1
|
Dejou J, Mandairon N, Didier A. Olfactory neurogenesis plays different parts at successive stages of life, implications for mental health. Front Neural Circuits 2024; 18:1467203. [PMID: 39175668 PMCID: PMC11338910 DOI: 10.3389/fncir.2024.1467203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
The olfactory bulb is a unique site of continuous neurogenesis, primarily generating inhibitory interneurons, a process that begins at birth and extends through infancy and adulthood. This review examines the characteristics of olfactory bulb neurogenesis, focusing on granule cells, the most numerous interneurons, and how their age and maturation affect their function. Adult-born granule cells, while immature, contribute to the experience-dependent plasticity of the olfactory circuit by enabling structural and functional synaptic changes. In contrast, granule cells born early in life form the foundational elements of the olfactory bulb circuit, potentially facilitating innate olfactory information processing. The implications of these neonatal cells on early life olfactory memory and their impact on adult perception, particularly in response to aversive events and susceptibility to emotional disorders, warrant further investigation.
Collapse
Affiliation(s)
- Jules Dejou
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Nathalie Mandairon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Anne Didier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Kunkhyen T, Brechbill TR, Berg SPR, Pothuri P, Rangel AN, Gupta A, Cheetham CEJ. Cell type- and layer-specific plasticity of olfactory bulb interneurons following olfactory sensory neuron ablation. Sci Rep 2024; 14:17771. [PMID: 39090136 PMCID: PMC11294461 DOI: 10.1038/s41598-024-68649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Lifelong neurogenesis endows the mouse olfactory system with a capacity for regeneration that is unique in the mammalian nervous system. Throughout life, olfactory sensory neurons (OSNs) are generated from olfactory epithelium (OE) stem cells in the nose, while the subventricular zone generates neuroblasts that migrate to the olfactory bulb (OB) and differentiate into multiple populations of inhibitory interneurons. Methimazole (MMZ) selectively ablates OSNs, but OE neurogenesis enables OSN repopulation and gradual recovery of OSN input to the OB within 6 weeks. However, it is not known how OB interneurons are affected by this loss and subsequent regeneration of OSN input following MMZ treatment. We found that dopaminergic neuron density was significantly reduced 7-14 days post-MMZ but recovered substantially at 35 days. The density of parvalbumin-expressing interneurons was unaffected by MMZ; however, their soma size was significantly reduced at 7-14 days post-MMZ, recovering by 35 days. Surprisingly, we found a transient increase in the density of calretinin-expressing neurons in the glomerular and external plexiform layers, but not the granule cell layer, 7 days post-MMZ. This could not be accounted for by increased neurogenesis but may result from increased calretinin expression. Together, our data demonstrate cell type- and layer-specific changes in OB interneuron density and morphology after MMZ treatment, providing new insight into the range of plasticity mechanisms employed by OB circuits during loss and regeneration of sensory input.
Collapse
Affiliation(s)
- Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Taryn R Brechbill
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah P R Berg
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pranitha Pothuri
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexander N Rangel
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ashna Gupta
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Tsuboi A. A specific olfactory bulb interneuron subtype Tpbg/5T4 generated at embryonic and neonatal stages. Front Neural Circuits 2024; 18:1427378. [PMID: 38933598 PMCID: PMC11203798 DOI: 10.3389/fncir.2024.1427378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Various mammals have shown that sensory stimulation plays a crucial role in regulating the development of diverse structures, such as the olfactory bulb (OB), cerebral cortex, hippocampus, and retina. In the OB, the dendritic development of excitatory projection neurons like mitral/tufted cells is influenced by olfactory experiences. Odor stimulation is also essential for the dendritic development of inhibitory OB interneurons, such as granule and periglomerular cells, which are continuously produced in the ventricular-subventricular zone throughout life. Based on the morphological and molecular features, OB interneurons are classified into several subtypes. The role for each interneuron subtype in the control of olfactory behavior remains poorly understood due to lack of each specific marker. Among the several OB interneuron subtypes, a specific granule cell subtype, which expresses the oncofetal trophoblast glycoprotein (Tpbg or 5T4) gene, has been reported to be required for odor detection and discrimination behavior. This review will primarily focus on elucidating the contribution of different granule cell subtypes, including the Tpbg/5T4 subtype, to olfactory processing and behavior during the embryonic and adult stages.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Pharmaceutical Sciences, Osaka University, Toyonaka, Japan
| |
Collapse
|
4
|
Ferreira A, Constantinescu VS, Malvaut S, Saghatelyan A, Hardy SV. Distinct forms of structural plasticity of adult-born interneuron spines in the mouse olfactory bulb induced by different odor learning paradigms. Commun Biol 2024; 7:420. [PMID: 38582915 PMCID: PMC10998910 DOI: 10.1038/s42003-024-06115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
