcoding of protozoan pathogens reveals the within-host population dynamics of Toxoplasma gondii host colonization. CELL REPORTS METHODS 2022; 2:100274. [PMID: 36046624 PMCID: PMC9421581 DOI: 10.1016/j.crmeth.2022.100274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii.
Collapse
Affiliation(s)
- Ceire J. Wincott
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Gayathri Sritharan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Biological Sciences, Birkbeck, University of London, Mallet Street, Bloomsbury, London WC1E 7HX, UK
| | - Henry J. Benns
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Dana May
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Carla Gilabert-Carbajo
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Monique Bunyan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
| | - Aisling R. Fairweather
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Eduardo Alves
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ivan Andrew
- UKRI London Institute of Medical Sciences Genomics Laboratory, Shepherd’s Bush, London W12 0NN, UK
| | - Laurence Game
- UKRI London Institute of Medical Sciences Genomics Laboratory, Shepherd’s Bush, London W12 0NN, UK
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Calvin Tiengwe
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Sarah E. Ewald
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Matthew A. Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
17
|
Altmann S, Rico E, Carvalho S, Ridgway M, Trenaman A, Donnelly H, Tinti M, Wyllie S, Horn D. Oligo targeting for profiling drug resistance mutations in the parasitic trypanosomatids. Nucleic Acids Res 2022; 50:e79. [PMID: 35524555 PMCID: PMC9371896 DOI: 10.1093/nar/gkac319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022] Open
Abstract
Trypanosomatids cause the neglected tropical diseases, sleeping sickness, Chagas disease and the leishmaniases. Studies on these lethal parasites would be further facilitated by new and improved genetic technologies. Scalable precision editing methods, for example, could be used to improve our understanding of potential mutations associated with drug resistance, a current priority given that several new anti-trypanosomal drugs, with known targets, are currently in clinical development. We report the development of a simple oligo targeting method for rapid and precise editing of priority drug targets in otherwise wild type trypanosomatids. In Trypanosoma brucei, approx. 50-b single-stranded oligodeoxynucleotides were optimal, multiple base edits could be incorporated, and editing efficiency was substantially increased when mismatch repair was suppressed. Resistance-associated edits were introduced in T. brucei cyclin dependent kinase 12 (CRK12, L482F) or cleavage and polyadenylation specificity factor 3 (N232H), in the Trypanosoma cruzi proteasome β5 subunit (G208S), or in Leishmania donovani CRK12 (G572D). We further implemented oligo targeting for site saturation mutagenesis, targeting codon G492 in T. brucei CRK12. This approach, combined with amplicon sequencing for codon variant scoring, revealed fourteen resistance conferring G492 edits encoding six distinct amino acids. The outputs confirm on-target drug activity, reveal a variety of resistance-associated mutations, and facilitate rapid assessment of potential impacts on drug efficacy.
Collapse
Affiliation(s)
- Simone Altmann
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eva Rico
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra Carvalho
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Melanie Ridgway
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Hannah Donnelly
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michele Tinti
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Wyllie
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
18
|
Smith A, Wall RJ, Patterson S, Rowan T, Rico Vidal E, Stojanovski L, Huggett M, Hampton SE, Thomas MG, Corpas Lopez V, Gillingwater K, Duke J, Napier G, Peter R, Vitouley HS, Harrison JR, Milne R, Jeacock L, Baker N, Davis SH, Simeons F, Riley J, Horn D, Brun R, Zuccotto F, Witty MJ, Wyllie S, Read KD, Gilbert IH. Repositioning of a Diaminothiazole Series Confirmed to Target the Cyclin-Dependent Kinase CRK12 for Use in the Treatment of African Animal Trypanosomiasis. J Med Chem 2022; 65:5606-5624. [PMID: 35303411 PMCID: PMC9014415 DOI: 10.1021/acs.jmedchem.1c02104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/29/2022]
Abstract
African animal trypanosomiasis or nagana, caused principally by infection of the protozoan parasites Trypanosoma congolense and Trypanosoma vivax, is a major problem in cattle and other livestocks in sub-Saharan Africa. Current treatments are threatened by the emergence of drug resistance and there is an urgent need for new, effective drugs. Here, we report the repositioning of a compound series initially developed for the treatment of human African trypanosomiasis. A medicinal chemistry program, focused on deriving more soluble analogues, led to development of a lead compound capable of curing cattle infected with both T. congolense and T. vivax via intravenous dosing. Further optimization has the potential to yield a single-dose intramuscular treatment for this disease. Comprehensive mode of action studies revealed that the molecular target of this promising compound and related analogues is the cyclin-dependent kinase CRK12.