The morpho-functional properties of neural networks constantly adapt in response to environmental stimuli. The olfactory bulb is particularly prone to constant reshaping of neural networks because of ongoing neurogenesis. It remains unclear whether the complexity of distinct odor-induced learning paradigms and sensory stimulation induces different forms of structural plasticity. In the present study, we automatically reconstructed spines in 3D from confocal images and performed unsupervised clustering based on morphometric features. We show that while sensory deprivation decreased the spine density of adult-born neurons without affecting the morphometric properties of these spines, simple and complex odor learning paradigms triggered distinct forms of structural plasticity. A simple odor learning task affected the morphometric properties of the spines, whereas a complex odor learning task induced changes in spine density. Our work reveals distinct forms of structural plasticity in the olfactory bulb tailored to the complexity of odor-learning paradigms and sensory inputs.
Collapse
Affiliation(s)
- Aymeric Ferreira
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Simon V Hardy
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Computer Science and Software Engineering, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
5
|
Kurematsu C, Sawada M, Ohmuraya M, Tanaka M, Kuboyama K, Ogino T, Matsumoto M, Oishi H, Inada H, Ishido Y, Sakakibara Y, Nguyen HB, Thai TQ, Kohsaka S, Ohno N, Yamada MK, Asai M, Sokabe M, Nabekura J, Asano K, Tanaka M, Sawamoto K. Synaptic pruning of murine adult-born neurons by microglia depends on phosphatidylserine. J Exp Med 2022; 219:213073. [PMID: 35297954 PMCID: PMC9195048 DOI: 10.1084/jem.20202304] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
New neurons, continuously added in the adult olfactory bulb (OB) and hippocampus, are involved in information processing in neural circuits. Here, we show that synaptic pruning of adult-born neurons by microglia depends on phosphatidylserine (PS), whose exposure on dendritic spines is inversely correlated with their input activity. To study the role of PS in spine pruning by microglia in vivo, we developed an inducible transgenic mouse line, in which the exposed PS is masked by a dominant-negative form of milk fat globule-EGF-factor 8 (MFG-E8), MFG-E8D89E. In this transgenic mouse, the spine pruning of adult-born neurons by microglia is impaired in the OB and hippocampus. Furthermore, the electrophysiological properties of these adult-born neurons are altered in MFG-E8D89E mice. These data suggest that PS is involved in the microglial spine pruning and the functional maturation of adult-born neurons. The MFG-E8D89E-based genetic approach shown in this study has broad applications for understanding the biology of PS-mediated phagocytosis in vivo.
Collapse
Affiliation(s)
- Chihiro Kurematsu
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Kazuya Kuboyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Ogino
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mami Matsumoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Inada
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yuri Ishido
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yukina Sakakibara
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Huy Bang Nguyen
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Truc Quynh Thai
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Histology-Embryology-Genetics, Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Shinichi Kohsaka
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Maki K Yamada
- Department of Neuropharmacology, Kagawa School of Pharmaceutical Sciences and Institute of Neuroscience, Tokushima Bunri University, Sanuki, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kenichi Asano
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
6
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
7
|
McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021; 226:1755-1778. [PMID: 33997911 PMCID: PMC8340131 DOI: 10.1007/s00429-021-02288-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
The basal forebrain (BF) is involved in arousal, attention, and reward processing but the role of individual BF neuronal subtypes is still being uncovered. Glutamatergic neurons are the least well-understood of the three main BF neurotransmitter phenotypes. Here we analyzed the distribution, size, calcium-binding protein content and projections of the major group of BF glutamatergic neurons expressing the vesicular glutamate transporter subtype 2 (vGluT2) and tested the functional effect of activating them. Mice expressing Cre recombinase under the control of the vGluT2 promoter were crossed with a reporter strain expressing the red fluorescent protein, tdTomato, to generate vGluT2-cre-tdTomato mice. Immunohistochemical staining for choline acetyltransferase and a cross with mice expressing green fluorescent protein selectively in GABAergic neurons confirmed that cholinergic, GABAergic and vGluT2+ neurons represent distinct BF subpopulations. Subsets of BF vGluT2+ neurons expressed the calcium-binding proteins calbindin or calretinin, suggesting that multiple subtypes of BF vGluT2+ neurons exist. Anterograde tracing using adeno-associated viral vectors expressing channelrhodopsin2-enhanced yellow fluorescent fusion proteins revealed major projections of BF vGluT2+ neurons to neighboring BF cholinergic and parvalbumin neurons, as well as to extra-BF areas involved in the control of arousal or aversive/rewarding behavior such as the lateral habenula and ventral tegmental area. Optogenetic activation of BF vGluT2+ neurons elicited a striking avoidance of the area where stimulation was given, whereas stimulation of BF parvalbumin or cholinergic neurons did not. Together with previous optogenetic findings suggesting an arousal-promoting role, our findings suggest that BF vGluT2 neurons play a dual role in promoting wakefulness and avoidance behavior.