Collapse
Affiliation(s)
- Alasdair Smith
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Richard J. Wall
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Stephen Patterson
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Tim Rowan
- GALVmed, Doherty Building, Pentlands Science
Park, Bush Loan, Penicuik, Edinburgh EH26 0PZ, United Kingdom
| | - Eva Rico Vidal
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Laste Stojanovski
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Margaret Huggett
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Shahienaz E. Hampton
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael G. Thomas
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Victoriano Corpas Lopez
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Kirsten Gillingwater
- Swiss
Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University
of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Jeff Duke
- University
of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB United Kingdom
| | - Grant Napier
- GALVmed, Doherty Building, Pentlands Science
Park, Bush Loan, Penicuik, Edinburgh EH26 0PZ, United Kingdom
| | - Rose Peter
- GALVmed, Doherty Building, Pentlands Science
Park, Bush Loan, Penicuik, Edinburgh EH26 0PZ, United Kingdom
| | - Hervé S. Vitouley
- Centre
International de Recherche-Développement sur l’Elevage
en zone Subhumide (CIRDES), No 559 ru
5-31 angle Av. du Gouverneur Louveau, 01 BP: 454 Bobo-Dioulasso 01, Burkina Faso
| | - Justin R. Harrison
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Rachel Milne
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Laura Jeacock
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Nicola Baker
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Susan H. Davis
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Frederick Simeons
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Jennifer Riley
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - David Horn
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Reto Brun
- Swiss
Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University
of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Fabio Zuccotto
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael J Witty
- GALVmed, Doherty Building, Pentlands Science
Park, Bush Loan, Penicuik, Edinburgh EH26 0PZ, United Kingdom
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Kevin D. Read
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Ian H. Gilbert
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
19
|
Li M, Huo YX, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. BIOLOGY 2022; 11:571. [PMID: 35453770 PMCID: PMC9024924 DOI: 10.3390/biology11040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
Nonmodel microbes with unique and diverse metabolisms have become rising stars in synthetic biology; however, the lack of efficient gene engineering techniques still hinders their development. Recently, the use of base editors has emerged as a versatile method for gene engineering in a wide range of organisms including nonmodel microbes. This method is a fusion of impaired CRISPR/Cas9 nuclease and base deaminase, enabling the precise point mutation at the target without inducing homologous recombination. This review updates the latest advancement of base editors in microbes, including the conclusion of all microbes that have been researched by base editors, the introduction of newly developed base editors, and their applications. We provide a list that comprehensively concludes specific applications of BEs in nonmodel microbes, which play important roles in industrial, agricultural, and clinical fields. We also present some microbes in which BEs have not been fully established, in the hope that they are explored further and so that other microbial species can achieve arbitrary base conversions. The current obstacles facing BEs and solutions are put forward. Lastly, the highly efficient BEs and other developed versions for genome-wide reprogramming of cells are discussed, showing great potential for future engineering of nonmodel microbes.