Collapse
Affiliation(s)
- James T McKenna
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Chun Yang
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Thomas Bellio
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - Marissa B Anderson-Chernishof
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Mackenzie C Gamble
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - Abigail Hulverson
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - John G McCoy
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
- Stonehill College, Easton, MA, 02357, USA
| | - Stuart Winston
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Erik Hodges
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Fumi Katsuki
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - James M McNally
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Radhika Basheer
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Ritchie E Brown
- Laboratory of Neuroscience, Dept. of Psychiatry, VA Boston Healthcare System and Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA.
| |
Collapse
|
8
|
Kenton JA, Ontiveros T, Bird CW, Valenzuela CF, Brigman JL. Moderate prenatal alcohol exposure alters the number and function of GABAergic interneurons in the murine orbitofrontal cortex. Alcohol 2020; 88:33-41. [PMID: 32540413 DOI: 10.1016/j.alcohol.2020.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Exposure to alcohol during development produces Fetal Alcohol Spectrum Disorders (FASD), characterized by a wide range of effects that include deficits in multiple cognitive domains. Early identification and treatment of individuals with FASD remain a challenge because neurobehavioral alterations do not become a significant problem until late childhood and early adolescence. Understanding the mechanisms underlying low and moderate prenatal alcohol exposure (PAE) effects on behavior and cognition is essential for improved diagnosis and treatment. Here, we examined the functional and morphological changes in an area known to be involved in executive control, the orbitofrontal cortex (OFC). We found that a moderate PAE model, previously shown to impair behavioral flexibility and to alter OFC activity in vivo, produced moderate functional and morphological changes within the OFC of mice in vitro. Specifically, slice electrophysiological recordings of spontaneous inhibitory post-synaptic currents in OFC pyramidal neurons revealed a significant increase in the amplitude and area in PAE mice relative to controls. Immunohistochemistry uncovered an increase in calretinin-, but not somatostatin- or parvalbumin-expressing cortical interneurons in the OFC of PAE mice. Together, these data suggest that moderate prenatal alcohol exposure alters the disinhibitory function in the OFC, which may contribute to the executive function deficits associated with FASD.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Tiahna Ontiveros
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Clark W Bird
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States.
| |
Collapse
|
9
|
Developmental Potential and Plasticity of Olfactory Epithelium Stem Cells Revealed by Heterotopic Grafting in the Adult Brain. Stem Cell Reports 2020; 14:692-702. [PMID: 32243847 PMCID: PMC7160358 DOI: 10.1016/j.stemcr.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
The neural stem cells (NSCs) residing in the olfactory epithelium (OE) regenerate damaged olfactory sensory neurons throughout adulthood. The accessibility and availability of these NSCs in living individuals, including humans, makes them a promising candidate for harvesting their potential for cell replacement therapies. However, this requires an in-depth understanding of their developmental potential after grafting. Here, we investigated the developmental potential and plasticity of mouse OE-derived NSCs after grafting into the adult subventricular zone (SVZ) neurogenic niche. Our results showed that OE-derived NSCs integrate and proliferate just like endogenous SVZ stem cells, migrate with similar dynamics as endogenous neuroblasts toward the olfactory bulb, and mature and acquire similar electrophysiological properties as endogenous adult-born bulbar interneurons. These results reveal the developmental potential and plasticity of OE-derived NSCs in vivo and show that they can respond to heterotopic neurogenic cues to adapt their phenotype and become functional neurons in ectopic brain regions. OE-derived NSCs integrate in the SVZ after heterotopic transplantation OE-derived NSCs respond to SVZ niche factors and change their developmental program The development of OE-derived and SVZ NSCs are indistinguishable OE-derived NSCs grafted into the SVZ become functional bulbar interneurons
Collapse
|
10
|
Akter M, Kaneko N, Herranz-Pérez V, Nakamura S, Oishi H, García-Verdugo JM, Sawamoto K. Dynamic Changes in the Neurogenic Potential in the Ventricular-Subventricular Zone of Common Marmoset during Postnatal Brain Development. Cereb Cortex 2020; 30:4092-4109. [PMID: 32108222 DOI: 10.1093/cercor/bhaa031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
Even after birth, neuronal production continues in the ventricular-subventricular zone (V-SVZ) and hippocampus in many mammals. The immature new neurons ("neuroblasts") migrate and then mature at their final destination. In humans, neuroblast production and migration toward the neocortex and the olfactory bulb (OB) occur actively only for a few months after birth and then sharply decline with age. However, the precise spatiotemporal profiles and fates of postnatally born neurons remain unclear due to methodological limitations. We previously found that common marmosets, small nonhuman primates, share many features of V-SVZ organization with humans. Here, using marmosets injected with thymidine analogue(s) during various postnatal periods, we demonstrated spatiotemporal changes in neurogenesis during development. V-SVZ progenitor proliferation and neuroblast migration toward the OB and neocortex sharply decreased by 4 months, most strikingly in a V-SVZ subregion from which neuroblasts migrated toward the neocortex. Postnatally born neurons matured within a few months in the OB and hippocampus but remained immature until 6 months in the neocortex. While neurogenic activity was sustained for a month after birth, the distribution and/or differentiation diversity was more restricted in 1-month-born cells than in the neonatal-born population. These findings shed light on distinctive features of postnatal neurogenesis in primates.
Collapse
Affiliation(s)
- Mariyam Akter
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.,Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.,Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki 444-8787, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, 46980 Valencia, Spain.,Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Sayuri Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, 46980 Valencia, Spain
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.,Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
11
|
Tseng CS, Chou SJ, Huang YS. CPEB4-Dependent Neonate-Born Granule Cells Are Required for Olfactory Discrimination. Front Behav Neurosci 2019; 13:5. [PMID: 30728769 PMCID: PMC6351472 DOI: 10.3389/fnbeh.2019.00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/08/2019] [Indexed: 11/23/2022] Open
Abstract
The rodent olfactory bulb (OB) contains two distinct populations of postnatally born interneurons, mainly granule cells (GCs), to support local circuits throughout life. During the early postnatal period (i.e., 2 weeks after birth), GCs are mostly produced locally from progenitor cells in the OB with a proportion of them deriving from proliferating cells in the rostral migratory stream (RMS). Afterward, the replenishment of GCs involves differentiated neuroblasts from the subventricular zone (SVZ) in a process known as adult neurogenesis. Although numerous studies have addressed the role of SVZ-born GCs in olfactory behaviors, the function of GCs produced early postnatally in the OB remains elusive. Our previous study demonstrated that the translational regulator, cytoplasmic polyadenylation element-binding protein 4 (CPEB4), is a survival factor exclusively for neonate-born but not SVZ/adult-derived GCs, so CPEB4-knockout (KO) mice provide unique leverage to study early postnatal-born GC-regulated olfactory functions. CPEB4-KO mice with hypoplastic OBs showed normal olfactory sensitivity and short-term memory, but impaired ability to spontaneously discriminate two odors. Such olfactory dysfunction was recapitulated in specific ablation of Cpeb4 gene in inhibitory interneurons but not in excitatory projection neurons or SVZ-derived interneurons. The continuous supply of GCs from adult neurogenesis eventually restored the OB size but not the discrimination function in 6-month-old KO mice. Hence, in the early postnatal OB, whose function cannot be replaced by adult-born GCs, construct critical circuits for odor discrimination.
Collapse
Affiliation(s)
- Ching-San Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|