Collapse
Affiliation(s)
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| |
Collapse
|
20
|
Kovářová J, Novotná M, Faria J, Rico E, Wallace C, Zoltner M, Field MC, Horn D. CRISPR/Cas9-based precision tagging of essential genes in bloodstream form African trypanosomes. Mol Biochem Parasitol 2022; 249:111476. [DOI: 10.1016/j.molbiopara.2022.111476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022]
|
21
|
Beilstein S, El Phil R, Sahraoui SS, Scapozza L, Kaiser M, Mäser P. Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15020135. [PMID: 35215248 PMCID: PMC8879015 DOI: 10.3390/ph15020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory.
Collapse
Affiliation(s)
- Sabina Beilstein
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Radhia El Phil
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Suzanne Sherihan Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Kaiser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Pascal Mäser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-284-8338
| |
Collapse
|
22
|
CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases. Pharmaceuticals (Basel) 2021; 14:ph14111171. [PMID: 34832953 PMCID: PMC8625472 DOI: 10.3390/ph14111171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Through the years, many promising tools for gene editing have been developed including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR-associated protein 9 (Cas9), and homing endonucleases (HEs). These novel technologies are now leading new scientific advancements and practical applications at an inimitable speed. While most work has been performed in eukaryotes, CRISPR systems also enable tools to understand and engineer bacteria. The increase in the number of multi-drug resistant strains highlights a necessity for more innovative approaches to the diagnosis and treatment of infections. CRISPR has given scientists a glimmer of hope in this area that can provide a novel tool to fight against antimicrobial resistance. This system can provide useful information about the functions of genes and aid us to find potential targets for antimicrobials. This paper discusses the emerging use of CRISPR-Cas systems in the fields of clinical microbiology and infectious diseases with a particular emphasis on future prospects.
Collapse
|
23
|
Identification of a proteasome-targeting arylsulfonamide with potential for the treatment of Chagas' disease. Antimicrob Agents Chemother 2021; 66:e0153521. [PMID: 34606338 PMCID: PMC8765320 DOI: 10.1128/aac.01535-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi, the causative agent of Chagas’ disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between β4 and β5 subunits that catalyze chymotrypsin-like activity. A mutation in the β5 subunit of the proteasome was associated with resistance to compound 1, while overexpression of this mutated subunit also reduced susceptibility to compound 1. Further genetically engineered and in vitro-selected clones resistant to proteasome inhibitors known to bind at the β4/β5 interface were cross-resistant to compound 1. Ubiquitinated proteins were additionally found to accumulate in compound 1-treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1, although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.
Collapse
|
24
|
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology 2021; 148:1237-1253. [PMID: 33407981 PMCID: PMC8311968 DOI: 10.1017/s0031182020002437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.
Collapse
Affiliation(s)
- Joana R. C. Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| |
Collapse
|
25
|
Steketee PC, Dickie EA, Iremonger J, Crouch K, Paxton E, Jayaraman S, Alfituri OA, Awuah-Mensah G, Ritchie R, Schnaufer A, Rowan T, de Koning HP, Gadelha C, Wickstead B, Barrett MP, Morrison LJ. Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathog 2021; 17:e1009734. [PMID: 34310651 PMCID: PMC8384185 DOI: 10.1371/journal.ppat.1009734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/24/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.
Collapse
Affiliation(s)
- Pieter C Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily A Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Iremonger
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar A Alfituri
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Rowan
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Kirti A, Sharma M, Rani K, Bansal A. CRISPRing protozoan parasites to better understand the biology of diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:21-68. [PMID: 33934837 DOI: 10.1016/bs.pmbts.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precise gene editing techniques are paramount to gain deeper insights into the biological processes such as host-parasite interactions, drug resistance mechanisms, and gene-function relationships. Discovery of CRISPR-Cas9 system has spearheaded mechanistic understanding of protozoan parasite biology as evident from the number of reports in the last decade. Here, we have described the use of CRISPR-Cas9 in understanding the biology of medically important protozoan parasites such as Plasmodium, Leishmania, Trypanosoma, Babesia and Trichomonas. In spite of intrinsic difficulties in genome editing in these protozoan parasites, CRISPR-Cas9 has acted as a catalyst for faster generation of desired transgenic parasites. Modifications in the CRISPR-Cas9 system for improving the efficiency have been useful in better understanding the molecular mechanisms associated with repair of double strand breaks in the parasites. Moreover, improvement in reagents used for CRISPR mediated gene editing have been instrumental in addressing the issue of non-specificity and toxicity for therapeutic use. These application-based modifications may help in further increasing the efficiency of gene editing in protozoan parasites.
Collapse
Affiliation(s)
- Apurva Kirti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Komal Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
27
|
Mehnert AK, Prorocic M, Dujeancourt-Henry A, Hutchinson S, McCulloch R, Glover L. The MRN complex promotes DNA repair by homologous recombination and restrains antigenic variation in African trypanosomes. Nucleic Acids Res 2021; 49:1436-1454. [PMID: 33450001 PMCID: PMC7897489 DOI: 10.1093/nar/gkaa1265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination dominates as the major form of DNA repair in Trypanosoma brucei, and is especially important for recombination of the subtelomeric variant surface glycoprotein during antigenic variation. RAD50, a component of the MRN complex (MRE11, RAD50, NBS1), is central to homologous recombination through facilitating resection and governing the DNA damage response. The function of RAD50 in trypanosomes is untested. Here we report that RAD50 and MRE11 are required for RAD51-dependent homologous recombination and phosphorylation of histone H2A following a DNA double strand break (DSB), but neither MRE11 nor RAD50 substantially influence DSB resection at a chromosome-internal locus. In addition, we reveal intrinsic separation-of-function between T. brucei RAD50 and MRE11, with only RAD50 suppressing DSB repair using donors with short stretches of homology at a subtelomeric locus, and only MRE11 directing DSB resection at the same locus. Finally, we show that loss of either MRE11 or RAD50 causes a greater diversity of expressed VSG variants following DSB repair. We conclude that MRN promotes stringent homologous recombination at subtelomeric loci and restrains antigenic variation.
Collapse
Affiliation(s)
- Ann-Kathrin Mehnert
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| | - Marco Prorocic
- Wellcome Center for Integrative Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Annick Dujeancourt-Henry
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur & INSERM U1201, 75015 Paris, France
| | - Richard McCulloch
- Wellcome Center for Integrative Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| |
Collapse
|
28
|
Kangussu-Marcolino MM, Morgado P, Manna D, Yee H, Singh U. Development of a CRISPR/Cas9 system in Entamoeba histolytica: proof of concept. Int J Parasitol 2021; 51:193-200. [PMID: 33264648 PMCID: PMC7880892 DOI: 10.1016/j.ijpara.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
The protozoan parasite Entamoeba histolytica is an important human pathogen and a leading parasitic cause of death on a global scale. The lack of molecular tools for genome editing hinders the study of important biological functions of this parasite. Due to its versatility, the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 system has been successfully used to induce site-specific genomic alterations, including in protozoan parasites. In this study, we optimised CRISPR-Cas9 for use as a genetic tool in E. histolytica. We chose a single plasmid approach containing both guide RNA (gRNA) and Cas9 nuclease expression cassettes. The amebic U6 promoter was used to drive the expression of the gRNA and its expression was confirmed by Northern blot analysis. Stable transfectant cell lines were obtained using a destabilising domain of dihydrofolate reductase fused to myc-tagged Cas9 (ddCas9). With this system, we were able to induce ddCas9 expression 16 h following treatment with the small molecule ligand trimethoprim (TMP). Stable cell lines expressing ddCas9 and Luc-gRNA or non-specific (NS)-gRNA were transiently transfected with a plasmid containing a mutated luciferase gene (pDeadLuc) targeted by Luc-gRNA and another plasmid with a truncated luciferase gene (pDonorLuc) to restore luciferase expression and consequent activity. We observed that luminescence signal increased for the cell line expressing Luc-gRNA, suggesting that homologous recombination was facilitated by Cas9 activity. This evidence is supported by the presence of chimeric DNA detected by PCR and confirmed by sequencing of the resulting repaired DNA obtained by homologous recombination. We believe this represents the first report of a CRISPR/Cas9 system use in Entamoeba and provides evidence that this genome editing approach can be useful for genetic studies in this early branching eukaryote.
Collapse
Affiliation(s)
- Monica Mendes Kangussu-Marcolino
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Pedro Morgado
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Dipak Manna
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Heather Yee
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
29
|
Haindrich AC, Ernst V, Naguleswaran A, Oliveres QF, Roditi I, Rentsch D. Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei. J Biol Chem 2021; 296:100566. [PMID: 33745971 PMCID: PMC8094907 DOI: 10.1016/j.jbc.2021.100566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.
Collapse
Affiliation(s)
| | - Viona Ernst
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Giordani F, Paape D, Vincent IM, Pountain AW, Fernández-Cortés F, Rico E, Zhang N, Morrison LJ, Freund Y, Witty MJ, Peter R, Edwards DY, Wilkes JM, van der Hooft JJJ, Regnault C, Read KD, Horn D, Field MC, Barrett MP. Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. PLoS Pathog 2020; 16:e1008932. [PMID: 33141865 PMCID: PMC7710103 DOI: 10.1371/journal.ppat.1008932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/02/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Livestock diseases caused by Trypanosoma congolense, T. vivax and T. brucei, collectively known as nagana, are responsible for billions of dollars in lost food production annually. There is an urgent need for novel therapeutics. Encouragingly, promising antitrypanosomal benzoxaboroles are under veterinary development. Here, we show that the most efficacious subclass of these compounds are prodrugs activated by trypanosome serine carboxypeptidases (CBPs). Drug-resistance to a development candidate, AN11736, emerged readily in T. brucei, due to partial deletion within the locus containing three tandem copies of the CBP genes. T. congolense parasites, which possess a larger array of related CBPs, also developed resistance to AN11736 through deletion within the locus. A genome-scale screen in T. brucei confirmed CBP loss-of-function as the primary mechanism of resistance and CRISPR-Cas9 editing proved that partial deletion within the locus was sufficient to confer resistance. CBP re-expression in either T. brucei or T. congolense AN11736-resistant lines restored drug-susceptibility. CBPs act by cleaving the benzoxaborole AN11736 to a carboxylic acid derivative, revealing a prodrug activation mechanism. Loss of CBP activity results in massive reduction in net uptake of AN11736, indicating that entry is facilitated by the concentration gradient created by prodrug metabolism.
Collapse
Affiliation(s)
- Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fernando Fernández-Cortés
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Eva Rico
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael J. Witty
- Global Alliance for Livestock and Veterinary Medicine, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Rosemary Peter
- Global Alliance for Livestock and Veterinary Medicine, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Darren Y. Edwards
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jonathan M. Wilkes
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Justin J. J. van der Hooft
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Current address: Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Clément Regnault
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
31
|
Yagoubat A, Corrales RM, Bastien P, Lévêque MF, Sterkers Y. Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends Parasitol 2020; 36:745-760. [DOI: 10.1016/j.pt.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
|
32
|
Shaw S, Knüsel S, Hoenner S, Roditi I. A transient CRISPR/Cas9 expression system for genome editing in Trypanosoma brucei. BMC Res Notes 2020; 13:268. [PMID: 32493474 PMCID: PMC7268226 DOI: 10.1186/s13104-020-05089-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Generation of knockouts and in situ tagging of genes in Trypanosoma brucei has been greatly facilitated by using CRISPR/Cas9 as a genome editing tool. To date, this has entailed using a limited number of cell lines that are stably transformed to express Cas9 and T7 RNA polymerase (T7RNAP). It would be desirable, however, to be able to use CRISPR/Cas9 for any trypanosome cell line. RESULTS We describe a sequential transfection expression system that enables transient expression of the two proteins, followed by delivery of PCR products for gRNAs and repair templates. This procedure can be used for genome editing without the need for stable integration of the Cas9 and T7RNAP genes.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA, 19104, USA
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Sarah Hoenner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
33
|
Culturing and Transfection of Pleomorphic Trypanosoma brucei. Methods Mol Biol 2020. [PMID: 32221911 DOI: 10.1007/978-1-0716-0294-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cultivation of pleomorphic Trypanosoma brucei strains was introduced in 1996 when matrix dependence of growth of natural isolates was recognized. Semisolid agarose or liquid methylcellulose are currently used and here we provide optimized protocols for these culture methods and for transfection of pleomorphic strains. Although more laborious than standard liquid culture, culture of native pleomorphic strains is important for a number of research questions including differentiation, virulence, tissue tropism, and regulated metabolism. Some subclones of pleomorphic strains have acquired matrix independence upon passage in culture but maintained a pleomorphic phenotype. It appears that matrix dependence and pleomorphism are not tightly linked traits, yet phenotypes have to be verified before choosing one of these subclones for given experiments. Based on direct comparisons, we give recommendations for pleomorphic strain selection and culture conditions that guarantee truly pleomorphic and differentiation competent Trypanosoma brucei.
Collapse
|
34
|
Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. mSphere 2019; 4:4/4/e00408-19. [PMID: 31434745 PMCID: PMC6706467 DOI: 10.1128/msphere.00408-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CRISPR-Cas9 genome editing relies on an efficient double-strand DNA break (DSB) and repair. Contrary to mammalian cells, the protozoan parasite Leishmania lacks the most efficient nonhomologous end-joining pathway and uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair to repair DSBs. Here, we reveal that Leishmania predominantly uses single-strand annealing (SSA) (>90%) instead of MMEJ (<10%) for DSB repair (DSBR) following CRISPR targeting of the miltefosine transporter gene, resulting in 9-, 18-, 20-, and 29-kb sequence deletions and multiple gene codeletions. Strikingly, when targeting the Leishmania donovani LdBPK_241510 gene, SSA even occurred by using direct repeats 77 kb apart, resulting in the codeletion of 15 Leishmania genes, though with a reduced frequency. These data strongly indicate that DSBR is not efficient in Leishmania, which explains why more than half of DSBs led to cell death and why the CRISPR gene-targeting efficiency is low compared with that in other organisms. Since direct repeat sequences are widely distributed in the Leishmania genome, we predict that many DSBs created by CRISPR are repaired by SSA. It is also revealed that DNA polymerase theta is involved in both MMEJ and SSA in Leishmania Collectively, this study establishes that DSBR mechanisms and their competence in an organism play an important role in determining the outcome and efficacy of CRISPR gene targeting. These observations emphasize the use of donor DNA templates to improve gene editing specificity and efficiency in Leishmania In addition, we developed a novel Staphylococcus aureus Cas9 constitutive expression vector (pLdSaCN) for gene targeting in Leishmania IMPORTANCE Due to differences in double-strand DNA break (DSB) repair mechanisms, CRISPR-Cas9 gene editing efficiency can vary greatly in different organisms. In contrast to mammalian cells, the protozoan parasite Leishmania uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair (HDR) to repair DSBs but lacks the nonhomologous end-joining pathway. Here, we show that Leishmania predominantly uses single-strand annealing (SSA) instead of MMEJ for DSB repairs (DSBR), resulting in large deletions that can include multiple genes. This strongly indicates that the overall DSBR in Leishmania is inefficient and therefore can influence the outcome of CRISPR-Cas9 gene editing, highlighting the importance of using a donor DNA to improve gene editing fidelity and efficiency in Leishmania.
Collapse
|
35
|
Lander N, Chiurillo MA. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids. J Eukaryot Microbiol 2019; 66:981-991. [PMID: 31211904 DOI: 10.1111/jeu.12747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
CRISPR/Cas9 technology has revolutionized biology. This prokaryotic defense system against foreign DNA has been repurposed for genome editing in a broad range of cell tissues and organisms. Trypanosomatids are flagellated protozoa belonging to the order Kinetoplastida. Some of its most representative members cause important human diseases affecting millions of people worldwide, such as Chagas disease, sleeping sickness and different forms of leishmaniases. Trypanosomatid infections represent an enormous burden for public health and there are no effective treatments for most of the diseases they cause. Since the emergence of the CRISPR/Cas9 technology, the genetic manipulation of these parasites has notably improved. As a consequence, genome editing is now playing a key role in the functional study of proteins, in the characterization of metabolic pathways, in the validation of alternative targets for antiparasitic interventions, and in the study of parasite biology and pathogenesis. In this work we review the different strategies that have been used to adapt the CRISPR/Cas9 system to Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., as well as the research progress achieved using these approaches. Thereby, we will present the state-of-the-art molecular tools available for genome editing in trypanosomatids to finally point out the future perspectives in the field.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
36
|
Bryant JM, Baumgarten S, Glover L, Hutchinson S, Rachidi N. CRISPR in Parasitology: Not Exactly Cut and Dried! Trends Parasitol 2019; 35:409-422. [DOI: 10.1016/j.pt.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
|
37
|
Cayla M, Rojas F, Silvester E, Venter F, Matthews KR. African trypanosomes. Parasit Vectors 2019; 12:190. [PMID: 31036044 PMCID: PMC6489224 DOI: 10.1186/s13071-019-3355-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector. This Primer overviews current research themes focused on these parasites and discusses how these biological insights and the development of new technologies to interrogate gene function are being used in the search for new approaches to control the parasite. The new insights into the biology of trypanosomes in their host and vector highlight that we are in a ‘golden age’ of discovery for these fascinating parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
38
|
Liu Q, Lei J, Kadowaki T. Gene Disruption of Honey Bee Trypanosomatid Parasite, Lotmaria passim, by CRISPR/Cas9 System. Front Cell Infect Microbiol 2019; 9:126. [PMID: 31080782 PMCID: PMC6497781 DOI: 10.3389/fcimb.2019.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Two trypanosomatid species, Lotmaria passim and Crithidia mellificae, have been shown to parasitize honey bees to date. L. passim appears to be more prevalent than C. mellificae and specifically infects the honey bee hindgut. Although the genomic DNA has been sequenced, the effects of infection on honey bee health and colony are poorly understood. To identify the genes that are important for infecting honey bees and to understand their functions, we applied the CRISPR/Cas9 system to establish a method to manipulate L. passim genes. By electroporation of plasmid DNA and subsequent selection by drug, we first established an L. passim clone expressing tdTomato or Cas9. We also successfully disrupted the endogenous miltefosine transporter and tyrosine aminotransferase genes by replacement with drug (hygromycin) resistant gene using the CRISPR/Cas9-induced homology-directed repair pathway. The L. passim clone expressing fluorescent marker, as well as the simple method for editing specific genes, could become useful approaches to understand the underlying mechanisms of honey bee-trypanosomatid parasite interactions.
Collapse
Affiliation(s)
| | | | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
39
|
Jaiswal S, Singh DK, Shukla P. Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review. Front Microbiol 2019; 10:87. [PMID: 30853940 PMCID: PMC6396717 DOI: 10.3389/fmicb.2019.00087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Bioremediation is the degradation potential of microorganisms to dissimilate the complex chemical compounds from the surrounding environment. The genetics and biochemistry of biodegradation processes in datasets opened the way of systems biology. Systemic biology aid the study of interacting parts involved in the system. The significant keys of system biology are biodegradation network, computational biology, and omics approaches. Biodegradation network consists of all the databases and datasets which aid in assisting the degradation and deterioration potential of microorganisms for bioremediation processes. This review deciphers the bio-degradation network, i.e., the databases and datasets (UM-BBD, PAN, PTID, etc.) aiding in assisting the degradation and deterioration potential of microorganisms for bioremediation processes, computational biology and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation experiments. Besides, the present review also describes the gene editing tools like CRISPR Cas, TALEN, and ZFNs which can possibly make design microbe with functional gene of interest for degradation of particular recalcitrant for improved bioremediation.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Dileep Kumar Singh
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
40
|
Kovářová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D. Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog 2018; 14:e1007475. [PMID: 30589893 PMCID: PMC6307712 DOI: 10.1371/journal.ppat.1007475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Bloodstream form African trypanosomes are thought to rely exclusively upon glycolysis, using glucose as a substrate, for ATP production. Indeed, the pathway has long been considered a potential therapeutic target to tackle the devastating and neglected tropical diseases caused by these parasites. However, plasma membrane glucose and glycerol transporters are both expressed by trypanosomes and these parasites can infiltrate tissues that contain glycerol. Here, we show that bloodstream form trypanosomes can use glycerol for gluconeogenesis and for ATP production, particularly when deprived of glucose following hexose transporter depletion. We demonstrate that Trypanosoma brucei hexose transporters 1 and 2 (THT1 and THT2) are localized to the plasma membrane and that knockdown of THT1 expression leads to a growth defect that is more severe when THT2 is also knocked down. These data are consistent with THT1 and THT2 being the primary routes of glucose supply for the production of ATP by glycolysis. However, supplementation of the growth medium with glycerol substantially rescued the growth defect caused by THT1 and THT2 knockdown. Metabolomic analyses with heavy-isotope labelled glycerol demonstrated that trypanosomes take up glycerol and use it to synthesize intermediates of gluconeogenesis, including fructose 1,6-bisphosphate and hexose 6-phosphates, which feed the pentose phosphate pathway and variant surface glycoprotein biosynthesis. We used Cas9-mediated gene knockout to demonstrate a gluconeogenesis-specific, but fructose-1,6-bisphosphatase (Tb927.9.8720)-independent activity, converting fructose 1,6-bisphosphate into fructose 6-phosphate. In addition, we observed increased flux through the tricarboxylic acid cycle and the succinate shunt. Thus, contrary to prior thinking, gluconeogenesis can operate in bloodstream form T. brucei. This pathway, using glycerol as a physiological substrate, may be required in mammalian host tissues.
Collapse
Affiliation(s)
- Julie Kovářová
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Rupa Nagar
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Joana Faria
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael P. Barrett
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
41
|
Abstract
African trypanosomes cause lethal and neglected tropical diseases, known as sleeping sickness in humans and nagana in animals. Current therapies are limited, but fortunately, promising therapies are in advanced clinical and veterinary development, including acoziborole (AN5568 or SCYX-7158) and AN11736, respectively. These benzoxaboroles will likely be key to the World Health Organization's target of disease control by 2030. Their mode of action was previously unknown. We have developed a high-coverage overexpression library and use it here to explore drug mode of action in Trypanosoma brucei Initially, an inhibitor with a known target was used to select for drug resistance and to test massive parallel library screening and genome-wide mapping; this effectively identified the known target and validated the approach. Subsequently, the overexpression screening approach was used to identify the target of the benzoxaboroles, Cleavage and Polyadenylation Specificity Factor 3 (CPSF3, Tb927.4.1340). We validated the CPSF3 endonuclease as the target, using independent overexpression strains. Knockdown provided genetic validation of CPSF3 as essential, and GFP tagging confirmed the expected nuclear localization. Molecular docking and CRISPR-Cas9-based editing demonstrated how acoziborole can specifically block the active site and mRNA processing by parasite, but not host CPSF3. Thus, our findings provide both genetic and chemical validation for CPSF3 as an important drug target in trypanosomes and reveal inhibition of mRNA maturation as the mode of action of the trypanocidal benzoxaboroles. Understanding the mechanism of action of benzoxaborole-based therapies can assist development of improved therapies, as well as the prediction and monitoring of resistance, if or when it arises.
Collapse
|